Improving the accuracy and speed of fast template‐matching algorithms by neural architecture search
Neural architecture search can be used to find convolutional neural architectures that are precise and robust while enjoying enough speed for industrial image processing applications. In this paper, our goal is to achieve optimal convolutional neural networks (CNNs) for multiple‐templates matching f...
        Saved in:
      
    
          | Published in | Expert systems Vol. 40; no. 9 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Blackwell Publishing Ltd
    
        01.11.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0266-4720 1468-0394  | 
| DOI | 10.1111/exsy.13358 | 
Cover
| Abstract | Neural architecture search can be used to find convolutional neural architectures that are precise and robust while enjoying enough speed for industrial image processing applications. In this paper, our goal is to achieve optimal convolutional neural networks (CNNs) for multiple‐templates matching for applications such as licence plates detection (LPD). We perform an iterative local neural architecture search for the models with minimum validation error as well as low computational cost from our search space of about 32 billion models. We describe the findings of the experience and discuss the specifications of the final optimal architectures. About 20‐times error reduction and 6‐times computational complexity reduction is achieved over our engineered neural architecture after about 500 neural architecture evaluation (in about 10 h). The typical speed of our final model is comparable to classic template matching algorithms while performing more robust and multiple‐template matching with different scales. | 
    
|---|---|
| AbstractList | Neural architecture search can be used to find convolutional neural architectures that are precise and robust while enjoying enough speed for industrial image processing applications. In this paper, our goal is to achieve optimal convolutional neural networks (CNNs) for multiple‐templates matching for applications such as licence plates detection (LPD). We perform an iterative local neural architecture search for the models with minimum validation error as well as low computational cost from our search space of about 32 billion models. We describe the findings of the experience and discuss the specifications of the final optimal architectures. About 20‐times error reduction and 6‐times computational complexity reduction is achieved over our engineered neural architecture after about 500 neural architecture evaluation (in about 10 h). The typical speed of our final model is comparable to classic template matching algorithms while performing more robust and multiple‐template matching with different scales. | 
    
| Author | Shariatzadeh, Seyed Mahdi Fathy, Mahmood Berangi, Reza  | 
    
| Author_xml | – sequence: 1 givenname: Seyed Mahdi surname: Shariatzadeh fullname: Shariatzadeh, Seyed Mahdi organization: Department of Computer Engineering IRAN University of Science and Technology (IUST) Tehran Iran – sequence: 2 givenname: Mahmood orcidid: 0000-0003-0852-5488 surname: Fathy fullname: Fathy, Mahmood organization: Department of Computer Engineering IRAN University of Science and Technology (IUST) Tehran Iran – sequence: 3 givenname: Reza surname: Berangi fullname: Berangi, Reza organization: Department of Computer Engineering IRAN University of Science and Technology (IUST) Tehran Iran  | 
    
| BookMark | eNptkMtOwzAQRS1UJNrChi-wxA4pxa_EzhJVPCpVYgPryHHGbaq8sB1EdnwC38iXkFBWiNmMRnPPXM1doFnTNoDQJSUrOtYNvPthRTmP1QmaU5GoiPBUzNCcsCSJhGTkDC28PxBCqJTJHMGm7lz7VjY7HPaAtTG902bAuimw7wAK3FpstQ84QN1VOsDXx2etg9lPiK52rSvDvvY4H3ADI1th7cZlABN6B9jDNJ6jU6srDxe_fYle7u-e14_R9ulhs77dRobFaYhsYYSNGScQS82lSVJpEya01UIx4JATXnDgMraKCsmVYYnSYGPF8oLQPOVLdHW8O_702oMP2aHtXTNaZkxJKlQsxaQiR5VxrfcObGbKoEPZNsHpssooyaYwsynM7CfMEbn-g3SurLUb_hN_A98yetM | 
    
| CitedBy_id | crossref_primary_10_1049_ell2_12939 | 
    
| Cites_doi | 10.1109/CVPR.2017.195 10.1109/TITS.2016.2639020 10.1007/978-3-030-01246-5_2 10.1109/ACCESS.2020.2994287 10.1109/CVPR.2019.00293 10.1145/3292500.3330648 10.1016/j.neucom.2021.07.045  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 John Wiley & Sons, Ltd. | 
    
| Copyright_xml | – notice: 2023 John Wiley & Sons, Ltd. | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D  | 
    
| DOI | 10.1111/exsy.13358 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1468-0394 | 
    
| ExternalDocumentID | 10_1111_exsy_13358 | 
    
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 77I 77K 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 9M8 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABLJU ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHC ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AI. AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CITATION COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 ZL0 ZZTAW ~02 ~IA ~WT 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c259t-fdc4f5230e57a37c697f624afa482e3eb03d3e375f814738c268aef582bd01b93 | 
    
| ISSN | 0266-4720 | 
    
| IngestDate | Sun Sep 07 03:46:48 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Wed Oct 01 02:56:05 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c259t-fdc4f5230e57a37c697f624afa482e3eb03d3e375f814738c268aef582bd01b93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0852-5488 | 
    
| PQID | 2871485749 | 
    
| PQPubID | 32130 | 
    
| ParticipantIDs | proquest_journals_2871485749 crossref_citationtrail_10_1111_exsy_13358 crossref_primary_10_1111_exsy_13358  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-11-00 20231101  | 
    
| PublicationDateYYYYMMDD | 2023-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Expert systems | 
    
| PublicationYear | 2023 | 
    
| Publisher | Blackwell Publishing Ltd | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd | 
    
| References | Pham H. (e_1_2_8_12_1) 2018 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_16_1 Bochkovskiy A. (e_1_2_8_2_1) 2020 Zoph B. (e_1_2_8_18_1) 2018 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Elsken T. (e_1_2_8_6_1) 2019; 20 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_10_1 Springenberg J. T. (e_1_2_8_14_1) 2014 e_1_2_8_11_1  | 
    
| References_xml | – ident: e_1_2_8_4_1 doi: 10.1109/CVPR.2017.195 – ident: e_1_2_8_5_1 doi: 10.1109/CVPR.2017.195 – ident: e_1_2_8_16_1 – ident: e_1_2_8_3_1 doi: 10.1109/TITS.2016.2639020 – year: 2014 ident: e_1_2_8_14_1 article-title: Striving for simplicity: The all convolutional net publication-title: arXiv Preprint arXiv:1412.6806 – ident: e_1_2_8_10_1 doi: 10.1007/978-3-030-01246-5_2 – ident: e_1_2_8_11_1 – ident: e_1_2_8_17_1 doi: 10.1109/ACCESS.2020.2994287 – ident: e_1_2_8_15_1 doi: 10.1109/CVPR.2019.00293 – volume: 20 start-page: 1 issue: 55 year: 2019 ident: e_1_2_8_6_1 article-title: Neural architecture search: A survey publication-title: Journal of Machine Learning Research – start-page: 8697 year: 2018 ident: e_1_2_8_18_1 article-title: Learning transferable architectures for scalable image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume-title: Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 year: 2020 ident: e_1_2_8_2_1 – ident: e_1_2_8_8_1 doi: 10.1145/3292500.3330648 – start-page: 4095 volume-title: International Conference on Machine Learning year: 2018 ident: e_1_2_8_12_1 – ident: e_1_2_8_7_1 – ident: e_1_2_8_9_1 doi: 10.1016/j.neucom.2021.07.045 – ident: e_1_2_8_13_1  | 
    
| SSID | ssj0001776 | 
    
| Score | 2.3117208 | 
    
| Snippet | Neural architecture search can be used to find convolutional neural architectures that are precise and robust while enjoying enough speed for industrial image... | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database  | 
    
| SubjectTerms | Algorithms Artificial neural networks Computing costs Error reduction Image processing Iterative methods Pattern matching Robustness Searching Template matching  | 
    
| Title | Improving the accuracy and speed of fast template‐matching algorithms by neural architecture search | 
    
| URI | https://www.proquest.com/docview/2871485749 | 
    
| Volume | 40 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1468-0394 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1468-0394 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0266-4720 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1468-0394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001776 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9NAEF70fPHF3-LpKQuKIJKjzW6yyaPolUOOE7SFvoXNZvau0mtrmwPbJ_8E_0b_Emd2N0kL56G-hJIsbdn5svvN7Mw3jL0SKZH6vB8BIVimNo20tvheWWXROxBgrcvyPU2PR_LjOBl3aUWuuqQuD83myrqS_7Eq3kO7UpXsP1i2_VK8gZ_RvnhFC-P1r2zcRQSIPmpjLpfUvd3Fwhe4LRETtHpVvyUBqilpVDSpDchTfRKlnp7Nl5P6_GJFRJTULUk8YPt0YSvc9bXN24NlHUSgW07-BdZAORvn1cTJQKPNN7qCNtyMTy5IQnmAnLOrogDcK88m3tAbvR2DiEUoxvtDrNHHzrqspJXTd00jqWJ_BAN-raWir57wPY6bxdhrNwXQ5des8fB9tT5EB9sLv-8KaZ9-Kgajk5NieDQevl58i6jHGJ3Fh4YrN9mtGPcAavTx4XMnNtZXrhVh-1eDmC3lfXU_tktfdndvR0mG99id4Evwdx4Y99kNmD1gd5s-HTws2w8ZtDjhiBPe4IQjTrjDCZ9bTjjhDU5-_fjZIIR3COHlmnuE8G2EcI-QR2w0OBq-P45Ce43IoM9bR7Yy0tKhACRKC2XSXNk0ltpqmcUgoOyJSoBQic36UonMxGmmwSZZXFa9fpmLx2xvNp_BE8YrBcLklcpxuLQxeiHU_qgyJfLx3EC1z940s1aYoD1PLVCmReOD0gwXbob32ct27MIrrlw56qCZ_CK8kauCvH-ZJUrmT69__Izd7mB8wPbq5SU8R3JZly8cJn4DYVmEbQ | 
    
| linkProvider | Wiley-Blackwell | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+accuracy+and+speed+of+fast+template%E2%80%90matching+algorithms+by+neural+architecture+search&rft.jtitle=Expert+systems&rft.au=Seyed+Mahdi+Shariatzadeh&rft.au=Mahmood+Fathy&rft.au=Berangi%2C+Reza&rft.date=2023-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=40&rft.issue=9&rft_id=info:doi/10.1111%2Fexsy.13358&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon |