Multi-labeled image data-based generative topology optimization of primary mirror with conditional designable generative adversarial network and reinforcement learning

In this study, topology optimization based on multi-labeled image data was conducted for a multi-objective primary mirror to produce novel designs with varying design variables. The primary mirror utilized in this application possessed a delicate structure where both the wavefront error and weight w...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 133; p. 108642
Main Authors Yang, Dabin, Lee, Jongsoo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2024
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2024.108642

Cover

Abstract In this study, topology optimization based on multi-labeled image data was conducted for a multi-objective primary mirror to produce novel designs with varying design variables. The primary mirror utilized in this application possessed a delicate structure where both the wavefront error and weight were subject to optimization. However, it was observed that the wavefront error and weight did not exhibit an inverse relationship, necessitating the development of a new multi-objective optimization approach for the primary mirror. Initially, 93 data points were gathered using the finite element method and categorized based on their wavefront error and weight. Topology optimization and the generation of novel designs were accomplished through iterative utilization of both the conditional designable generative adversarial network (CDGAN) and reinforcement learning (RL). To address the limitations inherent in each model and to ensure the effective implementation of the primary mirror, the structure of the CDGAN + RL model underwent modifications and optimizations employing multi-labeled images and considerations of boundary conditions. The application of CDGAN + RL successfully yielded multiple design solutions for unseen-optimized primary mirrors contingent upon the wavefront error and weight. Three-dimensional design variables (rib thickness, face-sheet thickness, cutting depth, and double arch) were optimized and validated based on the labels of the image data and the corresponding generated designs, revealing a minimum error rate of 1.73% and a maximum error rate of 9.37%. Comparative analysis against the initial design demonstrated performance enhancements of 41.84% and 5.41% for the wavefront error and weight, respectively. [Display omitted] •Generative topology optimization was conducted using a generative adversarial network and reinforcement learning.•The proposed method was optimized for successively iterative application to a primary mirror structure.•Multi-labeled image data from a total of 93 primary mirror structures were explored.•The wavefront error and weight were optimized by 41.84% and 5.41%, respectively, compared with the initial design.
AbstractList In this study, topology optimization based on multi-labeled image data was conducted for a multi-objective primary mirror to produce novel designs with varying design variables. The primary mirror utilized in this application possessed a delicate structure where both the wavefront error and weight were subject to optimization. However, it was observed that the wavefront error and weight did not exhibit an inverse relationship, necessitating the development of a new multi-objective optimization approach for the primary mirror. Initially, 93 data points were gathered using the finite element method and categorized based on their wavefront error and weight. Topology optimization and the generation of novel designs were accomplished through iterative utilization of both the conditional designable generative adversarial network (CDGAN) and reinforcement learning (RL). To address the limitations inherent in each model and to ensure the effective implementation of the primary mirror, the structure of the CDGAN + RL model underwent modifications and optimizations employing multi-labeled images and considerations of boundary conditions. The application of CDGAN + RL successfully yielded multiple design solutions for unseen-optimized primary mirrors contingent upon the wavefront error and weight. Three-dimensional design variables (rib thickness, face-sheet thickness, cutting depth, and double arch) were optimized and validated based on the labels of the image data and the corresponding generated designs, revealing a minimum error rate of 1.73% and a maximum error rate of 9.37%. Comparative analysis against the initial design demonstrated performance enhancements of 41.84% and 5.41% for the wavefront error and weight, respectively. [Display omitted] •Generative topology optimization was conducted using a generative adversarial network and reinforcement learning.•The proposed method was optimized for successively iterative application to a primary mirror structure.•Multi-labeled image data from a total of 93 primary mirror structures were explored.•The wavefront error and weight were optimized by 41.84% and 5.41%, respectively, compared with the initial design.
ArticleNumber 108642
Author Yang, Dabin
Lee, Jongsoo
Author_xml – sequence: 1
  givenname: Dabin
  orcidid: 0009-0009-6125-5174
  surname: Yang
  fullname: Yang, Dabin
– sequence: 2
  givenname: Jongsoo
  surname: Lee
  fullname: Lee, Jongsoo
  email: jleej@yonsei.ac.kr
BookMark eNqFkNFq3DAQRUVJoZu0v1D0A97Iki3Zbw0haQIpfWmfxVgau7P1SkZSNqQ_1N-sl02gb3kauNx7uXPO2VmIARn7XIttLWp9udtimGBZgLZSyGYVO93Id2xTd0ZV2uj-jG1E38qq7o3-wM5z3gkhVNfoDfv77XEuVM0w4Iye0x4m5B4KVAPkVZgwYIJCB-QlLnGO0zOPS6E9_VnVGHgc-ZLWWHrme0opJv5E5Rd3MXg6GmDmHjNNAYYZ_68Df8CUIdHqCFieYvrNIXiekMIYk8M9hsJnhBQoTB_Z-xHmjJ9e7gX7eXvz4_quevj-9f766qFysu1LNfpedtprZVS3slA4aCWUlhpa1bbSiH4AoZ2SOCphjGnFMOqurY0bpGgaqS6YPvW6FHNOONqX72wt7BG33dlX3PaI255wr8EvpyCu6w6EyWZHGBx6SuiK9ZHeqvgHlVSSyw
Cites_doi 10.1016/j.ress.2020.107316
10.1002/nme.5714
10.1115/1.4056929
10.1108/EC-01-2018-0007
10.1007/s00158-022-03461-0
10.1115/1.4062980
10.3390/app8112259
10.3795/KSME-A.2023.47.11.885
10.3795/KSME-A.2022.47.1.087
10.1016/j.icheatmasstransfer.2018.07.001
10.1007/s001580100129
10.1109/TIE.2020.3044808
10.1515/rnam-2019-0018
10.3389/fbuil.2020.00059
10.1016/j.aei.2021.101512
10.1016/j.cma.2023.116401
10.1016/j.engappai.2023.107033
10.1016/j.engappai.2022.105488
10.3390/machines10111043
10.1016/j.knosys.2020.105887
10.1016/j.compstruc.2020.106283
10.1115/1.4044397
10.1038/s41586-021-03544-w
10.1016/j.jmsy.2023.07.014
10.1016/j.matdes.2022.110672
10.1007/BF01650949
10.1016/j.artint.2021.103535
10.1016/j.engappai.2023.106436
10.1007/s00158-019-02323-6
10.52725/aocl.2021.20.2.47
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.108642
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2024_108642
S0952197624008005
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c259t-fd9286d637380243eb6303626a53552709ba06c32ef3077750bf68517cb204423
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Wed Oct 01 03:05:58 EDT 2025
Tue Jun 18 08:50:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Topology optimization
Conditional designable generative adversarial network
Generative design
Multi-labeled image
Primary mirror structure
Reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-fd9286d637380243eb6303626a53552709ba06c32ef3077750bf68517cb204423
ORCID 0009-0009-6125-5174
ParticipantIDs crossref_primary_10_1016_j_engappai_2024_108642
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_108642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li (bib15) 2023
Struz, Hruzik, Klapetek, Trochta (bib31) 2023
Brown, Garland, Fadel, Li (bib4) 2022; 218
Silver, Singh, Precup, Sutton (bib28) 2021
Whang (bib35) 2021; 20
Jeong, Batuwatta-Gamage, Bai, Xie, Rathnayaka, Zhou, Gu (bib10) 2023; 417
Qu, Jiang, Feng, Li, Liu, Wang (bib23) 2018; 8
Abueidda, Koric, Sobh (bib1) 2020; 237
Bendsoe (bib3) 1989
Gao, Luo, Xia, Gao (bib6) 2019; 60
Hayashi, Ohsaki (bib8) 2020; 6
Wen, Li, Gao (bib34) 2021; 68
Li, Shi, Wang, Tang, Yu, Liu (bib16) 2022; 10
Mirhoseini, Goldie, Yazgan, Jiang, Songhori, Wang, Lee, Johnson, Pathak, Nazi, Pak, Tong, Srinivasa, Hang, Tuncer, Le, Laudon, Ho, Carpenter, Dean (bib18) 2021; 594
Oh, Lee (bib21) 2023; 117
Lee, Balu, Stoecklein, Ganapathysubramanian, Sarkar (bib14) 2019; 141
Rade, Jignasu, Herron, Corpuz, Ganapathysubramanian, Sarkar, Balu, Krishnamurthy (bib24) 2023; 126
Wang, Melkote, Rosen (bib33) 2023; 145
Lee, Kim, Lieu, Lee (bib13) 2020; 198
Parrott, Abueidda, James (bib22) 2023; 145
Zhang, Song, Zhou, Du, Zhu, Sun, Guo (bib39) 2018; 113
Da, Cui, Long, Cai, Li (bib5) 2019; 36
Yang, Lee, Lee (bib37) 2023; 10
Yang, Lee, Kang, Yoo, Lee (bib36) 2023; 47
Bae, Lee, Kim, Lee, Myung-Whun (bib2) 2022; 33
Rochefort-Beaudoin, Vadean, Gamache, Achiche (bib25) 2023; 123
Jeon, Yoo, Kang (bib9) 2023; 47
Stolpe, Svanberg (bib30) 2001
Sharifani, Amini (bib27) 2023
Karimzadeh, Esposito, Zhao, Braun, Sargento (bib12) 2021
Karimzadeh, Aebi, de Souza, Zhao, Braun, Sargento, Villas (bib11) 2021
Ogunfowora, Najjaran (bib20) 2023; 70
Mirza, Osindero (bib19) 2014
Yoo, Jung, Han, Lee (bib38) 2021; 206
Sosnovik, Oseledets (bib29) 2019; 34
Lin, Hong, Liu, Li, Wang (bib17) 2018; 97
Hayashi, Ohsaki (bib7) 2022; 51
Seo, Kapania (bib26) 2023; 66
Yang (10.1016/j.engappai.2024.108642_bib37) 2023; 10
Hayashi (10.1016/j.engappai.2024.108642_bib8) 2020; 6
Wen (10.1016/j.engappai.2024.108642_bib34) 2021; 68
Yang (10.1016/j.engappai.2024.108642_bib36) 2023; 47
Oh (10.1016/j.engappai.2024.108642_bib21) 2023; 117
Sosnovik (10.1016/j.engappai.2024.108642_bib29) 2019; 34
Yoo (10.1016/j.engappai.2024.108642_bib38) 2021; 206
Silver (10.1016/j.engappai.2024.108642_bib28) 2021
Whang (10.1016/j.engappai.2024.108642_bib35) 2021; 20
Li (10.1016/j.engappai.2024.108642_bib15) 2023
Stolpe (10.1016/j.engappai.2024.108642_bib30) 2001
Karimzadeh (10.1016/j.engappai.2024.108642_bib11) 2021
Jeong (10.1016/j.engappai.2024.108642_bib10) 2023; 417
Sharifani (10.1016/j.engappai.2024.108642_bib27) 2023
Abueidda (10.1016/j.engappai.2024.108642_bib1) 2020; 237
Hayashi (10.1016/j.engappai.2024.108642_bib7) 2022; 51
Parrott (10.1016/j.engappai.2024.108642_bib22) 2023; 145
Wang (10.1016/j.engappai.2024.108642_bib33) 2023; 145
Mirhoseini (10.1016/j.engappai.2024.108642_bib18) 2021; 594
Brown (10.1016/j.engappai.2024.108642_bib4) 2022; 218
Rade (10.1016/j.engappai.2024.108642_bib24) 2023; 126
Gao (10.1016/j.engappai.2024.108642_bib6) 2019; 60
Mirza (10.1016/j.engappai.2024.108642_bib19) 2014
Ogunfowora (10.1016/j.engappai.2024.108642_bib20) 2023; 70
Rochefort-Beaudoin (10.1016/j.engappai.2024.108642_bib25) 2023; 123
Karimzadeh (10.1016/j.engappai.2024.108642_bib12) 2021
Da (10.1016/j.engappai.2024.108642_bib5) 2019; 36
Lee (10.1016/j.engappai.2024.108642_bib14) 2019; 141
Jeon (10.1016/j.engappai.2024.108642_bib9) 2023; 47
Lin (10.1016/j.engappai.2024.108642_bib17) 2018; 97
Qu (10.1016/j.engappai.2024.108642_bib23) 2018; 8
Struz (10.1016/j.engappai.2024.108642_bib31) 2023
Bendsoe (10.1016/j.engappai.2024.108642_bib3) 1989
Seo (10.1016/j.engappai.2024.108642_bib26) 2023; 66
Lee (10.1016/j.engappai.2024.108642_bib13) 2020; 198
Bae (10.1016/j.engappai.2024.108642_bib2) 2022; 33
Li (10.1016/j.engappai.2024.108642_bib16) 2022; 10
Zhang (10.1016/j.engappai.2024.108642_bib39) 2018; 113
References_xml – year: 2014
  ident: bib19
  article-title: Conditional Generative Adversarial Nets
– volume: 70
  start-page: 244
  year: 2023
  end-page: 263
  ident: bib20
  article-title: Reinforcement and deep reinforcement learning-based solutions for machine maintenance planning, scheduling policies, and optimization
  publication-title: J. Manuf. Syst.
– volume: 47
  start-page: 885
  year: 2023
  end-page: 892
  ident: bib36
  article-title: Optimal design of large-aperture mirror to minimize wavefront error and weight
  publication-title: Transactions of the Korean Society of Mechanical Engineers - A
– volume: 198
  year: 2020
  ident: bib13
  article-title: CNN-based image recognition for topology optimization
  publication-title: Knowl. Base Syst.
– volume: 113
  start-page: 1653
  year: 2018
  end-page: 1675
  ident: bib39
  article-title: Topology optimization with multiple materials via moving morphable component (MMC) method
  publication-title: Int. J. Numer. Methods Eng.
– volume: 417
  year: 2023
  ident: bib10
  article-title: A complete Physics-Informed Neural Network-based framework for structural topology optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2023
  ident: bib27
  article-title: Machine learning and deep learning: a review of methods and applications
  publication-title: World Information Technology and Engineering Journal
– volume: 206
  year: 2021
  ident: bib38
  article-title: Data augmentation-based prediction of system level performance under model and parameter uncertainties: role of designable generative adversarial networks (DGAN)
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2001
  ident: bib30
  article-title: An alternative interpolation scheme for minimum compliance topology optimization
  publication-title: Struct. Multidisc. Optim. Springer-Verlag
– year: 2021
  ident: bib28
  article-title: Reward is enough
  publication-title: Artif. Intell.
– volume: 6
  year: 2020
  ident: bib8
  article-title: Reinforcement learning and graph embedding for binary truss topology optimization under stress and displacement constraints
  publication-title: Front Built Environ
– volume: 10
  start-page: 1531
  year: 2023
  end-page: 1546
  ident: bib37
  article-title: Crack growth degradation-based diagnosis and design of high pressure liquefied natural gas pipe via designable data-augmented anomaly detection
  publication-title: J. Comput. Des. Eng.
– volume: 47
  start-page: 87
  year: 2023
  end-page: 93
  ident: bib9
  article-title: Topology optimization of the light weight design of the large-aperture mirror for ground telescopes
  publication-title: Transactions of the Korean Society of Mechanical Engineers - A
– volume: 237
  year: 2020
  ident: bib1
  article-title: Topology optimization of 2D structures with nonlinearities using deep learning
  publication-title: Comput. Struct.
– volume: 97
  start-page: 103
  year: 2018
  end-page: 109
  ident: bib17
  article-title: Investigation into the topology optimization for conductive heat transfer based on deep learning approach
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 594
  start-page: 207
  year: 2021
  end-page: 212
  ident: bib18
  article-title: A graph placement methodology for fast chip design
  publication-title: Nature
– volume: 126
  year: 2023
  ident: bib24
  article-title: Deep learning-based 3D multigrid topology optimization of manufacturable designs
  publication-title: Eng. Appl. Artif. Intell.
– volume: 36
  start-page: 126
  year: 2019
  end-page: 146
  ident: bib5
  article-title: Multiscale concurrent topology optimization of structures and microscopic multi-phase materials for thermal conductivity
  publication-title: Eng. Comput.
– volume: 123
  year: 2023
  ident: bib25
  article-title: Supervised deep learning for the moving morphable components topology optimization framework
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 29
  year: 2021
  end-page: 34
  ident: bib12
  article-title: RL-CNN: reinforcement learning-designed convolutional neural network for urban traffic flow estimation
  publication-title: 2021 International Wireless Communications and Mobile Computing, IWCMC 2021
– volume: 20
  start-page: 47
  year: 2021
  end-page: 51
  ident: bib35
  article-title: Aberrations using Zernike polynomials and contact lens
  publication-title: Annals of Optometry and Contact Lens
– volume: 66
  year: 2023
  ident: bib26
  article-title: Topology optimization with advanced CNN using mapped physics-based data
  publication-title: Struct. Multidiscip. Optim.
– volume: 51
  year: 2022
  ident: bib7
  article-title: Graph-based reinforcement learning for discrete cross-section optimization of planar steel frames
  publication-title: Adv. Eng. Inf.
– volume: 8
  year: 2018
  ident: bib23
  article-title: Lightweight design of multi-objective topology for a large-aperture space mirror
  publication-title: Appl. Sci.
– start-page: 365
  year: 2023
  end-page: 402
  ident: bib15
  article-title: Deep reinforcement learning
  publication-title: Reinforcement Learning for Sequential Decision and Optimal Control
– year: 2021
  ident: bib11
  article-title: Reinforcement learning-designed LSTM for trajectory and traffic flow prediction
  publication-title: IEEE Wireless Communications and Networking Conference, WCNC
– volume: 218
  year: 2022
  ident: bib4
  article-title: Deep reinforcement learning for engineering design through topology optimization of elementally discretized design domains
  publication-title: Mater. Des.
– volume: 141
  year: 2019
  ident: bib14
  article-title: A case study of deep reinforcement learning for engineering design: application to microfluidic devices for flow sculpting
  publication-title: J. Mech. Des.
– volume: 10
  year: 2022
  ident: bib16
  article-title: Structural topology optimization of reflective mirror based on objective of wavefront aberration
  publication-title: Machines
– volume: 145
  year: 2023
  ident: bib33
  article-title: Generative design by embedding topology optimization into conditional generative adversarial network
  publication-title: J. Mech. Des.
– volume: 68
  start-page: 12890
  year: 2021
  end-page: 12900
  ident: bib34
  article-title: A new reinforcement learning based learning rate scheduler for convolutional neural network in fault classification
  publication-title: IEEE Trans. Ind. Electron.
– volume: 33
  start-page: 74
  year: 2022
  end-page: 83
  ident: bib2
  article-title: Development of a silicon carbide large-aperture optical telescope for a satellite
  publication-title: Korean Journal of Optics and Photonics
– volume: 60
  start-page: 2621
  year: 2019
  end-page: 2651
  ident: bib6
  article-title: Concurrent topology optimization of multiscale composite structures in Matlab
  publication-title: Struct. Multidiscip. Optim.
– year: 1989
  ident: bib3
  article-title: Structural Optimization Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
– volume: 145
  year: 2023
  ident: bib22
  article-title: Multidisciplinary topology optimization using generative adversarial networks for physics-based design enhancement
  publication-title: J. Mech. Des.
– start-page: 6346
  year: 2023
  end-page: 6353
  ident: bib31
  article-title: Comparative analysis of different softwares in terms of parameters optimized by topological optimization
  publication-title: MM Science Journal
– volume: 117
  year: 2023
  ident: bib21
  article-title: Auxiliary algorithm to approach a near-global optimum of a multi-objective function in acoustical topology optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 34
  start-page: 215
  year: 2019
  end-page: 223
  ident: bib29
  article-title: Neural networks for topology optimization
  publication-title: Russ. J. Numer. Anal. Math. Model.
– volume: 206
  year: 2021
  ident: 10.1016/j.engappai.2024.108642_bib38
  article-title: Data augmentation-based prediction of system level performance under model and parameter uncertainties: role of designable generative adversarial networks (DGAN)
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107316
– start-page: 6346
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib31
  article-title: Comparative analysis of different softwares in terms of parameters optimized by topological optimization
  publication-title: MM Science Journal
– volume: 113
  start-page: 1653
  year: 2018
  ident: 10.1016/j.engappai.2024.108642_bib39
  article-title: Topology optimization with multiple materials via moving morphable component (MMC) method
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5714
– volume: 145
  issue: 6
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib22
  article-title: Multidisciplinary topology optimization using generative adversarial networks for physics-based design enhancement
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4056929
– volume: 36
  start-page: 126
  year: 2019
  ident: 10.1016/j.engappai.2024.108642_bib5
  article-title: Multiscale concurrent topology optimization of structures and microscopic multi-phase materials for thermal conductivity
  publication-title: Eng. Comput.
  doi: 10.1108/EC-01-2018-0007
– volume: 66
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib26
  article-title: Topology optimization with advanced CNN using mapped physics-based data
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-022-03461-0
– volume: 145
  issue: 11
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib33
  article-title: Generative design by embedding topology optimization into conditional generative adversarial network
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4062980
– volume: 8
  issue: 11
  year: 2018
  ident: 10.1016/j.engappai.2024.108642_bib23
  article-title: Lightweight design of multi-objective topology for a large-aperture space mirror
  publication-title: Appl. Sci.
  doi: 10.3390/app8112259
– volume: 47
  start-page: 885
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib36
  article-title: Optimal design of large-aperture mirror to minimize wavefront error and weight
  publication-title: Transactions of the Korean Society of Mechanical Engineers - A
  doi: 10.3795/KSME-A.2023.47.11.885
– volume: 47
  start-page: 87
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib9
  article-title: Topology optimization of the light weight design of the large-aperture mirror for ground telescopes
  publication-title: Transactions of the Korean Society of Mechanical Engineers - A
  doi: 10.3795/KSME-A.2022.47.1.087
– start-page: 29
  year: 2021
  ident: 10.1016/j.engappai.2024.108642_bib12
  article-title: RL-CNN: reinforcement learning-designed convolutional neural network for urban traffic flow estimation
– volume: 97
  start-page: 103
  year: 2018
  ident: 10.1016/j.engappai.2024.108642_bib17
  article-title: Investigation into the topology optimization for conductive heat transfer based on deep learning approach
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2018.07.001
– year: 2001
  ident: 10.1016/j.engappai.2024.108642_bib30
  article-title: An alternative interpolation scheme for minimum compliance topology optimization
  publication-title: Struct. Multidisc. Optim. Springer-Verlag
  doi: 10.1007/s001580100129
– volume: 68
  start-page: 12890
  year: 2021
  ident: 10.1016/j.engappai.2024.108642_bib34
  article-title: A new reinforcement learning based learning rate scheduler for convolutional neural network in fault classification
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3044808
– volume: 34
  start-page: 215
  year: 2019
  ident: 10.1016/j.engappai.2024.108642_bib29
  article-title: Neural networks for topology optimization
  publication-title: Russ. J. Numer. Anal. Math. Model.
  doi: 10.1515/rnam-2019-0018
– volume: 6
  year: 2020
  ident: 10.1016/j.engappai.2024.108642_bib8
  article-title: Reinforcement learning and graph embedding for binary truss topology optimization under stress and displacement constraints
  publication-title: Front Built Environ
  doi: 10.3389/fbuil.2020.00059
– volume: 51
  year: 2022
  ident: 10.1016/j.engappai.2024.108642_bib7
  article-title: Graph-based reinforcement learning for discrete cross-section optimization of planar steel frames
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101512
– volume: 33
  start-page: 74
  year: 2022
  ident: 10.1016/j.engappai.2024.108642_bib2
  article-title: Development of a silicon carbide large-aperture optical telescope for a satellite
  publication-title: Korean Journal of Optics and Photonics
– year: 2021
  ident: 10.1016/j.engappai.2024.108642_bib11
  article-title: Reinforcement learning-designed LSTM for trajectory and traffic flow prediction
– volume: 417
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib10
  article-title: A complete Physics-Informed Neural Network-based framework for structural topology optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116401
– volume: 126
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib24
  article-title: Deep learning-based 3D multigrid topology optimization of manufacturable designs
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107033
– volume: 117
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib21
  article-title: Auxiliary algorithm to approach a near-global optimum of a multi-objective function in acoustical topology optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105488
– year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib27
  article-title: Machine learning and deep learning: a review of methods and applications
  publication-title: World Information Technology and Engineering Journal
– volume: 10
  start-page: 1531
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib37
  article-title: Crack growth degradation-based diagnosis and design of high pressure liquefied natural gas pipe via designable data-augmented anomaly detection
  publication-title: J. Comput. Des. Eng.
– start-page: 365
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib15
  article-title: Deep reinforcement learning
– volume: 10
  issue: 11
  year: 2022
  ident: 10.1016/j.engappai.2024.108642_bib16
  article-title: Structural topology optimization of reflective mirror based on objective of wavefront aberration
  publication-title: Machines
  doi: 10.3390/machines10111043
– volume: 198
  year: 2020
  ident: 10.1016/j.engappai.2024.108642_bib13
  article-title: CNN-based image recognition for topology optimization
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2020.105887
– volume: 237
  year: 2020
  ident: 10.1016/j.engappai.2024.108642_bib1
  article-title: Topology optimization of 2D structures with nonlinearities using deep learning
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106283
– volume: 141
  year: 2019
  ident: 10.1016/j.engappai.2024.108642_bib14
  article-title: A case study of deep reinforcement learning for engineering design: application to microfluidic devices for flow sculpting
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4044397
– volume: 594
  start-page: 207
  year: 2021
  ident: 10.1016/j.engappai.2024.108642_bib18
  article-title: A graph placement methodology for fast chip design
  publication-title: Nature
  doi: 10.1038/s41586-021-03544-w
– year: 2014
  ident: 10.1016/j.engappai.2024.108642_bib19
– volume: 70
  start-page: 244
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib20
  article-title: Reinforcement and deep reinforcement learning-based solutions for machine maintenance planning, scheduling policies, and optimization
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2023.07.014
– volume: 218
  year: 2022
  ident: 10.1016/j.engappai.2024.108642_bib4
  article-title: Deep reinforcement learning for engineering design through topology optimization of elementally discretized design domains
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.110672
– year: 1989
  ident: 10.1016/j.engappai.2024.108642_bib3
  article-title: Structural Optimization Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
  doi: 10.1007/BF01650949
– year: 2021
  ident: 10.1016/j.engappai.2024.108642_bib28
  article-title: Reward is enough
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2021.103535
– volume: 123
  year: 2023
  ident: 10.1016/j.engappai.2024.108642_bib25
  article-title: Supervised deep learning for the moving morphable components topology optimization framework
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106436
– volume: 60
  start-page: 2621
  year: 2019
  ident: 10.1016/j.engappai.2024.108642_bib6
  article-title: Concurrent topology optimization of multiscale composite structures in Matlab
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-019-02323-6
– volume: 20
  start-page: 47
  year: 2021
  ident: 10.1016/j.engappai.2024.108642_bib35
  article-title: Aberrations using Zernike polynomials and contact lens
  publication-title: Annals of Optometry and Contact Lens
  doi: 10.52725/aocl.2021.20.2.47
SSID ssj0003846
Score 2.4255073
Snippet In this study, topology optimization based on multi-labeled image data was conducted for a multi-objective primary mirror to produce novel designs with varying...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108642
SubjectTerms Conditional designable generative adversarial network
Generative design
Multi-labeled image
Primary mirror structure
Reinforcement learning
Topology optimization
Title Multi-labeled image data-based generative topology optimization of primary mirror with conditional designable generative adversarial network and reinforcement learning
URI https://dx.doi.org/10.1016/j.engappai.2024.108642
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Complete Freedom Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLCy8EW_dwGraJo7TjAhRFSo6ABXdIidxqiA1jdIwsPB3-Jvc2Y4oEhIDUxTLjpLc-e476-47xi5l6AV5IgKuRS_hQoVdHmEAx9NeGhp6lDCi4uSHsRxOxP00mK6xm7YWhtIqne23Nt1YazfScX-zUxVF5wnBAW433MzCwB4qNCf2L9Tpq4_vNA-_b4t1cDKn2StVwq9XupypqlIFxomeME2HhPe7g1pxOoMdtuXQIlzbF9pla7rcY9sOOYLbl0scapsztGP77NOU1nIUMjqWDIo5Gg6gfFBOjiuDmeGbJmMHjW2U8A4LtB9zV5gJixwqS0UB86KuFzXQmS1g_JwV9gARMpP-QcVXq49T1ON5qUizobRZ5qDKDGptWFpTcyAJrl3F7IBNBrfPN0PuujLwFEOlhudZ5PVlJokSiegMdSKNG5Qq8InOrRslqitT39M52o8QEUmSS8R1YZp4XYHo7ZCtl4tSHzHwezogvrVUpDkBR4UOO1SiF-ZS5F5fH7NOK4rYfXHcZqW9xq3wYhJebIV3zKJWYvEPNYrRQ_yx9uQfa0_ZJt3ZPN4ztt7Ub_oc0UqTXBh1vGAb13ej4Ziuo8eX0Rcnde9q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGWDhjXhzA6tpmzpOMyIEKq8ugMQWOYlTBalplZaBX8Tf5M52UJGQGFidOEpy9nffWXffAZyrKAiLVIbCyG4qpI46IqYATmTdLLLyKFHMxcmPQzV4kXev4esSXDW1MJxW6bHfYbpFaz_S9n-zPS3L9hORA9putJmlpT3hMqzIkDC5BSuXt_eD4Tcg9_quXofuFzxhoVD47cJUIz2d6pJCxUDavkMy-N1HLfidm01Y94QRL907bcGSqbZhw5NH9FtzRkNNf4ZmbAc-bXWtIDuTb8mxHBN2IKeECvZdOY6s5DTjHc5dr4QPnBCEjH1tJk4KnDo1ChyXdT2pkY9tkULovHRniJjbDBCuv1p8nOY2zzPNixsrl2iOusqxNlaoNbNnkug7Vox24eXm-vlqIHxjBpFRtDQXRR4HfZUrVkViRUOTKusJlQ57rOjWiVPdUVkvMAVBSESkJC0UUbsoS4OOJAK3B61qUpl9wF7XhCy5lsmsYO6oyWdHWnajQski6JsDaDemSPwXJ01i2lvSGC9h4yXOeAcQNxZLfqykhJzEH3MP_zH3DFYHz48PycPt8P4I1viKS-s9hta8fjcnRF7m6alfnF_Bb_By
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-labeled+image+data-based+generative+topology+optimization+of+primary+mirror+with+conditional+designable+generative+adversarial+network+and+reinforcement+learning&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Yang%2C+Dabin&rft.au=Lee%2C+Jongsoo&rft.date=2024-07-01&rft.issn=0952-1976&rft.volume=133&rft.spage=108642&rft_id=info:doi/10.1016%2Fj.engappai.2024.108642&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_108642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon