Multi-labeled image data-based generative topology optimization of primary mirror with conditional designable generative adversarial network and reinforcement learning
In this study, topology optimization based on multi-labeled image data was conducted for a multi-objective primary mirror to produce novel designs with varying design variables. The primary mirror utilized in this application possessed a delicate structure where both the wavefront error and weight w...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 133; p. 108642 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-1976 1873-6769 |
DOI | 10.1016/j.engappai.2024.108642 |
Cover
Abstract | In this study, topology optimization based on multi-labeled image data was conducted for a multi-objective primary mirror to produce novel designs with varying design variables. The primary mirror utilized in this application possessed a delicate structure where both the wavefront error and weight were subject to optimization. However, it was observed that the wavefront error and weight did not exhibit an inverse relationship, necessitating the development of a new multi-objective optimization approach for the primary mirror. Initially, 93 data points were gathered using the finite element method and categorized based on their wavefront error and weight. Topology optimization and the generation of novel designs were accomplished through iterative utilization of both the conditional designable generative adversarial network (CDGAN) and reinforcement learning (RL). To address the limitations inherent in each model and to ensure the effective implementation of the primary mirror, the structure of the CDGAN + RL model underwent modifications and optimizations employing multi-labeled images and considerations of boundary conditions. The application of CDGAN + RL successfully yielded multiple design solutions for unseen-optimized primary mirrors contingent upon the wavefront error and weight. Three-dimensional design variables (rib thickness, face-sheet thickness, cutting depth, and double arch) were optimized and validated based on the labels of the image data and the corresponding generated designs, revealing a minimum error rate of 1.73% and a maximum error rate of 9.37%. Comparative analysis against the initial design demonstrated performance enhancements of 41.84% and 5.41% for the wavefront error and weight, respectively.
[Display omitted]
•Generative topology optimization was conducted using a generative adversarial network and reinforcement learning.•The proposed method was optimized for successively iterative application to a primary mirror structure.•Multi-labeled image data from a total of 93 primary mirror structures were explored.•The wavefront error and weight were optimized by 41.84% and 5.41%, respectively, compared with the initial design. |
---|---|
AbstractList | In this study, topology optimization based on multi-labeled image data was conducted for a multi-objective primary mirror to produce novel designs with varying design variables. The primary mirror utilized in this application possessed a delicate structure where both the wavefront error and weight were subject to optimization. However, it was observed that the wavefront error and weight did not exhibit an inverse relationship, necessitating the development of a new multi-objective optimization approach for the primary mirror. Initially, 93 data points were gathered using the finite element method and categorized based on their wavefront error and weight. Topology optimization and the generation of novel designs were accomplished through iterative utilization of both the conditional designable generative adversarial network (CDGAN) and reinforcement learning (RL). To address the limitations inherent in each model and to ensure the effective implementation of the primary mirror, the structure of the CDGAN + RL model underwent modifications and optimizations employing multi-labeled images and considerations of boundary conditions. The application of CDGAN + RL successfully yielded multiple design solutions for unseen-optimized primary mirrors contingent upon the wavefront error and weight. Three-dimensional design variables (rib thickness, face-sheet thickness, cutting depth, and double arch) were optimized and validated based on the labels of the image data and the corresponding generated designs, revealing a minimum error rate of 1.73% and a maximum error rate of 9.37%. Comparative analysis against the initial design demonstrated performance enhancements of 41.84% and 5.41% for the wavefront error and weight, respectively.
[Display omitted]
•Generative topology optimization was conducted using a generative adversarial network and reinforcement learning.•The proposed method was optimized for successively iterative application to a primary mirror structure.•Multi-labeled image data from a total of 93 primary mirror structures were explored.•The wavefront error and weight were optimized by 41.84% and 5.41%, respectively, compared with the initial design. |
ArticleNumber | 108642 |
Author | Yang, Dabin Lee, Jongsoo |
Author_xml | – sequence: 1 givenname: Dabin orcidid: 0009-0009-6125-5174 surname: Yang fullname: Yang, Dabin – sequence: 2 givenname: Jongsoo surname: Lee fullname: Lee, Jongsoo email: jleej@yonsei.ac.kr |
BookMark | eNqFkNFq3DAQRUVJoZu0v1D0A97Iki3Zbw0haQIpfWmfxVgau7P1SkZSNqQ_1N-sl02gb3kauNx7uXPO2VmIARn7XIttLWp9udtimGBZgLZSyGYVO93Id2xTd0ZV2uj-jG1E38qq7o3-wM5z3gkhVNfoDfv77XEuVM0w4Iye0x4m5B4KVAPkVZgwYIJCB-QlLnGO0zOPS6E9_VnVGHgc-ZLWWHrme0opJv5E5Rd3MXg6GmDmHjNNAYYZ_68Df8CUIdHqCFieYvrNIXiekMIYk8M9hsJnhBQoTB_Z-xHmjJ9e7gX7eXvz4_quevj-9f766qFysu1LNfpedtprZVS3slA4aCWUlhpa1bbSiH4AoZ2SOCphjGnFMOqurY0bpGgaqS6YPvW6FHNOONqX72wt7BG33dlX3PaI255wr8EvpyCu6w6EyWZHGBx6SuiK9ZHeqvgHlVSSyw |
Cites_doi | 10.1016/j.ress.2020.107316 10.1002/nme.5714 10.1115/1.4056929 10.1108/EC-01-2018-0007 10.1007/s00158-022-03461-0 10.1115/1.4062980 10.3390/app8112259 10.3795/KSME-A.2023.47.11.885 10.3795/KSME-A.2022.47.1.087 10.1016/j.icheatmasstransfer.2018.07.001 10.1007/s001580100129 10.1109/TIE.2020.3044808 10.1515/rnam-2019-0018 10.3389/fbuil.2020.00059 10.1016/j.aei.2021.101512 10.1016/j.cma.2023.116401 10.1016/j.engappai.2023.107033 10.1016/j.engappai.2022.105488 10.3390/machines10111043 10.1016/j.knosys.2020.105887 10.1016/j.compstruc.2020.106283 10.1115/1.4044397 10.1038/s41586-021-03544-w 10.1016/j.jmsy.2023.07.014 10.1016/j.matdes.2022.110672 10.1007/BF01650949 10.1016/j.artint.2021.103535 10.1016/j.engappai.2023.106436 10.1007/s00158-019-02323-6 10.52725/aocl.2021.20.2.47 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engappai.2024.108642 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1873-6769 |
ExternalDocumentID | 10_1016_j_engappai_2024_108642 S0952197624008005 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
ID | FETCH-LOGICAL-c259t-fd9286d637380243eb6303626a53552709ba06c32ef3077750bf68517cb204423 |
IEDL.DBID | .~1 |
ISSN | 0952-1976 |
IngestDate | Wed Oct 01 03:05:58 EDT 2025 Tue Jun 18 08:50:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Topology optimization Conditional designable generative adversarial network Generative design Multi-labeled image Primary mirror structure Reinforcement learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-fd9286d637380243eb6303626a53552709ba06c32ef3077750bf68517cb204423 |
ORCID | 0009-0009-6125-5174 |
ParticipantIDs | crossref_primary_10_1016_j_engappai_2024_108642 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_108642 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li (bib15) 2023 Struz, Hruzik, Klapetek, Trochta (bib31) 2023 Brown, Garland, Fadel, Li (bib4) 2022; 218 Silver, Singh, Precup, Sutton (bib28) 2021 Whang (bib35) 2021; 20 Jeong, Batuwatta-Gamage, Bai, Xie, Rathnayaka, Zhou, Gu (bib10) 2023; 417 Qu, Jiang, Feng, Li, Liu, Wang (bib23) 2018; 8 Abueidda, Koric, Sobh (bib1) 2020; 237 Bendsoe (bib3) 1989 Gao, Luo, Xia, Gao (bib6) 2019; 60 Hayashi, Ohsaki (bib8) 2020; 6 Wen, Li, Gao (bib34) 2021; 68 Li, Shi, Wang, Tang, Yu, Liu (bib16) 2022; 10 Mirhoseini, Goldie, Yazgan, Jiang, Songhori, Wang, Lee, Johnson, Pathak, Nazi, Pak, Tong, Srinivasa, Hang, Tuncer, Le, Laudon, Ho, Carpenter, Dean (bib18) 2021; 594 Oh, Lee (bib21) 2023; 117 Lee, Balu, Stoecklein, Ganapathysubramanian, Sarkar (bib14) 2019; 141 Rade, Jignasu, Herron, Corpuz, Ganapathysubramanian, Sarkar, Balu, Krishnamurthy (bib24) 2023; 126 Wang, Melkote, Rosen (bib33) 2023; 145 Lee, Kim, Lieu, Lee (bib13) 2020; 198 Parrott, Abueidda, James (bib22) 2023; 145 Zhang, Song, Zhou, Du, Zhu, Sun, Guo (bib39) 2018; 113 Da, Cui, Long, Cai, Li (bib5) 2019; 36 Yang, Lee, Lee (bib37) 2023; 10 Yang, Lee, Kang, Yoo, Lee (bib36) 2023; 47 Bae, Lee, Kim, Lee, Myung-Whun (bib2) 2022; 33 Rochefort-Beaudoin, Vadean, Gamache, Achiche (bib25) 2023; 123 Jeon, Yoo, Kang (bib9) 2023; 47 Stolpe, Svanberg (bib30) 2001 Sharifani, Amini (bib27) 2023 Karimzadeh, Esposito, Zhao, Braun, Sargento (bib12) 2021 Karimzadeh, Aebi, de Souza, Zhao, Braun, Sargento, Villas (bib11) 2021 Ogunfowora, Najjaran (bib20) 2023; 70 Mirza, Osindero (bib19) 2014 Yoo, Jung, Han, Lee (bib38) 2021; 206 Sosnovik, Oseledets (bib29) 2019; 34 Lin, Hong, Liu, Li, Wang (bib17) 2018; 97 Hayashi, Ohsaki (bib7) 2022; 51 Seo, Kapania (bib26) 2023; 66 Yang (10.1016/j.engappai.2024.108642_bib37) 2023; 10 Hayashi (10.1016/j.engappai.2024.108642_bib8) 2020; 6 Wen (10.1016/j.engappai.2024.108642_bib34) 2021; 68 Yang (10.1016/j.engappai.2024.108642_bib36) 2023; 47 Oh (10.1016/j.engappai.2024.108642_bib21) 2023; 117 Sosnovik (10.1016/j.engappai.2024.108642_bib29) 2019; 34 Yoo (10.1016/j.engappai.2024.108642_bib38) 2021; 206 Silver (10.1016/j.engappai.2024.108642_bib28) 2021 Whang (10.1016/j.engappai.2024.108642_bib35) 2021; 20 Li (10.1016/j.engappai.2024.108642_bib15) 2023 Stolpe (10.1016/j.engappai.2024.108642_bib30) 2001 Karimzadeh (10.1016/j.engappai.2024.108642_bib11) 2021 Jeong (10.1016/j.engappai.2024.108642_bib10) 2023; 417 Sharifani (10.1016/j.engappai.2024.108642_bib27) 2023 Abueidda (10.1016/j.engappai.2024.108642_bib1) 2020; 237 Hayashi (10.1016/j.engappai.2024.108642_bib7) 2022; 51 Parrott (10.1016/j.engappai.2024.108642_bib22) 2023; 145 Wang (10.1016/j.engappai.2024.108642_bib33) 2023; 145 Mirhoseini (10.1016/j.engappai.2024.108642_bib18) 2021; 594 Brown (10.1016/j.engappai.2024.108642_bib4) 2022; 218 Rade (10.1016/j.engappai.2024.108642_bib24) 2023; 126 Gao (10.1016/j.engappai.2024.108642_bib6) 2019; 60 Mirza (10.1016/j.engappai.2024.108642_bib19) 2014 Ogunfowora (10.1016/j.engappai.2024.108642_bib20) 2023; 70 Rochefort-Beaudoin (10.1016/j.engappai.2024.108642_bib25) 2023; 123 Karimzadeh (10.1016/j.engappai.2024.108642_bib12) 2021 Da (10.1016/j.engappai.2024.108642_bib5) 2019; 36 Lee (10.1016/j.engappai.2024.108642_bib14) 2019; 141 Jeon (10.1016/j.engappai.2024.108642_bib9) 2023; 47 Lin (10.1016/j.engappai.2024.108642_bib17) 2018; 97 Qu (10.1016/j.engappai.2024.108642_bib23) 2018; 8 Struz (10.1016/j.engappai.2024.108642_bib31) 2023 Bendsoe (10.1016/j.engappai.2024.108642_bib3) 1989 Seo (10.1016/j.engappai.2024.108642_bib26) 2023; 66 Lee (10.1016/j.engappai.2024.108642_bib13) 2020; 198 Bae (10.1016/j.engappai.2024.108642_bib2) 2022; 33 Li (10.1016/j.engappai.2024.108642_bib16) 2022; 10 Zhang (10.1016/j.engappai.2024.108642_bib39) 2018; 113 |
References_xml | – year: 2014 ident: bib19 article-title: Conditional Generative Adversarial Nets – volume: 70 start-page: 244 year: 2023 end-page: 263 ident: bib20 article-title: Reinforcement and deep reinforcement learning-based solutions for machine maintenance planning, scheduling policies, and optimization publication-title: J. Manuf. Syst. – volume: 47 start-page: 885 year: 2023 end-page: 892 ident: bib36 article-title: Optimal design of large-aperture mirror to minimize wavefront error and weight publication-title: Transactions of the Korean Society of Mechanical Engineers - A – volume: 198 year: 2020 ident: bib13 article-title: CNN-based image recognition for topology optimization publication-title: Knowl. Base Syst. – volume: 113 start-page: 1653 year: 2018 end-page: 1675 ident: bib39 article-title: Topology optimization with multiple materials via moving morphable component (MMC) method publication-title: Int. J. Numer. Methods Eng. – volume: 417 year: 2023 ident: bib10 article-title: A complete Physics-Informed Neural Network-based framework for structural topology optimization publication-title: Comput. Methods Appl. Mech. Eng. – year: 2023 ident: bib27 article-title: Machine learning and deep learning: a review of methods and applications publication-title: World Information Technology and Engineering Journal – volume: 206 year: 2021 ident: bib38 article-title: Data augmentation-based prediction of system level performance under model and parameter uncertainties: role of designable generative adversarial networks (DGAN) publication-title: Reliab. Eng. Syst. Saf. – year: 2001 ident: bib30 article-title: An alternative interpolation scheme for minimum compliance topology optimization publication-title: Struct. Multidisc. Optim. Springer-Verlag – year: 2021 ident: bib28 article-title: Reward is enough publication-title: Artif. Intell. – volume: 6 year: 2020 ident: bib8 article-title: Reinforcement learning and graph embedding for binary truss topology optimization under stress and displacement constraints publication-title: Front Built Environ – volume: 10 start-page: 1531 year: 2023 end-page: 1546 ident: bib37 article-title: Crack growth degradation-based diagnosis and design of high pressure liquefied natural gas pipe via designable data-augmented anomaly detection publication-title: J. Comput. Des. Eng. – volume: 47 start-page: 87 year: 2023 end-page: 93 ident: bib9 article-title: Topology optimization of the light weight design of the large-aperture mirror for ground telescopes publication-title: Transactions of the Korean Society of Mechanical Engineers - A – volume: 237 year: 2020 ident: bib1 article-title: Topology optimization of 2D structures with nonlinearities using deep learning publication-title: Comput. Struct. – volume: 97 start-page: 103 year: 2018 end-page: 109 ident: bib17 article-title: Investigation into the topology optimization for conductive heat transfer based on deep learning approach publication-title: Int. Commun. Heat Mass Tran. – volume: 594 start-page: 207 year: 2021 end-page: 212 ident: bib18 article-title: A graph placement methodology for fast chip design publication-title: Nature – volume: 126 year: 2023 ident: bib24 article-title: Deep learning-based 3D multigrid topology optimization of manufacturable designs publication-title: Eng. Appl. Artif. Intell. – volume: 36 start-page: 126 year: 2019 end-page: 146 ident: bib5 article-title: Multiscale concurrent topology optimization of structures and microscopic multi-phase materials for thermal conductivity publication-title: Eng. Comput. – volume: 123 year: 2023 ident: bib25 article-title: Supervised deep learning for the moving morphable components topology optimization framework publication-title: Eng. Appl. Artif. Intell. – start-page: 29 year: 2021 end-page: 34 ident: bib12 article-title: RL-CNN: reinforcement learning-designed convolutional neural network for urban traffic flow estimation publication-title: 2021 International Wireless Communications and Mobile Computing, IWCMC 2021 – volume: 20 start-page: 47 year: 2021 end-page: 51 ident: bib35 article-title: Aberrations using Zernike polynomials and contact lens publication-title: Annals of Optometry and Contact Lens – volume: 66 year: 2023 ident: bib26 article-title: Topology optimization with advanced CNN using mapped physics-based data publication-title: Struct. Multidiscip. Optim. – volume: 51 year: 2022 ident: bib7 article-title: Graph-based reinforcement learning for discrete cross-section optimization of planar steel frames publication-title: Adv. Eng. Inf. – volume: 8 year: 2018 ident: bib23 article-title: Lightweight design of multi-objective topology for a large-aperture space mirror publication-title: Appl. Sci. – start-page: 365 year: 2023 end-page: 402 ident: bib15 article-title: Deep reinforcement learning publication-title: Reinforcement Learning for Sequential Decision and Optimal Control – year: 2021 ident: bib11 article-title: Reinforcement learning-designed LSTM for trajectory and traffic flow prediction publication-title: IEEE Wireless Communications and Networking Conference, WCNC – volume: 218 year: 2022 ident: bib4 article-title: Deep reinforcement learning for engineering design through topology optimization of elementally discretized design domains publication-title: Mater. Des. – volume: 141 year: 2019 ident: bib14 article-title: A case study of deep reinforcement learning for engineering design: application to microfluidic devices for flow sculpting publication-title: J. Mech. Des. – volume: 10 year: 2022 ident: bib16 article-title: Structural topology optimization of reflective mirror based on objective of wavefront aberration publication-title: Machines – volume: 145 year: 2023 ident: bib33 article-title: Generative design by embedding topology optimization into conditional generative adversarial network publication-title: J. Mech. Des. – volume: 68 start-page: 12890 year: 2021 end-page: 12900 ident: bib34 article-title: A new reinforcement learning based learning rate scheduler for convolutional neural network in fault classification publication-title: IEEE Trans. Ind. Electron. – volume: 33 start-page: 74 year: 2022 end-page: 83 ident: bib2 article-title: Development of a silicon carbide large-aperture optical telescope for a satellite publication-title: Korean Journal of Optics and Photonics – volume: 60 start-page: 2621 year: 2019 end-page: 2651 ident: bib6 article-title: Concurrent topology optimization of multiscale composite structures in Matlab publication-title: Struct. Multidiscip. Optim. – year: 1989 ident: bib3 article-title: Structural Optimization Optimal shape design as a material distribution problem publication-title: Struct. Optim. – volume: 145 year: 2023 ident: bib22 article-title: Multidisciplinary topology optimization using generative adversarial networks for physics-based design enhancement publication-title: J. Mech. Des. – start-page: 6346 year: 2023 end-page: 6353 ident: bib31 article-title: Comparative analysis of different softwares in terms of parameters optimized by topological optimization publication-title: MM Science Journal – volume: 117 year: 2023 ident: bib21 article-title: Auxiliary algorithm to approach a near-global optimum of a multi-objective function in acoustical topology optimization publication-title: Eng. Appl. Artif. Intell. – volume: 34 start-page: 215 year: 2019 end-page: 223 ident: bib29 article-title: Neural networks for topology optimization publication-title: Russ. J. Numer. Anal. Math. Model. – volume: 206 year: 2021 ident: 10.1016/j.engappai.2024.108642_bib38 article-title: Data augmentation-based prediction of system level performance under model and parameter uncertainties: role of designable generative adversarial networks (DGAN) publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107316 – start-page: 6346 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib31 article-title: Comparative analysis of different softwares in terms of parameters optimized by topological optimization publication-title: MM Science Journal – volume: 113 start-page: 1653 year: 2018 ident: 10.1016/j.engappai.2024.108642_bib39 article-title: Topology optimization with multiple materials via moving morphable component (MMC) method publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5714 – volume: 145 issue: 6 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib22 article-title: Multidisciplinary topology optimization using generative adversarial networks for physics-based design enhancement publication-title: J. Mech. Des. doi: 10.1115/1.4056929 – volume: 36 start-page: 126 year: 2019 ident: 10.1016/j.engappai.2024.108642_bib5 article-title: Multiscale concurrent topology optimization of structures and microscopic multi-phase materials for thermal conductivity publication-title: Eng. Comput. doi: 10.1108/EC-01-2018-0007 – volume: 66 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib26 article-title: Topology optimization with advanced CNN using mapped physics-based data publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-022-03461-0 – volume: 145 issue: 11 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib33 article-title: Generative design by embedding topology optimization into conditional generative adversarial network publication-title: J. Mech. Des. doi: 10.1115/1.4062980 – volume: 8 issue: 11 year: 2018 ident: 10.1016/j.engappai.2024.108642_bib23 article-title: Lightweight design of multi-objective topology for a large-aperture space mirror publication-title: Appl. Sci. doi: 10.3390/app8112259 – volume: 47 start-page: 885 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib36 article-title: Optimal design of large-aperture mirror to minimize wavefront error and weight publication-title: Transactions of the Korean Society of Mechanical Engineers - A doi: 10.3795/KSME-A.2023.47.11.885 – volume: 47 start-page: 87 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib9 article-title: Topology optimization of the light weight design of the large-aperture mirror for ground telescopes publication-title: Transactions of the Korean Society of Mechanical Engineers - A doi: 10.3795/KSME-A.2022.47.1.087 – start-page: 29 year: 2021 ident: 10.1016/j.engappai.2024.108642_bib12 article-title: RL-CNN: reinforcement learning-designed convolutional neural network for urban traffic flow estimation – volume: 97 start-page: 103 year: 2018 ident: 10.1016/j.engappai.2024.108642_bib17 article-title: Investigation into the topology optimization for conductive heat transfer based on deep learning approach publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2018.07.001 – year: 2001 ident: 10.1016/j.engappai.2024.108642_bib30 article-title: An alternative interpolation scheme for minimum compliance topology optimization publication-title: Struct. Multidisc. Optim. Springer-Verlag doi: 10.1007/s001580100129 – volume: 68 start-page: 12890 year: 2021 ident: 10.1016/j.engappai.2024.108642_bib34 article-title: A new reinforcement learning based learning rate scheduler for convolutional neural network in fault classification publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3044808 – volume: 34 start-page: 215 year: 2019 ident: 10.1016/j.engappai.2024.108642_bib29 article-title: Neural networks for topology optimization publication-title: Russ. J. Numer. Anal. Math. Model. doi: 10.1515/rnam-2019-0018 – volume: 6 year: 2020 ident: 10.1016/j.engappai.2024.108642_bib8 article-title: Reinforcement learning and graph embedding for binary truss topology optimization under stress and displacement constraints publication-title: Front Built Environ doi: 10.3389/fbuil.2020.00059 – volume: 51 year: 2022 ident: 10.1016/j.engappai.2024.108642_bib7 article-title: Graph-based reinforcement learning for discrete cross-section optimization of planar steel frames publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2021.101512 – volume: 33 start-page: 74 year: 2022 ident: 10.1016/j.engappai.2024.108642_bib2 article-title: Development of a silicon carbide large-aperture optical telescope for a satellite publication-title: Korean Journal of Optics and Photonics – year: 2021 ident: 10.1016/j.engappai.2024.108642_bib11 article-title: Reinforcement learning-designed LSTM for trajectory and traffic flow prediction – volume: 417 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib10 article-title: A complete Physics-Informed Neural Network-based framework for structural topology optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116401 – volume: 126 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib24 article-title: Deep learning-based 3D multigrid topology optimization of manufacturable designs publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107033 – volume: 117 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib21 article-title: Auxiliary algorithm to approach a near-global optimum of a multi-objective function in acoustical topology optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105488 – year: 2023 ident: 10.1016/j.engappai.2024.108642_bib27 article-title: Machine learning and deep learning: a review of methods and applications publication-title: World Information Technology and Engineering Journal – volume: 10 start-page: 1531 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib37 article-title: Crack growth degradation-based diagnosis and design of high pressure liquefied natural gas pipe via designable data-augmented anomaly detection publication-title: J. Comput. Des. Eng. – start-page: 365 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib15 article-title: Deep reinforcement learning – volume: 10 issue: 11 year: 2022 ident: 10.1016/j.engappai.2024.108642_bib16 article-title: Structural topology optimization of reflective mirror based on objective of wavefront aberration publication-title: Machines doi: 10.3390/machines10111043 – volume: 198 year: 2020 ident: 10.1016/j.engappai.2024.108642_bib13 article-title: CNN-based image recognition for topology optimization publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2020.105887 – volume: 237 year: 2020 ident: 10.1016/j.engappai.2024.108642_bib1 article-title: Topology optimization of 2D structures with nonlinearities using deep learning publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106283 – volume: 141 year: 2019 ident: 10.1016/j.engappai.2024.108642_bib14 article-title: A case study of deep reinforcement learning for engineering design: application to microfluidic devices for flow sculpting publication-title: J. Mech. Des. doi: 10.1115/1.4044397 – volume: 594 start-page: 207 year: 2021 ident: 10.1016/j.engappai.2024.108642_bib18 article-title: A graph placement methodology for fast chip design publication-title: Nature doi: 10.1038/s41586-021-03544-w – year: 2014 ident: 10.1016/j.engappai.2024.108642_bib19 – volume: 70 start-page: 244 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib20 article-title: Reinforcement and deep reinforcement learning-based solutions for machine maintenance planning, scheduling policies, and optimization publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2023.07.014 – volume: 218 year: 2022 ident: 10.1016/j.engappai.2024.108642_bib4 article-title: Deep reinforcement learning for engineering design through topology optimization of elementally discretized design domains publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.110672 – year: 1989 ident: 10.1016/j.engappai.2024.108642_bib3 article-title: Structural Optimization Optimal shape design as a material distribution problem publication-title: Struct. Optim. doi: 10.1007/BF01650949 – year: 2021 ident: 10.1016/j.engappai.2024.108642_bib28 article-title: Reward is enough publication-title: Artif. Intell. doi: 10.1016/j.artint.2021.103535 – volume: 123 year: 2023 ident: 10.1016/j.engappai.2024.108642_bib25 article-title: Supervised deep learning for the moving morphable components topology optimization framework publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106436 – volume: 60 start-page: 2621 year: 2019 ident: 10.1016/j.engappai.2024.108642_bib6 article-title: Concurrent topology optimization of multiscale composite structures in Matlab publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-019-02323-6 – volume: 20 start-page: 47 year: 2021 ident: 10.1016/j.engappai.2024.108642_bib35 article-title: Aberrations using Zernike polynomials and contact lens publication-title: Annals of Optometry and Contact Lens doi: 10.52725/aocl.2021.20.2.47 |
SSID | ssj0003846 |
Score | 2.4255073 |
Snippet | In this study, topology optimization based on multi-labeled image data was conducted for a multi-objective primary mirror to produce novel designs with varying... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 108642 |
SubjectTerms | Conditional designable generative adversarial network Generative design Multi-labeled image Primary mirror structure Reinforcement learning Topology optimization |
Title | Multi-labeled image data-based generative topology optimization of primary mirror with conditional designable generative adversarial network and reinforcement learning |
URI | https://dx.doi.org/10.1016/j.engappai.2024.108642 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Complete Freedom Collection customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLCy8EW_dwGraJo7TjAhRFSo6ABXdIidxqiA1jdIwsPB3-Jvc2Y4oEhIDUxTLjpLc-e476-47xi5l6AV5IgKuRS_hQoVdHmEAx9NeGhp6lDCi4uSHsRxOxP00mK6xm7YWhtIqne23Nt1YazfScX-zUxVF5wnBAW433MzCwB4qNCf2L9Tpq4_vNA-_b4t1cDKn2StVwq9XupypqlIFxomeME2HhPe7g1pxOoMdtuXQIlzbF9pla7rcY9sOOYLbl0scapsztGP77NOU1nIUMjqWDIo5Gg6gfFBOjiuDmeGbJmMHjW2U8A4LtB9zV5gJixwqS0UB86KuFzXQmS1g_JwV9gARMpP-QcVXq49T1ON5qUizobRZ5qDKDGptWFpTcyAJrl3F7IBNBrfPN0PuujLwFEOlhudZ5PVlJokSiegMdSKNG5Qq8InOrRslqitT39M52o8QEUmSS8R1YZp4XYHo7ZCtl4tSHzHwezogvrVUpDkBR4UOO1SiF-ZS5F5fH7NOK4rYfXHcZqW9xq3wYhJebIV3zKJWYvEPNYrRQ_yx9uQfa0_ZJt3ZPN4ztt7Ub_oc0UqTXBh1vGAb13ej4Ziuo8eX0Rcnde9q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGWDhjXhzA6tpmzpOMyIEKq8ugMQWOYlTBalplZaBX8Tf5M52UJGQGFidOEpy9nffWXffAZyrKAiLVIbCyG4qpI46IqYATmTdLLLyKFHMxcmPQzV4kXev4esSXDW1MJxW6bHfYbpFaz_S9n-zPS3L9hORA9putJmlpT3hMqzIkDC5BSuXt_eD4Tcg9_quXofuFzxhoVD47cJUIz2d6pJCxUDavkMy-N1HLfidm01Y94QRL907bcGSqbZhw5NH9FtzRkNNf4ZmbAc-bXWtIDuTb8mxHBN2IKeECvZdOY6s5DTjHc5dr4QPnBCEjH1tJk4KnDo1ChyXdT2pkY9tkULovHRniJjbDBCuv1p8nOY2zzPNixsrl2iOusqxNlaoNbNnkug7Vox24eXm-vlqIHxjBpFRtDQXRR4HfZUrVkViRUOTKusJlQ57rOjWiVPdUVkvMAVBSESkJC0UUbsoS4OOJAK3B61qUpl9wF7XhCy5lsmsYO6oyWdHWnajQski6JsDaDemSPwXJ01i2lvSGC9h4yXOeAcQNxZLfqykhJzEH3MP_zH3DFYHz48PycPt8P4I1viKS-s9hta8fjcnRF7m6alfnF_Bb_By |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-labeled+image+data-based+generative+topology+optimization+of+primary+mirror+with+conditional+designable+generative+adversarial+network+and+reinforcement+learning&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Yang%2C+Dabin&rft.au=Lee%2C+Jongsoo&rft.date=2024-07-01&rft.issn=0952-1976&rft.volume=133&rft.spage=108642&rft_id=info:doi/10.1016%2Fj.engappai.2024.108642&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_108642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |