A DEM Parameter Calibration Method Based on BP Neural Network and Genetic Algorithm

ABSTRACT The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks. However, in order to construct an accurate simulation model, it is essential to set the correct microscopic parameters. Consequently, parameter cal...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical and analytical methods in geomechanics Vol. 49; no. 16; pp. 3897 - 3916
Main Authors Ni, Yaodong, Leng, Xianlun, Wang, Ruirui, Xia, Fengmin, Wang, Feng, Wang, Chengtang
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.11.2025
Subjects
Online AccessGet full text
ISSN0363-9061
1096-9853
DOI10.1002/nag.70043

Cover

Abstract ABSTRACT The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks. However, in order to construct an accurate simulation model, it is essential to set the correct microscopic parameters. Consequently, parameter calibration has emerged as a key area of focus within this field. The existing parameter calibration methods have yielded satisfactory results; however, there is still scope for further improvement and advancement. In this study, a novel intelligent parameter calibration method has been proposed, combining the benefits of the BP neural network and genetic algorithm (GA). The method constructs a parameter relationship model with micro‐parameters as inputs and macro‐parameters as outputs. Then GA is employed to invert the relationship model to calculate the parameter calibration. The results demonstrate that the method is capable of calculating a set of high‐precision micro‐parameter solutions in a mere 2 min, with the majority of its errors being within 5%.
AbstractList The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks. However, in order to construct an accurate simulation model, it is essential to set the correct microscopic parameters. Consequently, parameter calibration has emerged as a key area of focus within this field. The existing parameter calibration methods have yielded satisfactory results; however, there is still scope for further improvement and advancement. In this study, a novel intelligent parameter calibration method has been proposed, combining the benefits of the BP neural network and genetic algorithm (GA). The method constructs a parameter relationship model with micro‐parameters as inputs and macro‐parameters as outputs. Then GA is employed to invert the relationship model to calculate the parameter calibration. The results demonstrate that the method is capable of calculating a set of high‐precision micro‐parameter solutions in a mere 2 min, with the majority of its errors being within 5%.
ABSTRACT The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks. However, in order to construct an accurate simulation model, it is essential to set the correct microscopic parameters. Consequently, parameter calibration has emerged as a key area of focus within this field. The existing parameter calibration methods have yielded satisfactory results; however, there is still scope for further improvement and advancement. In this study, a novel intelligent parameter calibration method has been proposed, combining the benefits of the BP neural network and genetic algorithm (GA). The method constructs a parameter relationship model with micro‐parameters as inputs and macro‐parameters as outputs. Then GA is employed to invert the relationship model to calculate the parameter calibration. The results demonstrate that the method is capable of calculating a set of high‐precision micro‐parameter solutions in a mere 2 min, with the majority of its errors being within 5%.
Author Leng, Xianlun
Xia, Fengmin
Wang, Chengtang
Ni, Yaodong
Wang, Ruirui
Wang, Feng
Author_xml – sequence: 1
  givenname: Yaodong
  surname: Ni
  fullname: Ni, Yaodong
  organization: Shandong Jianzhu University
– sequence: 2
  givenname: Xianlun
  surname: Leng
  fullname: Leng, Xianlun
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Ruirui
  orcidid: 0000-0001-5375-4955
  surname: Wang
  fullname: Wang, Ruirui
  email: wangruirui0501@163.com
  organization: Shandong Jianzhu University
– sequence: 4
  givenname: Fengmin
  surname: Xia
  fullname: Xia, Fengmin
  organization: Shandong Jianzhu University
– sequence: 5
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  organization: Shandong Jianzhu University
– sequence: 6
  givenname: Chengtang
  surname: Wang
  fullname: Wang, Chengtang
  organization: Chinese Academy of Sciences
BookMark eNp1kE1PwkAQhjdGEwE9-A828eShsB9d2j0WRDQBJFHPm-3uLBRLF7clhH9vtV49vZnM884kTx9dVr4ChO4oGVJC2KjSm2FCSMwvUI8SOY5kKvgl6hE-5pEkY3qN-nW9I4SIdttDbxl-nC3xWge9hwYCnuqyyINuCl_hJTRbb_FE12BxO0_WeAXHoMs2mpMPn1hXFs-hgqYwOCs3PhTNdn-Drpwua7j9ywH6eJq9T5-jxev8ZZotIsOE5FEsaAI5k0aAi7WxVric2liChMTmjsQk54lNKDPcUWOkgNwIISlxqWBOJnyA7ru7h-C_jlA3auePoWpfKs5EKnkqBGuph44ywdd1AKcOodjrcFaUqB9nqnWmfp217KhjT0UJ5_9BtcrmXeMbwKtt8w
Cites_doi 10.1016/S0032-5910(01)00489-2
10.1162/neco.1992.4.2.141
10.1007/s40571-024-00806-y
10.1109/72.329697
10.1016/j.engfracmech.2023.109044
10.1016/j.simpat.2023.102834
10.3934/mbe.2021370
10.1016/j.compgeo.2024.106137
10.1016/j.ijmst.2021.11.003
10.1016/j.cma.2019.01.027
10.1007/s10704-004-3177-z
10.1016/j.ijrmms.2005.06.008
10.1016/j.tafmec.2023.103829
10.1016/j.cma.2024.116835
10.1016/j.ijrmms.2004.03.002
10.1007/s10035-014-0506-4
10.17159/2411-9717/2015/v115n3a3
10.1162/neco.1992.4.3.415
10.1137/0111030
10.1016/j.engfracmech.2021.108223
10.1016/j.advengsoft.2020.102833
10.1016/j.enganabound.2023.08.028
10.1016/j.ijrmms.2007.01.004
10.1016/j.ijrmms.2021.104680
10.1016/j.ijrmms.2019.03.024
10.1007/s00603-012-0257-7
10.1016/j.partic.2016.07.012
10.1016/j.compgeo.2019.103363
10.1016/j.apt.2020.12.015
10.1016/j.compgeo.2021.104573
10.1016/j.ijrmms.2004.09.011
10.1016/j.powtec.2020.10.067
10.1016/0148-9062(78)90955-5
10.1016/j.engfracmech.2023.109659
10.1016/j.powtec.2021.10.061
10.1007/s40571-022-00550-1
10.1007/s10035-019-0889-3
10.1016/j.ijrmms.2004.03.086
10.1016/j.jobe.2022.104317
10.1016/j.ijrmms.2018.01.019
10.1016/j.powtec.2019.09.016
10.1016/j.proeng.2017.05.208
10.3390/en15176290
10.1088/1755-1315/565/1/012070
10.1002/nag.3061
10.1016/j.compgeo.2018.01.012
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
7UA
8FD
C1K
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/nag.70043
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9853
EndPage 3916
ExternalDocumentID 10_1002_nag_70043
NAG70043
Genre researchArticle
GrantInformation_xml – fundername: Doctoral Fund of Shandong Jianzhu University
  funderid: X21101Z
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR202103010903
– fundername: National Nature Science Foundation of China
  funderid: 52379110; 42207222
– fundername: National Natural Science Foundation of China
  funderid: 52379110; 42207222
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SC
7UA
8FD
C1K
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c2593-4517eb29c5ef4acdd5fb1d49e9e7dbf040b37d712c3f1cc95ebc55910f852f973
IEDL.DBID DR2
ISSN 0363-9061
IngestDate Thu Oct 09 16:40:39 EDT 2025
Thu Oct 16 04:39:16 EDT 2025
Fri Oct 10 09:31:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2593-4517eb29c5ef4acdd5fb1d49e9e7dbf040b37d712c3f1cc95ebc55910f852f973
Notes Funding
This research was supported by the National Natural Science Foundation of China (no. 52379110), the Natural Science Foundation of Shandong Province (no. ZR202103010903), the Doctoral Fund of Shandong Jianzhu University (no. X21101Z), and the National Nature Science Foundation of China (no. 42207222).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5375-4955
PQID 3258938552
PQPubID 996377
PageCount 20
ParticipantIDs proquest_journals_3258938552
crossref_primary_10_1002_nag_70043
wiley_primary_10_1002_nag_70043_NAG70043
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
20251101
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical and analytical methods in geomechanics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 31
2005; 131
2020; 20
2023; 8
2019; 15
2017; 191
2020; 565
2024; 422
1997; 3
2021; 32
2023; 292
2017; 39
2019; 21
2017; 32
2014; 16
2019; 356
2020; 44
2022; 32
2019; 118
2019; 350
1992; 4
2023; 10
2004; 41
2022; 396
2021; 43
2020; 42
2022; 50
2013; 46
2022; 51
2018; 102
2021; 140
2023; 125
2020; 35
2022; 42
1978; 15
2024; 168
2023; 129
2020; 147
2025; 12
2022; 142
2022; 262
1963; 11
2023
2015; 115
2022
2019; 41
2021; 379
2006; 43
2020
2002; 124
2021; 18
2023; 156
2018
2022; 15
2020; 118
2023; 279
2022; 53
2018; 98
2007; 44
1994; 5
2022; 18
e_1_2_12_4_1
e_1_2_12_6_1
He S. (e_1_2_12_12_1) 2018
e_1_2_12_38_1
Dong X. (e_1_2_12_18_1) 2022
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_64_1
e_1_2_12_24_1
e_1_2_12_45_1
Tong X. (e_1_2_12_7_1) 2019; 15
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_62_1
Wang J. (e_1_2_12_11_1) 2020; 42
e_1_2_12_60_1
Foresee F. D. (e_1_2_12_50_1) 1997; 3
e_1_2_12_28_1
e_1_2_12_49_1
Wang J. (e_1_2_12_16_1) 2020
Deng S. (e_1_2_12_27_1) 2019; 41
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_14_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_3_1
e_1_2_12_5_1
Zhong W. (e_1_2_12_31_1) 2023
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
Li Z. (e_1_2_12_20_1) 2023; 31
Wang W. (e_1_2_12_15_1) 2020; 20
Dong J. (e_1_2_12_17_1) 2022; 53
e_1_2_12_61_1
e_1_2_12_40_1
Chi X. (e_1_2_12_19_1) 2022; 42
Wang X. (e_1_2_12_2_1) 2022; 18
Li K. (e_1_2_12_65_1) 2020; 35
Wu L. (e_1_2_12_13_1) 2023; 8
e_1_2_12_29_1
Yang R. (e_1_2_12_56_1) 2017; 39
Hao B. (e_1_2_12_21_1) 2022; 50
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
Li X. (e_1_2_12_32_1) 2021; 43
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – volume: 16
  start-page: 383
  year: 2014
  end-page: 400
  article-title: Micromechanical Analysis of Cohesive Granular Materials Using the Discrete Element Method With an Adhesive Elasto‐Plastic Contact Model
  publication-title: Granular Matter
– volume: 41
  start-page: 655
  year: 2019
  end-page: 664
  article-title: Application of Design of Experiments in Microscopic Parameter Calibration for Hard Rocks of PFC3D Mode
  publication-title: Chinese Journal of Geotechnical Engineering
– volume: 12
  start-page: 371
  year: 2025
  end-page: 398
  article-title: Modelling of Particle Flow Code Geotechnical Material Parameter Relationships Based on Orthogonal Design and Back Propagation Neural Network
  publication-title: Computational Particle Mechanics
– volume: 15
  start-page: 435
  year: 2019
  end-page: 442
  article-title: Study on the Strength Parameters of Loess in Granular Discrete Element Method
  publication-title: Chinese Journal of Underground Space and Engineering
– volume: 131
  start-page: 35
  year: 2005
  end-page: 52
  article-title: Observed and Simulated Fracture Pattern in Diametrically Loaded Discs of Rock Material
  publication-title: International Journal of Fracture
– volume: 50
  start-page: 132
  year: 2022
  end-page: 141
  article-title: Study on Determination Micro‐Parameters of Rock PFC2D Model
  publication-title: Coal Science and Technology
– volume: 115
  start-page: 185
  year: 2015
  end-page: 192
  article-title: Utilization of the Brazilian Test for Estimating the Uniaxial Compressive Strength and Shear Strength Parameters
  publication-title: Journal of the Southern African Institute of Mining and Metallurgy
– volume: 42
  start-page: 1867
  year: 2020
  end-page: 1875
  article-title: Application of Orthogonal‐Contour Method in Calibration of Microscopic Parameters of Rockfill Materials
  publication-title: Chinese Journal of Geotechnical Engineering
– volume: 18
  start-page: 7490
  year: 2021
  end-page: 7505
  article-title: Application of Supervised Machine Learning as a Method for Identifying DEM Contact Law Parameters
  publication-title: Mathematical Biosciences and Engineering
– volume: 35
  start-page: 1147
  year: 2020
  end-page: 1156
  article-title: Analysis of the Relevance Between Macro‐Micro Parameters for Clays Based on Particle Flow Simulation
  publication-title: Journal of Experimental Mechanics
– volume: 565
  year: 2020
  article-title: Sensitivity Analysis of Loess Triaxial Mesoscopic Parameters Based on PFC3D
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 41
  start-page: 939
  issue: 6
  year: 2004
  end-page: 957
  article-title: Digital Image‐Based Numerical Modeling Method for Prediction of Inhomogeneous Rock Failure
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– year: 2018
– volume: 118
  start-page: 33
  year: 2019
  end-page: 41
  article-title: Estimating DEM Microparameters for Uniaxial Compression Simulation With Genetic Programming
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 44
  start-page: 1281
  year: 2020
  end-page: 1300
  article-title: A Hybrid Calibration Approach to Hertz‐Type Contact Parameters for Discrete Element Models
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 18
  start-page: 428
  year: 2022
  end-page: 437
  article-title: Study on the Calibration of Meso‐Scale Parameters of Limestone Based on Microscopic Mineral Content
  publication-title: Chinese Journal of Underground Space and Engineering
– volume: 396
  start-page: 279
  year: 2022
  end-page: 290
  article-title: Experimental Simulation and a Reliable Calibration Method of Rockfill Microscopic Parameters by Considering Flexible Boundary
  publication-title: Powder Technology
– volume: 21
  start-page: 38
  year: 2019
  article-title: Calibration of Micro‐Scaled Mechanical Parameters of Granite Based on a Bonded‐Particle Model With 2D Particle Flow Code
  publication-title: Granular Matter
– volume: 142
  year: 2022
  article-title: An Integrated Parameter Calibration Method and Sensitivity Analysis of Microparameters on Mechanical Behavior of Transversely Isotropic Rocks
  publication-title: Computers and Geotechnics
– volume: 32
  start-page: 358
  year: 2021
  end-page: 369
  article-title: A Calibration Framework for the Microparameters of the DEM Model Using the Improved PSO Algorithm
  publication-title: Advanced Powder Technology
– volume: 15
  start-page: 6290
  year: 2022
  article-title: Rock Macro–Meso Parameter Calibration and Optimization Based on Improved BP Algorithm and Response Surface Method in PFC3D
  publication-title: Energies
– start-page: 1
  year: 2023
  end-page: 10
  article-title: Research on Mesoscopic Parameters Calibration of Geopolymer Concrete Upon BP Neural Network
  publication-title: Engineering Mechanics
– volume: 118
  year: 2020
  article-title: A Study on Bonded Block Model (BBM) Complexity for Simulation of Laboratory‐Scale Stress–Strain Behavior in Granitic Rocks
  publication-title: Computers and Geotechnics
– volume: 41
  start-page: 1329
  year: 2004
  end-page: 1364
  article-title: A Bonded‐Particle Model for Rock
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– year: 2022
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  article-title: Training Feedforward Networks With the Marquardt Algorithm
  publication-title: IEEE Transactions on Neural Networks
– volume: 98
  start-page: 1
  year: 2018
  end-page: 7
  article-title: Parametric Study of Smooth Joint Parameters on the Mechanical Behavior of Transversely Isotropic Rocks and Research on Calibration Method
  publication-title: Computers and Geotechnics
– volume: 39
  start-page: 1156
  issue: 6
  year: 2017
  end-page: 1160
  article-title: Limit Analysis Solution of Dynamic Brazilian Tests
  publication-title: Chinese Journal of Geotechnical Engineering
– volume: 51
  year: 2022
  article-title: Research on the Back Analysis and Failure Mechanism of Recycled Concrete Aggregate Meso‐Parameters Based on Box‐Behnken Design Response Surface Model
  publication-title: Journal of Building Engineering
– volume: 43
  start-page: 393
  year: 2021
  end-page: 405
  article-title: A Calibration Method for Micro Parameters Based on Neural Network and Flat‐Joint Contact Model
  publication-title: Mechanics in Engineering
– volume: 46
  start-page: 269
  year: 2013
  end-page: 287
  article-title: The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights
  publication-title: Rock Mechanics and Rock Engineering
– volume: 129
  year: 2023
  article-title: Study on the Influence of Mineral Composition on the Mechanical Properties of Granite Based on FDEM‐GBM Method
  publication-title: Simulation Modelling Practice and Theory
– volume: 356
  start-page: 795
  year: 2019
  end-page: 807
  article-title: Calibration of Linear Contact Stiffnesses in Discrete Element Models Using a Hybrid Analytical‐Computational Framework
  publication-title: Powder Technology
– volume: 32
  start-page: 121
  year: 2022
  end-page: 136
  article-title: Calibration and Uniqueness Analysis of Microparameters for DEM Cohesive Granular Material
  publication-title: International Journal of Mining Science and Technology
– volume: 31
  start-page: 1842
  year: 2023
  end-page: 1853
  article-title: Study on the Construction Method of Particle Flow Model of Rock With Primary Hidden Micro‐Fissures and the Calibration Method of Micro‐Parameters
  publication-title: Journal of Engineering Geology
– volume: 191
  start-page: 488
  year: 2017
  end-page: 495
  article-title: Sensitivity Analysis of the Micro‐Parameters Used in a PFC Analysis Towards the Mechanical Properties of Rocks
  publication-title: Procedia Engineering
– volume: 102
  start-page: 131
  year: 2018
  end-page: 143
  article-title: Quantifying the Effects of Scale and Heterogeneity on the Confined Strength of Micro‐Defected Rocks
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 20
  start-page: 9155
  year: 2020
  end-page: 9162
  article-title: The Influence of Macro and Micro Parameters of Rock‐Like Materials of Parallel Bonding Model
  publication-title: Science Technology and Engineering
– volume: 422
  year: 2024
  article-title: Intelligent Calibration Method for Microscopic Parameters of Soil‒Rock Mixtures Based on Measured Landslide Accumulation Morphology
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 125
  year: 2023
  article-title: Tensile Behavior of Brazilian Disks Containing Non‐Persistent Joint Sets Subjected to Diametral Loading: Experimental and Numerical Investigations
  publication-title: Theoretical and Applied Fracture Mechanics
– volume: 41
  start-page: 478
  issue: 1
  year: 2004
  end-page: 483
  article-title: Numerical Simulation of the Brazilian Test and the Tensile Strength of Anisotropic Rocks and Rocks With Pre‐Existing Cracks
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 279
  year: 2023
  article-title: A Novel Machine Learning Framework for Efficient Calibration of Complex DEM Model: A Case Study of a Conglomerate Sample
  publication-title: Engineering Fracture Mechanics
– volume: 292
  year: 2023
  article-title: Parameter Calibration Method of Clustered‐Particle Logic Concrete DEM Model Using BP Neural Network‐Particle Swarm Optimisation Algorithm (BP‐PSO) Inversion Method
  publication-title: Engineering Fracture Mechanics
– volume: 4
  start-page: 415
  year: 1992
  end-page: 447
  article-title: Bayesian Interpolation
  publication-title: Neural Computation
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  article-title: An Algorithm for Least‐Squares Estimation of Nonlinear Parameters
  publication-title: Journal of the Society for Industrial and Applied Mathematics
– volume: 43
  start-page: 236
  issue: 2
  year: 2006
  end-page: 252
  article-title: Numerical Simulation of Brazilian Disk Rock Failure Under Static and Dynamic Loading
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 53
  start-page: 180
  year: 2022
  end-page: 191
  article-title: Study on Macro‐Mesoscopic Corresponding Relationship and Parameter Calibration Method of Loess Particle Flow
  publication-title: Water Resources and Hydropower Engineering
– volume: 4
  start-page: 141
  year: 1992
  end-page: 166
  article-title: First‐ and Second‐Order Methods for Learning: Between Steepest Descent and Newton's Method
  publication-title: Neural Computation
– volume: 3
  start-page: 1930
  year: 1997
  end-page: 1935
  article-title: Gauss–Newton Approximation to Bayesian Learning
  publication-title: Proceedings of International Conference on Neural Networks
– volume: 147
  year: 2020
  article-title: Calibration of the Microparameters of the Discrete Element Method Using a Relevance Vector Machine and Its Application to Rockfill Materials
  publication-title: Advances in Engineering Software
– volume: 8
  start-page: 487
  year: 2023
  end-page: 501
  article-title: Study on the Correlation of Macro and Meso Parameters of Parallel Bond Model Sandstone
  publication-title: Journal of Mining Science and Technology
– volume: 140
  year: 2021
  article-title: Study on the Effect of Micro‐Geometric Heterogeneity on Mechanical Properties of Brittle Rock Using a Grain‐Based Discrete Element Method Coupling With the Cohesive Zone Model
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 32
  start-page: 141
  year: 2017
  end-page: 152
  article-title: Bonded‐Particle Model Calibration Using Response Surface Methodology
  publication-title: Particuology
– volume: 379
  start-page: 602
  year: 2021
  end-page: 616
  article-title: Optimization of DEM Parameters Using Multi‐Objective Reinforcement Learning
  publication-title: Powder Technology
– volume: 156
  start-page: 537
  year: 2023
  end-page: 547
  article-title: A DEM Parameters Calibration Method for Three‐Dimensional Model of the Lunar Rock Based on the Approximate Model
  publication-title: Engineering Analysis with Boundary Elements
– volume: 262
  year: 2022
  article-title: Bond Calibration Method for Macroparameters Using the Discrete Element Method Framework
  publication-title: Engineering Fracture Mechanics
– year: 2020
– volume: 44
  start-page: 871
  year: 2007
  end-page: 889
  article-title: Application of Experimental Design and Optimization to PFC Model Calibration in Uniaxial Compression Simulation
  publication-title: International Journal of Rock Mechanics and Mining Sciences
– volume: 42
  start-page: 113
  year: 2022
  end-page: 118
  article-title: Study on Mesoscopic Parameter Calibration of Layered Ore Rock Based on Particle Flow
  publication-title: Mining Research and Development
– volume: 350
  start-page: 268
  year: 2019
  end-page: 294
  article-title: An Iterative Bayesian Filtering Framework for Fast and Automated Calibration of DEM Models
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 10
  start-page: 1031
  year: 2023
  end-page: 1047
  article-title: A Methodology for Calibrating Parameters in Discrete Element Models Based on Machine Learning Surrogates
  publication-title: Computational Particle Mechanics
– volume: 168
  year: 2024
  article-title: The Potential of a Multi‐Fidelity Residual Neural Network Based Optimizer to Calibrate DEM Parameters of Rock‐Like Bonded Granular Materials
  publication-title: Computers and Geotechnics
– volume: 124
  start-page: 160
  year: 2002
  end-page: 173
  article-title: Discrete Element Simulation and Experiment for Dynamic Response of Two‐Dimensional Granular Matter to the Impact of a Spherical Projectile
  publication-title: Powder Technology
– volume: 15
  start-page: 225
  issue: 5
  year: 1978
  end-page: 235
  article-title: The Observation of Cracks Propagating in Diametrically‐Compressed Rock Discs
  publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
– volume-title: Calibration Method and Sensitivity Analysis of Micromechanic Parameters for Limestone
  year: 2018
  ident: e_1_2_12_12_1
– ident: e_1_2_12_4_1
  doi: 10.1016/S0032-5910(01)00489-2
– volume: 43
  start-page: 393
  year: 2021
  ident: e_1_2_12_32_1
  article-title: A Calibration Method for Micro Parameters Based on Neural Network and Flat‐Joint Contact Model
  publication-title: Mechanics in Engineering
– ident: e_1_2_12_53_1
  doi: 10.1162/neco.1992.4.2.141
– ident: e_1_2_12_54_1
  doi: 10.1007/s40571-024-00806-y
– ident: e_1_2_12_52_1
  doi: 10.1109/72.329697
– ident: e_1_2_12_63_1
  doi: 10.1016/j.engfracmech.2023.109044
– volume-title: Study on Meso‐Parameter Calibration of Chlorite Schist Particle Flow Based on Discrete Element Method
  year: 2020
  ident: e_1_2_12_16_1
– ident: e_1_2_12_29_1
  doi: 10.1016/j.simpat.2023.102834
– ident: e_1_2_12_35_1
  doi: 10.3934/mbe.2021370
– ident: e_1_2_12_34_1
  doi: 10.1016/j.compgeo.2024.106137
– ident: e_1_2_12_40_1
  doi: 10.1016/j.ijmst.2021.11.003
– volume: 8
  start-page: 487
  year: 2023
  ident: e_1_2_12_13_1
  article-title: Study on the Correlation of Macro and Meso Parameters of Parallel Bond Model Sandstone
  publication-title: Journal of Mining Science and Technology
– ident: e_1_2_12_38_1
  doi: 10.1016/j.cma.2019.01.027
– ident: e_1_2_12_60_1
  doi: 10.1007/s10704-004-3177-z
– ident: e_1_2_12_62_1
  doi: 10.1016/j.ijrmms.2005.06.008
– ident: e_1_2_12_47_1
  doi: 10.1016/j.tafmec.2023.103829
– ident: e_1_2_12_43_1
  doi: 10.1016/j.cma.2024.116835
– ident: e_1_2_12_57_1
  doi: 10.1016/j.ijrmms.2004.03.002
– ident: e_1_2_12_3_1
  doi: 10.1007/s10035-014-0506-4
– ident: e_1_2_12_59_1
  doi: 10.17159/2411-9717/2015/v115n3a3
– ident: e_1_2_12_49_1
  doi: 10.1162/neco.1992.4.3.415
– ident: e_1_2_12_51_1
  doi: 10.1137/0111030
– ident: e_1_2_12_9_1
  doi: 10.1016/j.engfracmech.2021.108223
– volume: 42
  start-page: 113
  year: 2022
  ident: e_1_2_12_19_1
  article-title: Study on Mesoscopic Parameter Calibration of Layered Ore Rock Based on Particle Flow
  publication-title: Mining Research and Development
– ident: e_1_2_12_42_1
  doi: 10.1016/j.advengsoft.2020.102833
– ident: e_1_2_12_41_1
  doi: 10.1016/j.enganabound.2023.08.028
– volume-title: Study on the Influence Mechanism of Parallel Bond Model Meso Parameters on Macro Parameters and Destruction Mechanisation
  year: 2022
  ident: e_1_2_12_18_1
– ident: e_1_2_12_25_1
  doi: 10.1016/j.ijrmms.2007.01.004
– volume: 42
  start-page: 1867
  year: 2020
  ident: e_1_2_12_11_1
  article-title: Application of Orthogonal‐Contour Method in Calibration of Microscopic Parameters of Rockfill Materials
  publication-title: Chinese Journal of Geotechnical Engineering
– ident: e_1_2_12_28_1
  doi: 10.1016/j.ijrmms.2021.104680
– ident: e_1_2_12_39_1
  doi: 10.1016/j.ijrmms.2019.03.024
– ident: e_1_2_12_55_1
  doi: 10.1007/s00603-012-0257-7
– ident: e_1_2_12_26_1
  doi: 10.1016/j.partic.2016.07.012
– ident: e_1_2_12_48_1
  doi: 10.1016/j.compgeo.2019.103363
– ident: e_1_2_12_23_1
  doi: 10.1016/j.apt.2020.12.015
– ident: e_1_2_12_14_1
  doi: 10.1016/j.compgeo.2021.104573
– ident: e_1_2_12_5_1
  doi: 10.1016/j.ijrmms.2004.09.011
– volume: 15
  start-page: 435
  year: 2019
  ident: e_1_2_12_7_1
  article-title: Study on the Strength Parameters of Loess in Granular Discrete Element Method
  publication-title: Chinese Journal of Underground Space and Engineering
– ident: e_1_2_12_33_1
  doi: 10.1016/j.powtec.2020.10.067
– volume: 41
  start-page: 655
  year: 2019
  ident: e_1_2_12_27_1
  article-title: Application of Design of Experiments in Microscopic Parameter Calibration for Hard Rocks of PFC3D Mode
  publication-title: Chinese Journal of Geotechnical Engineering
– volume: 39
  start-page: 1156
  issue: 6
  year: 2017
  ident: e_1_2_12_56_1
  article-title: Limit Analysis Solution of Dynamic Brazilian Tests
  publication-title: Chinese Journal of Geotechnical Engineering
– ident: e_1_2_12_58_1
  doi: 10.1016/0148-9062(78)90955-5
– ident: e_1_2_12_44_1
  doi: 10.1016/j.engfracmech.2023.109659
– volume: 53
  start-page: 180
  year: 2022
  ident: e_1_2_12_17_1
  article-title: Study on Macro‐Mesoscopic Corresponding Relationship and Parameter Calibration Method of Loess Particle Flow
  publication-title: Water Resources and Hydropower Engineering
– volume: 20
  start-page: 9155
  year: 2020
  ident: e_1_2_12_15_1
  article-title: The Influence of Macro and Micro Parameters of Rock‐Like Materials of Parallel Bonding Model
  publication-title: Science Technology and Engineering
– ident: e_1_2_12_30_1
  doi: 10.1016/j.powtec.2021.10.061
– start-page: 1
  year: 2023
  ident: e_1_2_12_31_1
  article-title: Research on Mesoscopic Parameters Calibration of Geopolymer Concrete Upon BP Neural Network
  publication-title: Engineering Mechanics
– ident: e_1_2_12_45_1
  doi: 10.1007/s40571-022-00550-1
– volume: 3
  start-page: 1930
  year: 1997
  ident: e_1_2_12_50_1
  article-title: Gauss–Newton Approximation to Bayesian Learning
  publication-title: Proceedings of International Conference on Neural Networks
– ident: e_1_2_12_10_1
  doi: 10.1007/s10035-019-0889-3
– ident: e_1_2_12_61_1
  doi: 10.1016/j.ijrmms.2004.03.086
– ident: e_1_2_12_24_1
  doi: 10.1016/j.jobe.2022.104317
– ident: e_1_2_12_46_1
  doi: 10.1016/j.ijrmms.2018.01.019
– ident: e_1_2_12_37_1
  doi: 10.1016/j.powtec.2019.09.016
– ident: e_1_2_12_6_1
  doi: 10.1016/j.proeng.2017.05.208
– volume: 31
  start-page: 1842
  year: 2023
  ident: e_1_2_12_20_1
  article-title: Study on the Construction Method of Particle Flow Model of Rock With Primary Hidden Micro‐Fissures and the Calibration Method of Micro‐Parameters
  publication-title: Journal of Engineering Geology
– volume: 50
  start-page: 132
  year: 2022
  ident: e_1_2_12_21_1
  article-title: Study on Determination Micro‐Parameters of Rock PFC2D Model
  publication-title: Coal Science and Technology
– ident: e_1_2_12_22_1
  doi: 10.3390/en15176290
– ident: e_1_2_12_64_1
  doi: 10.1088/1755-1315/565/1/012070
– volume: 35
  start-page: 1147
  year: 2020
  ident: e_1_2_12_65_1
  article-title: Analysis of the Relevance Between Macro‐Micro Parameters for Clays Based on Particle Flow Simulation
  publication-title: Journal of Experimental Mechanics
– volume: 18
  start-page: 428
  year: 2022
  ident: e_1_2_12_2_1
  article-title: Study on the Calibration of Meso‐Scale Parameters of Limestone Based on Microscopic Mineral Content
  publication-title: Chinese Journal of Underground Space and Engineering
– ident: e_1_2_12_36_1
  doi: 10.1002/nag.3061
– ident: e_1_2_12_8_1
  doi: 10.1016/j.compgeo.2018.01.012
SSID ssj0005096
Score 2.4304678
Snippet ABSTRACT The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks....
The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks. However, in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 3897
SubjectTerms Algorithms
Back propagation networks
BP neural network
Calibration
Computer simulation
Discrete element method
discrete element method (DEM)
genetic algorithm (GA)
Genetic algorithms
Mathematical models
Neural networks
parameter calibration
Parameters
particle flow code (PFC)
Simulation models
Title A DEM Parameter Calibration Method Based on BP Neural Network and Genetic Algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.70043
https://www.proquest.com/docview/3258938552
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0363-9061
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1096-9853
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005096
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD2EkP_hanU4J48NJtbZJmwVMnziFsDHWwg1CaNJmibrJ1F_96X9J1m4Ig3lpo0_Ylr-_72rxPELqgIYhqqownQtX0qCa-Z3Wyp5WEaKk4N66QttsLOwN6N2TDEroqamFyPsTyg5v1DPe-tg6eyFl9DRqajGqWzW5Jnz4JXTp1v0JHWaxJ8Z9SQNAqqEKNoL4883ssWgnMdZnq4kx7Gz0Vd5hPL3mtzTNZU58_4I3_fIQdtLXQnzjKB8wuKunxHtpcoxLuo4cIQ-_gfmLnbYHZsa3fkvlIwV234jRuQfBLMey3-tjyPaDJXj6hHCfjFFuYNVwAR2-jyfQle34_QIP2zeN1x1usveApSIiIR5nPIekWimlDE5WmzEg_pUILzVNpwPUl4Sn3A0WMr5RgWipITvyGabLACE4OUXk8GesjhEVgCKjOlFGeUF-HMqSSaM2ZkFQkIa2g86IX4o8csRHnMOUgBgvFzkIVVC36J1542SwmAQO51WQsqKBLZ-jfG4h70a3bOP77oSdoI7DL_brSwyoqZ9O5PgUNkskzN9i-AEop1Rs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8LcTAkkJiO64lloKA8mhVQZFYUBQ7NiCgIGgXfj1np2kLEhJiS6TEie-R-865-wyww2IE1UzbQMa6GjBDw8Dh5MBohdFSC2F9I22jGddv2Pktvx2Dg6IXJueHGCy4Oc_w32vn4G5Bem-ENTS9rzhydjoOEyzGPMVBoqsheZQjNin-VEoMWwWv0H60N7j1ezQaQsxRoOojzcks3BXvmBeYPFV6XVXRnz_oG_87iTmY6UNQUsttZh7GTGcBpkeICRfhukZQQaSVutItlDxxLVwqNxbS8JtOk0OMfxnB88MWcRQfOGQzryknaScjjs8aH0Bqz_ev74_dh5cluDk5bh_Vg_72C4HGnIgGjIcC826pubEs1VnGrQozJo00IlMWvV9RkYkw0tSGWktulMb8JNy3VR5ZKegylDqvHbMCREaWIvDMOBMpC02sYqaoMYJLxWQaszJsF2pI3nKWjSTnU44SlFDiJVSG9UJBSd_RPhIacURcVc6jMux6Sf8-QNKsnfqD1b9fugWT9XbjMrk8a16swVTkdv_1nYjrUOq-98wGQpKu2vSW9wW7O9k8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB48QPTBW6znIj74ktpkd7Nd8KUe9S7FA3yRkL1U1CpaX_z1zm4arYIgviWQbJI5Mt8kM98ArLMUQTXTLpKprkfM0jjyODmyWmG01EK40Eh72koPLtnRFb8agK2yF6bgh_j84OY9I7yvvYPbZ-M2-1hD85uqJ2engzDMuKz7gr7dsy_yKE9sUv6plBi2Sl6hWrL5eer3aPQFMfuBaog0zQm4Lu-xKDC5r751VVW__6Bv_O9DTMJ4D4KSRmEzUzBgO9Mw1kdMOAPnDYIKIu3cl26h5Ilv4VKFsZDTMHSabGP8MwT3t9vEU3zgkq2ippzkHUM8nzVegDQebp5e7rq3j7Nw2dy72DmIeuMXIo05EY0YjwXm3VJz61iujeFOxYZJK60wyqH3KyqMiBNNXay15FZpzE_imqvzxElB52Co89Sx80Bk4igCT8OZyFlsU5UyRa0VXCom85RVYK1UQ_ZcsGxkBZ9ykqGEsiChCiyVCsp6jvaa0YQj4qpznlRgI0j69wWyVmM_bCz8_dBVGGnvNrOTw9bxIowmfvhvaERcgqHuy5tdRkTSVSvB8D4Al0bYwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DEM+Parameter+Calibration+Method+Based+on+BP+Neural+Network+and+Genetic+Algorithm&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=Ni%2C+Yaodong&rft.au=Leng%2C+Xianlun&rft.au=Wang%2C+Ruirui&rft.au=Xia%2C+Fengmin&rft.date=2025-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=49&rft.issue=16&rft.spage=3897&rft.epage=3916&rft_id=info:doi/10.1002%2Fnag.70043&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon