Data-driven property-oriented composition design and feature analysis of lightweight high-entropy alloys
Lightweight high-entropy alloys (LHEAs), characterized by low density, high strength, and excellent comprehensive mechanical properties, show great promise for demanding industrial applications in automotive and aerospace engineering, where material lightweighting and high strength are critical. How...
        Saved in:
      
    
          | Published in | Journal of alloys and compounds Vol. 1037; p. 182197 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        10.08.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0925-8388 | 
| DOI | 10.1016/j.jallcom.2025.182197 | 
Cover
| Abstract | Lightweight high-entropy alloys (LHEAs), characterized by low density, high strength, and excellent comprehensive mechanical properties, show great promise for demanding industrial applications in automotive and aerospace engineering, where material lightweighting and high strength are critical. However, the vast and complex compositional space of LHEAs remains largely unexplored, leaving numerous compositions with potentially exceptional properties untapped. In this study, a property-oriented design strategy for rapid multi-component alloy optimization is proposed by integrating a machine learning (ML) model with a particle swarm optimization (PSO) algorithm. A prediction model was constructed for Al-Ti-V-Zr-Nb-Cr-Ni system LHEAs. Thirteen feature descriptors were introduced and screened in two stages via Pearson correlation analysis and principal component analysis (PCA). Using four machine learning regression algorithms, the relationship between input features and room-temperature mechanical properties was modeled by integrating material composition and descriptors. The PSO algorithm was used for multi-objective reverse optimization design of the trained model, and several low-density (5–5.63 g/cm3) LHEAs with room-temperature specific yield strengths of 221–271 MPa·cm3/g were designed. Among them, Al20Ti30V18Nb25Cr7 exhibited over 50 % compressive deformation at a peak stress of 2534 MPa without fracture. SHapley Additive exPlanations (SHAP) analysis revealed the influence mechanisms of key features on alloy properties. Results demonstrate that this property-oriented alloy design approach effectively guides the development of LHEAs to meet lightweight and high-performance requirements.
•A property-oriented design strategy for rapid material optimization of multi-principal element alloys.•Two-step dimensionality reduction method for filtering feature descriptors.•A low-density lightweight high-entropy alloy with high specific yield strength and excellent compression plasticity.•Effect of elemental content and key characteristic descriptors on alloy properties. | 
    
|---|---|
| AbstractList | Lightweight high-entropy alloys (LHEAs), characterized by low density, high strength, and excellent comprehensive mechanical properties, show great promise for demanding industrial applications in automotive and aerospace engineering, where material lightweighting and high strength are critical. However, the vast and complex compositional space of LHEAs remains largely unexplored, leaving numerous compositions with potentially exceptional properties untapped. In this study, a property-oriented design strategy for rapid multi-component alloy optimization is proposed by integrating a machine learning (ML) model with a particle swarm optimization (PSO) algorithm. A prediction model was constructed for Al-Ti-V-Zr-Nb-Cr-Ni system LHEAs. Thirteen feature descriptors were introduced and screened in two stages via Pearson correlation analysis and principal component analysis (PCA). Using four machine learning regression algorithms, the relationship between input features and room-temperature mechanical properties was modeled by integrating material composition and descriptors. The PSO algorithm was used for multi-objective reverse optimization design of the trained model, and several low-density (5–5.63 g/cm3) LHEAs with room-temperature specific yield strengths of 221–271 MPa·cm3/g were designed. Among them, Al20Ti30V18Nb25Cr7 exhibited over 50 % compressive deformation at a peak stress of 2534 MPa without fracture. SHapley Additive exPlanations (SHAP) analysis revealed the influence mechanisms of key features on alloy properties. Results demonstrate that this property-oriented alloy design approach effectively guides the development of LHEAs to meet lightweight and high-performance requirements.
•A property-oriented design strategy for rapid material optimization of multi-principal element alloys.•Two-step dimensionality reduction method for filtering feature descriptors.•A low-density lightweight high-entropy alloy with high specific yield strength and excellent compression plasticity.•Effect of elemental content and key characteristic descriptors on alloy properties. | 
    
| ArticleNumber | 182197 | 
    
| Author | Song, Tianpeng Xia, Tao Zhu, Jingchuan Cui, Puchang Liu, Yong  | 
    
| Author_xml | – sequence: 1 givenname: Tianpeng surname: Song fullname: Song, Tianpeng organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 2 givenname: Puchang surname: Cui fullname: Cui, Puchang organization: School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China – sequence: 3 givenname: Tao surname: Xia fullname: Xia, Tao organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 4 givenname: Yong surname: Liu fullname: Liu, Yong email: lyonghit@hit.edu.cn organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China – sequence: 5 givenname: Jingchuan surname: Zhu fullname: Zhu, Jingchuan organization: School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China  | 
    
| BookMark | eNqFkMtqAyEUhl2k0KTtIxR8gUnViTO6KiW9QqCbdi1Gj4nDZBzUpszb15DsuzkXOOfj51ug2RAGQOiekiUltHnolp3uexMOS0YYX1LBqGxnaE4k45WohbhGi5Q6QgiVNZ2j_bPOurLRH2HAYwwjxDxVIXoYMlhcQGNIPvswYAvJ7wasB4sd6PwTocy6n5JPODjc-90-_8Kp4n2pVSEU3oRLnjClW3TldJ_g7tJv0Pfry9f6vdp8vn2snzaVYVzmSjaCOLklLW_qbatXtqxG1mbbOsFWvClHkjKzorWw0FAnnRGaCes4b6WpbX2D-JlrYkgpglNj9AcdJ0WJOilSnbooUidF6qyo_D2e_6CEO3qIKpkiwYD1EUxWNvh_CH_qVHiy | 
    
| Cites_doi | 10.1002/adem.200300567 10.1179/1743284715Y.0000000032 10.1016/j.msea.2023.144628 10.1016/j.actamat.2021.117431 10.1016/j.scriptamat.2020.04.016 10.1016/j.msea.2025.148574 10.1016/j.vacuum.2023.112115 10.3390/ma16247581 10.1021/acsami.1c14586 10.1016/j.jallcom.2023.170179 10.1016/j.neucom.2017.11.077 10.1016/j.vacuum.2023.112888 10.1016/j.jallcom.2020.154742 10.3390/e26060435 10.1016/j.actamat.2019.03.010 10.1016/j.jallcom.2024.178102 10.1016/j.intermet.2022.107472 10.1016/j.intermet.2022.107622 10.1016/j.msea.2020.139774 10.1016/j.jallcom.2023.172855 10.1016/j.intermet.2018.05.015 10.1038/s41524-024-01457-6 10.1016/j.jmst.2024.04.020 10.1016/j.actamat.2024.119745 10.1007/s12613-020-2040-1 10.1016/j.jmrt.2023.03.103 10.1016/j.matt.2025.102204 10.1016/j.matlet.2016.11.030 10.1126/science.abo4940  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 | 
    
| Copyright_xml | – notice: 2025 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.jallcom.2025.182197 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Chemistry Physics  | 
    
| ExternalDocumentID | 10_1016_j_jallcom_2025_182197 S0925838825037582  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACIWK ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- ~HD 29J AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SMS T9H WUQ  | 
    
| ID | FETCH-LOGICAL-c259t-9680f9b07563b7a4d80fc93cb7f82456259912c4138de61f9fc8a28df5579c3d3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0925-8388 | 
    
| IngestDate | Wed Oct 01 05:35:07 EDT 2025 Sat Sep 20 17:15:07 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Mechanical properties Lightweight high-entropy alloys SHAP Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c259t-9680f9b07563b7a4d80fc93cb7f82456259912c4138de61f9fc8a28df5579c3d3 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_jallcom_2025_182197 elsevier_sciencedirect_doi_10_1016_j_jallcom_2025_182197  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-08-10 | 
    
| PublicationDateYYYYMMDD | 2025-08-10 | 
    
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-10 day: 10  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of alloys and compounds | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Chen, Li (bib7) 2024; 973 Roy, Babuska, Krick, Balasubramanian (bib28) 2020; 185 Lundberg, Lee (bib34) 2017 Wen, Zhang, Wang, Xue, Bai, Antonov, Dai, Lookman, Su (bib25) 2019; 170 Xu, Gao, Cui, Song, Chen (bib22) 2023; 213 Lu, Xiao, Yang, Hong, Zhang (bib30) 2017; 3 Wang, Jiang, Wang, Jiang, Rong, Wang, Yang, Zhu (bib17) 2023; 24 Khan, Brechtl, Li (bib2) 2025; 8 Stepanov, Yurchenko, Shaysultanov, Salishchev, Tikhonovsky (bib33) 2015; 31 Yan, Liu, Li, Zhang, Xiao, Xue, Xue, Xiong, Li, Li (bib19) 2023; 16 Cai, Luo, Wang, Yang (bib29) 2018; 300 Brodie, Wang, Couzini ́e, Heczko, Maz ́ anov ́a, Mills, Ghazisaeidi (bib13) 2024; 268 Li, Li, Zhang, Zhang, Xing, Han (bib31) 2024; 26 Zhu, Li, Zhang (bib36) 2024; 221 Jia, Li, Ren (bib14) 2025; 206 Xu, Chen, Ji, Zheng, Wang, Liu (bib35) 2023; 956 Wang, Lu (bib12) 2025; 941 Huang, Tan, Li, Dong, Li, Qin, Guo, Lu (bib18) 2022; 143 Chen, Xu, Wang, Li, Yang (bib9) 2020; 792 Gong, Lu, Li, Liang, Wang, Chen (bib10) 2024 Zhu, Zhang, Xu, Jian, Xi (bib8) 2025; 61 Gao, Wang, Meng, Li, Zhang (bib32) 2022; 148 Dogan, Demir, Gutzler (bib24) 2021; 13 Wang, Jiang, Wang, Jiang, Wang, Zhu, Hu (bib4) 2023; 177 Naseer, Wang, Khan, Afifi (bib3) 2025; 1010 Tseng, Juan, Tso, Chen, Tsai, Yeh (bib5) 2019; 21 Huang, Wu, Jiang, Lu, Wang, Li (bib15) 2020; 27 Jiang, Wang, Wang, Jiang, Ma, Kang, Zhu (bib11) 2023; 865 Rao, Tung, Xie, Wei, Zhang, Ferrari, Klaver, Krmann, Sukumar, Silva (bib27) 2022; 378 Zhang, Huang, Lin, Liu, Wu, Li, Wang, Liao, Jason, Jang (bib16) 2020; 831 Lou, Chen, Liu, Ji, Chen, Jia, Li, Li (bib20) 2022; 104 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib1) 2004; 6 Stepanov a, Yurchenko a, Panina a, Tikhonovsky b, Zherebtsov (bib23) 2017; 188 Yang, Ren, Jia, Wang, Li, Lu (bib26) 2022; 222 Gao, Gao, Yang, Zhang (bib6) 2024; 10 Jayaraj, Thirathipviwat, Han, Gebert (bib21) 2018; 100 Gao (10.1016/j.jallcom.2025.182197_bib6) 2024; 10 Xu (10.1016/j.jallcom.2025.182197_bib22) 2023; 213 Zhang (10.1016/j.jallcom.2025.182197_bib16) 2020; 831 Wang (10.1016/j.jallcom.2025.182197_bib4) 2023; 177 Gao (10.1016/j.jallcom.2025.182197_bib32) 2022; 148 Lu (10.1016/j.jallcom.2025.182197_bib30) 2017; 3 Chen (10.1016/j.jallcom.2025.182197_bib9) 2020; 792 Li (10.1016/j.jallcom.2025.182197_bib31) 2024; 26 Khan (10.1016/j.jallcom.2025.182197_bib2) 2025; 8 Jayaraj (10.1016/j.jallcom.2025.182197_bib21) 2018; 100 Zhu (10.1016/j.jallcom.2025.182197_bib36) 2024; 221 Tseng (10.1016/j.jallcom.2025.182197_bib5) 2019; 21 Rao (10.1016/j.jallcom.2025.182197_bib27) 2022; 378 Lundberg (10.1016/j.jallcom.2025.182197_bib34) 2017 Yan (10.1016/j.jallcom.2025.182197_bib19) 2023; 16 Gong (10.1016/j.jallcom.2025.182197_bib10) 2024 Brodie (10.1016/j.jallcom.2025.182197_bib13) 2024; 268 Xu (10.1016/j.jallcom.2025.182197_bib35) 2023; 956 Naseer (10.1016/j.jallcom.2025.182197_bib3) 2025; 1010 Chen (10.1016/j.jallcom.2025.182197_bib7) 2024; 973 Jiang (10.1016/j.jallcom.2025.182197_bib11) 2023; 865 Dogan (10.1016/j.jallcom.2025.182197_bib24) 2021; 13 Jia (10.1016/j.jallcom.2025.182197_bib14) 2025; 206 Lou (10.1016/j.jallcom.2025.182197_bib20) 2022; 104 Stepanov (10.1016/j.jallcom.2025.182197_bib33) 2015; 31 Wang (10.1016/j.jallcom.2025.182197_bib12) 2025; 941 Wen (10.1016/j.jallcom.2025.182197_bib25) 2019; 170 Zhu (10.1016/j.jallcom.2025.182197_bib8) 2025; 61 Yang (10.1016/j.jallcom.2025.182197_bib26) 2022; 222 Huang (10.1016/j.jallcom.2025.182197_bib15) 2020; 27 Wang (10.1016/j.jallcom.2025.182197_bib17) 2023; 24 Cai (10.1016/j.jallcom.2025.182197_bib29) 2018; 300 Huang (10.1016/j.jallcom.2025.182197_bib18) 2022; 143 Stepanov a (10.1016/j.jallcom.2025.182197_bib23) 2017; 188 Yeh (10.1016/j.jallcom.2025.182197_bib1) 2004; 6 Roy (10.1016/j.jallcom.2025.182197_bib28) 2020; 185  | 
    
| References_xml | – volume: 222 year: 2022 ident: bib26 article-title: A machine learning-based alloy design system to facilitate the rational design of high entropy alloys with enhanced hardness publication-title: Acta Mater. – volume: 3 start-page: 191 year: 2017 end-page: 201 ident: bib30 article-title: Data mining-aided materials discovery and optimization publication-title: J. Mater. – volume: 170 start-page: 109 year: 2019 end-page: 117 ident: bib25 article-title: Machine learning assisted design of high entropy alloys with desired property publication-title: Acta Mater. – volume: 300 start-page: 70 year: 2018 end-page: 79 ident: bib29 article-title: Feature selection in machine learning: a new perspective publication-title: Neurocomputing – volume: 831 year: 2020 ident: bib16 article-title: Microstructure and mechanical properties of Tix(AlCrVNb)100-x lightweight multi-principal element alloys publication-title: J. Alloy. Compd. – volume: 148 year: 2022 ident: bib32 article-title: Phase stability and compressive properties of low-density (Zr50Ti35Nb15)100-xAlx high entropy alloys publication-title: Intermetallics – volume: 185 start-page: 152 year: 2020 end-page: 158 ident: bib28 article-title: Machine learned feature identification for predicting phase and Young's modulus of low-, medium-and high-entropy alloys publication-title: Scr. Mater. – volume: 8 year: 2025 ident: bib2 article-title: High strength and ductility in a lightweight AlTiNbZrTa refractory high-entropy alloy enabled by nanophase precipitation and solute segregation publication-title: Matter – volume: 61 start-page: 88 year: 2025 end-page: 98 ident: bib8 article-title: Microstructure, mechanical properties, and high-temperature oxidation behaviors of the CrNbTiVAlx refractory high-entropy alloys publication-title: Acta Metall. Sin. – volume: 31 start-page: 1184 year: 2015 end-page: 1193 ident: bib33 article-title: Effect of Al on structure and mechanical properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) high entropy alloy publication-title: Mater. Sci. Technol. – volume: 188 start-page: 162 year: 2017 end-page: 164 ident: bib23 article-title: Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy publication-title: Mater. Lett. – volume: 865 year: 2023 ident: bib11 article-title: Effect of Al on microstructure and mechanical properties of lightweight AlxNb0.5TiV2Zr0.5 refractory high entropy alloys publication-title: Mater. Sci. Eng. A. – volume: 16 start-page: 7581 year: 2023 ident: bib19 article-title: The effects of the Al and Zr contents on the microstructure evolution of light-weight AlxNbTiVZry high entropy alloy publication-title: Materials – volume: 221 year: 2024 ident: bib36 article-title: Phase evolution and mechanical properties of Ti1.5NbVAlx(x=0.25, 0.5, 0.75, 1) lightweight refractory medium-entropy alloys publication-title: Vacuum – volume: 143 year: 2022 ident: bib18 article-title: Effects of V content on the microstructure and mechanical properties of Nb31Ti37-xZr26Al6Vx refractory medium-entropy alloys publication-title: Intermetallics – volume: 21 start-page: 1 year: 2019 ident: bib5 article-title: Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr Alloys publication-title: Entropy – volume: 104 year: 2022 ident: bib20 article-title: Microstructure and mechanical properties of lightweight AlxCrNbTiV (x= 0.2, 0.5, 0.8) refractory high entropy alloys publication-title: Int. J. Refract. Met. Hard Mater. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcome publication-title: Adv. Eng. Mater. – volume: 941 year: 2025 ident: bib12 article-title: Effect of chemical ordering on the strength-ductility matching of lightweight refractory high-entropy alloys: leaping from local chemical order, B2 ordering, to precipitation strengthening publication-title: Mater. Sci. Eng. A – volume: 956 year: 2023 ident: bib35 article-title: BCC/B2 structure and dislocation strengthening behavior in high Ti content TiAlVCrNb high-entropy alloys publication-title: J. Alloy. Compd. – volume: 13 start-page: 54503 year: 2021 end-page: 54515 ident: bib24 article-title: Bayesian machine learning for efficient minimization of defects in ALD passivation layers publication-title: ACS Appl. Mater. Interfaces – start-page: 1006 year: 2024 ident: bib10 article-title: A single-phase Nb25Ti35V5Zr35 refractory high-entropy alloy with excellent strength-ductility synergy publication-title: J. Alloy. Compd. – volume: 213 year: 2023 ident: bib22 article-title: Lightweight and high hardness (AlNbTiVCr) 100-xNix high entropy alloys reinforced by Laves phase publication-title: Vacuum – volume: 26 year: 2024 ident: bib31 article-title: Effect of Al content on microstructure and properties of AlxCr0.2NbTiV Refractory High-Entropy Alloys publication-title: Entropy – volume: 177 year: 2023 ident: bib4 article-title: Effect of Ti on microstructure and mechanical properties of Al0.8Nb0.5TixV2Zr0.5 refractory complex concentrated alloys publication-title: Int. J. Refract. Met. Hard Mater. – volume: 206 start-page: 234 year: 2025 end-page: 247 ident: bib14 article-title: Substantially improved room-temperature tensile ductility in lightweight refractory Ti-V-Zr-Nb medium entropy alloys by tuning Ti and V content publication-title: J. Mater. Sci. Technol. – volume: 100 start-page: 9 year: 2018 end-page: 19 ident: bib21 article-title: Microstructure, mechanical and thermal oxidation behavior of AlNbTiZr high entropy alloy publication-title: Intermetallics – volume: 27 start-page: 1318 year: 2020 end-page: 1325 ident: bib15 article-title: Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys publication-title: Int. J. Min. Met. Mater. – volume: 1010 year: 2025 ident: bib3 article-title: Development of low-density AlNbTaTiZr refractory high-entropy-intermetallic-alloy: microstructural evolution, mechanical properties, and high-temperature deformation publication-title: J. Alloy. Compd. – start-page: 4768 year: 2017 end-page: 4777 ident: bib34 article-title: A unified approach to interpreting model prediction publication-title: Advances in Neural Information Processing Systems – volume: 792 year: 2020 ident: bib9 article-title: A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties publication-title: Mater. Sci. Eng. A – volume: 10 start-page: 256 year: 2024 ident: bib6 article-title: Data-driven design of novel lightweight refractory high-entropy alloys with superb hardness and corrosion resistance publication-title: NPJ Comput. Mater. – volume: 268 year: 2024 ident: bib13 article-title: Stability of the B2 phase in refractory high entropy alloys containing aluminum publication-title: Acta Mater. – volume: 24 start-page: 1733 year: 2023 end-page: 1743 ident: bib17 article-title: Microstructure and properties of Al0.5NbTi3VxZr2 refractory high entropy alloys combined with high strength and ductility publication-title: J. Mater. Res. Technol. – volume: 378 start-page: 78 year: 2022 end-page: 85 ident: bib27 article-title: Machine learning-enabled high-entropy alloy discovery publication-title: Science – volume: 973 year: 2024 ident: bib7 article-title: Structure and mechanical properties of novel lightweight refractory high entropy alloys NbMoTiZr-(Al/V): A combined first principles and experimental study publication-title: J. Alloy. Compd. – volume: 61 start-page: 88 issue: 1 year: 2025 ident: 10.1016/j.jallcom.2025.182197_bib8 article-title: Microstructure, mechanical properties, and high-temperature oxidation behaviors of the CrNbTiVAlx refractory high-entropy alloys publication-title: Acta Metall. Sin. – volume: 6 start-page: 299 issue: 5 year: 2004 ident: 10.1016/j.jallcom.2025.182197_bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcome publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 31 start-page: 1184 issue: 10 year: 2015 ident: 10.1016/j.jallcom.2025.182197_bib33 article-title: Effect of Al on structure and mechanical properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) high entropy alloy publication-title: Mater. Sci. Technol. doi: 10.1179/1743284715Y.0000000032 – volume: 865 year: 2023 ident: 10.1016/j.jallcom.2025.182197_bib11 article-title: Effect of Al on microstructure and mechanical properties of lightweight AlxNb0.5TiV2Zr0.5 refractory high entropy alloys publication-title: Mater. Sci. Eng. A. doi: 10.1016/j.msea.2023.144628 – volume: 222 year: 2022 ident: 10.1016/j.jallcom.2025.182197_bib26 article-title: A machine learning-based alloy design system to facilitate the rational design of high entropy alloys with enhanced hardness publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117431 – volume: 185 start-page: 152 year: 2020 ident: 10.1016/j.jallcom.2025.182197_bib28 article-title: Machine learned feature identification for predicting phase and Young's modulus of low-, medium-and high-entropy alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.04.016 – start-page: 1006 year: 2024 ident: 10.1016/j.jallcom.2025.182197_bib10 article-title: A single-phase Nb25Ti35V5Zr35 refractory high-entropy alloy with excellent strength-ductility synergy publication-title: J. Alloy. Compd. – volume: 104 year: 2022 ident: 10.1016/j.jallcom.2025.182197_bib20 article-title: Microstructure and mechanical properties of lightweight AlxCrNbTiV (x= 0.2, 0.5, 0.8) refractory high entropy alloys publication-title: Int. J. Refract. Met. Hard Mater. – volume: 941 year: 2025 ident: 10.1016/j.jallcom.2025.182197_bib12 article-title: Effect of chemical ordering on the strength-ductility matching of lightweight refractory high-entropy alloys: leaping from local chemical order, B2 ordering, to precipitation strengthening publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2025.148574 – volume: 213 year: 2023 ident: 10.1016/j.jallcom.2025.182197_bib22 article-title: Lightweight and high hardness (AlNbTiVCr) 100-xNix high entropy alloys reinforced by Laves phase publication-title: Vacuum doi: 10.1016/j.vacuum.2023.112115 – volume: 16 start-page: 7581 issue: 24 year: 2023 ident: 10.1016/j.jallcom.2025.182197_bib19 article-title: The effects of the Al and Zr contents on the microstructure evolution of light-weight AlxNbTiVZry high entropy alloy publication-title: Materials doi: 10.3390/ma16247581 – volume: 13 start-page: 54503 issue: 45 year: 2021 ident: 10.1016/j.jallcom.2025.182197_bib24 article-title: Bayesian machine learning for efficient minimization of defects in ALD passivation layers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c14586 – volume: 956 year: 2023 ident: 10.1016/j.jallcom.2025.182197_bib35 article-title: BCC/B2 structure and dislocation strengthening behavior in high Ti content TiAlVCrNb high-entropy alloys publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2023.170179 – volume: 300 start-page: 70 year: 2018 ident: 10.1016/j.jallcom.2025.182197_bib29 article-title: Feature selection in machine learning: a new perspective publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – volume: 221 year: 2024 ident: 10.1016/j.jallcom.2025.182197_bib36 article-title: Phase evolution and mechanical properties of Ti1.5NbVAlx(x=0.25, 0.5, 0.75, 1) lightweight refractory medium-entropy alloys publication-title: Vacuum doi: 10.1016/j.vacuum.2023.112888 – volume: 831 year: 2020 ident: 10.1016/j.jallcom.2025.182197_bib16 article-title: Microstructure and mechanical properties of Tix(AlCrVNb)100-x lightweight multi-principal element alloys publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.154742 – volume: 26 issue: 6 year: 2024 ident: 10.1016/j.jallcom.2025.182197_bib31 article-title: Effect of Al content on microstructure and properties of AlxCr0.2NbTiV Refractory High-Entropy Alloys publication-title: Entropy doi: 10.3390/e26060435 – volume: 170 start-page: 109 year: 2019 ident: 10.1016/j.jallcom.2025.182197_bib25 article-title: Machine learning assisted design of high entropy alloys with desired property publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.03.010 – volume: 1010 year: 2025 ident: 10.1016/j.jallcom.2025.182197_bib3 article-title: Development of low-density AlNbTaTiZr refractory high-entropy-intermetallic-alloy: microstructural evolution, mechanical properties, and high-temperature deformation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2024.178102 – volume: 143 year: 2022 ident: 10.1016/j.jallcom.2025.182197_bib18 article-title: Effects of V content on the microstructure and mechanical properties of Nb31Ti37-xZr26Al6Vx refractory medium-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2022.107472 – volume: 148 year: 2022 ident: 10.1016/j.jallcom.2025.182197_bib32 article-title: Phase stability and compressive properties of low-density (Zr50Ti35Nb15)100-xAlx high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2022.107622 – volume: 21 start-page: 1 year: 2019 ident: 10.1016/j.jallcom.2025.182197_bib5 article-title: Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr Alloys publication-title: Entropy – start-page: 4768 year: 2017 ident: 10.1016/j.jallcom.2025.182197_bib34 article-title: A unified approach to interpreting model prediction – volume: 3 start-page: 191 issue: 3 year: 2017 ident: 10.1016/j.jallcom.2025.182197_bib30 article-title: Data mining-aided materials discovery and optimization publication-title: J. Mater. – volume: 792 year: 2020 ident: 10.1016/j.jallcom.2025.182197_bib9 article-title: A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.139774 – volume: 177 year: 2023 ident: 10.1016/j.jallcom.2025.182197_bib4 article-title: Effect of Ti on microstructure and mechanical properties of Al0.8Nb0.5TixV2Zr0.5 refractory complex concentrated alloys publication-title: Int. J. Refract. Met. Hard Mater. – volume: 973 year: 2024 ident: 10.1016/j.jallcom.2025.182197_bib7 article-title: Structure and mechanical properties of novel lightweight refractory high entropy alloys NbMoTiZr-(Al/V): A combined first principles and experimental study publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2023.172855 – volume: 100 start-page: 9 year: 2018 ident: 10.1016/j.jallcom.2025.182197_bib21 article-title: Microstructure, mechanical and thermal oxidation behavior of AlNbTiZr high entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2018.05.015 – volume: 10 start-page: 256 year: 2024 ident: 10.1016/j.jallcom.2025.182197_bib6 article-title: Data-driven design of novel lightweight refractory high-entropy alloys with superb hardness and corrosion resistance publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-024-01457-6 – volume: 206 start-page: 234 year: 2025 ident: 10.1016/j.jallcom.2025.182197_bib14 article-title: Substantially improved room-temperature tensile ductility in lightweight refractory Ti-V-Zr-Nb medium entropy alloys by tuning Ti and V content publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2024.04.020 – volume: 268 year: 2024 ident: 10.1016/j.jallcom.2025.182197_bib13 article-title: Stability of the B2 phase in refractory high entropy alloys containing aluminum publication-title: Acta Mater. doi: 10.1016/j.actamat.2024.119745 – volume: 27 start-page: 1318 year: 2020 ident: 10.1016/j.jallcom.2025.182197_bib15 article-title: Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys publication-title: Int. J. Min. Met. Mater. doi: 10.1007/s12613-020-2040-1 – volume: 24 start-page: 1733 year: 2023 ident: 10.1016/j.jallcom.2025.182197_bib17 article-title: Microstructure and properties of Al0.5NbTi3VxZr2 refractory high entropy alloys combined with high strength and ductility publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.03.103 – volume: 8 year: 2025 ident: 10.1016/j.jallcom.2025.182197_bib2 article-title: High strength and ductility in a lightweight AlTiNbZrTa refractory high-entropy alloy enabled by nanophase precipitation and solute segregation publication-title: Matter doi: 10.1016/j.matt.2025.102204 – volume: 188 start-page: 162 year: 2017 ident: 10.1016/j.jallcom.2025.182197_bib23 article-title: Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.11.030 – volume: 378 start-page: 78 issue: 6615 year: 2022 ident: 10.1016/j.jallcom.2025.182197_bib27 article-title: Machine learning-enabled high-entropy alloy discovery publication-title: Science doi: 10.1126/science.abo4940  | 
    
| SSID | ssj0001931 | 
    
| Score | 2.4774063 | 
    
| Snippet | Lightweight high-entropy alloys (LHEAs), characterized by low density, high strength, and excellent comprehensive mechanical properties, show great promise for... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 182197 | 
    
| SubjectTerms | Lightweight high-entropy alloys Machine learning Mechanical properties SHAP  | 
    
| Title | Data-driven property-oriented composition design and feature analysis of lightweight high-entropy alloys | 
    
| URI | https://dx.doi.org/10.1016/j.jallcom.2025.182197 | 
    
| Volume | 1037 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0925-8388 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001931 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection issn: 0925-8388 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001931 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0925-8388 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001931 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0925-8388 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001931 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0925-8388 databaseCode: AKRWK dateStart: 19930111 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001931 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6KIupBtCo-Sw5es7vdZ3KUqlRFL1robckTLaVb2hXpxd9uZh-oIB68bZYEwhBmvpl8-QbggqsgyoIkoEaLjMaGxZTZkFMprAvXSulUYKL48JgOR_HdOBl3YNC-hUFaZeP7a59eeevmj99Y05-_vvpPAQ_xzs-lONjHlaEfjuMMuxh4H180DwdQqq55bjLF2V-vePyJNxHTKZJGQhf5PYe0-6j99Ft8-hZzbnZhpwGL5LLezx50zKwLm4O2R1sXtr_JCXZho6JzquU-vFyJUlC9QFdG5lhvX5QrWqCmsUOYBHnkDVmL6IrCQcRME2sqlU_3XQuVkMKSKSbv71X9lKC0McVqcDFfEbywXy0PYHRz_TwY0qanAlUu0SkpT1lguXRAIY1kJmLthopHSmaWhXU2xPuhcqGNaZP2LbeKiZBpmyQZV5GODmFtVszMERAbGhuogEuVoIielMyYTCop0sgaHQbH4LWWzOe1dEbecsomeWP6HE2f16Y_BtbaO_9xBnLn3v9eevL_paewhSNaydyewVq5eDPnDmiUsledpB6sX97eDx8_AUVz1Zk | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5EEfUgWhXf5uA17Tb7So5SlaqtF1vwtuSJltKWdkV68beb2QcqiAdvu5sEliHMfDP58g3ApdBBmAZxQK2RKY0sjyh3TFAlnQ_XWptEYqLYf0y6w-j-OX5egU59FwZplZXvL3164a2rL63Kmq3Z62vrKRAMz_x8ioN9XLn3w2tRzFLMwJofXzwPj1CKtnl-NsXpX9d4WqPmSI7HyBphPvQ3PdRuo_jTbwHqW9C53YHtCi2Sq_KHdmHFThqw0ambtDVg65ueYAPWCz6nXuzBy7XMJTVz9GVkhgX3eb6kUxQ19hCTIJG8YmsRU3A4iJwY4mwh8-mfS6USMnVkjNn7e1FAJahtTLEcPJ0tCZ7YLxf7MLy9GXS6tGqqQLXPdHIqEh44oTxSSEKVysj4Vy1CrVLHWZkOiTbTPrZxY5O2E05zybhxcZwKHZrwAFYn04k9BOKYdYEOhNIxqugpxa1NlVYyCZ01LDiCZm3JbFZqZ2Q1qWyUVabP0PRZafoj4LW9sx-bIPP-_e-lx_9fegEb3UG_l_XuHh9OYBNHaKF5ewqr-fzNnnnUkavzYld9AlxL1y4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+property-oriented+composition+design+and+feature+analysis+of+lightweight+high-entropy+alloys&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Song%2C+Tianpeng&rft.au=Cui%2C+Puchang&rft.au=Xia%2C+Tao&rft.au=Liu%2C+Yong&rft.date=2025-08-10&rft.issn=0925-8388&rft.volume=1037&rft.spage=182197&rft_id=info:doi/10.1016%2Fj.jallcom.2025.182197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2025_182197 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |