Enhancing the Harris Hawks Optimization Algorithm With Ambush‐Based Operators for Feature Selection in UAV‐Based Intrusion Detection Systems

ABSTRACT Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and control. However, the high dimensionality of these datasets increases computational load and hampers real‐time performance. In Unmanned Aerial V...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 37; no. 21-22
Main Authors Zabihullah Musawi, Sayed, Farshi, Mohammad, Ebrahimi Mood, Sepehr, Souri, Alireza
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 25.09.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.70207

Cover

Abstract ABSTRACT Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and control. However, the high dimensionality of these datasets increases computational load and hampers real‐time performance. In Unmanned Aerial Vehicle (UAV) systems, feature selection is critical for reducing complexity and enhancing processing efficiency, thereby enabling faster and more accurate decision‐making. In this study, we enhance the Harris Hawks Optimization (HHO) algorithm by introducing a novel ambush‐based operator to regulate selection pressure, resulting in an improved variant named AMHHO. The effectiveness of AMHHO is validated using IEEE CEC2019 benchmark functions and compared against several well‐known optimization algorithms. To further evaluate its robustness, ablation studies and sensitivity analyses are conducted to identify the most efficient AMHHO variants. Furthermore, a binary version of AMHHO (BAMHHO) is applied to ten high‐dimensional datasets and the UAV‐IDS‐2020 dataset for feature selection and classification tasks. BAMHHO is assessed based on classification accuracy, fitness value, feature selection ratio, and computation time, demonstrating superior performance across multiple datasets and outperforming state‐of‐the‐art methods. To rigorously evaluate the statistical significance of its results, Wilcoxon Signed‐Rank test is applied to compare BAMHHO with other well‐known algorithms, confirming the statistical superiority of BAMHHO. In conclusion, BAMHHO not only achieves effective performance on high‐dimensional datasets but also achieves 100% classification accuracy on the UAV‐IDS‐2020 dataset, all while maintaining an optimal balance between feature reduction and computational efficiency. These findings confirm BAMHHO's effectiveness in handling high‐dimensional data and highlight its potential for application in UAV‐based intrusion detection systems.
AbstractList ABSTRACT Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and control. However, the high dimensionality of these datasets increases computational load and hampers real‐time performance. In Unmanned Aerial Vehicle (UAV) systems, feature selection is critical for reducing complexity and enhancing processing efficiency, thereby enabling faster and more accurate decision‐making. In this study, we enhance the Harris Hawks Optimization (HHO) algorithm by introducing a novel ambush‐based operator to regulate selection pressure, resulting in an improved variant named AMHHO. The effectiveness of AMHHO is validated using IEEE CEC2019 benchmark functions and compared against several well‐known optimization algorithms. To further evaluate its robustness, ablation studies and sensitivity analyses are conducted to identify the most efficient AMHHO variants. Furthermore, a binary version of AMHHO (BAMHHO) is applied to ten high‐dimensional datasets and the UAV‐IDS‐2020 dataset for feature selection and classification tasks. BAMHHO is assessed based on classification accuracy, fitness value, feature selection ratio, and computation time, demonstrating superior performance across multiple datasets and outperforming state‐of‐the‐art methods. To rigorously evaluate the statistical significance of its results, Wilcoxon Signed‐Rank test is applied to compare BAMHHO with other well‐known algorithms, confirming the statistical superiority of BAMHHO. In conclusion, BAMHHO not only achieves effective performance on high‐dimensional datasets but also achieves 100% classification accuracy on the UAV‐IDS‐2020 dataset, all while maintaining an optimal balance between feature reduction and computational efficiency. These findings confirm BAMHHO's effectiveness in handling high‐dimensional data and highlight its potential for application in UAV‐based intrusion detection systems.
Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and control. However, the high dimensionality of these datasets increases computational load and hampers real‐time performance. In Unmanned Aerial Vehicle (UAV) systems, feature selection is critical for reducing complexity and enhancing processing efficiency, thereby enabling faster and more accurate decision‐making. In this study, we enhance the Harris Hawks Optimization (HHO) algorithm by introducing a novel ambush‐based operator to regulate selection pressure, resulting in an improved variant named AMHHO. The effectiveness of AMHHO is validated using IEEE CEC2019 benchmark functions and compared against several well‐known optimization algorithms. To further evaluate its robustness, ablation studies and sensitivity analyses are conducted to identify the most efficient AMHHO variants. Furthermore, a binary version of AMHHO (BAMHHO) is applied to ten high‐dimensional datasets and the UAV‐IDS‐2020 dataset for feature selection and classification tasks. BAMHHO is assessed based on classification accuracy, fitness value, feature selection ratio, and computation time, demonstrating superior performance across multiple datasets and outperforming state‐of‐the‐art methods. To rigorously evaluate the statistical significance of its results, Wilcoxon Signed‐Rank test is applied to compare BAMHHO with other well‐known algorithms, confirming the statistical superiority of BAMHHO. In conclusion, BAMHHO not only achieves effective performance on high‐dimensional datasets but also achieves 100% classification accuracy on the UAV‐IDS‐2020 dataset, all while maintaining an optimal balance between feature reduction and computational efficiency. These findings confirm BAMHHO's effectiveness in handling high‐dimensional data and highlight its potential for application in UAV‐based intrusion detection systems.
Author Souri, Alireza
Zabihullah Musawi, Sayed
Farshi, Mohammad
Ebrahimi Mood, Sepehr
Author_xml – sequence: 1
  givenname: Sayed
  surname: Zabihullah Musawi
  fullname: Zabihullah Musawi, Sayed
  organization: Yazd University
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0002-1986-2722
  surname: Farshi
  fullname: Farshi, Mohammad
  email: mfarshi@yazd.ac.ir
  organization: Yazd University
– sequence: 3
  givenname: Sepehr
  surname: Ebrahimi Mood
  fullname: Ebrahimi Mood, Sepehr
  organization: Yazd University
– sequence: 4
  givenname: Alireza
  surname: Souri
  fullname: Souri, Alireza
  organization: Haliç University
BookMark eNp10M1OAjEQB_DGYCKoB9-giScPSNvdbeGICEJiogl-HDfddlaqbBfbbgiefASe0SdxZQk3L50m85uZ5N9BLVtaQOiCkmtKCOupFVwLwog4Qm2aRKxLeBS3Dn_GT1DH-3dCKCURbaPt2C6kVca-4bAAPJXOGV-X9YfHD6tgCvMlgyktHi7fSmfCosCv9YuHRVb5xc_39kZ60DUFJ0PpPM5LhycgQ-UAz2EJajdtLH4evhz4zAZX-b_GLYQ9mW98gMKfoeNcLj2c7-spep6Mn0bT7v3D3Ww0vO8qlgxEVyeCJyLXmnMuBiqRUrOM5yzRXGiRUSC8rzKVRUCzmGZa93ksB30ZMSU0USo6RZfN3pUrPyvwIX0vK2frk2nEYhbxJIl5ra4apVzpvYM8XTlTSLdJKUn_Ak_rwNNd4LXtNXZtlrD5H6ajx3Ez8Qua3ogj
Cites_doi 10.1016/j.eij.2023.100423
10.1007/s00521‐015‐1920‐1
10.1109/ACCESS.2020.3029728
10.1016/j.eswa.2021.114778
10.1016/j.iot.2023.100819
10.33545/27068919.2020.v2.i4e.451
10.22067/CKE.2023.79741.1071
10.1007/s10586-024-04674-2
10.1016/j.ins.2009.03.004
10.1016/j.advengsoft.2017.07.002
10.1002/cpe.7771
10.1016/j.chemolab.2022.104618
10.1007/s00500‐020‐05527‐x
10.1109/ACCESS.2021.3072030
10.1016/j.future.2019.02.028
10.1007/s13748‐023‐00298‐6
10.1109/TEVC.2023.3292527
10.1109/ICCDS60734.2024.10560411
10.1007/s10586-021-03304-5
10.1007/s10489-022-04201-z
10.1016/j.iot.2023.100952
10.1002/cpe.6838
10.1002/cpe.7807
10.1016/j.knosys.2019.105190
10.1016/j.advengsoft.2013.12.007
10.3390/electronics10131549
10.7717/peerj-cs.2714
10.1145/3459665
10.1007/s00521-022-07015-9
10.1007/978-3-031-66965-1_25
10.1007/s00521-015-1870-7
10.1002/cpe.7299
10.1007/978-981-19-0332-8_17
10.1016/j.iswa.2023.200226
10.1109/JIOT.2024.3429111
10.1007/s10462-024-11101-w
10.1016/j.advengsoft.2016.01.008
10.1109/JIOT.2024.3360231
10.1016/j.rico.2024.100457
10.1007/s00521-023-08772-x
10.1016/j.jocs.2023.102201
10.1109/ACCESS.2020.2978035
10.1109/ACCESS.2019.2911526
10.1007/s11042‐023‐15023‐7
10.1007/s10586‐024‐04452‐0
10.1109/ACCESS.2024.3349469
10.1109/ACCESS.2021.3056407
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.70207
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_70207
CPE70207
Genre researchArticle
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2597-d57657fdd66679c5aad2b6f25d67d7b1e068cbcb3e1b41bdd864a98a32c7d0cc3
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Sat Aug 23 15:40:28 EDT 2025
Wed Oct 01 05:38:00 EDT 2025
Sat Aug 23 09:20:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21-22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2597-d57657fdd66679c5aad2b6f25d67d7b1e068cbcb3e1b41bdd864a98a32c7d0cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1986-2722
PQID 3242365546
PQPubID 2045170
PageCount 23
ParticipantIDs proquest_journals_3242365546
crossref_primary_10_1002_cpe_70207
wiley_primary_10_1002_cpe_70207_CPE70207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 September 2025
2025-09-25
20250925
PublicationDateYYYYMMDD 2025-09-25
PublicationDate_xml – month: 09
  year: 2025
  text: 25 September 2025
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 9
2023; 53
2021; 25
2019; 7
2023; 35
2023; 12
2019; 97
2023; 18
2023; 6
2014; 69
2022; 25
2016; 95
2009; 179
2024; 75
2024; 11
2024; 12
2025; 58
2024
2025; 11
2024; 16
2017; 114
2024; 17
2023; 82
2019; 780
2020; 8
2023; 24
2021; 54
2021; 10
2023; 22
2020; 2
2023; 28
2022
2020
2020; 191
2022; 34
2021; 176
2024; 25
2024; 27
2016; 27
2022; 228
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_12_1
e_1_2_9_33_1
U N. (e_1_2_9_35_1) 2024; 17
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
Mirjalili S. (e_1_2_9_24_1) 2019; 780
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Wang Y. (e_1_2_9_4_1) 2022
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – start-page: 671
  year: 2022
  end-page: 679
– volume: 54
  start-page: 1
  issue: 6
  year: 2021
  end-page: 25
  article-title: K‐Nearest Neighbour Classifiers‐a Tutorial
  publication-title: ACM Computing Surveys (CSUR)
– volume: 58
  start-page: 1
  issue: 4
  year: 2025
  end-page: 88
  article-title: A Comprehensive and Systematic Literature Review on Intrusion Detection Systems in the Internet of Medical Things: Current Status, Challenges, and Opportunities
  publication-title: Artificial Intelligence Review
– volume: 12
  start-page: 77
  issue: 1
  year: 2023
  end-page: 97
  article-title: An Enhanced Harris Hawk Optimizer Based on Extreme Learning Machine for Feature Selection
  publication-title: Progress in Artificial Intelligence
– volume: 12
  start-page: 4925
  year: 2024
  end-page: 4937
  article-title: A Novel Intrusion Detection System Based on Artificial Neural Network and Genetic Algorithm With a New Dimensionality Reduction Technique for UAV Communication
  publication-title: IEEE Access
– volume: 7
  start-page: 51782
  year: 2019
  end-page: 51789
  article-title: Analysis of the GPS Spoofing Vulnerability in the Drone 3DR Solo
  publication-title: IEEE Access
– volume: 35
  issue: 23
  year: 2023
  article-title: Harris Hawk Optimization Trained Artificial Neural Network for Anomaly Based Intrusion Detection System
  publication-title: Concurrency and Computation: Practice and Experience
– volume: 22
  year: 2023
  article-title: Intrusion Detection System for Large‐Scale IoT NetFlow Networks Using Machine Learning With Modified Arithmetic Optimization Algorithm
  publication-title: Internet of Things
– volume: 176
  year: 2021
  article-title: An Efficient Hybrid Sine‐Cosine Harris Hawks Optimization for Low and High‐Dimensional Feature Selection
  publication-title: Expert Systems With Applications
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  article-title: Multi‐Verse Optimizer: A Nature‐Inspired Algorithm for Global Optimization
  publication-title: Neural Computing and Applications
– volume: 16
  year: 2024
  article-title: UAV Networks DoS Attacks Detection Using Artificial Intelligence Based on Weighted Machine Learning
  publication-title: Results in Control and Optimization
– volume: 27
  start-page: 1
  year: 2024
  end-page: 14
  article-title: Autonomous UAV‐Based Surveillance System for Multi‐Target Detection Using Reinforcement Learning
  publication-title: Cluster Computing
– volume: 8
  start-page: 186638
  year: 2020
  end-page: 186652
  article-title: An Improved Harris Hawks Optimization Algorithm With Simulated Annealing for Feature Selection in the Medical Field
  publication-title: IEEE Access
– volume: 25
  start-page: 5277
  year: 2021
  end-page: 5298
  article-title: An Improved Differential Evolution Algorithm and Its Application in Optimization Problem
  publication-title: Soft Computing
– volume: 28
  start-page: 1156
  year: 2023
  end-page: 1176
  article-title: A Survey on Evolutionary Multiobjective Feature Selection in Classification: Approaches, Applications, and Challenges
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  article-title: Harris Hawks Optimization: Algorithm and Applications
  publication-title: Future Generation Computer Systems
– start-page: 254
  year: 2024
  end-page: 265
– volume: 6
  start-page: 81
  issue: 1
  year: 2023
  end-page: 100
  article-title: Novel Correlation‐Based Feature Selection Approach Using Manta Ray Foraging Optimization
  publication-title: Computer and Knowledge Engineering
– volume: 24
  year: 2023
  article-title: A Multi‐Objective Mutation‐Based Dynamic Harris Hawks Optimization for Botnet Detection in IoT
  publication-title: Internet of Things
– volume: 9
  start-page: 57243
  year: 2021
  end-page: 57270
  article-title: Internet of Drones Security and Privacy Issues: Taxonomy and Open Challenges
  publication-title: IEEE Access
– volume: 228
  year: 2022
  article-title: A New Hybrid Feature Selection Based on Improved Equilibrium Optimization
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 82
  start-page: 40309
  issue: 26
  year: 2023
  end-page: 40343
  article-title: A Novel Binary Horse Herd Optimization Algorithm for Feature Selection Problem
  publication-title: Multimedia Tools and Applications
– start-page: 1
  year: 2024
  end-page: 6
– volume: 34
  issue: 11
  year: 2022
  article-title: Network Intrusion Detection Based on Ensemble Classification and Feature Selection Method for Cloud Computing
  publication-title: Concurrency and Computation: Practice and Experience
– start-page: 239
  year: 2022
  end-page: 250
– volume: 27
  start-page: 14417
  issue: 10
  year: 2024
  end-page: 14449
  article-title: BOC‐PDO: An Intrusion Detection Model Using Binary Opposition Cellular Prairie Dog Optimization Algorithm
  publication-title: Cluster Computing
– volume: 75
  year: 2024
  article-title: IBJA: An Improved Binary DJaya Algorithm for Feature Selection
  publication-title: Journal of Computational Science
– volume: 191
  year: 2020
  article-title: Equilibrium Optimizer: A Novel Optimization Algorithm
  publication-title: Knowledge‐Based Systems
– volume: 53
  start-page: 13224
  issue: 11
  year: 2023
  end-page: 13260
  article-title: Opposition‐Based Sine Cosine Optimizer Utilizing Refraction Learning and Variable Neighborhood Search for Feature Selection
  publication-title: Applied Intelligence
– volume: 25
  start-page: 1981
  issue: 3
  year: 2022
  end-page: 2005
  article-title: An Efficient Harris Hawk Optimization Algorithm for Solving the Travelling Salesman Problem
  publication-title: Cluster Computing
– volume: 35
  start-page: 19427
  issue: 26
  year: 2023
  end-page: 19451
  article-title: Binary Improved White Shark Algorithm for Intrusion Detection Systems
  publication-title: Neural Computing and Applications
– volume: 11
  year: 2025
  article-title: DeepSpoofNet: A Framework for Securing UAVs Against GPS Spoofing Attacks
  publication-title: PeerJ Computer Science
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  article-title: Salp Swarm Algorithm: A Bio‐Inspired Optimizer for Engineering Design Problems
  publication-title: Advances in Engineering Software
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  article-title: Dragonfly Algorithm: A New Meta‐Heuristic Optimization Technique for Solving Single‐Objective, Discrete, and Multi‐Objective Problems
  publication-title: Neural Computing and Applications
– volume: 11
  start-page: 20970
  issue: 12
  year: 2024
  end-page: 20982
  article-title: Intrusion Detection for Unmanned Aerial Vehicles Security: A Tiny Machine Learning Model
  publication-title: IEEE Internet of Things Journal
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  end-page: 2248
  article-title: GSA: A Gravitational Search Algorithm
  publication-title: Information Sciences
– volume: 25
  year: 2024
  article-title: An Effective Networks Intrusion Detection Approach Based on Hybrid Harris Hawks and Multi‐Layer Perceptron
  publication-title: Egyptian Informatics Journal
– volume: 2
  start-page: 308
  issue: 4
  year: 2020
  end-page: 313
  article-title: Analysis of Intrusion Detection and Prevention Systems
  publication-title: International Journal of Advanced Academic Studies
– volume: 17
  start-page: 1
  year: 2024
  end-page: 35
  article-title: An Improved Harris Hawks Optimizer Based Feature Selection Technique With Effective Two‐Staged Classifier for Network Intrusion Detection System
  publication-title: Peer‐To‐Peer Networking and Applications
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  article-title: Grey Wolf Optimizer
  publication-title: Advances in Engineering Software
– volume: 34
  start-page: 10885
  issue: 13
  year: 2022
  end-page: 10900
  article-title: High‐Performance Intrusion Detection System for Networked UAVs via Deep Learning
  publication-title: Neural Computing and Applications
– volume: 780
  start-page: 43
  issue: 1
  year: 2019
  end-page: 53
  article-title: Evolutionary Algorithms and Neural Networks
  publication-title: Studies in Computational Intelligence
– volume: 35
  issue: 23
  year: 2023
  article-title: Feature Selection‐Integrated Classifier Optimisation Algorithm for Network Intrusion Detection
  publication-title: Concurrency and Computation: Practice and Experience
– volume: 10
  issue: 13
  year: 2021
  article-title: Machine‐Learning‐Enabled Intrusion Detection System for Cellular Connected UAV Networks
  publication-title: Electronics
– volume: 11
  start-page: 34826
  year: 2024
  end-page: 34847
  article-title: A Survey on Security of Unmanned Aerial Vehicle Systems: Attacks and Countermeasures
  publication-title: IEEE Internet of Things Journal
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  article-title: The Whale Optimization Algorithm
  publication-title: Advances in Engineering Software
– year: 2020
– volume: 8
  start-page: 56847
  year: 2020
  end-page: 56854
  article-title: A Novel Feature Selection Method Using Whale Optimization Algorithm and Genetic Operators for Intrusion Detection System in Wireless Mesh Network
  publication-title: IEEE Access
– volume: 34
  issue: 26
  year: 2022
  article-title: Performance Evaluation of Machine Learning Models for Distributed Denial of Service Attack Detection Using Improved Feature Selection and Hyper‐Parameter Optimization Techniques
  publication-title: Concurrency and Computation: Practice and Experience
– volume: 9
  start-page: 26766
  year: 2021
  end-page: 26791
  article-title: Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009‐2019)
  publication-title: IEEE Access
– volume: 18
  year: 2023
  article-title: UAV‐Based Internet of Vehicles: A Systematic Literature Review
  publication-title: Intelligent Systems With Applications
– ident: e_1_2_9_48_1
– ident: e_1_2_9_42_1
  doi: 10.1016/j.eij.2023.100423
– ident: e_1_2_9_26_1
  doi: 10.1007/s00521‐015‐1920‐1
– ident: e_1_2_9_30_1
  doi: 10.1109/ACCESS.2020.3029728
– ident: e_1_2_9_33_1
  doi: 10.1016/j.eswa.2021.114778
– ident: e_1_2_9_12_1
  doi: 10.1016/j.iot.2023.100819
– ident: e_1_2_9_13_1
  doi: 10.33545/27068919.2020.v2.i4e.451
– ident: e_1_2_9_20_1
  doi: 10.22067/CKE.2023.79741.1071
– ident: e_1_2_9_43_1
  doi: 10.1007/s10586-024-04674-2
– ident: e_1_2_9_23_1
  doi: 10.1016/j.ins.2009.03.004
– ident: e_1_2_9_25_1
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: e_1_2_9_36_1
  doi: 10.1002/cpe.7771
– ident: e_1_2_9_19_1
  doi: 10.1016/j.chemolab.2022.104618
– ident: e_1_2_9_27_1
  doi: 10.1007/s00500‐020‐05527‐x
– ident: e_1_2_9_7_1
  doi: 10.1109/ACCESS.2021.3072030
– ident: e_1_2_9_29_1
  doi: 10.1016/j.future.2019.02.028
– ident: e_1_2_9_31_1
  doi: 10.1007/s13748‐023‐00298‐6
– ident: e_1_2_9_15_1
  doi: 10.1109/TEVC.2023.3292527
– ident: e_1_2_9_37_1
  doi: 10.1109/ICCDS60734.2024.10560411
– ident: e_1_2_9_38_1
  doi: 10.1007/s10586-021-03304-5
– ident: e_1_2_9_16_1
  doi: 10.1007/s10489-022-04201-z
– ident: e_1_2_9_34_1
  doi: 10.1016/j.iot.2023.100952
– ident: e_1_2_9_11_1
  doi: 10.1002/cpe.6838
– ident: e_1_2_9_14_1
  doi: 10.1002/cpe.7807
– ident: e_1_2_9_22_1
  doi: 10.1016/j.knosys.2019.105190
– ident: e_1_2_9_28_1
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 17
  start-page: 1
  year: 2024
  ident: e_1_2_9_35_1
  article-title: An Improved Harris Hawks Optimizer Based Feature Selection Technique With Effective Two‐Staged Classifier for Network Intrusion Detection System
  publication-title: Peer‐To‐Peer Networking and Applications
– ident: e_1_2_9_49_1
  doi: 10.3390/electronics10131549
– ident: e_1_2_9_52_1
  doi: 10.7717/peerj-cs.2714
– ident: e_1_2_9_45_1
  doi: 10.1145/3459665
– ident: e_1_2_9_40_1
  doi: 10.1007/s00521-022-07015-9
– ident: e_1_2_9_41_1
  doi: 10.1007/978-3-031-66965-1_25
– ident: e_1_2_9_47_1
  doi: 10.1007/s00521-015-1870-7
– ident: e_1_2_9_18_1
  doi: 10.1002/cpe.7299
– ident: e_1_2_9_39_1
  doi: 10.1007/978-981-19-0332-8_17
– ident: e_1_2_9_3_1
  doi: 10.1016/j.iswa.2023.200226
– ident: e_1_2_9_6_1
  doi: 10.1109/JIOT.2024.3429111
– ident: e_1_2_9_9_1
  doi: 10.1007/s10462-024-11101-w
– ident: e_1_2_9_21_1
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: e_1_2_9_50_1
  doi: 10.1109/JIOT.2024.3360231
– ident: e_1_2_9_51_1
  doi: 10.1016/j.rico.2024.100457
– ident: e_1_2_9_44_1
  doi: 10.1007/s00521-023-08772-x
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jocs.2023.102201
– ident: e_1_2_9_10_1
  doi: 10.1109/ACCESS.2020.2978035
– ident: e_1_2_9_8_1
  doi: 10.1109/ACCESS.2019.2911526
– ident: e_1_2_9_17_1
  doi: 10.1007/s11042‐023‐15023‐7
– ident: e_1_2_9_2_1
  doi: 10.1007/s10586‐024‐04452‐0
– start-page: 671
  volume-title: Key Technologies of the Cooperative Combat of Manned Aerial Vehicle and Unmanned Aerial Vehicle
  year: 2022
  ident: e_1_2_9_4_1
– volume: 780
  start-page: 43
  issue: 1
  year: 2019
  ident: e_1_2_9_24_1
  article-title: Evolutionary Algorithms and Neural Networks
  publication-title: Studies in Computational Intelligence
– ident: e_1_2_9_5_1
  doi: 10.1109/ACCESS.2024.3349469
– ident: e_1_2_9_46_1
  doi: 10.1109/ACCESS.2021.3056407
SSID ssj0011031
Score 2.408483
Snippet ABSTRACT Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and...
Autonomous vehicles (AVs), including drones, rely on sensors, machine learning algorithms, and large datasets for perception, decision‐making, and control....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Ablation
Accuracy
Algorithms
ambush‐based operator
Classification
Datasets
Drone aircraft
Effectiveness
Feature selection
Harris hawks optimization algorithm
intrusion detection system
Intrusion detection systems
Machine learning
Optimization
Rank tests
Sensitivity analysis
UAV networks
Unmanned aerial vehicles
Title Enhancing the Harris Hawks Optimization Algorithm With Ambush‐Based Operators for Feature Selection in UAV‐Based Intrusion Detection Systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.70207
https://www.proquest.com/docview/3242365546
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KJy--xfpiEQ9eUpPNbjbFU62VKvhArfYghOyjVrRpaVoET_6E_kZ_ibObpD5AEC9JILMh2Z2Z_Sa78w1CuzomjHAIcrxAuw5VmjlVCFMcwcKOIQAngpsE57PzoNmip23WLqGDIhcm44eY_nAzlmH9tTHwWKT7n6ShcqArHMCOyST3_MCGU1dT6ijPlC_IuFKJ4wJqL1iFXLI_bfl9LvoEmF9hqp1njufRffGG2faSp8p4JCry9Qd54z8_YQHN5fgT1zKFWUQlnSyh-aK2A85NfRlNGknXUHEkDxggIm7GQ_AGcHp5SvEFuJlenr-Ja88P_eHjqNvDd3DEtZ4Yp933t8khTI8KRLVdx08xgGNs8OZ4qPG1Lb5jWj8muFW7nYqfJCYHxNw40qNcJOdUX0Gt48ZNvenk1RscCSEVdxREMox3lIIAiVcli2NFRNAhTAVcceFpNwilkMLXnqCeUCoMaFwNY59Irlwp_VU0k_QTvYawwSS-RXY-pT7tVL1QUeEKJimokivLaKcYx2iQkXREGR0ziaCPI9vHZbRZjHCU22kaWTgZmJ16ZbRnh-r3B0T1y4a9WP-76AaaJaZgsFnGYptoBjpRbwGKGYltq64fryfwrA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFH8q5TAuDNgmCgMsxGGXdIljx6nEpZRWLaxlgnXbBUXxn67TaDr1j5A48RH6GfkkPDtJyyZNmrgkkfIcOc9-9u_Zfr8H8M6klFOBTk4QGd9j2nCvgW6KJ3k8sgTgVAob4NwfRN0h-3TOzyvwvoyFyfkh1gtu1jLceG0N3C5IH25YQ9W1qQtEO-IBPGQR-ikWEn1dk0cFNoFBzpZKPR9xe8kr5NPDddGbs9EGYv4LVN1M09mG72Ud8wMmV_XlQtbVr1v0jf_7E0_gcQFBSTPvM0-hYrJnsF2mdyCFte_Aqp2NLRtHdkEQJZJuOsMBAW8_r-bkC440kyKEkzR_XExnl4vxhJzhlTQncjkf__m9-oAzpEZR47by5wTxMbGQczkz5JvLv2NLX2Zk2Dxdi_cyGwZiX3w0i0KkoFXfhWGnfdLqekUCB0-hVyU8jc4MFyOt0UcSDcXTVFMZjSjXkdBCBsaPYiWVDE0gWSC1jiOWNuI0pEpoX6lwD6rZNDPPgVhYEjpwFzIWslEjiDWTvuSKYW_yVQ3elg2ZXOc8HUnOyEwT1HHidFyD_bKJk8JU54lDlJE9rFeDA9dWd38gaR233cOL-4u-ga3uSf8oOeoNPr-ER9TmD7a7WnwfqqhQ8wpBzUK-dn33L7pl9M0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VIlVcCFAqQgusqh64OLXXu15b6iU0iVJKSwWk7aWyvD9uqhInyo-QOPEIfUaehNm1ndJKlRAX25JnLXtnZvcb7843ADsmo5wKDHKCyPge04Z7CYYpnuRxbgnAqRQ2wfnoOOoP2Mdzfr4Ce3UuTMkPsfzhZj3DjdfWwc1E57u3rKFqYloC0Y54BI8ZT2K7oa_zZUkeFdgCBiVbKvV8xO01r5BPd5dN785GtxDzb6DqZppeAy7qdyw3mFy3FnPZUj_v0Tf-70c8g6cVBCXt0maew4opXkCjLu9AKm9fh5tuMbRsHMUlQZRI-tkUBwQ8_biekc840oyqFE7S_n45nl7NhyNyhkfSHsnFbPj7180HnCE1ihq3lD8jiI-JhZyLqSFfXf0d2_qqIIP26VL8oLBpIPZGx8wrkYpW_SUMet1v-32vKuDgKYyqhKcxmOEi1xpjJJEonmWayiinXEdCCxkYP4qVVDI0gWSB1DqOWJbEWUiV0L5S4QasFuPCvAJiYUnowF3IWMjyJIg1k77kiqE1-aoJ27Ui00nJ05GWjMw0xT5OXR83YatWcVq56ix1iDKym_Wa8N7p6uEHpPsnXXfx-t9F38HaSaeXfjo4PtyEJ9SWD7aLWnwLVrE_zRvENHP51pnuH3Ks9FE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Harris+Hawks+Optimization+Algorithm+With+Ambush%E2%80%90Based+Operators+for+Feature+Selection+in+UAV%E2%80%90Based+Intrusion+Detection+Systems&rft.jtitle=Concurrency+and+computation&rft.au=Zabihullah+Musawi%2C+Sayed&rft.au=Farshi%2C+Mohammad&rft.au=Ebrahimi+Mood%2C+Sepehr&rft.au=Souri%2C+Alireza&rft.date=2025-09-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=21-22&rft_id=info:doi/10.1002%2Fcpe.70207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_70207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon