Performance Analysis of Machine Learning Algorithms for Big Data Classification: ML and AI-Based Algorithms for Big Data Analysis
In broad, three machine learning classification algorithms are used to discover correlations, hidden patterns, and other useful information from different data sets known as big data. Today, Twitter, Facebook, Instagram, and many other social media networks are used to collect the unstructured data....
Saved in:
| Published in | International journal of e-health and medical communications Vol. 12; no. 4; pp. 60 - 75 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hershey
IGI Global
01.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1947-315X 1947-3168 |
| DOI | 10.4018/IJEHMC.20210701.oa4 |
Cover
| Abstract | In broad, three machine learning classification algorithms are used to discover correlations, hidden patterns, and other useful information from different data sets known as big data. Today, Twitter, Facebook, Instagram, and many other social media networks are used to collect the unstructured data. The conversion of unstructured data into structured data or meaningful information is a very tedious task. The different machine learning classification algorithms are used to convert unstructured data into structured data. In this paper, the authors first collect the unstructured research data from a frequently used social media network (i.e., Twitter) by using a Twitter application program interface (API) stream. Secondly, they implement different machine classification algorithms (supervised, unsupervised, and reinforcement) like decision trees (DT), neural networks (NN), support vector machines (SVM), naive Bayes (NB), linear regression (LR), and k-nearest neighbor (K-NN) from the collected research data set. The comparison of different machine learning classification algorithms is concluded. |
|---|---|
| AbstractList | In broad, three machine learning classification algorithms are used to discover correlations, hidden patterns, and other useful information from different data sets known as big data. Today, Twitter, Facebook, Instagram, and many other social media networks are used to collect the unstructured data. The conversion of unstructured data into structured data or meaningful information is a very tedious task. The different machine learning classification algorithms are used to convert unstructured data into structured data. In this paper, the authors first collect the unstructured research data from a frequently used social media network (i.e., Twitter) by using a Twitter application program interface (API) stream. Secondly, they implement different machine classification algorithms (supervised, unsupervised, and reinforcement) like decision trees (DT), neural networks (NN), support vector machines (SVM), naive Bayes (NB), linear regression (LR), and k-nearest neighbor (K-NN) from the collected research data set. The comparison of different machine learning classification algorithms is concluded. |
| Author | Deverajan, Ganesh Gopal Punia, Sanjeev Kumar Patan, Rizwan Stephan, Thompson Kumar, Manoj |
| AuthorAffiliation | Velagapudi Ramakrishna Siddhartha Engineering College, India School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, India Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore,Noida, India Galgotias University, India JIMS Engineering Management Technical Campus, India |
| AuthorAffiliation_xml | – name: JIMS Engineering Management Technical Campus, India – name: Galgotias University, India – name: Velagapudi Ramakrishna Siddhartha Engineering College, India – name: School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, India – name: Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore,Noida, India |
| Author_xml | – sequence: 1 givenname: Sanjeev surname: Punia middlename: Kumar fullname: Punia, Sanjeev Kumar organization: JIMS Engineering Management Technical Campus, India – sequence: 2 givenname: Manoj surname: Kumar fullname: Kumar, Manoj organization: School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, India – sequence: 3 givenname: Thompson surname: Stephan fullname: Stephan, Thompson organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore,Noida, India – sequence: 4 givenname: Ganesh surname: Deverajan middlename: Gopal fullname: Deverajan, Ganesh Gopal organization: Galgotias University, India – sequence: 5 givenname: Rizwan surname: Patan fullname: Patan, Rizwan organization: Velagapudi Ramakrishna Siddhartha Engineering College, India |
| BookMark | eNqFkT1PwzAQhi1UJL76C1gsMafYzodjtrYUaJUKBpDYrCOxU6PULnY6MPLPCbQFCQnwYg_3vL577gj1rLMKoVNKBgmh-fl0NrmZjweMMEo4oQMHyR46pCLhUUyzvPf1Th8PUD-EZ9KdNOEZ54fo7U557fwSbKnw0ELzGkzATuM5lAtjFS4UeGtsjYdN7bxpF8uAOwCPTI0voQU8biAEo00JrXH2As8LDLbCw2k0gqCqX7ndZydoX0MTVH97H6OHq8n9-CYqbq-n42ERlSwVbaRSnmjgFYOYiYozmsSKiThJY85KUTGhSSUSeMrzimpG8yyjrMo50SrLQRERH6OzTe7Ku5e1Cq18dmvfNRFkl0NFJ0_wrkpsqkrvQvBKy9K0n5O1HkwjKZEf0uVGutxJl530jo1_sCtvluBf_6FmG8rU5rul7UrkzpJ0Wn6u5I8oyuJ3c0ugCg |
| CitedBy_id | crossref_primary_10_1002_aps3_11603 crossref_primary_10_1063_5_0159890 crossref_primary_10_1109_ACCESS_2022_3142888 crossref_primary_10_1109_COMST_2023_3338153 crossref_primary_10_1109_ACCESS_2024_3520009 crossref_primary_10_1021_acsphotonics_3c01013 crossref_primary_10_1016_j_asoc_2024_112080 crossref_primary_10_1515_nleng_2022_0290 crossref_primary_10_1007_s13198_023_02107_8 crossref_primary_10_4018_IJBDAH_331996 crossref_primary_10_1155_2022_3247781 crossref_primary_10_25139_ijair_v5i2_7499 crossref_primary_10_1007_s10479_024_06343_4 crossref_primary_10_1007_s00500_023_09040_9 crossref_primary_10_1007_s10462_023_10494_4 crossref_primary_10_1016_j_measen_2022_100534 crossref_primary_10_1007_s11517_022_02688_9 crossref_primary_10_1155_2022_1609757 crossref_primary_10_1002_int_22804 crossref_primary_10_1007_s13198_021_01603_z crossref_primary_10_1016_j_procs_2023_10_327 crossref_primary_10_18231_j_jchm_2024_013 crossref_primary_10_32604_iasc_2023_028889 crossref_primary_10_1016_j_jjimei_2022_100074 crossref_primary_10_3390_s22093233 crossref_primary_10_3390_s24103129 crossref_primary_10_1155_2022_7424094 crossref_primary_10_1016_j_scitotenv_2022_159030 crossref_primary_10_3390_app13020682 crossref_primary_10_3233_JIFS_211024 crossref_primary_10_3233_JIFS_211321 crossref_primary_10_3390_diagnostics14020139 crossref_primary_10_3390_app12188947 crossref_primary_10_1007_s11227_023_05091_9 crossref_primary_10_1109_ACCESS_2021_3127571 |
| ContentType | Journal Article |
| Copyright | 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7X7 7XB 8FD 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M L~C L~D M0S NAPCQ P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.4018/IJEHMC.20210701.oa4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Nursing & Allied Health Premium ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1947-3168 |
| EndPage | 75 |
| ExternalDocumentID | 10_4018_IJEHMC_20210701_oa4 ormance_Analysis_of_Machi10_4018_IJEHMC_20210701_oa412 |
| GroupedDBID | 0R 4.4 AAYVP ABEPT ABIID ADEKF ALMA_UNASSIGNED_HOLDINGS BYHXH CBWLS CDTDJ CIGCI CKMBR CNQXE COVLG EBS HZ JRD MV1 NEEBM O9- RIF 0R~ 7X7 8FI 8FJ AAYXX ABBKS ABJQB ABPHS ABUWG ACAUS ACOJC AFKRA AMRTO ARAPS BAAKF BENPR BGLVJ CCPQU CITATION CTSEY FYUFA H13 HCIFZ HMCUK HZ~ IAO IHR INH ITC K7- N95 NAPCQ PHGZM PHGZT PPXIY PQGLB PUEGO UKHRP 3V. 7SC 7XB 8FD 8FE 8FG 8FK AZQEC DWQXO GNUQQ JQ2 K9. L7M L~C L~D P62 PJZUB PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c259t-e574fa7d2a329d72143e29345372c9d29f0d94ab88d1f2186612d870fe68ae093 |
| IEDL.DBID | BENPR |
| ISSN | 1947-315X |
| IngestDate | Tue Oct 07 06:58:59 EDT 2025 Wed Oct 01 02:44:59 EDT 2025 Thu Apr 24 22:54:18 EDT 2025 Sat May 01 04:20:47 EDT 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://creativecommons.org/licenses/by/3.0/deed.en_US |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c259t-e574fa7d2a329d72143e29345372c9d29f0d94ab88d1f2186612d870fe68ae093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5113-0639 0000-0003-0036-7841 0000-0003-4878-1988 |
| PQID | 2931910797 |
| PQPubID | 2045850 |
| PageCount | 16 |
| ParticipantIDs | igi_journals_ormance_Analysis_of_Machi10_4018_IJEHMC_20210701_oa412 proquest_journals_2931910797 crossref_citationtrail_10_4018_IJEHMC_20210701_oa4 crossref_primary_10_4018_IJEHMC_20210701_oa4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hershey |
| PublicationPlace_xml | – name: Hershey |
| PublicationTitle | International journal of e-health and medical communications |
| PublicationYear | 2021 |
| Publisher | IGI Global |
| Publisher_xml | – name: IGI Global |
| SSID | ssj0000547677 |
| Score | 2.4552386 |
| Snippet | In broad, three machine learning classification algorithms are used to discover correlations, hidden patterns, and other useful information from different data... |
| SourceID | proquest crossref igi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 60 |
| SubjectTerms | Algorithms Application programming interface Big Data Classification Data analysis Datasets Decision trees Digital media Machine learning Neural networks Social networks Structured data Support vector machines Unstructured data |
| Title | Performance Analysis of Machine Learning Algorithms for Big Data Classification: ML and AI-Based Algorithms for Big Data Analysis |
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJEHMC.20210701.oa4 https://www.proquest.com/docview/2931910797 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 1947-3168 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0000547677 issn: 1947-315X databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1947-3168 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0000547677 issn: 1947-315X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB41qYS4VDxFSql84IjpZh_xGglVSUhIKzaqEJVys7x-hEglW-jyA_jnHXvtRgiRy16849XOZ3vms8czAG9ZbYvMZhnlimuKFtpQXrCMoiuRJkqNDPfpi6vlaHGdX66K1QEs410YF1YZ10S_UOtGuT3yMzRLSC0Sxtn57U_qqka509VYQkOG0gr6o08x1oPD1GXG6sPhZLa8-vqw64IOChv5coxI3t0GXbHqUhEhzSjPLi5ni2qKpBFFWTJ838j8L3PV26w3_6zZ3hDNn8BR8CDJuIP8KRyY7TN4VIUz8ufw52p3F4DEnCOksaTycZOGhJSqazK-WeMftt9_3BEUIJPNmnySrSS-UKYLIfKofSDVFyK3mowv6ARtnv6vXPzYC7iez75NFzQUWqAK2U9LTcFyK5lOZZZyjZwwzwzqOy8yliKEKbeJ5rmsy1IPrStihW6RxoluzaiUJuHZS-hvm615BUQNc_QZkMYpXeZ1im2qLrA75DHSFqYeQBr1KVTIQu6KYdwIZCMOBNGBICIIAkEYwLsHodsuCcf-16cIlAiT8U4ElYuoBdFY4VW-p49hOoCTCPSuq90oPN7f_Boeu-66wN4T6Le_fps36L609Sn02Irhs5x_Pg3j8x42duvI |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKwEXxFMECvgAN5Zmvd54jVShJE2VtNmoQq2Um_H6ESKVbCGLEEf-GL-NsdduhBC59ey1vZoZe-azx98g9JpVNs9sliVccZ2AhzYJz1mWQChBukr1DPf0xeWsN76gJ_N8voN-x7cwLq0y7ol-o9a1cmfkB-CWAFp0GWcfrr4mrmqUu12NJTRkKK2gDz3FWHjYcWp-_gAItz6cHIG-3xByPDofjpNQZSBREPo3ickZtZJpIjPCNQAimhmYjOYZI_D_hNuu5lRWRaFT6yo4QUygwcqt6RXSeDImcAF7NKMcwN_eYDQ7-3h9ygMBEev58o8pp-5AMJ-31EcAa4qDycloXA4BpALuYt30XS3pX-7x1nKx_MdHeMd3fB_dCxEr7rcm9gDtmNVDdLsMd_KP0K-zzdsDHDlOcG1x6fM0DQ4Urgvcv1yARJvPX9YYOuDBcoGPZCOxL8zpUpa8lbzH5RTLlcb9STIAH6v_2y9O9hhd3IjIn6DdVb0yTxFWKYUYBWCj0gWtCLSpKofhADdJm5uqg0iUp1CB9dwV37gUgH6cEkSrBBGVIEAJHfT2utNVS_qx_fMhKEqExb8WQeQiSkHUVniRbxkjJR20HxW9GWpj9c-2N79Cd8bn5VRMJ7PT5-iuG7pNKt5Hu8237-YFhE5N9TLYJ0afbnpJ_AEeOiV6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Analysis+of+Machine+Learning+Algorithms+for+Big+Data+Classification%3A+ML+and+AI-Based+Algorithms+for+Big+Data+Analysis&rft.jtitle=International+journal+of+e-health+and+medical+communications&rft.au=Punia%2C+Sanjeev&rft.au=Kumar%2C+Manoj&rft.au=Thompson%2C+Stephan&rft.au=Deverajan%2C+Ganesh&rft.date=2021-07-01&rft.pub=IGI+Global&rft.issn=1947-315X&rft.eissn=1947-3168&rft.volume=12&rft.issue=4&rft.spage=60&rft.epage=75&rft_id=info:doi/10.4018%2FIJEHMC.20210701.oa4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-315X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-315X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-315X&client=summon |