Enhancing the Harris Hawks Optimization Algorithm With Ambush‐Based Operators for Feature Selection in UAV‐Based Intrusion Detection Systems
ABSTRACT Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and control. However, the high dimensionality of these datasets increases computational load and hampers real‐time performance. In Unmanned Aerial V...
Saved in:
| Published in | Concurrency and computation Vol. 37; no. 21-22 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
25.09.2025
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 |
| DOI | 10.1002/cpe.70207 |
Cover
| Abstract | ABSTRACT
Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and control. However, the high dimensionality of these datasets increases computational load and hampers real‐time performance. In Unmanned Aerial Vehicle (UAV) systems, feature selection is critical for reducing complexity and enhancing processing efficiency, thereby enabling faster and more accurate decision‐making. In this study, we enhance the Harris Hawks Optimization (HHO) algorithm by introducing a novel ambush‐based operator to regulate selection pressure, resulting in an improved variant named AMHHO. The effectiveness of AMHHO is validated using IEEE CEC2019 benchmark functions and compared against several well‐known optimization algorithms. To further evaluate its robustness, ablation studies and sensitivity analyses are conducted to identify the most efficient AMHHO variants. Furthermore, a binary version of AMHHO (BAMHHO) is applied to ten high‐dimensional datasets and the UAV‐IDS‐2020 dataset for feature selection and classification tasks. BAMHHO is assessed based on classification accuracy, fitness value, feature selection ratio, and computation time, demonstrating superior performance across multiple datasets and outperforming state‐of‐the‐art methods. To rigorously evaluate the statistical significance of its results, Wilcoxon Signed‐Rank test is applied to compare BAMHHO with other well‐known algorithms, confirming the statistical superiority of BAMHHO. In conclusion, BAMHHO not only achieves effective performance on high‐dimensional datasets but also achieves 100% classification accuracy on the UAV‐IDS‐2020 dataset, all while maintaining an optimal balance between feature reduction and computational efficiency. These findings confirm BAMHHO's effectiveness in handling high‐dimensional data and highlight its potential for application in UAV‐based intrusion detection systems. |
|---|---|
| AbstractList | ABSTRACT
Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and control. However, the high dimensionality of these datasets increases computational load and hampers real‐time performance. In Unmanned Aerial Vehicle (UAV) systems, feature selection is critical for reducing complexity and enhancing processing efficiency, thereby enabling faster and more accurate decision‐making. In this study, we enhance the Harris Hawks Optimization (HHO) algorithm by introducing a novel ambush‐based operator to regulate selection pressure, resulting in an improved variant named AMHHO. The effectiveness of AMHHO is validated using IEEE CEC2019 benchmark functions and compared against several well‐known optimization algorithms. To further evaluate its robustness, ablation studies and sensitivity analyses are conducted to identify the most efficient AMHHO variants. Furthermore, a binary version of AMHHO (BAMHHO) is applied to ten high‐dimensional datasets and the UAV‐IDS‐2020 dataset for feature selection and classification tasks. BAMHHO is assessed based on classification accuracy, fitness value, feature selection ratio, and computation time, demonstrating superior performance across multiple datasets and outperforming state‐of‐the‐art methods. To rigorously evaluate the statistical significance of its results, Wilcoxon Signed‐Rank test is applied to compare BAMHHO with other well‐known algorithms, confirming the statistical superiority of BAMHHO. In conclusion, BAMHHO not only achieves effective performance on high‐dimensional datasets but also achieves 100% classification accuracy on the UAV‐IDS‐2020 dataset, all while maintaining an optimal balance between feature reduction and computational efficiency. These findings confirm BAMHHO's effectiveness in handling high‐dimensional data and highlight its potential for application in UAV‐based intrusion detection systems. Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and control. However, the high dimensionality of these datasets increases computational load and hampers real‐time performance. In Unmanned Aerial Vehicle (UAV) systems, feature selection is critical for reducing complexity and enhancing processing efficiency, thereby enabling faster and more accurate decision‐making. In this study, we enhance the Harris Hawks Optimization (HHO) algorithm by introducing a novel ambush‐based operator to regulate selection pressure, resulting in an improved variant named AMHHO. The effectiveness of AMHHO is validated using IEEE CEC2019 benchmark functions and compared against several well‐known optimization algorithms. To further evaluate its robustness, ablation studies and sensitivity analyses are conducted to identify the most efficient AMHHO variants. Furthermore, a binary version of AMHHO (BAMHHO) is applied to ten high‐dimensional datasets and the UAV‐IDS‐2020 dataset for feature selection and classification tasks. BAMHHO is assessed based on classification accuracy, fitness value, feature selection ratio, and computation time, demonstrating superior performance across multiple datasets and outperforming state‐of‐the‐art methods. To rigorously evaluate the statistical significance of its results, Wilcoxon Signed‐Rank test is applied to compare BAMHHO with other well‐known algorithms, confirming the statistical superiority of BAMHHO. In conclusion, BAMHHO not only achieves effective performance on high‐dimensional datasets but also achieves 100% classification accuracy on the UAV‐IDS‐2020 dataset, all while maintaining an optimal balance between feature reduction and computational efficiency. These findings confirm BAMHHO's effectiveness in handling high‐dimensional data and highlight its potential for application in UAV‐based intrusion detection systems. |
| Author | Souri, Alireza Zabihullah Musawi, Sayed Farshi, Mohammad Ebrahimi Mood, Sepehr |
| Author_xml | – sequence: 1 givenname: Sayed surname: Zabihullah Musawi fullname: Zabihullah Musawi, Sayed organization: Yazd University – sequence: 2 givenname: Mohammad orcidid: 0000-0002-1986-2722 surname: Farshi fullname: Farshi, Mohammad email: mfarshi@yazd.ac.ir organization: Yazd University – sequence: 3 givenname: Sepehr surname: Ebrahimi Mood fullname: Ebrahimi Mood, Sepehr organization: Yazd University – sequence: 4 givenname: Alireza surname: Souri fullname: Souri, Alireza organization: Haliç University |
| BookMark | eNp10M1OAjEQB_DGYCKoB9-giScPSNvdbeGICEJiogl-HDfddlaqbBfbbgiefASe0SdxZQk3L50m85uZ5N9BLVtaQOiCkmtKCOupFVwLwog4Qm2aRKxLeBS3Dn_GT1DH-3dCKCURbaPt2C6kVca-4bAAPJXOGV-X9YfHD6tgCvMlgyktHi7fSmfCosCv9YuHRVb5xc_39kZ60DUFJ0PpPM5LhycgQ-UAz2EJajdtLH4evhz4zAZX-b_GLYQ9mW98gMKfoeNcLj2c7-spep6Mn0bT7v3D3Ww0vO8qlgxEVyeCJyLXmnMuBiqRUrOM5yzRXGiRUSC8rzKVRUCzmGZa93ksB30ZMSU0USo6RZfN3pUrPyvwIX0vK2frk2nEYhbxJIl5ra4apVzpvYM8XTlTSLdJKUn_Ak_rwNNd4LXtNXZtlrD5H6ajx3Ez8Qua3ogj |
| Cites_doi | 10.1016/j.eij.2023.100423 10.1007/s00521‐015‐1920‐1 10.1109/ACCESS.2020.3029728 10.1016/j.eswa.2021.114778 10.1016/j.iot.2023.100819 10.33545/27068919.2020.v2.i4e.451 10.22067/CKE.2023.79741.1071 10.1007/s10586-024-04674-2 10.1016/j.ins.2009.03.004 10.1016/j.advengsoft.2017.07.002 10.1002/cpe.7771 10.1016/j.chemolab.2022.104618 10.1007/s00500‐020‐05527‐x 10.1109/ACCESS.2021.3072030 10.1016/j.future.2019.02.028 10.1007/s13748‐023‐00298‐6 10.1109/TEVC.2023.3292527 10.1109/ICCDS60734.2024.10560411 10.1007/s10586-021-03304-5 10.1007/s10489-022-04201-z 10.1016/j.iot.2023.100952 10.1002/cpe.6838 10.1002/cpe.7807 10.1016/j.knosys.2019.105190 10.1016/j.advengsoft.2013.12.007 10.3390/electronics10131549 10.7717/peerj-cs.2714 10.1145/3459665 10.1007/s00521-022-07015-9 10.1007/978-3-031-66965-1_25 10.1007/s00521-015-1870-7 10.1002/cpe.7299 10.1007/978-981-19-0332-8_17 10.1016/j.iswa.2023.200226 10.1109/JIOT.2024.3429111 10.1007/s10462-024-11101-w 10.1016/j.advengsoft.2016.01.008 10.1109/JIOT.2024.3360231 10.1016/j.rico.2024.100457 10.1007/s00521-023-08772-x 10.1016/j.jocs.2023.102201 10.1109/ACCESS.2020.2978035 10.1109/ACCESS.2019.2911526 10.1007/s11042‐023‐15023‐7 10.1007/s10586‐024‐04452‐0 10.1109/ACCESS.2024.3349469 10.1109/ACCESS.2021.3056407 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.70207 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_70207 CPE70207 |
| Genre | researchArticle |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGYGG AHBTC AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2597-d57657fdd66679c5aad2b6f25d67d7b1e068cbcb3e1b41bdd864a98a32c7d0cc3 |
| IEDL.DBID | DR2 |
| ISSN | 1532-0626 |
| IngestDate | Sat Aug 23 15:40:28 EDT 2025 Wed Oct 01 05:38:00 EDT 2025 Sat Aug 23 09:20:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21-22 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2597-d57657fdd66679c5aad2b6f25d67d7b1e068cbcb3e1b41bdd864a98a32c7d0cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1986-2722 |
| PQID | 3242365546 |
| PQPubID | 2045170 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_3242365546 crossref_primary_10_1002_cpe_70207 wiley_primary_10_1002_cpe_70207_CPE70207 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 25 September 2025 2025-09-25 20250925 |
| PublicationDateYYYYMMDD | 2025-09-25 |
| PublicationDate_xml | – month: 09 year: 2025 text: 25 September 2025 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2023; 53 2021; 25 2019; 7 2023; 35 2023; 12 2019; 97 2023; 18 2023; 6 2014; 69 2022; 25 2016; 95 2009; 179 2024; 75 2024; 11 2024; 12 2025; 58 2024 2025; 11 2024; 16 2017; 114 2024; 17 2023; 82 2019; 780 2020; 8 2023; 24 2021; 54 2021; 10 2023; 22 2020; 2 2023; 28 2022 2020 2020; 191 2022; 34 2021; 176 2024; 25 2024; 27 2016; 27 2022; 228 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_12_1 e_1_2_9_33_1 U N. (e_1_2_9_35_1) 2024; 17 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 Mirjalili S. (e_1_2_9_24_1) 2019; 780 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Wang Y. (e_1_2_9_4_1) 2022 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – start-page: 671 year: 2022 end-page: 679 – volume: 54 start-page: 1 issue: 6 year: 2021 end-page: 25 article-title: K‐Nearest Neighbour Classifiers‐a Tutorial publication-title: ACM Computing Surveys (CSUR) – volume: 58 start-page: 1 issue: 4 year: 2025 end-page: 88 article-title: A Comprehensive and Systematic Literature Review on Intrusion Detection Systems in the Internet of Medical Things: Current Status, Challenges, and Opportunities publication-title: Artificial Intelligence Review – volume: 12 start-page: 77 issue: 1 year: 2023 end-page: 97 article-title: An Enhanced Harris Hawk Optimizer Based on Extreme Learning Machine for Feature Selection publication-title: Progress in Artificial Intelligence – volume: 12 start-page: 4925 year: 2024 end-page: 4937 article-title: A Novel Intrusion Detection System Based on Artificial Neural Network and Genetic Algorithm With a New Dimensionality Reduction Technique for UAV Communication publication-title: IEEE Access – volume: 7 start-page: 51782 year: 2019 end-page: 51789 article-title: Analysis of the GPS Spoofing Vulnerability in the Drone 3DR Solo publication-title: IEEE Access – volume: 35 issue: 23 year: 2023 article-title: Harris Hawk Optimization Trained Artificial Neural Network for Anomaly Based Intrusion Detection System publication-title: Concurrency and Computation: Practice and Experience – volume: 22 year: 2023 article-title: Intrusion Detection System for Large‐Scale IoT NetFlow Networks Using Machine Learning With Modified Arithmetic Optimization Algorithm publication-title: Internet of Things – volume: 176 year: 2021 article-title: An Efficient Hybrid Sine‐Cosine Harris Hawks Optimization for Low and High‐Dimensional Feature Selection publication-title: Expert Systems With Applications – volume: 27 start-page: 495 year: 2016 end-page: 513 article-title: Multi‐Verse Optimizer: A Nature‐Inspired Algorithm for Global Optimization publication-title: Neural Computing and Applications – volume: 16 year: 2024 article-title: UAV Networks DoS Attacks Detection Using Artificial Intelligence Based on Weighted Machine Learning publication-title: Results in Control and Optimization – volume: 27 start-page: 1 year: 2024 end-page: 14 article-title: Autonomous UAV‐Based Surveillance System for Multi‐Target Detection Using Reinforcement Learning publication-title: Cluster Computing – volume: 8 start-page: 186638 year: 2020 end-page: 186652 article-title: An Improved Harris Hawks Optimization Algorithm With Simulated Annealing for Feature Selection in the Medical Field publication-title: IEEE Access – volume: 25 start-page: 5277 year: 2021 end-page: 5298 article-title: An Improved Differential Evolution Algorithm and Its Application in Optimization Problem publication-title: Soft Computing – volume: 28 start-page: 1156 year: 2023 end-page: 1176 article-title: A Survey on Evolutionary Multiobjective Feature Selection in Classification: Approaches, Applications, and Challenges publication-title: IEEE Transactions on Evolutionary Computation – volume: 97 start-page: 849 year: 2019 end-page: 872 article-title: Harris Hawks Optimization: Algorithm and Applications publication-title: Future Generation Computer Systems – start-page: 254 year: 2024 end-page: 265 – volume: 6 start-page: 81 issue: 1 year: 2023 end-page: 100 article-title: Novel Correlation‐Based Feature Selection Approach Using Manta Ray Foraging Optimization publication-title: Computer and Knowledge Engineering – volume: 24 year: 2023 article-title: A Multi‐Objective Mutation‐Based Dynamic Harris Hawks Optimization for Botnet Detection in IoT publication-title: Internet of Things – volume: 9 start-page: 57243 year: 2021 end-page: 57270 article-title: Internet of Drones Security and Privacy Issues: Taxonomy and Open Challenges publication-title: IEEE Access – volume: 228 year: 2022 article-title: A New Hybrid Feature Selection Based on Improved Equilibrium Optimization publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 82 start-page: 40309 issue: 26 year: 2023 end-page: 40343 article-title: A Novel Binary Horse Herd Optimization Algorithm for Feature Selection Problem publication-title: Multimedia Tools and Applications – start-page: 1 year: 2024 end-page: 6 – volume: 34 issue: 11 year: 2022 article-title: Network Intrusion Detection Based on Ensemble Classification and Feature Selection Method for Cloud Computing publication-title: Concurrency and Computation: Practice and Experience – start-page: 239 year: 2022 end-page: 250 – volume: 27 start-page: 14417 issue: 10 year: 2024 end-page: 14449 article-title: BOC‐PDO: An Intrusion Detection Model Using Binary Opposition Cellular Prairie Dog Optimization Algorithm publication-title: Cluster Computing – volume: 75 year: 2024 article-title: IBJA: An Improved Binary DJaya Algorithm for Feature Selection publication-title: Journal of Computational Science – volume: 191 year: 2020 article-title: Equilibrium Optimizer: A Novel Optimization Algorithm publication-title: Knowledge‐Based Systems – volume: 53 start-page: 13224 issue: 11 year: 2023 end-page: 13260 article-title: Opposition‐Based Sine Cosine Optimizer Utilizing Refraction Learning and Variable Neighborhood Search for Feature Selection publication-title: Applied Intelligence – volume: 25 start-page: 1981 issue: 3 year: 2022 end-page: 2005 article-title: An Efficient Harris Hawk Optimization Algorithm for Solving the Travelling Salesman Problem publication-title: Cluster Computing – volume: 35 start-page: 19427 issue: 26 year: 2023 end-page: 19451 article-title: Binary Improved White Shark Algorithm for Intrusion Detection Systems publication-title: Neural Computing and Applications – volume: 11 year: 2025 article-title: DeepSpoofNet: A Framework for Securing UAVs Against GPS Spoofing Attacks publication-title: PeerJ Computer Science – volume: 114 start-page: 163 year: 2017 end-page: 191 article-title: Salp Swarm Algorithm: A Bio‐Inspired Optimizer for Engineering Design Problems publication-title: Advances in Engineering Software – volume: 27 start-page: 1053 year: 2016 end-page: 1073 article-title: Dragonfly Algorithm: A New Meta‐Heuristic Optimization Technique for Solving Single‐Objective, Discrete, and Multi‐Objective Problems publication-title: Neural Computing and Applications – volume: 11 start-page: 20970 issue: 12 year: 2024 end-page: 20982 article-title: Intrusion Detection for Unmanned Aerial Vehicles Security: A Tiny Machine Learning Model publication-title: IEEE Internet of Things Journal – volume: 179 start-page: 2232 issue: 13 year: 2009 end-page: 2248 article-title: GSA: A Gravitational Search Algorithm publication-title: Information Sciences – volume: 25 year: 2024 article-title: An Effective Networks Intrusion Detection Approach Based on Hybrid Harris Hawks and Multi‐Layer Perceptron publication-title: Egyptian Informatics Journal – volume: 2 start-page: 308 issue: 4 year: 2020 end-page: 313 article-title: Analysis of Intrusion Detection and Prevention Systems publication-title: International Journal of Advanced Academic Studies – volume: 17 start-page: 1 year: 2024 end-page: 35 article-title: An Improved Harris Hawks Optimizer Based Feature Selection Technique With Effective Two‐Staged Classifier for Network Intrusion Detection System publication-title: Peer‐To‐Peer Networking and Applications – volume: 69 start-page: 46 year: 2014 end-page: 61 article-title: Grey Wolf Optimizer publication-title: Advances in Engineering Software – volume: 34 start-page: 10885 issue: 13 year: 2022 end-page: 10900 article-title: High‐Performance Intrusion Detection System for Networked UAVs via Deep Learning publication-title: Neural Computing and Applications – volume: 780 start-page: 43 issue: 1 year: 2019 end-page: 53 article-title: Evolutionary Algorithms and Neural Networks publication-title: Studies in Computational Intelligence – volume: 35 issue: 23 year: 2023 article-title: Feature Selection‐Integrated Classifier Optimisation Algorithm for Network Intrusion Detection publication-title: Concurrency and Computation: Practice and Experience – volume: 10 issue: 13 year: 2021 article-title: Machine‐Learning‐Enabled Intrusion Detection System for Cellular Connected UAV Networks publication-title: Electronics – volume: 11 start-page: 34826 year: 2024 end-page: 34847 article-title: A Survey on Security of Unmanned Aerial Vehicle Systems: Attacks and Countermeasures publication-title: IEEE Internet of Things Journal – volume: 95 start-page: 51 year: 2016 end-page: 67 article-title: The Whale Optimization Algorithm publication-title: Advances in Engineering Software – year: 2020 – volume: 8 start-page: 56847 year: 2020 end-page: 56854 article-title: A Novel Feature Selection Method Using Whale Optimization Algorithm and Genetic Operators for Intrusion Detection System in Wireless Mesh Network publication-title: IEEE Access – volume: 34 issue: 26 year: 2022 article-title: Performance Evaluation of Machine Learning Models for Distributed Denial of Service Attack Detection Using Improved Feature Selection and Hyper‐Parameter Optimization Techniques publication-title: Concurrency and Computation: Practice and Experience – volume: 9 start-page: 26766 year: 2021 end-page: 26791 article-title: Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009‐2019) publication-title: IEEE Access – volume: 18 year: 2023 article-title: UAV‐Based Internet of Vehicles: A Systematic Literature Review publication-title: Intelligent Systems With Applications – ident: e_1_2_9_48_1 – ident: e_1_2_9_42_1 doi: 10.1016/j.eij.2023.100423 – ident: e_1_2_9_26_1 doi: 10.1007/s00521‐015‐1920‐1 – ident: e_1_2_9_30_1 doi: 10.1109/ACCESS.2020.3029728 – ident: e_1_2_9_33_1 doi: 10.1016/j.eswa.2021.114778 – ident: e_1_2_9_12_1 doi: 10.1016/j.iot.2023.100819 – ident: e_1_2_9_13_1 doi: 10.33545/27068919.2020.v2.i4e.451 – ident: e_1_2_9_20_1 doi: 10.22067/CKE.2023.79741.1071 – ident: e_1_2_9_43_1 doi: 10.1007/s10586-024-04674-2 – ident: e_1_2_9_23_1 doi: 10.1016/j.ins.2009.03.004 – ident: e_1_2_9_25_1 doi: 10.1016/j.advengsoft.2017.07.002 – ident: e_1_2_9_36_1 doi: 10.1002/cpe.7771 – ident: e_1_2_9_19_1 doi: 10.1016/j.chemolab.2022.104618 – ident: e_1_2_9_27_1 doi: 10.1007/s00500‐020‐05527‐x – ident: e_1_2_9_7_1 doi: 10.1109/ACCESS.2021.3072030 – ident: e_1_2_9_29_1 doi: 10.1016/j.future.2019.02.028 – ident: e_1_2_9_31_1 doi: 10.1007/s13748‐023‐00298‐6 – ident: e_1_2_9_15_1 doi: 10.1109/TEVC.2023.3292527 – ident: e_1_2_9_37_1 doi: 10.1109/ICCDS60734.2024.10560411 – ident: e_1_2_9_38_1 doi: 10.1007/s10586-021-03304-5 – ident: e_1_2_9_16_1 doi: 10.1007/s10489-022-04201-z – ident: e_1_2_9_34_1 doi: 10.1016/j.iot.2023.100952 – ident: e_1_2_9_11_1 doi: 10.1002/cpe.6838 – ident: e_1_2_9_14_1 doi: 10.1002/cpe.7807 – ident: e_1_2_9_22_1 doi: 10.1016/j.knosys.2019.105190 – ident: e_1_2_9_28_1 doi: 10.1016/j.advengsoft.2013.12.007 – volume: 17 start-page: 1 year: 2024 ident: e_1_2_9_35_1 article-title: An Improved Harris Hawks Optimizer Based Feature Selection Technique With Effective Two‐Staged Classifier for Network Intrusion Detection System publication-title: Peer‐To‐Peer Networking and Applications – ident: e_1_2_9_49_1 doi: 10.3390/electronics10131549 – ident: e_1_2_9_52_1 doi: 10.7717/peerj-cs.2714 – ident: e_1_2_9_45_1 doi: 10.1145/3459665 – ident: e_1_2_9_40_1 doi: 10.1007/s00521-022-07015-9 – ident: e_1_2_9_41_1 doi: 10.1007/978-3-031-66965-1_25 – ident: e_1_2_9_47_1 doi: 10.1007/s00521-015-1870-7 – ident: e_1_2_9_18_1 doi: 10.1002/cpe.7299 – ident: e_1_2_9_39_1 doi: 10.1007/978-981-19-0332-8_17 – ident: e_1_2_9_3_1 doi: 10.1016/j.iswa.2023.200226 – ident: e_1_2_9_6_1 doi: 10.1109/JIOT.2024.3429111 – ident: e_1_2_9_9_1 doi: 10.1007/s10462-024-11101-w – ident: e_1_2_9_21_1 doi: 10.1016/j.advengsoft.2016.01.008 – ident: e_1_2_9_50_1 doi: 10.1109/JIOT.2024.3360231 – ident: e_1_2_9_51_1 doi: 10.1016/j.rico.2024.100457 – ident: e_1_2_9_44_1 doi: 10.1007/s00521-023-08772-x – ident: e_1_2_9_32_1 doi: 10.1016/j.jocs.2023.102201 – ident: e_1_2_9_10_1 doi: 10.1109/ACCESS.2020.2978035 – ident: e_1_2_9_8_1 doi: 10.1109/ACCESS.2019.2911526 – ident: e_1_2_9_17_1 doi: 10.1007/s11042‐023‐15023‐7 – ident: e_1_2_9_2_1 doi: 10.1007/s10586‐024‐04452‐0 – start-page: 671 volume-title: Key Technologies of the Cooperative Combat of Manned Aerial Vehicle and Unmanned Aerial Vehicle year: 2022 ident: e_1_2_9_4_1 – volume: 780 start-page: 43 issue: 1 year: 2019 ident: e_1_2_9_24_1 article-title: Evolutionary Algorithms and Neural Networks publication-title: Studies in Computational Intelligence – ident: e_1_2_9_5_1 doi: 10.1109/ACCESS.2024.3349469 – ident: e_1_2_9_46_1 doi: 10.1109/ACCESS.2021.3056407 |
| SSID | ssj0011031 |
| Score | 2.408483 |
| Snippet | ABSTRACT
Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and... Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and control.... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Ablation Accuracy Algorithms ambush‐based operator Classification Datasets Drone aircraft Effectiveness Feature selection Harris hawks optimization algorithm intrusion detection system Intrusion detection systems Machine learning Optimization Rank tests Sensitivity analysis UAV networks Unmanned aerial vehicles |
| Title | Enhancing the Harris Hawks Optimization Algorithm With Ambush‐Based Operators for Feature Selection in UAV‐Based Intrusion Detection Systems |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.70207 https://www.proquest.com/docview/3242365546 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KJy--xfpiEQ9eUpPNbjbFU62VKvhArfYghOyjVrRpaVoET_6E_kZ_ibObpD5AEC9JILMh2Z2Z_Sa78w1CuzomjHAIcrxAuw5VmjlVCFMcwcKOIQAngpsE57PzoNmip23WLqGDIhcm44eY_nAzlmH9tTHwWKT7n6ShcqArHMCOyST3_MCGU1dT6ijPlC_IuFKJ4wJqL1iFXLI_bfl9LvoEmF9hqp1njufRffGG2faSp8p4JCry9Qd54z8_YQHN5fgT1zKFWUQlnSyh-aK2A85NfRlNGknXUHEkDxggIm7GQ_AGcHp5SvEFuJlenr-Ja88P_eHjqNvDd3DEtZ4Yp933t8khTI8KRLVdx08xgGNs8OZ4qPG1Lb5jWj8muFW7nYqfJCYHxNw40qNcJOdUX0Gt48ZNvenk1RscCSEVdxREMox3lIIAiVcli2NFRNAhTAVcceFpNwilkMLXnqCeUCoMaFwNY59Irlwp_VU0k_QTvYawwSS-RXY-pT7tVL1QUeEKJimokivLaKcYx2iQkXREGR0ziaCPI9vHZbRZjHCU22kaWTgZmJ16ZbRnh-r3B0T1y4a9WP-76AaaJaZgsFnGYptoBjpRbwGKGYltq64fryfwrA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFH8q5TAuDNgmCgMsxGGXdIljx6nEpZRWLaxlgnXbBUXxn67TaDr1j5A48RH6GfkkPDtJyyZNmrgkkfIcOc9-9u_Zfr8H8M6klFOBTk4QGd9j2nCvgW6KJ3k8sgTgVAob4NwfRN0h-3TOzyvwvoyFyfkh1gtu1jLceG0N3C5IH25YQ9W1qQtEO-IBPGQR-ikWEn1dk0cFNoFBzpZKPR9xe8kr5NPDddGbs9EGYv4LVN1M09mG72Ud8wMmV_XlQtbVr1v0jf_7E0_gcQFBSTPvM0-hYrJnsF2mdyCFte_Aqp2NLRtHdkEQJZJuOsMBAW8_r-bkC440kyKEkzR_XExnl4vxhJzhlTQncjkf__m9-oAzpEZR47by5wTxMbGQczkz5JvLv2NLX2Zk2Dxdi_cyGwZiX3w0i0KkoFXfhWGnfdLqekUCB0-hVyU8jc4MFyOt0UcSDcXTVFMZjSjXkdBCBsaPYiWVDE0gWSC1jiOWNuI0pEpoX6lwD6rZNDPPgVhYEjpwFzIWslEjiDWTvuSKYW_yVQ3elg2ZXOc8HUnOyEwT1HHidFyD_bKJk8JU54lDlJE9rFeDA9dWd38gaR233cOL-4u-ga3uSf8oOeoNPr-ER9TmD7a7WnwfqqhQ8wpBzUK-dn33L7pl9M0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VIlVcCFAqQgusqh64OLXXu15b6iU0iVJKSwWk7aWyvD9uqhInyo-QOPEIfUaehNm1ndJKlRAX25JnLXtnZvcb7843ADsmo5wKDHKCyPge04Z7CYYpnuRxbgnAqRQ2wfnoOOoP2Mdzfr4Ce3UuTMkPsfzhZj3DjdfWwc1E57u3rKFqYloC0Y54BI8ZT2K7oa_zZUkeFdgCBiVbKvV8xO01r5BPd5dN785GtxDzb6DqZppeAy7qdyw3mFy3FnPZUj_v0Tf-70c8g6cVBCXt0maew4opXkCjLu9AKm9fh5tuMbRsHMUlQZRI-tkUBwQ8_biekc840oyqFE7S_n45nl7NhyNyhkfSHsnFbPj7180HnCE1ihq3lD8jiI-JhZyLqSFfXf0d2_qqIIP26VL8oLBpIPZGx8wrkYpW_SUMet1v-32vKuDgKYyqhKcxmOEi1xpjJJEonmWayiinXEdCCxkYP4qVVDI0gWSB1DqOWJbEWUiV0L5S4QasFuPCvAJiYUnowF3IWMjyJIg1k77kiqE1-aoJ27Ui00nJ05GWjMw0xT5OXR83YatWcVq56ix1iDKym_Wa8N7p6uEHpPsnXXfx-t9F38HaSaeXfjo4PtyEJ9SWD7aLWnwLVrE_zRvENHP51pnuH3Ks9FE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Harris+Hawks+Optimization+Algorithm+With+Ambush%E2%80%90Based+Operators+for+Feature+Selection+in+UAV%E2%80%90Based+Intrusion+Detection+Systems&rft.jtitle=Concurrency+and+computation&rft.au=Zabihullah+Musawi%2C+Sayed&rft.au=Farshi%2C+Mohammad&rft.au=Ebrahimi+Mood%2C+Sepehr&rft.au=Souri%2C+Alireza&rft.date=2025-09-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=21-22&rft_id=info:doi/10.1002%2Fcpe.70207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_70207 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |