Improving the accuracy and speed of fast template‐matching algorithms by neural architecture search

Neural architecture search can be used to find convolutional neural architectures that are precise and robust while enjoying enough speed for industrial image processing applications. In this paper, our goal is to achieve optimal convolutional neural networks (CNNs) for multiple‐templates matching f...

Full description

Saved in:
Bibliographic Details
Published inExpert systems Vol. 40; no. 9
Main Authors Shariatzadeh, Seyed Mahdi, Fathy, Mahmood, Berangi, Reza
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.11.2023
Subjects
Online AccessGet full text
ISSN0266-4720
1468-0394
DOI10.1111/exsy.13358

Cover

Abstract Neural architecture search can be used to find convolutional neural architectures that are precise and robust while enjoying enough speed for industrial image processing applications. In this paper, our goal is to achieve optimal convolutional neural networks (CNNs) for multiple‐templates matching for applications such as licence plates detection (LPD). We perform an iterative local neural architecture search for the models with minimum validation error as well as low computational cost from our search space of about 32 billion models. We describe the findings of the experience and discuss the specifications of the final optimal architectures. About 20‐times error reduction and 6‐times computational complexity reduction is achieved over our engineered neural architecture after about 500 neural architecture evaluation (in about 10 h). The typical speed of our final model is comparable to classic template matching algorithms while performing more robust and multiple‐template matching with different scales.
AbstractList Neural architecture search can be used to find convolutional neural architectures that are precise and robust while enjoying enough speed for industrial image processing applications. In this paper, our goal is to achieve optimal convolutional neural networks (CNNs) for multiple‐templates matching for applications such as licence plates detection (LPD). We perform an iterative local neural architecture search for the models with minimum validation error as well as low computational cost from our search space of about 32 billion models. We describe the findings of the experience and discuss the specifications of the final optimal architectures. About 20‐times error reduction and 6‐times computational complexity reduction is achieved over our engineered neural architecture after about 500 neural architecture evaluation (in about 10 h). The typical speed of our final model is comparable to classic template matching algorithms while performing more robust and multiple‐template matching with different scales.
Author Shariatzadeh, Seyed Mahdi
Fathy, Mahmood
Berangi, Reza
Author_xml – sequence: 1
  givenname: Seyed Mahdi
  surname: Shariatzadeh
  fullname: Shariatzadeh, Seyed Mahdi
  organization: Department of Computer Engineering IRAN University of Science and Technology (IUST) Tehran Iran
– sequence: 2
  givenname: Mahmood
  orcidid: 0000-0003-0852-5488
  surname: Fathy
  fullname: Fathy, Mahmood
  organization: Department of Computer Engineering IRAN University of Science and Technology (IUST) Tehran Iran
– sequence: 3
  givenname: Reza
  surname: Berangi
  fullname: Berangi, Reza
  organization: Department of Computer Engineering IRAN University of Science and Technology (IUST) Tehran Iran
BookMark eNptkMtOwzAQRS1UJNrChi-wxA4pxa_EzhJVPCpVYgPryHHGbaq8sB1EdnwC38iXkFBWiNmMRnPPXM1doFnTNoDQJSUrOtYNvPthRTmP1QmaU5GoiPBUzNCcsCSJhGTkDC28PxBCqJTJHMGm7lz7VjY7HPaAtTG902bAuimw7wAK3FpstQ84QN1VOsDXx2etg9lPiK52rSvDvvY4H3ADI1th7cZlABN6B9jDNJ6jU6srDxe_fYle7u-e14_R9ulhs77dRobFaYhsYYSNGScQS82lSVJpEya01UIx4JATXnDgMraKCsmVYYnSYGPF8oLQPOVLdHW8O_702oMP2aHtXTNaZkxJKlQsxaQiR5VxrfcObGbKoEPZNsHpssooyaYwsynM7CfMEbn-g3SurLUb_hN_A98yetM
CitedBy_id crossref_primary_10_1049_ell2_12939
Cites_doi 10.1109/CVPR.2017.195
10.1109/TITS.2016.2639020
10.1007/978-3-030-01246-5_2
10.1109/ACCESS.2020.2994287
10.1109/CVPR.2019.00293
10.1145/3292500.3330648
10.1016/j.neucom.2021.07.045
ContentType Journal Article
Copyright 2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.13358
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
ExternalDocumentID 10_1111_exsy_13358
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77I
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CITATION
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c259t-fdc4f5230e57a37c697f624afa482e3eb03d3e375f814738c268aef582bd01b93
ISSN 0266-4720
IngestDate Sun Sep 07 03:46:48 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Wed Oct 01 02:56:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-fdc4f5230e57a37c697f624afa482e3eb03d3e375f814738c268aef582bd01b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0852-5488
PQID 2871485749
PQPubID 32130
ParticipantIDs proquest_journals_2871485749
crossref_citationtrail_10_1111_exsy_13358
crossref_primary_10_1111_exsy_13358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Pham H. (e_1_2_8_12_1) 2018
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_16_1
Bochkovskiy A. (e_1_2_8_2_1) 2020
Zoph B. (e_1_2_8_18_1) 2018
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Elsken T. (e_1_2_8_6_1) 2019; 20
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_10_1
Springenberg J. T. (e_1_2_8_14_1) 2014
e_1_2_8_11_1
References_xml – ident: e_1_2_8_4_1
  doi: 10.1109/CVPR.2017.195
– ident: e_1_2_8_5_1
  doi: 10.1109/CVPR.2017.195
– ident: e_1_2_8_16_1
– ident: e_1_2_8_3_1
  doi: 10.1109/TITS.2016.2639020
– year: 2014
  ident: e_1_2_8_14_1
  article-title: Striving for simplicity: The all convolutional net
  publication-title: arXiv Preprint arXiv:1412.6806
– ident: e_1_2_8_10_1
  doi: 10.1007/978-3-030-01246-5_2
– ident: e_1_2_8_11_1
– ident: e_1_2_8_17_1
  doi: 10.1109/ACCESS.2020.2994287
– ident: e_1_2_8_15_1
  doi: 10.1109/CVPR.2019.00293
– volume: 20
  start-page: 1
  issue: 55
  year: 2019
  ident: e_1_2_8_6_1
  article-title: Neural architecture search: A survey
  publication-title: Journal of Machine Learning Research
– start-page: 8697
  year: 2018
  ident: e_1_2_8_18_1
  article-title: Learning transferable architectures for scalable image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume-title: Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934
  year: 2020
  ident: e_1_2_8_2_1
– ident: e_1_2_8_8_1
  doi: 10.1145/3292500.3330648
– start-page: 4095
  volume-title: International Conference on Machine Learning
  year: 2018
  ident: e_1_2_8_12_1
– ident: e_1_2_8_7_1
– ident: e_1_2_8_9_1
  doi: 10.1016/j.neucom.2021.07.045
– ident: e_1_2_8_13_1
SSID ssj0001776
Score 2.3117208
Snippet Neural architecture search can be used to find convolutional neural architectures that are precise and robust while enjoying enough speed for industrial image...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Artificial neural networks
Computing costs
Error reduction
Image processing
Iterative methods
Pattern matching
Robustness
Searching
Template matching
Title Improving the accuracy and speed of fast template‐matching algorithms by neural architecture search
URI https://www.proquest.com/docview/2871485749
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1468-0394
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0266-4720
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9NAEF70fPHF3-LpKQuKIJKjzW6yyaPolUOOE7SFvoXNZvau0mtrmwPbJ_8E_0b_Emd2N0kL56G-hJIsbdn5svvN7Mw3jL0SKZH6vB8BIVimNo20tvheWWXROxBgrcvyPU2PR_LjOBl3aUWuuqQuD83myrqS_7Eq3kO7UpXsP1i2_VK8gZ_RvnhFC-P1r2zcRQSIPmpjLpfUvd3Fwhe4LRETtHpVvyUBqilpVDSpDchTfRKlnp7Nl5P6_GJFRJTULUk8YPt0YSvc9bXN24NlHUSgW07-BdZAORvn1cTJQKPNN7qCNtyMTy5IQnmAnLOrogDcK88m3tAbvR2DiEUoxvtDrNHHzrqspJXTd00jqWJ_BAN-raWir57wPY6bxdhrNwXQ5des8fB9tT5EB9sLv-8KaZ9-Kgajk5NieDQevl58i6jHGJ3Fh4YrN9mtGPcAavTx4XMnNtZXrhVh-1eDmC3lfXU_tktfdndvR0mG99id4Evwdx4Y99kNmD1gd5s-HTws2w8ZtDjhiBPe4IQjTrjDCZ9bTjjhDU5-_fjZIIR3COHlmnuE8G2EcI-QR2w0OBq-P45Ce43IoM9bR7Yy0tKhACRKC2XSXNk0ltpqmcUgoOyJSoBQic36UonMxGmmwSZZXFa9fpmLx2xvNp_BE8YrBcLklcpxuLQxeiHU_qgyJfLx3EC1z940s1aYoD1PLVCmReOD0gwXbob32ct27MIrrlw56qCZ_CK8kauCvH-ZJUrmT69__Izd7mB8wPbq5SU8R3JZly8cJn4DYVmEbQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+accuracy+and+speed+of+fast+template%E2%80%90matching+algorithms+by+neural+architecture+search&rft.jtitle=Expert+systems&rft.au=Seyed+Mahdi+Shariatzadeh&rft.au=Mahmood+Fathy&rft.au=Berangi%2C+Reza&rft.date=2023-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=40&rft.issue=9&rft_id=info:doi/10.1111%2Fexsy.13358&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon