Simulation and optimization of methanol production process via bi-reforming of methane: A novel genetic algorithm-based approach in Python

Bi-reforming of methane (BRM) is a promising method for syngas production in Methanol synthesis that consumes CH4 and CO2 while allowing feed ratio tuning. In this study as main novelty, an innovative optimization approach(integratrd genetic algorithm, Python programming language, and Aspen Plus sof...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 101; pp. 1161 - 1171
Main Authors Rouhandeh, Hossein, Behroozsarand, Alireza
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 03.02.2025
Subjects
Online AccessGet full text
ISSN0360-3199
DOI10.1016/j.ijhydene.2025.01.003

Cover

Abstract Bi-reforming of methane (BRM) is a promising method for syngas production in Methanol synthesis that consumes CH4 and CO2 while allowing feed ratio tuning. In this study as main novelty, an innovative optimization approach(integratrd genetic algorithm, Python programming language, and Aspen Plus software) for Methanol synthesis using a bi-reforming process to increase productivity and reduce CO2 emissions is proposed. Furthermore, By using a genetic algorithm, Python programming language, and integrated Aspen Plus software, the optimal temperature and pressure feed conditions were determined for a BRM reactor. The molar feed ratio of CH4: CO2:H2O = 1:0.36:0.9 at a temperature of 901 °C and a pressure of 5 bar, instead of 3:1:2 and 1:1:2, was recognized as the optimal ratio in the bi-reforming process. The optimal conditions resulted in 93% CH4 conversion, 76% CO2 conversion, and an H2/CO ratio of 2.08, achieving the ideal stoichiometric number (M = 2) for Methanol synthesis. Comparative analysis with a referenced method showed that the proposed process produces an additional 11.8 tonne/h of methanol, consumes 7.63 tonne/h more CO2, and reduces steam consumption by 54.11 tonne/h. Moreover, the process exhibits improved environmental performance, consuming over 20% more CO2.These results indicate that the BRM process can be a suitable alternative to the SMR process in methanol synthesis. [Display omitted] •Integration of GA, Python programming, and Aspen Plus has been applied in the Methanol process.•Comparison of Proposed with referenced method showed increasing 11.8 tonne/h methanol productivity.•Proposed process consumes 7.63 tonne/h more CO2 and reduces 54.11 tonne/h steam consumption.•The optimal conditions found CH4:CO2:H2O molar ratio of 1:0.36:0.9 at 901 °C and 5 bar pressure.
AbstractList Bi-reforming of methane (BRM) is a promising method for syngas production in Methanol synthesis that consumes CH4 and CO2 while allowing feed ratio tuning. In this study as main novelty, an innovative optimization approach(integratrd genetic algorithm, Python programming language, and Aspen Plus software) for Methanol synthesis using a bi-reforming process to increase productivity and reduce CO2 emissions is proposed. Furthermore, By using a genetic algorithm, Python programming language, and integrated Aspen Plus software, the optimal temperature and pressure feed conditions were determined for a BRM reactor. The molar feed ratio of CH4: CO2:H2O = 1:0.36:0.9 at a temperature of 901 °C and a pressure of 5 bar, instead of 3:1:2 and 1:1:2, was recognized as the optimal ratio in the bi-reforming process. The optimal conditions resulted in 93% CH4 conversion, 76% CO2 conversion, and an H2/CO ratio of 2.08, achieving the ideal stoichiometric number (M = 2) for Methanol synthesis. Comparative analysis with a referenced method showed that the proposed process produces an additional 11.8 tonne/h of methanol, consumes 7.63 tonne/h more CO2, and reduces steam consumption by 54.11 tonne/h. Moreover, the process exhibits improved environmental performance, consuming over 20% more CO2.These results indicate that the BRM process can be a suitable alternative to the SMR process in methanol synthesis. [Display omitted] •Integration of GA, Python programming, and Aspen Plus has been applied in the Methanol process.•Comparison of Proposed with referenced method showed increasing 11.8 tonne/h methanol productivity.•Proposed process consumes 7.63 tonne/h more CO2 and reduces 54.11 tonne/h steam consumption.•The optimal conditions found CH4:CO2:H2O molar ratio of 1:0.36:0.9 at 901 °C and 5 bar pressure.
Author Rouhandeh, Hossein
Behroozsarand, Alireza
Author_xml – sequence: 1
  givenname: Hossein
  surname: Rouhandeh
  fullname: Rouhandeh, Hossein
– sequence: 2
  givenname: Alireza
  surname: Behroozsarand
  fullname: Behroozsarand, Alireza
  email: alireza.behroozsarand@gmail.com, a.behroozsarand@uut.ac.ir
BookMark eNqFkN9KwzAYxXMxwW36CpIXaE2aLGm9cgz_wUDB3YcsSdeUNilJNpiP4FPbOcVLr76PwzmHw28GJs47A8ANRjlGmN22uW2bozbO5AUqFjnCOUJkAqaIMJQRXFWXYBZjixDmiFZT8Plu-30nk_UOSqehH5Lt7cdZ8DXsTWqk8x0cgtd79S2PrzIxwoOVcGuzYGofeut2f35zB5fQ-YPp4G7ckqyCstv5YFPTZ1sZjYZyGGukaqB18O2YGu-uwEUtu2iuf-4cbB4fNqvnbP369LJarjNVLKqUlQWteKk1lgSRmhRUUiUlKTVjlKuK0LrQDGvEeS2lKhVd8IpTbWrGOeNbMgfsXKuCj3EcL4ZgexmOAiNxgiha8QtRnCAKhMUIcQzen4NmHHewJoiorHHKaBuMSkJ7-1_FF74Qheg
Cites_doi 10.1016/j.jcou.2015.02.003
10.1016/j.jclepro.2021.125970
10.1002/aic.690350109
10.1016/j.ijhydene.2023.01.202
10.1007/s11705-019-1849-5
10.1016/j.jclepro.2022.134184
10.1016/j.csite.2024.103975
10.1016/j.fuel.2016.11.008
10.1016/j.energy.2024.131620
10.1016/j.molcata.2009.06.013
10.1016/j.jcou.2018.12.008
10.1016/j.ijhydene.2022.08.215
10.1016/0009-2509(86)80019-7
10.1021/acs.iecr.9b05296
10.1006/jcat.1996.0156
10.1021/acs.iecr.1c04904
10.1016/j.ijhydene.2021.12.207
10.1016/j.jclepro.2023.137846
10.1016/j.jcou.2021.101608
10.1016/j.enconman.2016.04.041
10.1021/jacs.5b02029
10.1016/j.jcou.2019.05.033
10.1016/j.applthermaleng.2024.123517
10.1016/j.energy.2022.125879
10.1016/j.fuel.2019.115824
10.1021/acs.iecr.0c00755
10.1016/j.ijhydene.2023.08.257
10.1016/j.ijhydene.2024.01.150
10.1016/j.jclepro.2013.06.008
10.1016/j.ijhydene.2024.05.033
10.1016/j.energy.2023.130104
10.1021/acs.energyfuels.1c00227
10.1016/j.cej.2022.137439
10.1016/j.jcou.2015.07.001
10.1016/j.ijhydene.2024.01.240
10.1016/j.rser.2021.111710
10.1016/j.cherd.2024.04.039
10.1016/j.ijhydene.2023.07.199
10.1016/j.jcou.2020.101166
10.1016/j.ijhydene.2023.07.057
10.1016/j.cej.2020.127218
10.1016/j.cherd.2007.12.008
10.1016/j.jclepro.2017.12.201
10.1016/j.jclepro.2024.143143
10.1016/j.energy.2024.132379
10.1016/j.knosys.2015.12.022
10.1016/j.ijhydene.2024.01.097
10.1016/j.ijhydene.2024.01.055
10.1016/j.ijhydene.2023.11.215
10.1021/acs.iecr.1c04476
10.1016/j.apenergy.2016.04.006
10.1016/j.ijhydene.2023.11.025
10.1016/j.energy.2018.06.061
10.1016/j.energy.2020.119031
10.1016/j.ijhydene.2020.07.013
ContentType Journal Article
Copyright 2025 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2025 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2025.01.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1171
ExternalDocumentID 10_1016_j_ijhydene_2025_01_003
S0360319925000084
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
LY6
M41
R2-
SAC
SCB
T9H
WUQ
~HD
ID FETCH-LOGICAL-c259t-824978dd1a303f324a4caa38d6647c934f2d61d077faac8c457974def67767b3
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Wed Oct 01 03:51:56 EDT 2025
Sat Feb 01 16:07:29 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Python programming
Bi-reforming of methane
Carbon dioxide utilization
Genetic algorithm
Methanol production
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-824978dd1a303f324a4caa38d6647c934f2d61d077faac8c457974def67767b3
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2025_01_003
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_01_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-03
PublicationDateYYYYMMDD 2025-02-03
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-03
  day: 03
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huang, Zhu, He, Zeng, Wang, Hao (bib3) 2024; 306
Avetisov, Rostrup-Nielsen, Kuchaev, Hansen, Zyskin, Shapatina (bib50) 2010; 315
Khojasteh-Salkuyeh, Ashrafi, Mostafavi, Navarri (bib2) 2021; 50
Nguyen, Zondervan (bib38) 2019; 34
Francis, Priya, Kumar, Sudhakar, Fan (bib1) 2022; 47
Ibrahim, Shafiqah, Rosli, Mohamed, Panpranot, Nguyen (bib24) 2024; 206
Olah, Prakash (bib41) 2013
Wiesberg, de Medeiros, Alves, Coutinho, Araújo (bib40) 2016; 125
Zhang, Jun, Gao, Kwak, Park (bib31) 2017; 190
Shahhosseini, Iranshahi, Saeidi, Pourazadi, Klemeš (bib22) 2018; 180
Acquarola, Bhatelia, Pareek, Ao, Shah (bib45) 2022; 61
Blumberg, Tsatsaronis, Morosuk (bib51) 2019; 256
Nguyen, Yamaki, Taniguchi, Endo, Kataoka (bib21) 2021; 292
Deng, Bai, Qi, Tian, Qu, Liu (bib10) 2024; 50
Ren, Xu, Huang, She, Sun (bib30) 2023; 263
Milani, Khalilpour, Zahedi, Abbas (bib29) 2015; 10
Caudle, Taniguchi, Nguyen, Kataoka (bib8) 2023; 416
Samad, Saghir, Musawwir, Ahmad, Caliskan (bib18) 2024
Yang, Liu, Shen, Li, Chien (bib23) 2018; 158
(bib63) 2023
Selejan, Lisei, Cormos, Dragan, Cormos (bib48) 2024; 52
Olah, Goeppert, Prakash (bib52) 2018
GhasemiKafrudi, Samiee, Mansourpour, Rostami (bib11) 2022; 376
Nyári, Magdeldin, Larmi, Järvinen, Santasalo-Aarnio (bib7) 2020; 39
Mignard, Pritchard (bib55) 2008; 86
Xu, Slater, Huang, Zhou, Jiao, Parlett (bib17) 2022; 446
Jun, Park, Kim, Jung, Yoon, Lee (bib20) 2024; 49
Smwu, Farooqi, Ayodele, Farooqi, Sanaullah, Abdullah (bib37) 2024; 434
Olabi, Obaideen, Elsaid, Wilberforce, Sayed, Maghrabie (bib12) 2022; 153
Khan, Tahir (bib6) 2019; 29
Du, Tu, Law, Tsai (bib26) 2024; 57
Zhang, Bi, Han, Liu, Zhong, Xie (bib28) 2023; 48
Osat, Shojaati (bib36) 2022; 47
Luu, Milani, Bahadori, Abbas (bib39) 2015; 12
Graaf, Sijtsema, Stamhuis, Joosten (bib56) 1986; 41
Uddin, Simson, Wright (bib46) 2020; 211
Jang, Jeong, Shim, Kim, Roh, Son (bib61) 2016; 173
Minette, De Wilde (bib57) 2021; 407
Wang, Su, Wang, Jin, Wei, Shen (bib33) 2020; 59
Entesari, Goeppert, Prakash (bib42) 2020; 59
Bisotti, Fedeli, Prifti, Galeazzi, Dell'Angelo, Manenti (bib62) 2022; 61
Xu, Froment (bib49) 1989; 35
Mirjalili (bib59) 2016; 96
Alsunousi, Kayabasi (bib4) 2024; 57
Olah, Goeppert, Czaun, Mathew, May, Prakash (bib44) 2015; 137
Acquarola, Ao, Bhatelia, Prakash, Faka, Pareek (bib43) 2021; 35
Acquarola, Ao, Bhatelia, Prakash, Faka, Pareek (bib35) 2021; 35
Taslimi, Khosravi, Nugroho, Rytter (bib16) 2024; 69
Di Nardo, Portarapillo, Russo, Di Benedetto (bib47) 2024; 55
Meng, Liu, Qin, Zhu, Long, Bi (bib14) 2024; 58
Cuevas-Castillo, Michailos, Akram, Hughes, Ingham, Pourkashanian (bib9) 2024; 469
Borreguero, Dorado, Capuchino-Biezma, Sánchez-Silva, García-Vargas (bib19) 2020; 45
Zhu, Yang, Hao, Wang (bib27) 2024; 58
Gad (bib60) 2023
Su, Lü, Shen, Sa (bib32) 2020; 14
Eisavi, Nami, Ranjbar, Sharifi (bib5) 2024; 52
Bussche, Froment (bib54) 1996; 161
Verykios (bib58) 2003; 28
Safder, Loy-Benitez, Yoo (bib15) 2024; 290
Nguyen, Zondervan (bib34) 2019; 74
Van-Dal, Bouallou (bib53) 2013; 57
Fu, Majid, Altalbawy, Hussein, Waleed, Mohammed (bib13) 2024; 54
Maqbool, Kwon, Im, An (bib25) 2024; 301
Milani (10.1016/j.ijhydene.2025.01.003_bib29) 2015; 10
Bussche (10.1016/j.ijhydene.2025.01.003_bib54) 1996; 161
Nyári (10.1016/j.ijhydene.2025.01.003_bib7) 2020; 39
Borreguero (10.1016/j.ijhydene.2025.01.003_bib19) 2020; 45
Alsunousi (10.1016/j.ijhydene.2025.01.003_bib4) 2024; 57
Di Nardo (10.1016/j.ijhydene.2025.01.003_bib47) 2024; 55
Mignard (10.1016/j.ijhydene.2025.01.003_bib55) 2008; 86
Xu (10.1016/j.ijhydene.2025.01.003_bib49) 1989; 35
(10.1016/j.ijhydene.2025.01.003_bib63) 2023
Maqbool (10.1016/j.ijhydene.2025.01.003_bib25) 2024; 301
Zhu (10.1016/j.ijhydene.2025.01.003_bib27) 2024; 58
Luu (10.1016/j.ijhydene.2025.01.003_bib39) 2015; 12
Uddin (10.1016/j.ijhydene.2025.01.003_bib46) 2020; 211
Su (10.1016/j.ijhydene.2025.01.003_bib32) 2020; 14
Minette (10.1016/j.ijhydene.2025.01.003_bib57) 2021; 407
Xu (10.1016/j.ijhydene.2025.01.003_bib17) 2022; 446
Cuevas-Castillo (10.1016/j.ijhydene.2025.01.003_bib9) 2024; 469
Blumberg (10.1016/j.ijhydene.2025.01.003_bib51) 2019; 256
Entesari (10.1016/j.ijhydene.2025.01.003_bib42) 2020; 59
Wiesberg (10.1016/j.ijhydene.2025.01.003_bib40) 2016; 125
Nguyen (10.1016/j.ijhydene.2025.01.003_bib34) 2019; 74
Ren (10.1016/j.ijhydene.2025.01.003_bib30) 2023; 263
Khojasteh-Salkuyeh (10.1016/j.ijhydene.2025.01.003_bib2) 2021; 50
Olah (10.1016/j.ijhydene.2025.01.003_bib52) 2018
Francis (10.1016/j.ijhydene.2025.01.003_bib1) 2022; 47
Deng (10.1016/j.ijhydene.2025.01.003_bib10) 2024; 50
Shahhosseini (10.1016/j.ijhydene.2025.01.003_bib22) 2018; 180
Van-Dal (10.1016/j.ijhydene.2025.01.003_bib53) 2013; 57
Zhang (10.1016/j.ijhydene.2025.01.003_bib31) 2017; 190
Bisotti (10.1016/j.ijhydene.2025.01.003_bib62) 2022; 61
Olabi (10.1016/j.ijhydene.2025.01.003_bib12) 2022; 153
Meng (10.1016/j.ijhydene.2025.01.003_bib14) 2024; 58
Samad (10.1016/j.ijhydene.2025.01.003_bib18) 2024
Nguyen (10.1016/j.ijhydene.2025.01.003_bib21) 2021; 292
Avetisov (10.1016/j.ijhydene.2025.01.003_bib50) 2010; 315
Acquarola (10.1016/j.ijhydene.2025.01.003_bib45) 2022; 61
Huang (10.1016/j.ijhydene.2025.01.003_bib3) 2024; 306
Taslimi (10.1016/j.ijhydene.2025.01.003_bib16) 2024; 69
Verykios (10.1016/j.ijhydene.2025.01.003_bib58) 2003; 28
Olah (10.1016/j.ijhydene.2025.01.003_bib44) 2015; 137
Graaf (10.1016/j.ijhydene.2025.01.003_bib56) 1986; 41
Acquarola (10.1016/j.ijhydene.2025.01.003_bib43) 2021; 35
Acquarola (10.1016/j.ijhydene.2025.01.003_bib35) 2021; 35
Jun (10.1016/j.ijhydene.2025.01.003_bib20) 2024; 49
Jang (10.1016/j.ijhydene.2025.01.003_bib61) 2016; 173
Du (10.1016/j.ijhydene.2025.01.003_bib26) 2024; 57
Yang (10.1016/j.ijhydene.2025.01.003_bib23) 2018; 158
Smwu (10.1016/j.ijhydene.2025.01.003_bib37) 2024; 434
Mirjalili (10.1016/j.ijhydene.2025.01.003_bib59) 2016; 96
GhasemiKafrudi (10.1016/j.ijhydene.2025.01.003_bib11) 2022; 376
Olah (10.1016/j.ijhydene.2025.01.003_bib41) 2013
Ibrahim (10.1016/j.ijhydene.2025.01.003_bib24) 2024; 206
Fu (10.1016/j.ijhydene.2025.01.003_bib13) 2024; 54
Wang (10.1016/j.ijhydene.2025.01.003_bib33) 2020; 59
Osat (10.1016/j.ijhydene.2025.01.003_bib36) 2022; 47
Eisavi (10.1016/j.ijhydene.2025.01.003_bib5) 2024; 52
Caudle (10.1016/j.ijhydene.2025.01.003_bib8) 2023; 416
Safder (10.1016/j.ijhydene.2025.01.003_bib15) 2024; 290
Gad (10.1016/j.ijhydene.2025.01.003_bib60) 2023
Nguyen (10.1016/j.ijhydene.2025.01.003_bib38) 2019; 34
Zhang (10.1016/j.ijhydene.2025.01.003_bib28) 2023; 48
Selejan (10.1016/j.ijhydene.2025.01.003_bib48) 2024; 52
Khan (10.1016/j.ijhydene.2025.01.003_bib6) 2019; 29
References_xml – year: 2024
  ident: bib18
  article-title: A data-driven multi-objective optimization approach for enhanced methanol yield and exergy loss minimization in direct hydrogenation of CO2
  publication-title: Appl Therm Eng
– year: 2013
  ident: bib41
  article-title: Conversion of carbon dioxide to methanol using bi-reforming of methane or natural gas
– volume: 39
  year: 2020
  ident: bib7
  article-title: Techno-economic barriers of an industrial-scale methanol CCU-plant
  publication-title: J CO2 Util
– volume: 57
  start-page: 589
  year: 2024
  end-page: 600
  ident: bib4
  article-title: Techno-economic assessment of a floating photovoltaic power plant assisted methanol production by hydrogenation of CO2 captured from Zawiya oil refinery
  publication-title: Int J Hydrogen Energy
– volume: 47
  start-page: 9058
  year: 2022
  end-page: 9070
  ident: bib36
  article-title: Techno-economic-environmental evaluation of a combined tri and dry reforming of methane for methanol synthesis with a high efficiency CO2 utilization
  publication-title: Int J Hydrogen Energy
– volume: 161
  start-page: 1
  year: 1996
  end-page: 10
  ident: bib54
  article-title: A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst
  publication-title: J Catal
– volume: 50
  start-page: 1047
  year: 2024
  end-page: 1061
  ident: bib10
  article-title: Inherent safety assessment of on-board methanol reforming hydrogen production fuel cell system considering jet fire and vapor cloud explosion
  publication-title: Int J Hydrogen Energy
– start-page: 1
  year: 2023
  end-page: 14
  ident: bib60
  article-title: Pygad: an intuitive genetic algorithm python library
  publication-title: Multimed Tool Appl
– year: 2018
  ident: bib52
  article-title: Beyond oil and gas: the methanol economy
– volume: 35
  start-page: 8844
  year: 2021
  end-page: 8856
  ident: bib43
  article-title: Simulations and optimization of a reduced CO2 emission process for methanol production using syngas from Bi-reforming
– volume: 28
  start-page: 1045
  year: 2003
  end-page: 1063
  ident: bib58
  article-title: Catalytic dry reforming of natural gas for the production of chemicals and hydrogen
  publication-title: Int J Hydrogen Energy
– year: 2023
  ident: bib63
  publication-title: Climate Change 2022 - Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib59
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl Base Syst
– volume: 301
  year: 2024
  ident: bib25
  article-title: Toward sustainable recycled methanol production from CO2 and steel by-product gases in South Korea; process design and assessment
  publication-title: Energy
– volume: 469
  year: 2024
  ident: bib9
  article-title: Techno economic and life cycle assessment of olefin production through CO2 hydrogenation within the power-to-X concept
  publication-title: J Clean Prod
– volume: 59
  start-page: 1596
  year: 2020
  end-page: 1606
  ident: bib33
  article-title: Optimal design and energy-saving investigation of the triple CO2 feeds for methanol production system by combining steam and dry methane reforming
  publication-title: Ind Eng Chem Res
– volume: 49
  start-page: 786
  year: 2024
  end-page: 797
  ident: bib20
  article-title: A simulation model for ruthenium-catalyzed dry reforming of methane (DRM) at different temperatures and gas compositions
  publication-title: Int J Hydrogen Energy
– volume: 173
  start-page: 80
  year: 2016
  end-page: 91
  ident: bib61
  article-title: Combined steam and carbon dioxide reforming of methane and side reactions: thermodynamic equilibrium analysis and experimental application
  publication-title: Applied energy
– volume: 434
  year: 2024
  ident: bib37
  article-title: Advancements in Ni and Co-based catalysts for sustainable syngas production via Bi-reforming of methane: a review of recent advances
  publication-title: J Clean Prod
– volume: 69
  start-page: 466
  year: 2024
  end-page: 476
  ident: bib16
  article-title: Optimization and analysis of methanol production from CO2 and solar-driven hydrogen production: a Danish case study
  publication-title: Int J Hydrogen Energy
– volume: 12
  start-page: 62
  year: 2015
  end-page: 76
  ident: bib39
  article-title: A comparative study of CO2 utilization in methanol synthesis with various syngas production technologies
  publication-title: J CO2 Util
– volume: 47
  start-page: 36418
  year: 2022
  end-page: 36432
  ident: bib1
  article-title: Carbon dioxide hydrogenation to methanol: process simulation and optimization studies
  publication-title: Int J Hydrogen Energy
– volume: 315
  start-page: 155
  year: 2010
  end-page: 162
  ident: bib50
  article-title: Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst
  publication-title: J Mol Catal Chem
– volume: 137
  start-page: 8720
  year: 2015
  end-page: 8729
  ident: bib44
  article-title: Single step bi-reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to metgas (CO-2H2) for methanol synthesis: self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen
  publication-title: J Am Chem Soc
– volume: 158
  start-page: 820
  year: 2018
  end-page: 829
  ident: bib23
  article-title: High-efficiency utilization of CO2 in the methanol production by a novel parallel-series system combining steam and dry methane reforming
  publication-title: Energy
– volume: 86
  start-page: 473
  year: 2008
  end-page: 487
  ident: bib55
  article-title: On the use of electrolytic hydrogen from variable renewable energies for the enhanced conversion of biomass to fuels
  publication-title: Chem Eng Res Des
– volume: 58
  start-page: 190
  year: 2024
  end-page: 199
  ident: bib14
  article-title: Modeling and chemical kinetic analysis of methanol and reformed gas (H2/CO2) blending with ammonia under lean-burn condition
  publication-title: Int J Hydrogen Energy
– volume: 292
  year: 2021
  ident: bib21
  article-title: Integrating life cycle assessment for design and optimization of methanol production from combining methane dry reforming and partial oxidation
  publication-title: J Clean Prod
– volume: 10
  start-page: 12
  year: 2015
  end-page: 22
  ident: bib29
  article-title: A model-based analysis of CO2 utilization in methanol synthesis plant
  publication-title: J CO2 Util
– volume: 153
  year: 2022
  ident: bib12
  article-title: Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators
  publication-title: Renew Sustain Energy Rev
– volume: 35
  start-page: 8844
  year: 2021
  end-page: 8856
  ident: bib35
  article-title: Simulations and optimization of a reduced CO2 emission process for methanol production using syngas from bi-reforming
  publication-title: Energy & Fuels
– volume: 41
  start-page: 2883
  year: 1986
  end-page: 2890
  ident: bib56
  article-title: Chemical equilibria in methanol synthesis
  publication-title: Chem Eng Sci
– volume: 180
  start-page: 655
  year: 2018
  end-page: 665
  ident: bib22
  article-title: Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production
  publication-title: J Clean Prod
– volume: 416
  year: 2023
  ident: bib8
  article-title: Integrating carbon capture and utilization into the glass industry: economic analysis of emissions reduction through CO2 mineralization
  publication-title: J Clean Prod
– volume: 61
  start-page: 5557
  year: 2022
  end-page: 5567
  ident: bib45
  article-title: Optimized process for methanol production via bi-reforming syngas
  publication-title: Ind Eng Chem Res
– volume: 446
  year: 2022
  ident: bib17
  article-title: Developing silicalite-1 encapsulated Ni nanoparticles as sintering-/coking-resistant catalysts for dry reforming of methane
  publication-title: Chem Eng J
– volume: 29
  start-page: 205
  year: 2019
  end-page: 239
  ident: bib6
  article-title: Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels
  publication-title: J CO2 Util
– volume: 263
  year: 2023
  ident: bib30
  article-title: Methanol production from natural gas reforming and CO2 capturing process, simulation, design, and technical-economic analysis
  publication-title: Energy
– volume: 74
  year: 2019
  ident: bib34
  article-title: Modeling and simulation of novel Bi-and tri-reforming processes for the production of renewable methanol
  publication-title: CET Journal-Chemical Engineering Transactions.
– volume: 61
  start-page: 2206
  year: 2022
  end-page: 2226
  ident: bib62
  article-title: Impact of kinetic models on methanol synthesis reactor predictions: in silico assessment and comparison with industrial data
  publication-title: Ind Eng Chem Res
– volume: 54
  year: 2024
  ident: bib13
  article-title: Process simulation of methanol production via carbon dioxide hydrogenation
  publication-title: Case Stud Therm Eng
– volume: 190
  start-page: 303
  year: 2017
  end-page: 311
  ident: bib31
  article-title: Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: Techno-economic analysis
  publication-title: Fuel
– volume: 52
  start-page: 869
  year: 2024
  end-page: 888
  ident: bib5
  article-title: Economic assessment and optimization of low-carbon biomass-based power, methane, and methanol production
  publication-title: Int J Hydrogen Energy
– volume: 290
  year: 2024
  ident: bib15
  article-title: Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context
  publication-title: Energy
– volume: 35
  start-page: 88
  year: 1989
  end-page: 96
  ident: bib49
  article-title: Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics
  publication-title: AIChE J
– volume: 52
  start-page: 469
  year: 2024
  end-page: 484
  ident: bib48
  article-title: Development of a multi-scale mathematical model for green hydrogen production via biogas steam reforming process
  publication-title: Int J Hydrogen Energy
– volume: 58
  start-page: 1457
  year: 2024
  end-page: 1465
  ident: bib27
  article-title: Investigation into porous catalyst performance during the bi-reforming process using particle-resolved model
  publication-title: Int J Hydrogen Energy
– volume: 407
  year: 2021
  ident: bib57
  article-title: Multi-scale modeling and simulation of low-pressure methane bi-reforming using structured catalytic reactors
  publication-title: Chem Eng J
– volume: 256
  year: 2019
  ident: bib51
  article-title: On the economics of methanol production from natural gas
  publication-title: Fuel
– volume: 50
  year: 2021
  ident: bib2
  article-title: CO2 utilization for methanol production; Part I: process design and life cycle GHG assessment of different pathways
  publication-title: J CO2 Util
– volume: 48
  start-page: 16958
  year: 2023
  end-page: 16970
  ident: bib28
  article-title: Upgrading biogas into syngas via bi-reforming of model biogas over ruthenium-based nano-catalysts synthesized via mechanochemical method
  publication-title: Int J Hydrogen Energy
– volume: 14
  start-page: 614
  year: 2020
  end-page: 628
  ident: bib32
  article-title: An efficient technique for improving methanol yield using dual CO 2 feeds and dry methane reforming
  publication-title: Front Chem Sci Eng
– volume: 45
  start-page: 26623
  year: 2020
  end-page: 26636
  ident: bib19
  article-title: Process simulation and economic feasibility assessment of the methanol production via tri-reforming using experimental kinetic equations
  publication-title: Int J Hydrogen Energy
– volume: 59
  start-page: 10542
  year: 2020
  end-page: 10551
  ident: bib42
  article-title: Renewable methanol synthesis through single step bi-reforming of biogas
  publication-title: Ind Eng Chem Res
– volume: 211
  year: 2020
  ident: bib46
  article-title: Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel
  publication-title: Energy
– volume: 57
  start-page: 38
  year: 2013
  end-page: 45
  ident: bib53
  article-title: Design and simulation of a methanol production plant from CO2 hydrogenation
  publication-title: J Clean Prod
– volume: 306
  year: 2024
  ident: bib3
  article-title: Exergoenvironment evaluation of carbon resource conversion and utilization via CO2 direct hydrogenation for methanol and power cogeneration
  publication-title: Energy
– volume: 57
  start-page: 1152
  year: 2024
  end-page: 1163
  ident: bib26
  article-title: Aerosol metal-organic framework-derived Ni–Zn–Al hybrid catalyst for efficient methane Bi-reforming
  publication-title: Int J Hydrogen Energy
– volume: 206
  start-page: 62
  year: 2024
  end-page: 78
  ident: bib24
  article-title: Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst
  publication-title: Chem Eng Res Des
– volume: 376
  year: 2022
  ident: bib11
  article-title: Optimization of methanol production process from carbon dioxide hydrogenation in order to reduce recycle flow and energy consumption
  publication-title: J Clean Prod
– volume: 125
  start-page: 320
  year: 2016
  end-page: 335
  ident: bib40
  article-title: Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING
  publication-title: Energy Convers Manag
– volume: 34
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib38
  article-title: Methanol production from captured CO2 using hydrogenation and reforming technologies_ environmental and economic evaluation
  publication-title: J CO2 Util
– volume: 55
  start-page: 1143
  year: 2024
  end-page: 1160
  ident: bib47
  article-title: Hydrogen production via steam reforming of different fuels: thermodynamic comparison
  publication-title: Int J Hydrogen Energy
– volume: 10
  start-page: 12
  year: 2015
  ident: 10.1016/j.ijhydene.2025.01.003_bib29
  article-title: A model-based analysis of CO2 utilization in methanol synthesis plant
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2015.02.003
– volume: 292
  year: 2021
  ident: 10.1016/j.ijhydene.2025.01.003_bib21
  article-title: Integrating life cycle assessment for design and optimization of methanol production from combining methane dry reforming and partial oxidation
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.125970
– volume: 35
  start-page: 88
  year: 1989
  ident: 10.1016/j.ijhydene.2025.01.003_bib49
  article-title: Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics
  publication-title: AIChE J
  doi: 10.1002/aic.690350109
– volume: 48
  start-page: 16958
  year: 2023
  ident: 10.1016/j.ijhydene.2025.01.003_bib28
  article-title: Upgrading biogas into syngas via bi-reforming of model biogas over ruthenium-based nano-catalysts synthesized via mechanochemical method
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.01.202
– volume: 14
  start-page: 614
  year: 2020
  ident: 10.1016/j.ijhydene.2025.01.003_bib32
  article-title: An efficient technique for improving methanol yield using dual CO 2 feeds and dry methane reforming
  publication-title: Front Chem Sci Eng
  doi: 10.1007/s11705-019-1849-5
– volume: 376
  year: 2022
  ident: 10.1016/j.ijhydene.2025.01.003_bib11
  article-title: Optimization of methanol production process from carbon dioxide hydrogenation in order to reduce recycle flow and energy consumption
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.134184
– volume: 54
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib13
  article-title: Process simulation of methanol production via carbon dioxide hydrogenation
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2024.103975
– volume: 190
  start-page: 303
  year: 2017
  ident: 10.1016/j.ijhydene.2025.01.003_bib31
  article-title: Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: Techno-economic analysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.11.008
– volume: 301
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib25
  article-title: Toward sustainable recycled methanol production from CO2 and steel by-product gases in South Korea; process design and assessment
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131620
– volume: 28
  start-page: 1045
  year: 2003
  ident: 10.1016/j.ijhydene.2025.01.003_bib58
  article-title: Catalytic dry reforming of natural gas for the production of chemicals and hydrogen
  publication-title: Int J Hydrogen Energy
– volume: 315
  start-page: 155
  year: 2010
  ident: 10.1016/j.ijhydene.2025.01.003_bib50
  article-title: Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst
  publication-title: J Mol Catal Chem
  doi: 10.1016/j.molcata.2009.06.013
– volume: 29
  start-page: 205
  year: 2019
  ident: 10.1016/j.ijhydene.2025.01.003_bib6
  article-title: Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2018.12.008
– volume: 47
  start-page: 36418
  year: 2022
  ident: 10.1016/j.ijhydene.2025.01.003_bib1
  article-title: Carbon dioxide hydrogenation to methanol: process simulation and optimization studies
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.08.215
– volume: 41
  start-page: 2883
  year: 1986
  ident: 10.1016/j.ijhydene.2025.01.003_bib56
  article-title: Chemical equilibria in methanol synthesis
  publication-title: Chem Eng Sci
  doi: 10.1016/0009-2509(86)80019-7
– volume: 59
  start-page: 1596
  year: 2020
  ident: 10.1016/j.ijhydene.2025.01.003_bib33
  article-title: Optimal design and energy-saving investigation of the triple CO2 feeds for methanol production system by combining steam and dry methane reforming
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b05296
– volume: 161
  start-page: 1
  year: 1996
  ident: 10.1016/j.ijhydene.2025.01.003_bib54
  article-title: A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst
  publication-title: J Catal
  doi: 10.1006/jcat.1996.0156
– year: 2018
  ident: 10.1016/j.ijhydene.2025.01.003_bib52
– volume: 61
  start-page: 5557
  year: 2022
  ident: 10.1016/j.ijhydene.2025.01.003_bib45
  article-title: Optimized process for methanol production via bi-reforming syngas
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.1c04904
– volume: 47
  start-page: 9058
  year: 2022
  ident: 10.1016/j.ijhydene.2025.01.003_bib36
  article-title: Techno-economic-environmental evaluation of a combined tri and dry reforming of methane for methanol synthesis with a high efficiency CO2 utilization
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.12.207
– volume: 416
  year: 2023
  ident: 10.1016/j.ijhydene.2025.01.003_bib8
  article-title: Integrating carbon capture and utilization into the glass industry: economic analysis of emissions reduction through CO2 mineralization
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2023.137846
– volume: 50
  year: 2021
  ident: 10.1016/j.ijhydene.2025.01.003_bib2
  article-title: CO2 utilization for methanol production; Part I: process design and life cycle GHG assessment of different pathways
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2021.101608
– volume: 125
  start-page: 320
  year: 2016
  ident: 10.1016/j.ijhydene.2025.01.003_bib40
  article-title: Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.04.041
– volume: 137
  start-page: 8720
  year: 2015
  ident: 10.1016/j.ijhydene.2025.01.003_bib44
  article-title: Single step bi-reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to metgas (CO-2H2) for methanol synthesis: self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b02029
– volume: 34
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijhydene.2025.01.003_bib38
  article-title: Methanol production from captured CO2 using hydrogenation and reforming technologies_ environmental and economic evaluation
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2019.05.033
– year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib18
  article-title: A data-driven multi-objective optimization approach for enhanced methanol yield and exergy loss minimization in direct hydrogenation of CO2
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2024.123517
– volume: 263
  year: 2023
  ident: 10.1016/j.ijhydene.2025.01.003_bib30
  article-title: Methanol production from natural gas reforming and CO2 capturing process, simulation, design, and technical-economic analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125879
– volume: 256
  year: 2019
  ident: 10.1016/j.ijhydene.2025.01.003_bib51
  article-title: On the economics of methanol production from natural gas
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115824
– year: 2013
  ident: 10.1016/j.ijhydene.2025.01.003_bib41
– volume: 59
  start-page: 10542
  year: 2020
  ident: 10.1016/j.ijhydene.2025.01.003_bib42
  article-title: Renewable methanol synthesis through single step bi-reforming of biogas
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.0c00755
– volume: 50
  start-page: 1047
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib10
  article-title: Inherent safety assessment of on-board methanol reforming hydrogen production fuel cell system considering jet fire and vapor cloud explosion
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.08.257
– volume: 58
  start-page: 190
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib14
  article-title: Modeling and chemical kinetic analysis of methanol and reformed gas (H2/CO2) blending with ammonia under lean-burn condition
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.01.150
– volume: 57
  start-page: 38
  year: 2013
  ident: 10.1016/j.ijhydene.2025.01.003_bib53
  article-title: Design and simulation of a methanol production plant from CO2 hydrogenation
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2013.06.008
– volume: 69
  start-page: 466
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib16
  article-title: Optimization and analysis of methanol production from CO2 and solar-driven hydrogen production: a Danish case study
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.05.033
– volume: 290
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib15
  article-title: Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context
  publication-title: Energy
  doi: 10.1016/j.energy.2023.130104
– volume: 35
  start-page: 8844
  year: 2021
  ident: 10.1016/j.ijhydene.2025.01.003_bib35
  article-title: Simulations and optimization of a reduced CO2 emission process for methanol production using syngas from bi-reforming
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.1c00227
– volume: 446
  year: 2022
  ident: 10.1016/j.ijhydene.2025.01.003_bib17
  article-title: Developing silicalite-1 encapsulated Ni nanoparticles as sintering-/coking-resistant catalysts for dry reforming of methane
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.137439
– volume: 12
  start-page: 62
  year: 2015
  ident: 10.1016/j.ijhydene.2025.01.003_bib39
  article-title: A comparative study of CO2 utilization in methanol synthesis with various syngas production technologies
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2015.07.001
– volume: 58
  start-page: 1457
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib27
  article-title: Investigation into porous catalyst performance during the bi-reforming process using particle-resolved model
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.01.240
– volume: 153
  year: 2022
  ident: 10.1016/j.ijhydene.2025.01.003_bib12
  article-title: Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111710
– volume: 206
  start-page: 62
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib24
  article-title: Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2024.04.039
– volume: 49
  start-page: 786
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib20
  article-title: A simulation model for ruthenium-catalyzed dry reforming of methane (DRM) at different temperatures and gas compositions
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.07.199
– volume: 35
  start-page: 8844
  year: 2021
  ident: 10.1016/j.ijhydene.2025.01.003_bib43
  article-title: Simulations and optimization of a reduced CO2 emission process for methanol production using syngas from Bi-reforming
– volume: 39
  year: 2020
  ident: 10.1016/j.ijhydene.2025.01.003_bib7
  article-title: Techno-economic barriers of an industrial-scale methanol CCU-plant
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2020.101166
– volume: 52
  start-page: 469
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib48
  article-title: Development of a multi-scale mathematical model for green hydrogen production via biogas steam reforming process
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.07.057
– volume: 407
  year: 2021
  ident: 10.1016/j.ijhydene.2025.01.003_bib57
  article-title: Multi-scale modeling and simulation of low-pressure methane bi-reforming using structured catalytic reactors
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127218
– volume: 74
  year: 2019
  ident: 10.1016/j.ijhydene.2025.01.003_bib34
  article-title: Modeling and simulation of novel Bi-and tri-reforming processes for the production of renewable methanol
  publication-title: CET Journal-Chemical Engineering Transactions.
– volume: 86
  start-page: 473
  year: 2008
  ident: 10.1016/j.ijhydene.2025.01.003_bib55
  article-title: On the use of electrolytic hydrogen from variable renewable energies for the enhanced conversion of biomass to fuels
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2007.12.008
– volume: 180
  start-page: 655
  year: 2018
  ident: 10.1016/j.ijhydene.2025.01.003_bib22
  article-title: Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.12.201
– start-page: 1
  year: 2023
  ident: 10.1016/j.ijhydene.2025.01.003_bib60
  article-title: Pygad: an intuitive genetic algorithm python library
  publication-title: Multimed Tool Appl
– volume: 469
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib9
  article-title: Techno economic and life cycle assessment of olefin production through CO2 hydrogenation within the power-to-X concept
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2024.143143
– volume: 306
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib3
  article-title: Exergoenvironment evaluation of carbon resource conversion and utilization via CO2 direct hydrogenation for methanol and power cogeneration
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132379
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.ijhydene.2025.01.003_bib59
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 57
  start-page: 1152
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib26
  article-title: Aerosol metal-organic framework-derived Ni–Zn–Al hybrid catalyst for efficient methane Bi-reforming
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.01.097
– volume: 434
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib37
  article-title: Advancements in Ni and Co-based catalysts for sustainable syngas production via Bi-reforming of methane: a review of recent advances
  publication-title: J Clean Prod
– volume: 57
  start-page: 589
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib4
  article-title: Techno-economic assessment of a floating photovoltaic power plant assisted methanol production by hydrogenation of CO2 captured from Zawiya oil refinery
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.01.055
– volume: 55
  start-page: 1143
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib47
  article-title: Hydrogen production via steam reforming of different fuels: thermodynamic comparison
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.11.215
– volume: 61
  start-page: 2206
  year: 2022
  ident: 10.1016/j.ijhydene.2025.01.003_bib62
  article-title: Impact of kinetic models on methanol synthesis reactor predictions: in silico assessment and comparison with industrial data
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.1c04476
– volume: 173
  start-page: 80
  year: 2016
  ident: 10.1016/j.ijhydene.2025.01.003_bib61
  article-title: Combined steam and carbon dioxide reforming of methane and side reactions: thermodynamic equilibrium analysis and experimental application
  publication-title: Applied energy
  doi: 10.1016/j.apenergy.2016.04.006
– volume: 52
  start-page: 869
  year: 2024
  ident: 10.1016/j.ijhydene.2025.01.003_bib5
  article-title: Economic assessment and optimization of low-carbon biomass-based power, methane, and methanol production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.11.025
– volume: 158
  start-page: 820
  year: 2018
  ident: 10.1016/j.ijhydene.2025.01.003_bib23
  article-title: High-efficiency utilization of CO2 in the methanol production by a novel parallel-series system combining steam and dry methane reforming
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.061
– year: 2023
  ident: 10.1016/j.ijhydene.2025.01.003_bib63
– volume: 211
  year: 2020
  ident: 10.1016/j.ijhydene.2025.01.003_bib46
  article-title: Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119031
– volume: 45
  start-page: 26623
  year: 2020
  ident: 10.1016/j.ijhydene.2025.01.003_bib19
  article-title: Process simulation and economic feasibility assessment of the methanol production via tri-reforming using experimental kinetic equations
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.07.013
SSID ssj0017049
Score 2.4715698
Snippet Bi-reforming of methane (BRM) is a promising method for syngas production in Methanol synthesis that consumes CH4 and CO2 while allowing feed ratio tuning. In...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 1161
SubjectTerms Bi-reforming of methane
Carbon dioxide utilization
Genetic algorithm
Methanol production
Python programming
Title Simulation and optimization of methanol production process via bi-reforming of methane: A novel genetic algorithm-based approach in Python
URI https://dx.doi.org/10.1016/j.ijhydene.2025.01.003
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-3199
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017049
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  issn: 0360-3199
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017049
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0360-3199
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017049
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0360-3199
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017049
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-3199
  databaseCode: AKRWK
  dateStart: 19760101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017049
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD143SZpNi9vpViqYhFaobewr7QpbRJKLPTiD_BXu5OHVi8evAQyzIZldjIzC998g9CtFMyhjOq7CRdCP1yH-JQz4ijH5lrEecGu_zxyh6_0cepMG6hf98IArLKK_WVML6J1JTEqaxpZHBtjHXuhBSfoOkXhA5yglHowxaDz_gXzsLyqBNbKBLR3uoQXnXgx3-rfG-gyuyV9Zz0863eC2kk6gyN0WFWLuFdu6Bg1VHKCDnY4BE_RxzheVSO4MEskTnUMWFXNlTiNMIyIZkm6xFnJ7QrirOwOwJuYYR4TvYcUIDGzb311h3s4STdqibWHQaMjZstZuo7z-YpA5pO4ZiPHcYJftkBBcIYmg_tJf0iqAQtE6FtPTvwuzJeT0mI6kUW6tGJUMGb70nWpJwKbRl3pWtL0vIgx4QvqePr6IVXkAgcQt89RM0kTdYEwIDqFDLjlMQXEoszXX6IASVG2aTLaQkZt1DAraTTCGl-2COtjCOEYQtMCwtIWCmrbhz8cItSx_o-1l_9Ye4X24a0AZtvXqJmv39SNrjty3i4cq432eg9Pw9Enofzcig
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHtSD8RnxuQevpbTdvrwRIkEFYgIm3Jp9VUqgbUgl4eIP8Fe704eiFw9eetjONpvZ6TySb75B6FZwahNKVG3COFcPx9Y8wqhmS9tiaomxnF1_MHR6L-RxYk9qqFP1wgCssvT9hU_PvXW5opfa1NMo0kfK90ILjm_aeeJDttA2sU0XKrDm-xfOw3DLHFhJayC-0SY8a0az6Vr938CXaRb8ndX0rN8RaiPqdA_Qfpku4nZxokNUk_ER2tsgETxGH6NoUc7gwjQWOFFOYFF2V-IkxDAjmsbJHKcFuSssp0V7AF5FFLNIU2dIABPz-i0v73Abx8lKzrEyMeh0xHT-miyjbLrQIPQJXNGR4yjGz2vgIDhB4-79uNPTygkLGldlT6Z5JgyYE8KgKpKFKreihFNqecJxiMt9i4SmcAzRct2QUu5xYruq_hAydIAEiFmnqB4nsTxDGCCdXPjMcKkEZlHqqS8RwKRIq9WipIH0SqlBWvBoBBXAbBZU1xDANQQtAxhLG8ivdB_8sIhAOfs_9p7_Y-8N2umNB_2g_zB8ukC78CZHaVuXqJ4t3-SVSkIydp0b2SfYs94f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+and+optimization+of+methanol+production+process+via+bi-reforming+of+methane%3A+A+novel+genetic+algorithm-based+approach+in+Python&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Rouhandeh%2C+Hossein&rft.au=Behroozsarand%2C+Alireza&rft.date=2025-02-03&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=101&rft.spage=1161&rft.epage=1171&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.01.003&rft.externalDocID=S0360319925000084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon