Performance Analysis of Machine Learning Algorithms for Big Data Classification: ML and AI-Based Algorithms for Big Data Analysis

In broad, three machine learning classification algorithms are used to discover correlations, hidden patterns, and other useful information from different data sets known as big data. Today, Twitter, Facebook, Instagram, and many other social media networks are used to collect the unstructured data....

Full description

Saved in:
Bibliographic Details
Published inInternational journal of e-health and medical communications Vol. 12; no. 4; pp. 60 - 75
Main Authors Punia, Sanjeev Kumar, Kumar, Manoj, Stephan, Thompson, Deverajan, Ganesh Gopal, Patan, Rizwan
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.07.2021
Subjects
Online AccessGet full text
ISSN1947-315X
1947-3168
DOI10.4018/IJEHMC.20210701.oa4

Cover

Abstract In broad, three machine learning classification algorithms are used to discover correlations, hidden patterns, and other useful information from different data sets known as big data. Today, Twitter, Facebook, Instagram, and many other social media networks are used to collect the unstructured data. The conversion of unstructured data into structured data or meaningful information is a very tedious task. The different machine learning classification algorithms are used to convert unstructured data into structured data. In this paper, the authors first collect the unstructured research data from a frequently used social media network (i.e., Twitter) by using a Twitter application program interface (API) stream. Secondly, they implement different machine classification algorithms (supervised, unsupervised, and reinforcement) like decision trees (DT), neural networks (NN), support vector machines (SVM), naive Bayes (NB), linear regression (LR), and k-nearest neighbor (K-NN) from the collected research data set. The comparison of different machine learning classification algorithms is concluded.
AbstractList In broad, three machine learning classification algorithms are used to discover correlations, hidden patterns, and other useful information from different data sets known as big data. Today, Twitter, Facebook, Instagram, and many other social media networks are used to collect the unstructured data. The conversion of unstructured data into structured data or meaningful information is a very tedious task. The different machine learning classification algorithms are used to convert unstructured data into structured data. In this paper, the authors first collect the unstructured research data from a frequently used social media network (i.e., Twitter) by using a Twitter application program interface (API) stream. Secondly, they implement different machine classification algorithms (supervised, unsupervised, and reinforcement) like decision trees (DT), neural networks (NN), support vector machines (SVM), naive Bayes (NB), linear regression (LR), and k-nearest neighbor (K-NN) from the collected research data set. The comparison of different machine learning classification algorithms is concluded.
Author Deverajan, Ganesh Gopal
Punia, Sanjeev Kumar
Patan, Rizwan
Stephan, Thompson
Kumar, Manoj
AuthorAffiliation Velagapudi Ramakrishna Siddhartha Engineering College, India
School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, India
Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore,Noida, India
Galgotias University, India
JIMS Engineering Management Technical Campus, India
AuthorAffiliation_xml – name: JIMS Engineering Management Technical Campus, India
– name: Galgotias University, India
– name: Velagapudi Ramakrishna Siddhartha Engineering College, India
– name: School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, India
– name: Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore,Noida, India
Author_xml – sequence: 1
  givenname: Sanjeev
  surname: Punia
  middlename: Kumar
  fullname: Punia, Sanjeev Kumar
  organization: JIMS Engineering Management Technical Campus, India
– sequence: 2
  givenname: Manoj
  surname: Kumar
  fullname: Kumar, Manoj
  organization: School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, India
– sequence: 3
  givenname: Thompson
  surname: Stephan
  fullname: Stephan, Thompson
  organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore,Noida, India
– sequence: 4
  givenname: Ganesh
  surname: Deverajan
  middlename: Gopal
  fullname: Deverajan, Ganesh Gopal
  organization: Galgotias University, India
– sequence: 5
  givenname: Rizwan
  surname: Patan
  fullname: Patan, Rizwan
  organization: Velagapudi Ramakrishna Siddhartha Engineering College, India
BookMark eNqFkT1PwzAQhi1UJL76C1gsMafYzodjtrYUaJUKBpDYrCOxU6PULnY6MPLPCbQFCQnwYg_3vL577gj1rLMKoVNKBgmh-fl0NrmZjweMMEo4oQMHyR46pCLhUUyzvPf1Th8PUD-EZ9KdNOEZ54fo7U557fwSbKnw0ELzGkzATuM5lAtjFS4UeGtsjYdN7bxpF8uAOwCPTI0voQU8biAEo00JrXH2As8LDLbCw2k0gqCqX7ndZydoX0MTVH97H6OHq8n9-CYqbq-n42ERlSwVbaRSnmjgFYOYiYozmsSKiThJY85KUTGhSSUSeMrzimpG8yyjrMo50SrLQRERH6OzTe7Ku5e1Cq18dmvfNRFkl0NFJ0_wrkpsqkrvQvBKy9K0n5O1HkwjKZEf0uVGutxJl530jo1_sCtvluBf_6FmG8rU5rul7UrkzpJ0Wn6u5I8oyuJ3c0ugCg
CitedBy_id crossref_primary_10_1002_aps3_11603
crossref_primary_10_1063_5_0159890
crossref_primary_10_1109_ACCESS_2022_3142888
crossref_primary_10_1109_COMST_2023_3338153
crossref_primary_10_1109_ACCESS_2024_3520009
crossref_primary_10_1021_acsphotonics_3c01013
crossref_primary_10_1016_j_asoc_2024_112080
crossref_primary_10_1515_nleng_2022_0290
crossref_primary_10_1007_s13198_023_02107_8
crossref_primary_10_4018_IJBDAH_331996
crossref_primary_10_1155_2022_3247781
crossref_primary_10_25139_ijair_v5i2_7499
crossref_primary_10_1007_s10479_024_06343_4
crossref_primary_10_1007_s00500_023_09040_9
crossref_primary_10_1007_s10462_023_10494_4
crossref_primary_10_1016_j_measen_2022_100534
crossref_primary_10_1007_s11517_022_02688_9
crossref_primary_10_1155_2022_1609757
crossref_primary_10_1002_int_22804
crossref_primary_10_1007_s13198_021_01603_z
crossref_primary_10_1016_j_procs_2023_10_327
crossref_primary_10_18231_j_jchm_2024_013
crossref_primary_10_32604_iasc_2023_028889
crossref_primary_10_1016_j_jjimei_2022_100074
crossref_primary_10_3390_s22093233
crossref_primary_10_3390_s24103129
crossref_primary_10_1155_2022_7424094
crossref_primary_10_1016_j_scitotenv_2022_159030
crossref_primary_10_3390_app13020682
crossref_primary_10_3233_JIFS_211024
crossref_primary_10_3233_JIFS_211321
crossref_primary_10_3390_diagnostics14020139
crossref_primary_10_3390_app12188947
crossref_primary_10_1007_s11227_023_05091_9
crossref_primary_10_1109_ACCESS_2021_3127571
ContentType Journal Article
Copyright 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7X7
7XB
8FD
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
L~C
L~D
M0S
NAPCQ
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.4018/IJEHMC.20210701.oa4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Nursing & Allied Health Premium
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1947-3168
EndPage 75
ExternalDocumentID 10_4018_IJEHMC_20210701_oa4
ormance_Analysis_of_Machi10_4018_IJEHMC_20210701_oa412
GroupedDBID 0R
4.4
AAYVP
ABEPT
ABIID
ADEKF
ALMA_UNASSIGNED_HOLDINGS
BYHXH
CBWLS
CDTDJ
CIGCI
CKMBR
CNQXE
COVLG
EBS
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
7X7
8FI
8FJ
AAYXX
ABBKS
ABJQB
ABPHS
ABUWG
ACAUS
ACOJC
AFKRA
AMRTO
ARAPS
BAAKF
BENPR
BGLVJ
CCPQU
CITATION
CTSEY
FYUFA
H13
HCIFZ
HMCUK
HZ~
IAO
IHR
INH
ITC
K7-
N95
NAPCQ
PHGZM
PHGZT
PPXIY
PQGLB
PUEGO
UKHRP
3V.
7SC
7XB
8FD
8FE
8FG
8FK
AZQEC
DWQXO
GNUQQ
JQ2
K9.
L7M
L~C
L~D
P62
PJZUB
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c259t-e574fa7d2a329d72143e29345372c9d29f0d94ab88d1f2186612d870fe68ae093
IEDL.DBID BENPR
ISSN 1947-315X
IngestDate Tue Oct 07 06:58:59 EDT 2025
Wed Oct 01 02:44:59 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Sat May 01 04:20:47 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by/3.0/deed.en_US
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-e574fa7d2a329d72143e29345372c9d29f0d94ab88d1f2186612d870fe68ae093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5113-0639
0000-0003-0036-7841
0000-0003-4878-1988
PQID 2931910797
PQPubID 2045850
PageCount 16
ParticipantIDs igi_journals_ormance_Analysis_of_Machi10_4018_IJEHMC_20210701_oa412
proquest_journals_2931910797
crossref_citationtrail_10_4018_IJEHMC_20210701_oa4
crossref_primary_10_4018_IJEHMC_20210701_oa4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of e-health and medical communications
PublicationYear 2021
Publisher IGI Global
Publisher_xml – name: IGI Global
SSID ssj0000547677
Score 2.4552386
Snippet In broad, three machine learning classification algorithms are used to discover correlations, hidden patterns, and other useful information from different data...
SourceID proquest
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60
SubjectTerms Algorithms
Application programming interface
Big Data
Classification
Data analysis
Datasets
Decision trees
Digital media
Machine learning
Neural networks
Social networks
Structured data
Support vector machines
Unstructured data
Title Performance Analysis of Machine Learning Algorithms for Big Data Classification: ML and AI-Based Algorithms for Big Data Analysis
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJEHMC.20210701.oa4
https://www.proquest.com/docview/2931910797
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库
  customDbUrl:
  eissn: 1947-3168
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0000547677
  issn: 1947-315X
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1947-3168
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0000547677
  issn: 1947-315X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB41qYS4VDxFSql84IjpZh_xGglVSUhIKzaqEJVys7x-hEglW-jyA_jnHXvtRgiRy16849XOZ3vms8czAG9ZbYvMZhnlimuKFtpQXrCMoiuRJkqNDPfpi6vlaHGdX66K1QEs410YF1YZ10S_UOtGuT3yMzRLSC0Sxtn57U_qqka509VYQkOG0gr6o08x1oPD1GXG6sPhZLa8-vqw64IOChv5coxI3t0GXbHqUhEhzSjPLi5ni2qKpBFFWTJ838j8L3PV26w3_6zZ3hDNn8BR8CDJuIP8KRyY7TN4VIUz8ufw52p3F4DEnCOksaTycZOGhJSqazK-WeMftt9_3BEUIJPNmnySrSS-UKYLIfKofSDVFyK3mowv6ARtnv6vXPzYC7iez75NFzQUWqAK2U9LTcFyK5lOZZZyjZwwzwzqOy8yliKEKbeJ5rmsy1IPrStihW6RxoluzaiUJuHZS-hvm615BUQNc_QZkMYpXeZ1im2qLrA75DHSFqYeQBr1KVTIQu6KYdwIZCMOBNGBICIIAkEYwLsHodsuCcf-16cIlAiT8U4ElYuoBdFY4VW-p49hOoCTCPSuq90oPN7f_Boeu-66wN4T6Le_fps36L609Sn02Irhs5x_Pg3j8x42duvI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKwEXxFMECvgAN5Zmvd54jVShJE2VtNmoQq2Um_H6ESKVbCGLEEf-GL-NsdduhBC59ey1vZoZe-azx98g9JpVNs9sliVccZ2AhzYJz1mWQChBukr1DPf0xeWsN76gJ_N8voN-x7cwLq0y7ol-o9a1cmfkB-CWAFp0GWcfrr4mrmqUu12NJTRkKK2gDz3FWHjYcWp-_gAItz6cHIG-3xByPDofjpNQZSBREPo3ickZtZJpIjPCNQAimhmYjOYZI_D_hNuu5lRWRaFT6yo4QUygwcqt6RXSeDImcAF7NKMcwN_eYDQ7-3h9ygMBEev58o8pp-5AMJ-31EcAa4qDycloXA4BpALuYt30XS3pX-7x1nKx_MdHeMd3fB_dCxEr7rcm9gDtmNVDdLsMd_KP0K-zzdsDHDlOcG1x6fM0DQ4Urgvcv1yARJvPX9YYOuDBcoGPZCOxL8zpUpa8lbzH5RTLlcb9STIAH6v_2y9O9hhd3IjIn6DdVb0yTxFWKYUYBWCj0gWtCLSpKofhADdJm5uqg0iUp1CB9dwV37gUgH6cEkSrBBGVIEAJHfT2utNVS_qx_fMhKEqExb8WQeQiSkHUVniRbxkjJR20HxW9GWpj9c-2N79Cd8bn5VRMJ7PT5-iuG7pNKt5Hu8237-YFhE5N9TLYJ0afbnpJ_AEeOiV6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Analysis+of+Machine+Learning+Algorithms+for+Big+Data+Classification%3A+ML+and+AI-Based+Algorithms+for+Big+Data+Analysis&rft.jtitle=International+journal+of+e-health+and+medical+communications&rft.au=Punia%2C+Sanjeev&rft.au=Kumar%2C+Manoj&rft.au=Thompson%2C+Stephan&rft.au=Deverajan%2C+Ganesh&rft.date=2021-07-01&rft.pub=IGI+Global&rft.issn=1947-315X&rft.eissn=1947-3168&rft.volume=12&rft.issue=4&rft.spage=60&rft.epage=75&rft_id=info:doi/10.4018%2FIJEHMC.20210701.oa4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-315X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-315X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-315X&client=summon