Simulation and optimization of methanol production process via bi-reforming of methane: A novel genetic algorithm-based approach in Python
Bi-reforming of methane (BRM) is a promising method for syngas production in Methanol synthesis that consumes CH4 and CO2 while allowing feed ratio tuning. In this study as main novelty, an innovative optimization approach(integratrd genetic algorithm, Python programming language, and Aspen Plus sof...
Saved in:
| Published in | International journal of hydrogen energy Vol. 101; pp. 1161 - 1171 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
03.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-3199 |
| DOI | 10.1016/j.ijhydene.2025.01.003 |
Cover
| Abstract | Bi-reforming of methane (BRM) is a promising method for syngas production in Methanol synthesis that consumes CH4 and CO2 while allowing feed ratio tuning. In this study as main novelty, an innovative optimization approach(integratrd genetic algorithm, Python programming language, and Aspen Plus software) for Methanol synthesis using a bi-reforming process to increase productivity and reduce CO2 emissions is proposed. Furthermore, By using a genetic algorithm, Python programming language, and integrated Aspen Plus software, the optimal temperature and pressure feed conditions were determined for a BRM reactor. The molar feed ratio of CH4: CO2:H2O = 1:0.36:0.9 at a temperature of 901 °C and a pressure of 5 bar, instead of 3:1:2 and 1:1:2, was recognized as the optimal ratio in the bi-reforming process. The optimal conditions resulted in 93% CH4 conversion, 76% CO2 conversion, and an H2/CO ratio of 2.08, achieving the ideal stoichiometric number (M = 2) for Methanol synthesis. Comparative analysis with a referenced method showed that the proposed process produces an additional 11.8 tonne/h of methanol, consumes 7.63 tonne/h more CO2, and reduces steam consumption by 54.11 tonne/h. Moreover, the process exhibits improved environmental performance, consuming over 20% more CO2.These results indicate that the BRM process can be a suitable alternative to the SMR process in methanol synthesis.
[Display omitted]
•Integration of GA, Python programming, and Aspen Plus has been applied in the Methanol process.•Comparison of Proposed with referenced method showed increasing 11.8 tonne/h methanol productivity.•Proposed process consumes 7.63 tonne/h more CO2 and reduces 54.11 tonne/h steam consumption.•The optimal conditions found CH4:CO2:H2O molar ratio of 1:0.36:0.9 at 901 °C and 5 bar pressure. |
|---|---|
| AbstractList | Bi-reforming of methane (BRM) is a promising method for syngas production in Methanol synthesis that consumes CH4 and CO2 while allowing feed ratio tuning. In this study as main novelty, an innovative optimization approach(integratrd genetic algorithm, Python programming language, and Aspen Plus software) for Methanol synthesis using a bi-reforming process to increase productivity and reduce CO2 emissions is proposed. Furthermore, By using a genetic algorithm, Python programming language, and integrated Aspen Plus software, the optimal temperature and pressure feed conditions were determined for a BRM reactor. The molar feed ratio of CH4: CO2:H2O = 1:0.36:0.9 at a temperature of 901 °C and a pressure of 5 bar, instead of 3:1:2 and 1:1:2, was recognized as the optimal ratio in the bi-reforming process. The optimal conditions resulted in 93% CH4 conversion, 76% CO2 conversion, and an H2/CO ratio of 2.08, achieving the ideal stoichiometric number (M = 2) for Methanol synthesis. Comparative analysis with a referenced method showed that the proposed process produces an additional 11.8 tonne/h of methanol, consumes 7.63 tonne/h more CO2, and reduces steam consumption by 54.11 tonne/h. Moreover, the process exhibits improved environmental performance, consuming over 20% more CO2.These results indicate that the BRM process can be a suitable alternative to the SMR process in methanol synthesis.
[Display omitted]
•Integration of GA, Python programming, and Aspen Plus has been applied in the Methanol process.•Comparison of Proposed with referenced method showed increasing 11.8 tonne/h methanol productivity.•Proposed process consumes 7.63 tonne/h more CO2 and reduces 54.11 tonne/h steam consumption.•The optimal conditions found CH4:CO2:H2O molar ratio of 1:0.36:0.9 at 901 °C and 5 bar pressure. |
| Author | Rouhandeh, Hossein Behroozsarand, Alireza |
| Author_xml | – sequence: 1 givenname: Hossein surname: Rouhandeh fullname: Rouhandeh, Hossein – sequence: 2 givenname: Alireza surname: Behroozsarand fullname: Behroozsarand, Alireza email: alireza.behroozsarand@gmail.com, a.behroozsarand@uut.ac.ir |
| BookMark | eNqFkN9KwzAYxXMxwW36CpIXaE2aLGm9cgz_wUDB3YcsSdeUNilJNpiP4FPbOcVLr76PwzmHw28GJs47A8ANRjlGmN22uW2bozbO5AUqFjnCOUJkAqaIMJQRXFWXYBZjixDmiFZT8Plu-30nk_UOSqehH5Lt7cdZ8DXsTWqk8x0cgtd79S2PrzIxwoOVcGuzYGofeut2f35zB5fQ-YPp4G7ckqyCstv5YFPTZ1sZjYZyGGukaqB18O2YGu-uwEUtu2iuf-4cbB4fNqvnbP369LJarjNVLKqUlQWteKk1lgSRmhRUUiUlKTVjlKuK0LrQDGvEeS2lKhVd8IpTbWrGOeNbMgfsXKuCj3EcL4ZgexmOAiNxgiha8QtRnCAKhMUIcQzen4NmHHewJoiorHHKaBuMSkJ7-1_FF74Qheg |
| Cites_doi | 10.1016/j.jcou.2015.02.003 10.1016/j.jclepro.2021.125970 10.1002/aic.690350109 10.1016/j.ijhydene.2023.01.202 10.1007/s11705-019-1849-5 10.1016/j.jclepro.2022.134184 10.1016/j.csite.2024.103975 10.1016/j.fuel.2016.11.008 10.1016/j.energy.2024.131620 10.1016/j.molcata.2009.06.013 10.1016/j.jcou.2018.12.008 10.1016/j.ijhydene.2022.08.215 10.1016/0009-2509(86)80019-7 10.1021/acs.iecr.9b05296 10.1006/jcat.1996.0156 10.1021/acs.iecr.1c04904 10.1016/j.ijhydene.2021.12.207 10.1016/j.jclepro.2023.137846 10.1016/j.jcou.2021.101608 10.1016/j.enconman.2016.04.041 10.1021/jacs.5b02029 10.1016/j.jcou.2019.05.033 10.1016/j.applthermaleng.2024.123517 10.1016/j.energy.2022.125879 10.1016/j.fuel.2019.115824 10.1021/acs.iecr.0c00755 10.1016/j.ijhydene.2023.08.257 10.1016/j.ijhydene.2024.01.150 10.1016/j.jclepro.2013.06.008 10.1016/j.ijhydene.2024.05.033 10.1016/j.energy.2023.130104 10.1021/acs.energyfuels.1c00227 10.1016/j.cej.2022.137439 10.1016/j.jcou.2015.07.001 10.1016/j.ijhydene.2024.01.240 10.1016/j.rser.2021.111710 10.1016/j.cherd.2024.04.039 10.1016/j.ijhydene.2023.07.199 10.1016/j.jcou.2020.101166 10.1016/j.ijhydene.2023.07.057 10.1016/j.cej.2020.127218 10.1016/j.cherd.2007.12.008 10.1016/j.jclepro.2017.12.201 10.1016/j.jclepro.2024.143143 10.1016/j.energy.2024.132379 10.1016/j.knosys.2015.12.022 10.1016/j.ijhydene.2024.01.097 10.1016/j.ijhydene.2024.01.055 10.1016/j.ijhydene.2023.11.215 10.1021/acs.iecr.1c04476 10.1016/j.apenergy.2016.04.006 10.1016/j.ijhydene.2023.11.025 10.1016/j.energy.2018.06.061 10.1016/j.energy.2020.119031 10.1016/j.ijhydene.2020.07.013 |
| ContentType | Journal Article |
| Copyright | 2025 Hydrogen Energy Publications LLC |
| Copyright_xml | – notice: 2025 Hydrogen Energy Publications LLC |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijhydene.2025.01.003 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 1171 |
| ExternalDocumentID | 10_1016_j_ijhydene_2025_01_003 S0360319925000084 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF LY6 M41 R2- SAC SCB T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c259t-824978dd1a303f324a4caa38d6647c934f2d61d077faac8c457974def67767b3 |
| IEDL.DBID | .~1 |
| ISSN | 0360-3199 |
| IngestDate | Wed Oct 01 03:51:56 EDT 2025 Sat Feb 01 16:07:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Python programming Bi-reforming of methane Carbon dioxide utilization Genetic algorithm Methanol production |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c259t-824978dd1a303f324a4caa38d6647c934f2d61d077faac8c457974def67767b3 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2025_01_003 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_01_003 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-03 |
| PublicationDateYYYYMMDD | 2025-02-03 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of hydrogen energy |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Huang, Zhu, He, Zeng, Wang, Hao (bib3) 2024; 306 Avetisov, Rostrup-Nielsen, Kuchaev, Hansen, Zyskin, Shapatina (bib50) 2010; 315 Khojasteh-Salkuyeh, Ashrafi, Mostafavi, Navarri (bib2) 2021; 50 Nguyen, Zondervan (bib38) 2019; 34 Francis, Priya, Kumar, Sudhakar, Fan (bib1) 2022; 47 Ibrahim, Shafiqah, Rosli, Mohamed, Panpranot, Nguyen (bib24) 2024; 206 Olah, Prakash (bib41) 2013 Wiesberg, de Medeiros, Alves, Coutinho, Araújo (bib40) 2016; 125 Zhang, Jun, Gao, Kwak, Park (bib31) 2017; 190 Shahhosseini, Iranshahi, Saeidi, Pourazadi, Klemeš (bib22) 2018; 180 Acquarola, Bhatelia, Pareek, Ao, Shah (bib45) 2022; 61 Blumberg, Tsatsaronis, Morosuk (bib51) 2019; 256 Nguyen, Yamaki, Taniguchi, Endo, Kataoka (bib21) 2021; 292 Deng, Bai, Qi, Tian, Qu, Liu (bib10) 2024; 50 Ren, Xu, Huang, She, Sun (bib30) 2023; 263 Milani, Khalilpour, Zahedi, Abbas (bib29) 2015; 10 Caudle, Taniguchi, Nguyen, Kataoka (bib8) 2023; 416 Samad, Saghir, Musawwir, Ahmad, Caliskan (bib18) 2024 Yang, Liu, Shen, Li, Chien (bib23) 2018; 158 (bib63) 2023 Selejan, Lisei, Cormos, Dragan, Cormos (bib48) 2024; 52 Olah, Goeppert, Prakash (bib52) 2018 GhasemiKafrudi, Samiee, Mansourpour, Rostami (bib11) 2022; 376 Nyári, Magdeldin, Larmi, Järvinen, Santasalo-Aarnio (bib7) 2020; 39 Mignard, Pritchard (bib55) 2008; 86 Xu, Slater, Huang, Zhou, Jiao, Parlett (bib17) 2022; 446 Jun, Park, Kim, Jung, Yoon, Lee (bib20) 2024; 49 Smwu, Farooqi, Ayodele, Farooqi, Sanaullah, Abdullah (bib37) 2024; 434 Olabi, Obaideen, Elsaid, Wilberforce, Sayed, Maghrabie (bib12) 2022; 153 Khan, Tahir (bib6) 2019; 29 Du, Tu, Law, Tsai (bib26) 2024; 57 Zhang, Bi, Han, Liu, Zhong, Xie (bib28) 2023; 48 Osat, Shojaati (bib36) 2022; 47 Luu, Milani, Bahadori, Abbas (bib39) 2015; 12 Graaf, Sijtsema, Stamhuis, Joosten (bib56) 1986; 41 Uddin, Simson, Wright (bib46) 2020; 211 Jang, Jeong, Shim, Kim, Roh, Son (bib61) 2016; 173 Minette, De Wilde (bib57) 2021; 407 Wang, Su, Wang, Jin, Wei, Shen (bib33) 2020; 59 Entesari, Goeppert, Prakash (bib42) 2020; 59 Bisotti, Fedeli, Prifti, Galeazzi, Dell'Angelo, Manenti (bib62) 2022; 61 Xu, Froment (bib49) 1989; 35 Mirjalili (bib59) 2016; 96 Alsunousi, Kayabasi (bib4) 2024; 57 Olah, Goeppert, Czaun, Mathew, May, Prakash (bib44) 2015; 137 Acquarola, Ao, Bhatelia, Prakash, Faka, Pareek (bib43) 2021; 35 Acquarola, Ao, Bhatelia, Prakash, Faka, Pareek (bib35) 2021; 35 Taslimi, Khosravi, Nugroho, Rytter (bib16) 2024; 69 Di Nardo, Portarapillo, Russo, Di Benedetto (bib47) 2024; 55 Meng, Liu, Qin, Zhu, Long, Bi (bib14) 2024; 58 Cuevas-Castillo, Michailos, Akram, Hughes, Ingham, Pourkashanian (bib9) 2024; 469 Borreguero, Dorado, Capuchino-Biezma, Sánchez-Silva, García-Vargas (bib19) 2020; 45 Zhu, Yang, Hao, Wang (bib27) 2024; 58 Gad (bib60) 2023 Su, Lü, Shen, Sa (bib32) 2020; 14 Eisavi, Nami, Ranjbar, Sharifi (bib5) 2024; 52 Bussche, Froment (bib54) 1996; 161 Verykios (bib58) 2003; 28 Safder, Loy-Benitez, Yoo (bib15) 2024; 290 Nguyen, Zondervan (bib34) 2019; 74 Van-Dal, Bouallou (bib53) 2013; 57 Fu, Majid, Altalbawy, Hussein, Waleed, Mohammed (bib13) 2024; 54 Maqbool, Kwon, Im, An (bib25) 2024; 301 Milani (10.1016/j.ijhydene.2025.01.003_bib29) 2015; 10 Bussche (10.1016/j.ijhydene.2025.01.003_bib54) 1996; 161 Nyári (10.1016/j.ijhydene.2025.01.003_bib7) 2020; 39 Borreguero (10.1016/j.ijhydene.2025.01.003_bib19) 2020; 45 Alsunousi (10.1016/j.ijhydene.2025.01.003_bib4) 2024; 57 Di Nardo (10.1016/j.ijhydene.2025.01.003_bib47) 2024; 55 Mignard (10.1016/j.ijhydene.2025.01.003_bib55) 2008; 86 Xu (10.1016/j.ijhydene.2025.01.003_bib49) 1989; 35 (10.1016/j.ijhydene.2025.01.003_bib63) 2023 Maqbool (10.1016/j.ijhydene.2025.01.003_bib25) 2024; 301 Zhu (10.1016/j.ijhydene.2025.01.003_bib27) 2024; 58 Luu (10.1016/j.ijhydene.2025.01.003_bib39) 2015; 12 Uddin (10.1016/j.ijhydene.2025.01.003_bib46) 2020; 211 Su (10.1016/j.ijhydene.2025.01.003_bib32) 2020; 14 Minette (10.1016/j.ijhydene.2025.01.003_bib57) 2021; 407 Xu (10.1016/j.ijhydene.2025.01.003_bib17) 2022; 446 Cuevas-Castillo (10.1016/j.ijhydene.2025.01.003_bib9) 2024; 469 Blumberg (10.1016/j.ijhydene.2025.01.003_bib51) 2019; 256 Entesari (10.1016/j.ijhydene.2025.01.003_bib42) 2020; 59 Wiesberg (10.1016/j.ijhydene.2025.01.003_bib40) 2016; 125 Nguyen (10.1016/j.ijhydene.2025.01.003_bib34) 2019; 74 Ren (10.1016/j.ijhydene.2025.01.003_bib30) 2023; 263 Khojasteh-Salkuyeh (10.1016/j.ijhydene.2025.01.003_bib2) 2021; 50 Olah (10.1016/j.ijhydene.2025.01.003_bib52) 2018 Francis (10.1016/j.ijhydene.2025.01.003_bib1) 2022; 47 Deng (10.1016/j.ijhydene.2025.01.003_bib10) 2024; 50 Shahhosseini (10.1016/j.ijhydene.2025.01.003_bib22) 2018; 180 Van-Dal (10.1016/j.ijhydene.2025.01.003_bib53) 2013; 57 Zhang (10.1016/j.ijhydene.2025.01.003_bib31) 2017; 190 Bisotti (10.1016/j.ijhydene.2025.01.003_bib62) 2022; 61 Olabi (10.1016/j.ijhydene.2025.01.003_bib12) 2022; 153 Meng (10.1016/j.ijhydene.2025.01.003_bib14) 2024; 58 Samad (10.1016/j.ijhydene.2025.01.003_bib18) 2024 Nguyen (10.1016/j.ijhydene.2025.01.003_bib21) 2021; 292 Avetisov (10.1016/j.ijhydene.2025.01.003_bib50) 2010; 315 Acquarola (10.1016/j.ijhydene.2025.01.003_bib45) 2022; 61 Huang (10.1016/j.ijhydene.2025.01.003_bib3) 2024; 306 Taslimi (10.1016/j.ijhydene.2025.01.003_bib16) 2024; 69 Verykios (10.1016/j.ijhydene.2025.01.003_bib58) 2003; 28 Olah (10.1016/j.ijhydene.2025.01.003_bib44) 2015; 137 Graaf (10.1016/j.ijhydene.2025.01.003_bib56) 1986; 41 Acquarola (10.1016/j.ijhydene.2025.01.003_bib43) 2021; 35 Acquarola (10.1016/j.ijhydene.2025.01.003_bib35) 2021; 35 Jun (10.1016/j.ijhydene.2025.01.003_bib20) 2024; 49 Jang (10.1016/j.ijhydene.2025.01.003_bib61) 2016; 173 Du (10.1016/j.ijhydene.2025.01.003_bib26) 2024; 57 Yang (10.1016/j.ijhydene.2025.01.003_bib23) 2018; 158 Smwu (10.1016/j.ijhydene.2025.01.003_bib37) 2024; 434 Mirjalili (10.1016/j.ijhydene.2025.01.003_bib59) 2016; 96 GhasemiKafrudi (10.1016/j.ijhydene.2025.01.003_bib11) 2022; 376 Olah (10.1016/j.ijhydene.2025.01.003_bib41) 2013 Ibrahim (10.1016/j.ijhydene.2025.01.003_bib24) 2024; 206 Fu (10.1016/j.ijhydene.2025.01.003_bib13) 2024; 54 Wang (10.1016/j.ijhydene.2025.01.003_bib33) 2020; 59 Osat (10.1016/j.ijhydene.2025.01.003_bib36) 2022; 47 Eisavi (10.1016/j.ijhydene.2025.01.003_bib5) 2024; 52 Caudle (10.1016/j.ijhydene.2025.01.003_bib8) 2023; 416 Safder (10.1016/j.ijhydene.2025.01.003_bib15) 2024; 290 Gad (10.1016/j.ijhydene.2025.01.003_bib60) 2023 Nguyen (10.1016/j.ijhydene.2025.01.003_bib38) 2019; 34 Zhang (10.1016/j.ijhydene.2025.01.003_bib28) 2023; 48 Selejan (10.1016/j.ijhydene.2025.01.003_bib48) 2024; 52 Khan (10.1016/j.ijhydene.2025.01.003_bib6) 2019; 29 |
| References_xml | – year: 2024 ident: bib18 article-title: A data-driven multi-objective optimization approach for enhanced methanol yield and exergy loss minimization in direct hydrogenation of CO2 publication-title: Appl Therm Eng – year: 2013 ident: bib41 article-title: Conversion of carbon dioxide to methanol using bi-reforming of methane or natural gas – volume: 39 year: 2020 ident: bib7 article-title: Techno-economic barriers of an industrial-scale methanol CCU-plant publication-title: J CO2 Util – volume: 57 start-page: 589 year: 2024 end-page: 600 ident: bib4 article-title: Techno-economic assessment of a floating photovoltaic power plant assisted methanol production by hydrogenation of CO2 captured from Zawiya oil refinery publication-title: Int J Hydrogen Energy – volume: 47 start-page: 9058 year: 2022 end-page: 9070 ident: bib36 article-title: Techno-economic-environmental evaluation of a combined tri and dry reforming of methane for methanol synthesis with a high efficiency CO2 utilization publication-title: Int J Hydrogen Energy – volume: 161 start-page: 1 year: 1996 end-page: 10 ident: bib54 article-title: A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst publication-title: J Catal – volume: 50 start-page: 1047 year: 2024 end-page: 1061 ident: bib10 article-title: Inherent safety assessment of on-board methanol reforming hydrogen production fuel cell system considering jet fire and vapor cloud explosion publication-title: Int J Hydrogen Energy – start-page: 1 year: 2023 end-page: 14 ident: bib60 article-title: Pygad: an intuitive genetic algorithm python library publication-title: Multimed Tool Appl – year: 2018 ident: bib52 article-title: Beyond oil and gas: the methanol economy – volume: 35 start-page: 8844 year: 2021 end-page: 8856 ident: bib43 article-title: Simulations and optimization of a reduced CO2 emission process for methanol production using syngas from Bi-reforming – volume: 28 start-page: 1045 year: 2003 end-page: 1063 ident: bib58 article-title: Catalytic dry reforming of natural gas for the production of chemicals and hydrogen publication-title: Int J Hydrogen Energy – year: 2023 ident: bib63 publication-title: Climate Change 2022 - Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: bib59 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl Base Syst – volume: 301 year: 2024 ident: bib25 article-title: Toward sustainable recycled methanol production from CO2 and steel by-product gases in South Korea; process design and assessment publication-title: Energy – volume: 469 year: 2024 ident: bib9 article-title: Techno economic and life cycle assessment of olefin production through CO2 hydrogenation within the power-to-X concept publication-title: J Clean Prod – volume: 59 start-page: 1596 year: 2020 end-page: 1606 ident: bib33 article-title: Optimal design and energy-saving investigation of the triple CO2 feeds for methanol production system by combining steam and dry methane reforming publication-title: Ind Eng Chem Res – volume: 49 start-page: 786 year: 2024 end-page: 797 ident: bib20 article-title: A simulation model for ruthenium-catalyzed dry reforming of methane (DRM) at different temperatures and gas compositions publication-title: Int J Hydrogen Energy – volume: 173 start-page: 80 year: 2016 end-page: 91 ident: bib61 article-title: Combined steam and carbon dioxide reforming of methane and side reactions: thermodynamic equilibrium analysis and experimental application publication-title: Applied energy – volume: 434 year: 2024 ident: bib37 article-title: Advancements in Ni and Co-based catalysts for sustainable syngas production via Bi-reforming of methane: a review of recent advances publication-title: J Clean Prod – volume: 69 start-page: 466 year: 2024 end-page: 476 ident: bib16 article-title: Optimization and analysis of methanol production from CO2 and solar-driven hydrogen production: a Danish case study publication-title: Int J Hydrogen Energy – volume: 12 start-page: 62 year: 2015 end-page: 76 ident: bib39 article-title: A comparative study of CO2 utilization in methanol synthesis with various syngas production technologies publication-title: J CO2 Util – volume: 47 start-page: 36418 year: 2022 end-page: 36432 ident: bib1 article-title: Carbon dioxide hydrogenation to methanol: process simulation and optimization studies publication-title: Int J Hydrogen Energy – volume: 315 start-page: 155 year: 2010 end-page: 162 ident: bib50 article-title: Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst publication-title: J Mol Catal Chem – volume: 137 start-page: 8720 year: 2015 end-page: 8729 ident: bib44 article-title: Single step bi-reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to metgas (CO-2H2) for methanol synthesis: self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen publication-title: J Am Chem Soc – volume: 158 start-page: 820 year: 2018 end-page: 829 ident: bib23 article-title: High-efficiency utilization of CO2 in the methanol production by a novel parallel-series system combining steam and dry methane reforming publication-title: Energy – volume: 86 start-page: 473 year: 2008 end-page: 487 ident: bib55 article-title: On the use of electrolytic hydrogen from variable renewable energies for the enhanced conversion of biomass to fuels publication-title: Chem Eng Res Des – volume: 58 start-page: 190 year: 2024 end-page: 199 ident: bib14 article-title: Modeling and chemical kinetic analysis of methanol and reformed gas (H2/CO2) blending with ammonia under lean-burn condition publication-title: Int J Hydrogen Energy – volume: 292 year: 2021 ident: bib21 article-title: Integrating life cycle assessment for design and optimization of methanol production from combining methane dry reforming and partial oxidation publication-title: J Clean Prod – volume: 10 start-page: 12 year: 2015 end-page: 22 ident: bib29 article-title: A model-based analysis of CO2 utilization in methanol synthesis plant publication-title: J CO2 Util – volume: 153 year: 2022 ident: bib12 article-title: Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators publication-title: Renew Sustain Energy Rev – volume: 35 start-page: 8844 year: 2021 end-page: 8856 ident: bib35 article-title: Simulations and optimization of a reduced CO2 emission process for methanol production using syngas from bi-reforming publication-title: Energy & Fuels – volume: 41 start-page: 2883 year: 1986 end-page: 2890 ident: bib56 article-title: Chemical equilibria in methanol synthesis publication-title: Chem Eng Sci – volume: 180 start-page: 655 year: 2018 end-page: 665 ident: bib22 article-title: Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production publication-title: J Clean Prod – volume: 416 year: 2023 ident: bib8 article-title: Integrating carbon capture and utilization into the glass industry: economic analysis of emissions reduction through CO2 mineralization publication-title: J Clean Prod – volume: 61 start-page: 5557 year: 2022 end-page: 5567 ident: bib45 article-title: Optimized process for methanol production via bi-reforming syngas publication-title: Ind Eng Chem Res – volume: 446 year: 2022 ident: bib17 article-title: Developing silicalite-1 encapsulated Ni nanoparticles as sintering-/coking-resistant catalysts for dry reforming of methane publication-title: Chem Eng J – volume: 29 start-page: 205 year: 2019 end-page: 239 ident: bib6 article-title: Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels publication-title: J CO2 Util – volume: 263 year: 2023 ident: bib30 article-title: Methanol production from natural gas reforming and CO2 capturing process, simulation, design, and technical-economic analysis publication-title: Energy – volume: 74 year: 2019 ident: bib34 article-title: Modeling and simulation of novel Bi-and tri-reforming processes for the production of renewable methanol publication-title: CET Journal-Chemical Engineering Transactions. – volume: 61 start-page: 2206 year: 2022 end-page: 2226 ident: bib62 article-title: Impact of kinetic models on methanol synthesis reactor predictions: in silico assessment and comparison with industrial data publication-title: Ind Eng Chem Res – volume: 54 year: 2024 ident: bib13 article-title: Process simulation of methanol production via carbon dioxide hydrogenation publication-title: Case Stud Therm Eng – volume: 190 start-page: 303 year: 2017 end-page: 311 ident: bib31 article-title: Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: Techno-economic analysis publication-title: Fuel – volume: 52 start-page: 869 year: 2024 end-page: 888 ident: bib5 article-title: Economic assessment and optimization of low-carbon biomass-based power, methane, and methanol production publication-title: Int J Hydrogen Energy – volume: 290 year: 2024 ident: bib15 article-title: Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context publication-title: Energy – volume: 35 start-page: 88 year: 1989 end-page: 96 ident: bib49 article-title: Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics publication-title: AIChE J – volume: 52 start-page: 469 year: 2024 end-page: 484 ident: bib48 article-title: Development of a multi-scale mathematical model for green hydrogen production via biogas steam reforming process publication-title: Int J Hydrogen Energy – volume: 58 start-page: 1457 year: 2024 end-page: 1465 ident: bib27 article-title: Investigation into porous catalyst performance during the bi-reforming process using particle-resolved model publication-title: Int J Hydrogen Energy – volume: 407 year: 2021 ident: bib57 article-title: Multi-scale modeling and simulation of low-pressure methane bi-reforming using structured catalytic reactors publication-title: Chem Eng J – volume: 256 year: 2019 ident: bib51 article-title: On the economics of methanol production from natural gas publication-title: Fuel – volume: 50 year: 2021 ident: bib2 article-title: CO2 utilization for methanol production; Part I: process design and life cycle GHG assessment of different pathways publication-title: J CO2 Util – volume: 48 start-page: 16958 year: 2023 end-page: 16970 ident: bib28 article-title: Upgrading biogas into syngas via bi-reforming of model biogas over ruthenium-based nano-catalysts synthesized via mechanochemical method publication-title: Int J Hydrogen Energy – volume: 14 start-page: 614 year: 2020 end-page: 628 ident: bib32 article-title: An efficient technique for improving methanol yield using dual CO 2 feeds and dry methane reforming publication-title: Front Chem Sci Eng – volume: 45 start-page: 26623 year: 2020 end-page: 26636 ident: bib19 article-title: Process simulation and economic feasibility assessment of the methanol production via tri-reforming using experimental kinetic equations publication-title: Int J Hydrogen Energy – volume: 59 start-page: 10542 year: 2020 end-page: 10551 ident: bib42 article-title: Renewable methanol synthesis through single step bi-reforming of biogas publication-title: Ind Eng Chem Res – volume: 211 year: 2020 ident: bib46 article-title: Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel publication-title: Energy – volume: 57 start-page: 38 year: 2013 end-page: 45 ident: bib53 article-title: Design and simulation of a methanol production plant from CO2 hydrogenation publication-title: J Clean Prod – volume: 306 year: 2024 ident: bib3 article-title: Exergoenvironment evaluation of carbon resource conversion and utilization via CO2 direct hydrogenation for methanol and power cogeneration publication-title: Energy – volume: 57 start-page: 1152 year: 2024 end-page: 1163 ident: bib26 article-title: Aerosol metal-organic framework-derived Ni–Zn–Al hybrid catalyst for efficient methane Bi-reforming publication-title: Int J Hydrogen Energy – volume: 206 start-page: 62 year: 2024 end-page: 78 ident: bib24 article-title: Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst publication-title: Chem Eng Res Des – volume: 376 year: 2022 ident: bib11 article-title: Optimization of methanol production process from carbon dioxide hydrogenation in order to reduce recycle flow and energy consumption publication-title: J Clean Prod – volume: 125 start-page: 320 year: 2016 end-page: 335 ident: bib40 article-title: Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING publication-title: Energy Convers Manag – volume: 34 start-page: 1 year: 2019 end-page: 11 ident: bib38 article-title: Methanol production from captured CO2 using hydrogenation and reforming technologies_ environmental and economic evaluation publication-title: J CO2 Util – volume: 55 start-page: 1143 year: 2024 end-page: 1160 ident: bib47 article-title: Hydrogen production via steam reforming of different fuels: thermodynamic comparison publication-title: Int J Hydrogen Energy – volume: 10 start-page: 12 year: 2015 ident: 10.1016/j.ijhydene.2025.01.003_bib29 article-title: A model-based analysis of CO2 utilization in methanol synthesis plant publication-title: J CO2 Util doi: 10.1016/j.jcou.2015.02.003 – volume: 292 year: 2021 ident: 10.1016/j.ijhydene.2025.01.003_bib21 article-title: Integrating life cycle assessment for design and optimization of methanol production from combining methane dry reforming and partial oxidation publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.125970 – volume: 35 start-page: 88 year: 1989 ident: 10.1016/j.ijhydene.2025.01.003_bib49 article-title: Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics publication-title: AIChE J doi: 10.1002/aic.690350109 – volume: 48 start-page: 16958 year: 2023 ident: 10.1016/j.ijhydene.2025.01.003_bib28 article-title: Upgrading biogas into syngas via bi-reforming of model biogas over ruthenium-based nano-catalysts synthesized via mechanochemical method publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.01.202 – volume: 14 start-page: 614 year: 2020 ident: 10.1016/j.ijhydene.2025.01.003_bib32 article-title: An efficient technique for improving methanol yield using dual CO 2 feeds and dry methane reforming publication-title: Front Chem Sci Eng doi: 10.1007/s11705-019-1849-5 – volume: 376 year: 2022 ident: 10.1016/j.ijhydene.2025.01.003_bib11 article-title: Optimization of methanol production process from carbon dioxide hydrogenation in order to reduce recycle flow and energy consumption publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.134184 – volume: 54 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib13 article-title: Process simulation of methanol production via carbon dioxide hydrogenation publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2024.103975 – volume: 190 start-page: 303 year: 2017 ident: 10.1016/j.ijhydene.2025.01.003_bib31 article-title: Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: Techno-economic analysis publication-title: Fuel doi: 10.1016/j.fuel.2016.11.008 – volume: 301 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib25 article-title: Toward sustainable recycled methanol production from CO2 and steel by-product gases in South Korea; process design and assessment publication-title: Energy doi: 10.1016/j.energy.2024.131620 – volume: 28 start-page: 1045 year: 2003 ident: 10.1016/j.ijhydene.2025.01.003_bib58 article-title: Catalytic dry reforming of natural gas for the production of chemicals and hydrogen publication-title: Int J Hydrogen Energy – volume: 315 start-page: 155 year: 2010 ident: 10.1016/j.ijhydene.2025.01.003_bib50 article-title: Steady-state kinetics and mechanism of methane reforming with steam and carbon dioxide over Ni catalyst publication-title: J Mol Catal Chem doi: 10.1016/j.molcata.2009.06.013 – volume: 29 start-page: 205 year: 2019 ident: 10.1016/j.ijhydene.2025.01.003_bib6 article-title: Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels publication-title: J CO2 Util doi: 10.1016/j.jcou.2018.12.008 – volume: 47 start-page: 36418 year: 2022 ident: 10.1016/j.ijhydene.2025.01.003_bib1 article-title: Carbon dioxide hydrogenation to methanol: process simulation and optimization studies publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.08.215 – volume: 41 start-page: 2883 year: 1986 ident: 10.1016/j.ijhydene.2025.01.003_bib56 article-title: Chemical equilibria in methanol synthesis publication-title: Chem Eng Sci doi: 10.1016/0009-2509(86)80019-7 – volume: 59 start-page: 1596 year: 2020 ident: 10.1016/j.ijhydene.2025.01.003_bib33 article-title: Optimal design and energy-saving investigation of the triple CO2 feeds for methanol production system by combining steam and dry methane reforming publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.9b05296 – volume: 161 start-page: 1 year: 1996 ident: 10.1016/j.ijhydene.2025.01.003_bib54 article-title: A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst publication-title: J Catal doi: 10.1006/jcat.1996.0156 – year: 2018 ident: 10.1016/j.ijhydene.2025.01.003_bib52 – volume: 61 start-page: 5557 year: 2022 ident: 10.1016/j.ijhydene.2025.01.003_bib45 article-title: Optimized process for methanol production via bi-reforming syngas publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.1c04904 – volume: 47 start-page: 9058 year: 2022 ident: 10.1016/j.ijhydene.2025.01.003_bib36 article-title: Techno-economic-environmental evaluation of a combined tri and dry reforming of methane for methanol synthesis with a high efficiency CO2 utilization publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.12.207 – volume: 416 year: 2023 ident: 10.1016/j.ijhydene.2025.01.003_bib8 article-title: Integrating carbon capture and utilization into the glass industry: economic analysis of emissions reduction through CO2 mineralization publication-title: J Clean Prod doi: 10.1016/j.jclepro.2023.137846 – volume: 50 year: 2021 ident: 10.1016/j.ijhydene.2025.01.003_bib2 article-title: CO2 utilization for methanol production; Part I: process design and life cycle GHG assessment of different pathways publication-title: J CO2 Util doi: 10.1016/j.jcou.2021.101608 – volume: 125 start-page: 320 year: 2016 ident: 10.1016/j.ijhydene.2025.01.003_bib40 article-title: Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.04.041 – volume: 137 start-page: 8720 year: 2015 ident: 10.1016/j.ijhydene.2025.01.003_bib44 article-title: Single step bi-reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to metgas (CO-2H2) for methanol synthesis: self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen publication-title: J Am Chem Soc doi: 10.1021/jacs.5b02029 – volume: 34 start-page: 1 year: 2019 ident: 10.1016/j.ijhydene.2025.01.003_bib38 article-title: Methanol production from captured CO2 using hydrogenation and reforming technologies_ environmental and economic evaluation publication-title: J CO2 Util doi: 10.1016/j.jcou.2019.05.033 – year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib18 article-title: A data-driven multi-objective optimization approach for enhanced methanol yield and exergy loss minimization in direct hydrogenation of CO2 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2024.123517 – volume: 263 year: 2023 ident: 10.1016/j.ijhydene.2025.01.003_bib30 article-title: Methanol production from natural gas reforming and CO2 capturing process, simulation, design, and technical-economic analysis publication-title: Energy doi: 10.1016/j.energy.2022.125879 – volume: 256 year: 2019 ident: 10.1016/j.ijhydene.2025.01.003_bib51 article-title: On the economics of methanol production from natural gas publication-title: Fuel doi: 10.1016/j.fuel.2019.115824 – year: 2013 ident: 10.1016/j.ijhydene.2025.01.003_bib41 – volume: 59 start-page: 10542 year: 2020 ident: 10.1016/j.ijhydene.2025.01.003_bib42 article-title: Renewable methanol synthesis through single step bi-reforming of biogas publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.0c00755 – volume: 50 start-page: 1047 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib10 article-title: Inherent safety assessment of on-board methanol reforming hydrogen production fuel cell system considering jet fire and vapor cloud explosion publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.08.257 – volume: 58 start-page: 190 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib14 article-title: Modeling and chemical kinetic analysis of methanol and reformed gas (H2/CO2) blending with ammonia under lean-burn condition publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2024.01.150 – volume: 57 start-page: 38 year: 2013 ident: 10.1016/j.ijhydene.2025.01.003_bib53 article-title: Design and simulation of a methanol production plant from CO2 hydrogenation publication-title: J Clean Prod doi: 10.1016/j.jclepro.2013.06.008 – volume: 69 start-page: 466 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib16 article-title: Optimization and analysis of methanol production from CO2 and solar-driven hydrogen production: a Danish case study publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2024.05.033 – volume: 290 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib15 article-title: Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context publication-title: Energy doi: 10.1016/j.energy.2023.130104 – volume: 35 start-page: 8844 year: 2021 ident: 10.1016/j.ijhydene.2025.01.003_bib35 article-title: Simulations and optimization of a reduced CO2 emission process for methanol production using syngas from bi-reforming publication-title: Energy & Fuels doi: 10.1021/acs.energyfuels.1c00227 – volume: 446 year: 2022 ident: 10.1016/j.ijhydene.2025.01.003_bib17 article-title: Developing silicalite-1 encapsulated Ni nanoparticles as sintering-/coking-resistant catalysts for dry reforming of methane publication-title: Chem Eng J doi: 10.1016/j.cej.2022.137439 – volume: 12 start-page: 62 year: 2015 ident: 10.1016/j.ijhydene.2025.01.003_bib39 article-title: A comparative study of CO2 utilization in methanol synthesis with various syngas production technologies publication-title: J CO2 Util doi: 10.1016/j.jcou.2015.07.001 – volume: 58 start-page: 1457 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib27 article-title: Investigation into porous catalyst performance during the bi-reforming process using particle-resolved model publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2024.01.240 – volume: 153 year: 2022 ident: 10.1016/j.ijhydene.2025.01.003_bib12 article-title: Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111710 – volume: 206 start-page: 62 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib24 article-title: Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2024.04.039 – volume: 49 start-page: 786 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib20 article-title: A simulation model for ruthenium-catalyzed dry reforming of methane (DRM) at different temperatures and gas compositions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.07.199 – volume: 35 start-page: 8844 year: 2021 ident: 10.1016/j.ijhydene.2025.01.003_bib43 article-title: Simulations and optimization of a reduced CO2 emission process for methanol production using syngas from Bi-reforming – volume: 39 year: 2020 ident: 10.1016/j.ijhydene.2025.01.003_bib7 article-title: Techno-economic barriers of an industrial-scale methanol CCU-plant publication-title: J CO2 Util doi: 10.1016/j.jcou.2020.101166 – volume: 52 start-page: 469 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib48 article-title: Development of a multi-scale mathematical model for green hydrogen production via biogas steam reforming process publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.07.057 – volume: 407 year: 2021 ident: 10.1016/j.ijhydene.2025.01.003_bib57 article-title: Multi-scale modeling and simulation of low-pressure methane bi-reforming using structured catalytic reactors publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127218 – volume: 74 year: 2019 ident: 10.1016/j.ijhydene.2025.01.003_bib34 article-title: Modeling and simulation of novel Bi-and tri-reforming processes for the production of renewable methanol publication-title: CET Journal-Chemical Engineering Transactions. – volume: 86 start-page: 473 year: 2008 ident: 10.1016/j.ijhydene.2025.01.003_bib55 article-title: On the use of electrolytic hydrogen from variable renewable energies for the enhanced conversion of biomass to fuels publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2007.12.008 – volume: 180 start-page: 655 year: 2018 ident: 10.1016/j.ijhydene.2025.01.003_bib22 article-title: Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.12.201 – start-page: 1 year: 2023 ident: 10.1016/j.ijhydene.2025.01.003_bib60 article-title: Pygad: an intuitive genetic algorithm python library publication-title: Multimed Tool Appl – volume: 469 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib9 article-title: Techno economic and life cycle assessment of olefin production through CO2 hydrogenation within the power-to-X concept publication-title: J Clean Prod doi: 10.1016/j.jclepro.2024.143143 – volume: 306 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib3 article-title: Exergoenvironment evaluation of carbon resource conversion and utilization via CO2 direct hydrogenation for methanol and power cogeneration publication-title: Energy doi: 10.1016/j.energy.2024.132379 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.ijhydene.2025.01.003_bib59 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl Base Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 57 start-page: 1152 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib26 article-title: Aerosol metal-organic framework-derived Ni–Zn–Al hybrid catalyst for efficient methane Bi-reforming publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2024.01.097 – volume: 434 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib37 article-title: Advancements in Ni and Co-based catalysts for sustainable syngas production via Bi-reforming of methane: a review of recent advances publication-title: J Clean Prod – volume: 57 start-page: 589 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib4 article-title: Techno-economic assessment of a floating photovoltaic power plant assisted methanol production by hydrogenation of CO2 captured from Zawiya oil refinery publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2024.01.055 – volume: 55 start-page: 1143 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib47 article-title: Hydrogen production via steam reforming of different fuels: thermodynamic comparison publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.11.215 – volume: 61 start-page: 2206 year: 2022 ident: 10.1016/j.ijhydene.2025.01.003_bib62 article-title: Impact of kinetic models on methanol synthesis reactor predictions: in silico assessment and comparison with industrial data publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.1c04476 – volume: 173 start-page: 80 year: 2016 ident: 10.1016/j.ijhydene.2025.01.003_bib61 article-title: Combined steam and carbon dioxide reforming of methane and side reactions: thermodynamic equilibrium analysis and experimental application publication-title: Applied energy doi: 10.1016/j.apenergy.2016.04.006 – volume: 52 start-page: 869 year: 2024 ident: 10.1016/j.ijhydene.2025.01.003_bib5 article-title: Economic assessment and optimization of low-carbon biomass-based power, methane, and methanol production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.11.025 – volume: 158 start-page: 820 year: 2018 ident: 10.1016/j.ijhydene.2025.01.003_bib23 article-title: High-efficiency utilization of CO2 in the methanol production by a novel parallel-series system combining steam and dry methane reforming publication-title: Energy doi: 10.1016/j.energy.2018.06.061 – year: 2023 ident: 10.1016/j.ijhydene.2025.01.003_bib63 – volume: 211 year: 2020 ident: 10.1016/j.ijhydene.2025.01.003_bib46 article-title: Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel publication-title: Energy doi: 10.1016/j.energy.2020.119031 – volume: 45 start-page: 26623 year: 2020 ident: 10.1016/j.ijhydene.2025.01.003_bib19 article-title: Process simulation and economic feasibility assessment of the methanol production via tri-reforming using experimental kinetic equations publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.07.013 |
| SSID | ssj0017049 |
| Score | 2.4715698 |
| Snippet | Bi-reforming of methane (BRM) is a promising method for syngas production in Methanol synthesis that consumes CH4 and CO2 while allowing feed ratio tuning. In... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 1161 |
| SubjectTerms | Bi-reforming of methane Carbon dioxide utilization Genetic algorithm Methanol production Python programming |
| Title | Simulation and optimization of methanol production process via bi-reforming of methane: A novel genetic algorithm-based approach in Python |
| URI | https://dx.doi.org/10.1016/j.ijhydene.2025.01.003 |
| Volume | 101 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-3199 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017049 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) issn: 0360-3199 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017049 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0360-3199 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017049 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0360-3199 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017049 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-3199 databaseCode: AKRWK dateStart: 19760101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017049 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lD143SZpNi9vpViqYhFaobewr7QpbRJKLPTiD_BXu5OHVi8evAQyzIZldjIzC998g9CtFMyhjOq7CRdCP1yH-JQz4ijH5lrEecGu_zxyh6_0cepMG6hf98IArLKK_WVML6J1JTEqaxpZHBtjHXuhBSfoOkXhA5yglHowxaDz_gXzsLyqBNbKBLR3uoQXnXgx3-rfG-gyuyV9Zz0863eC2kk6gyN0WFWLuFdu6Bg1VHKCDnY4BE_RxzheVSO4MEskTnUMWFXNlTiNMIyIZkm6xFnJ7QrirOwOwJuYYR4TvYcUIDGzb311h3s4STdqibWHQaMjZstZuo7z-YpA5pO4ZiPHcYJftkBBcIYmg_tJf0iqAQtE6FtPTvwuzJeT0mI6kUW6tGJUMGb70nWpJwKbRl3pWtL0vIgx4QvqePr6IVXkAgcQt89RM0kTdYEwIDqFDLjlMQXEoszXX6IASVG2aTLaQkZt1DAraTTCGl-2COtjCOEYQtMCwtIWCmrbhz8cItSx_o-1l_9Ye4X24a0AZtvXqJmv39SNrjty3i4cq432eg9Pw9Enofzcig |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHtSD8RnxuQevpbTdvrwRIkEFYgIm3Jp9VUqgbUgl4eIP8Fe704eiFw9eetjONpvZ6TySb75B6FZwahNKVG3COFcPx9Y8wqhmS9tiaomxnF1_MHR6L-RxYk9qqFP1wgCssvT9hU_PvXW5opfa1NMo0kfK90ILjm_aeeJDttA2sU0XKrDm-xfOw3DLHFhJayC-0SY8a0az6Vr938CXaRb8ndX0rN8RaiPqdA_Qfpku4nZxokNUk_ER2tsgETxGH6NoUc7gwjQWOFFOYFF2V-IkxDAjmsbJHKcFuSssp0V7AF5FFLNIU2dIABPz-i0v73Abx8lKzrEyMeh0xHT-miyjbLrQIPQJXNGR4yjGz2vgIDhB4-79uNPTygkLGldlT6Z5JgyYE8KgKpKFKreihFNqecJxiMt9i4SmcAzRct2QUu5xYruq_hAydIAEiFmnqB4nsTxDGCCdXPjMcKkEZlHqqS8RwKRIq9WipIH0SqlBWvBoBBXAbBZU1xDANQQtAxhLG8ivdB_8sIhAOfs_9p7_Y-8N2umNB_2g_zB8ukC78CZHaVuXqJ4t3-SVSkIydp0b2SfYs94f |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+and+optimization+of+methanol+production+process+via+bi-reforming+of+methane%3A+A+novel+genetic+algorithm-based+approach+in+Python&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Rouhandeh%2C+Hossein&rft.au=Behroozsarand%2C+Alireza&rft.date=2025-02-03&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=101&rft.spage=1161&rft.epage=1171&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.01.003&rft.externalDocID=S0360319925000084 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |