A DEM Parameter Calibration Method Based on BP Neural Network and Genetic Algorithm
ABSTRACT The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks. However, in order to construct an accurate simulation model, it is essential to set the correct microscopic parameters. Consequently, parameter cal...
Saved in:
| Published in | International journal for numerical and analytical methods in geomechanics Vol. 49; no. 16; pp. 3897 - 3916 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bognor Regis
Wiley Subscription Services, Inc
01.11.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0363-9061 1096-9853 |
| DOI | 10.1002/nag.70043 |
Cover
| Abstract | ABSTRACT
The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks. However, in order to construct an accurate simulation model, it is essential to set the correct microscopic parameters. Consequently, parameter calibration has emerged as a key area of focus within this field. The existing parameter calibration methods have yielded satisfactory results; however, there is still scope for further improvement and advancement. In this study, a novel intelligent parameter calibration method has been proposed, combining the benefits of the BP neural network and genetic algorithm (GA). The method constructs a parameter relationship model with micro‐parameters as inputs and macro‐parameters as outputs. Then GA is employed to invert the relationship model to calculate the parameter calibration. The results demonstrate that the method is capable of calculating a set of high‐precision micro‐parameter solutions in a mere 2 min, with the majority of its errors being within 5%. |
|---|---|
| AbstractList | The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks. However, in order to construct an accurate simulation model, it is essential to set the correct microscopic parameters. Consequently, parameter calibration has emerged as a key area of focus within this field. The existing parameter calibration methods have yielded satisfactory results; however, there is still scope for further improvement and advancement. In this study, a novel intelligent parameter calibration method has been proposed, combining the benefits of the BP neural network and genetic algorithm (GA). The method constructs a parameter relationship model with micro‐parameters as inputs and macro‐parameters as outputs. Then GA is employed to invert the relationship model to calculate the parameter calibration. The results demonstrate that the method is capable of calculating a set of high‐precision micro‐parameter solutions in a mere 2 min, with the majority of its errors being within 5%. ABSTRACT The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks. However, in order to construct an accurate simulation model, it is essential to set the correct microscopic parameters. Consequently, parameter calibration has emerged as a key area of focus within this field. The existing parameter calibration methods have yielded satisfactory results; however, there is still scope for further improvement and advancement. In this study, a novel intelligent parameter calibration method has been proposed, combining the benefits of the BP neural network and genetic algorithm (GA). The method constructs a parameter relationship model with micro‐parameters as inputs and macro‐parameters as outputs. Then GA is employed to invert the relationship model to calculate the parameter calibration. The results demonstrate that the method is capable of calculating a set of high‐precision micro‐parameter solutions in a mere 2 min, with the majority of its errors being within 5%. |
| Author | Leng, Xianlun Xia, Fengmin Wang, Chengtang Ni, Yaodong Wang, Ruirui Wang, Feng |
| Author_xml | – sequence: 1 givenname: Yaodong surname: Ni fullname: Ni, Yaodong organization: Shandong Jianzhu University – sequence: 2 givenname: Xianlun surname: Leng fullname: Leng, Xianlun organization: Chinese Academy of Sciences – sequence: 3 givenname: Ruirui orcidid: 0000-0001-5375-4955 surname: Wang fullname: Wang, Ruirui email: wangruirui0501@163.com organization: Shandong Jianzhu University – sequence: 4 givenname: Fengmin surname: Xia fullname: Xia, Fengmin organization: Shandong Jianzhu University – sequence: 5 givenname: Feng surname: Wang fullname: Wang, Feng organization: Shandong Jianzhu University – sequence: 6 givenname: Chengtang surname: Wang fullname: Wang, Chengtang organization: Chinese Academy of Sciences |
| BookMark | eNp1kE1PwkAQhjdGEwE9-A828eShsB9d2j0WRDQBJFHPm-3uLBRLF7clhH9vtV49vZnM884kTx9dVr4ChO4oGVJC2KjSm2FCSMwvUI8SOY5kKvgl6hE-5pEkY3qN-nW9I4SIdttDbxl-nC3xWge9hwYCnuqyyINuCl_hJTRbb_FE12BxO0_WeAXHoMs2mpMPn1hXFs-hgqYwOCs3PhTNdn-Drpwua7j9ywH6eJq9T5-jxev8ZZotIsOE5FEsaAI5k0aAi7WxVric2liChMTmjsQk54lNKDPcUWOkgNwIISlxqWBOJnyA7ru7h-C_jlA3auePoWpfKs5EKnkqBGuph44ywdd1AKcOodjrcFaUqB9nqnWmfp217KhjT0UJ5_9BtcrmXeMbwKtt8w |
| Cites_doi | 10.1016/S0032-5910(01)00489-2 10.1162/neco.1992.4.2.141 10.1007/s40571-024-00806-y 10.1109/72.329697 10.1016/j.engfracmech.2023.109044 10.1016/j.simpat.2023.102834 10.3934/mbe.2021370 10.1016/j.compgeo.2024.106137 10.1016/j.ijmst.2021.11.003 10.1016/j.cma.2019.01.027 10.1007/s10704-004-3177-z 10.1016/j.ijrmms.2005.06.008 10.1016/j.tafmec.2023.103829 10.1016/j.cma.2024.116835 10.1016/j.ijrmms.2004.03.002 10.1007/s10035-014-0506-4 10.17159/2411-9717/2015/v115n3a3 10.1162/neco.1992.4.3.415 10.1137/0111030 10.1016/j.engfracmech.2021.108223 10.1016/j.advengsoft.2020.102833 10.1016/j.enganabound.2023.08.028 10.1016/j.ijrmms.2007.01.004 10.1016/j.ijrmms.2021.104680 10.1016/j.ijrmms.2019.03.024 10.1007/s00603-012-0257-7 10.1016/j.partic.2016.07.012 10.1016/j.compgeo.2019.103363 10.1016/j.apt.2020.12.015 10.1016/j.compgeo.2021.104573 10.1016/j.ijrmms.2004.09.011 10.1016/j.powtec.2020.10.067 10.1016/0148-9062(78)90955-5 10.1016/j.engfracmech.2023.109659 10.1016/j.powtec.2021.10.061 10.1007/s40571-022-00550-1 10.1007/s10035-019-0889-3 10.1016/j.ijrmms.2004.03.086 10.1016/j.jobe.2022.104317 10.1016/j.ijrmms.2018.01.019 10.1016/j.powtec.2019.09.016 10.1016/j.proeng.2017.05.208 10.3390/en15176290 10.1088/1755-1315/565/1/012070 10.1002/nag.3061 10.1016/j.compgeo.2018.01.012 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 7UA 8FD C1K F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1002/nag.70043 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-9853 |
| EndPage | 3916 |
| ExternalDocumentID | 10_1002_nag_70043 NAG70043 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Doctoral Fund of Shandong Jianzhu University funderid: X21101Z – fundername: Natural Science Foundation of Shandong Province funderid: ZR202103010903 – fundername: National Nature Science Foundation of China funderid: 52379110; 42207222 – fundername: National Natural Science Foundation of China funderid: 52379110; 42207222 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX CITATION 7SC 7UA 8FD C1K F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c2593-4517eb29c5ef4acdd5fb1d49e9e7dbf040b37d712c3f1cc95ebc55910f852f973 |
| IEDL.DBID | DR2 |
| ISSN | 0363-9061 |
| IngestDate | Thu Oct 09 16:40:39 EDT 2025 Thu Oct 16 04:39:16 EDT 2025 Fri Oct 10 09:31:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2593-4517eb29c5ef4acdd5fb1d49e9e7dbf040b37d712c3f1cc95ebc55910f852f973 |
| Notes | Funding This research was supported by the National Natural Science Foundation of China (no. 52379110), the Natural Science Foundation of Shandong Province (no. ZR202103010903), the Doctoral Fund of Shandong Jianzhu University (no. X21101Z), and the National Nature Science Foundation of China (no. 42207222). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5375-4955 |
| PQID | 3258938552 |
| PQPubID | 996377 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3258938552 crossref_primary_10_1002_nag_70043 wiley_primary_10_1002_nag_70043_NAG70043 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 2025-11-00 20251101 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical and analytical methods in geomechanics |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2023; 31 2005; 131 2020; 20 2023; 8 2019; 15 2017; 191 2020; 565 2024; 422 1997; 3 2021; 32 2023; 292 2017; 39 2019; 21 2017; 32 2014; 16 2019; 356 2020; 44 2022; 32 2019; 118 2019; 350 1992; 4 2023; 10 2004; 41 2022; 396 2021; 43 2020; 42 2022; 50 2013; 46 2022; 51 2018; 102 2021; 140 2023; 125 2020; 35 2022; 42 1978; 15 2024; 168 2023; 129 2020; 147 2025; 12 2022; 142 2022; 262 1963; 11 2023 2015; 115 2022 2019; 41 2021; 379 2006; 43 2020 2002; 124 2021; 18 2023; 156 2018 2022; 15 2020; 118 2023; 279 2022; 53 2018; 98 2007; 44 1994; 5 2022; 18 e_1_2_12_4_1 e_1_2_12_6_1 He S. (e_1_2_12_12_1) 2018 e_1_2_12_38_1 Dong X. (e_1_2_12_18_1) 2022 e_1_2_12_41_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_64_1 e_1_2_12_24_1 e_1_2_12_45_1 Tong X. (e_1_2_12_7_1) 2019; 15 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_62_1 Wang J. (e_1_2_12_11_1) 2020; 42 e_1_2_12_60_1 Foresee F. D. (e_1_2_12_50_1) 1997; 3 e_1_2_12_28_1 e_1_2_12_49_1 Wang J. (e_1_2_12_16_1) 2020 Deng S. (e_1_2_12_27_1) 2019; 41 e_1_2_12_52_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_35_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_14_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_3_1 e_1_2_12_5_1 Zhong W. (e_1_2_12_31_1) 2023 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 Li Z. (e_1_2_12_20_1) 2023; 31 Wang W. (e_1_2_12_15_1) 2020; 20 Dong J. (e_1_2_12_17_1) 2022; 53 e_1_2_12_61_1 e_1_2_12_40_1 Chi X. (e_1_2_12_19_1) 2022; 42 Wang X. (e_1_2_12_2_1) 2022; 18 Li K. (e_1_2_12_65_1) 2020; 35 Wu L. (e_1_2_12_13_1) 2023; 8 e_1_2_12_29_1 Yang R. (e_1_2_12_56_1) 2017; 39 Hao B. (e_1_2_12_21_1) 2022; 50 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_55_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 Li X. (e_1_2_12_32_1) 2021; 43 e_1_2_12_51_1 e_1_2_12_9_1 |
| References_xml | – volume: 16 start-page: 383 year: 2014 end-page: 400 article-title: Micromechanical Analysis of Cohesive Granular Materials Using the Discrete Element Method With an Adhesive Elasto‐Plastic Contact Model publication-title: Granular Matter – volume: 41 start-page: 655 year: 2019 end-page: 664 article-title: Application of Design of Experiments in Microscopic Parameter Calibration for Hard Rocks of PFC3D Mode publication-title: Chinese Journal of Geotechnical Engineering – volume: 12 start-page: 371 year: 2025 end-page: 398 article-title: Modelling of Particle Flow Code Geotechnical Material Parameter Relationships Based on Orthogonal Design and Back Propagation Neural Network publication-title: Computational Particle Mechanics – volume: 15 start-page: 435 year: 2019 end-page: 442 article-title: Study on the Strength Parameters of Loess in Granular Discrete Element Method publication-title: Chinese Journal of Underground Space and Engineering – volume: 131 start-page: 35 year: 2005 end-page: 52 article-title: Observed and Simulated Fracture Pattern in Diametrically Loaded Discs of Rock Material publication-title: International Journal of Fracture – volume: 50 start-page: 132 year: 2022 end-page: 141 article-title: Study on Determination Micro‐Parameters of Rock PFC2D Model publication-title: Coal Science and Technology – volume: 115 start-page: 185 year: 2015 end-page: 192 article-title: Utilization of the Brazilian Test for Estimating the Uniaxial Compressive Strength and Shear Strength Parameters publication-title: Journal of the Southern African Institute of Mining and Metallurgy – volume: 42 start-page: 1867 year: 2020 end-page: 1875 article-title: Application of Orthogonal‐Contour Method in Calibration of Microscopic Parameters of Rockfill Materials publication-title: Chinese Journal of Geotechnical Engineering – volume: 18 start-page: 7490 year: 2021 end-page: 7505 article-title: Application of Supervised Machine Learning as a Method for Identifying DEM Contact Law Parameters publication-title: Mathematical Biosciences and Engineering – volume: 35 start-page: 1147 year: 2020 end-page: 1156 article-title: Analysis of the Relevance Between Macro‐Micro Parameters for Clays Based on Particle Flow Simulation publication-title: Journal of Experimental Mechanics – volume: 565 year: 2020 article-title: Sensitivity Analysis of Loess Triaxial Mesoscopic Parameters Based on PFC3D publication-title: IOP Conference Series: Earth and Environmental Science – volume: 41 start-page: 939 issue: 6 year: 2004 end-page: 957 article-title: Digital Image‐Based Numerical Modeling Method for Prediction of Inhomogeneous Rock Failure publication-title: International Journal of Rock Mechanics and Mining Sciences – year: 2018 – volume: 118 start-page: 33 year: 2019 end-page: 41 article-title: Estimating DEM Microparameters for Uniaxial Compression Simulation With Genetic Programming publication-title: International Journal of Rock Mechanics and Mining Sciences – volume: 44 start-page: 1281 year: 2020 end-page: 1300 article-title: A Hybrid Calibration Approach to Hertz‐Type Contact Parameters for Discrete Element Models publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 18 start-page: 428 year: 2022 end-page: 437 article-title: Study on the Calibration of Meso‐Scale Parameters of Limestone Based on Microscopic Mineral Content publication-title: Chinese Journal of Underground Space and Engineering – volume: 396 start-page: 279 year: 2022 end-page: 290 article-title: Experimental Simulation and a Reliable Calibration Method of Rockfill Microscopic Parameters by Considering Flexible Boundary publication-title: Powder Technology – volume: 21 start-page: 38 year: 2019 article-title: Calibration of Micro‐Scaled Mechanical Parameters of Granite Based on a Bonded‐Particle Model With 2D Particle Flow Code publication-title: Granular Matter – volume: 142 year: 2022 article-title: An Integrated Parameter Calibration Method and Sensitivity Analysis of Microparameters on Mechanical Behavior of Transversely Isotropic Rocks publication-title: Computers and Geotechnics – volume: 32 start-page: 358 year: 2021 end-page: 369 article-title: A Calibration Framework for the Microparameters of the DEM Model Using the Improved PSO Algorithm publication-title: Advanced Powder Technology – volume: 15 start-page: 6290 year: 2022 article-title: Rock Macro–Meso Parameter Calibration and Optimization Based on Improved BP Algorithm and Response Surface Method in PFC3D publication-title: Energies – start-page: 1 year: 2023 end-page: 10 article-title: Research on Mesoscopic Parameters Calibration of Geopolymer Concrete Upon BP Neural Network publication-title: Engineering Mechanics – volume: 118 year: 2020 article-title: A Study on Bonded Block Model (BBM) Complexity for Simulation of Laboratory‐Scale Stress–Strain Behavior in Granitic Rocks publication-title: Computers and Geotechnics – volume: 41 start-page: 1329 year: 2004 end-page: 1364 article-title: A Bonded‐Particle Model for Rock publication-title: International Journal of Rock Mechanics and Mining Sciences – year: 2022 – volume: 5 start-page: 989 year: 1994 end-page: 993 article-title: Training Feedforward Networks With the Marquardt Algorithm publication-title: IEEE Transactions on Neural Networks – volume: 98 start-page: 1 year: 2018 end-page: 7 article-title: Parametric Study of Smooth Joint Parameters on the Mechanical Behavior of Transversely Isotropic Rocks and Research on Calibration Method publication-title: Computers and Geotechnics – volume: 39 start-page: 1156 issue: 6 year: 2017 end-page: 1160 article-title: Limit Analysis Solution of Dynamic Brazilian Tests publication-title: Chinese Journal of Geotechnical Engineering – volume: 51 year: 2022 article-title: Research on the Back Analysis and Failure Mechanism of Recycled Concrete Aggregate Meso‐Parameters Based on Box‐Behnken Design Response Surface Model publication-title: Journal of Building Engineering – volume: 43 start-page: 393 year: 2021 end-page: 405 article-title: A Calibration Method for Micro Parameters Based on Neural Network and Flat‐Joint Contact Model publication-title: Mechanics in Engineering – volume: 46 start-page: 269 year: 2013 end-page: 287 article-title: The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights publication-title: Rock Mechanics and Rock Engineering – volume: 129 year: 2023 article-title: Study on the Influence of Mineral Composition on the Mechanical Properties of Granite Based on FDEM‐GBM Method publication-title: Simulation Modelling Practice and Theory – volume: 356 start-page: 795 year: 2019 end-page: 807 article-title: Calibration of Linear Contact Stiffnesses in Discrete Element Models Using a Hybrid Analytical‐Computational Framework publication-title: Powder Technology – volume: 32 start-page: 121 year: 2022 end-page: 136 article-title: Calibration and Uniqueness Analysis of Microparameters for DEM Cohesive Granular Material publication-title: International Journal of Mining Science and Technology – volume: 31 start-page: 1842 year: 2023 end-page: 1853 article-title: Study on the Construction Method of Particle Flow Model of Rock With Primary Hidden Micro‐Fissures and the Calibration Method of Micro‐Parameters publication-title: Journal of Engineering Geology – volume: 191 start-page: 488 year: 2017 end-page: 495 article-title: Sensitivity Analysis of the Micro‐Parameters Used in a PFC Analysis Towards the Mechanical Properties of Rocks publication-title: Procedia Engineering – volume: 102 start-page: 131 year: 2018 end-page: 143 article-title: Quantifying the Effects of Scale and Heterogeneity on the Confined Strength of Micro‐Defected Rocks publication-title: International Journal of Rock Mechanics and Mining Sciences – volume: 20 start-page: 9155 year: 2020 end-page: 9162 article-title: The Influence of Macro and Micro Parameters of Rock‐Like Materials of Parallel Bonding Model publication-title: Science Technology and Engineering – volume: 422 year: 2024 article-title: Intelligent Calibration Method for Microscopic Parameters of Soil‒Rock Mixtures Based on Measured Landslide Accumulation Morphology publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 125 year: 2023 article-title: Tensile Behavior of Brazilian Disks Containing Non‐Persistent Joint Sets Subjected to Diametral Loading: Experimental and Numerical Investigations publication-title: Theoretical and Applied Fracture Mechanics – volume: 41 start-page: 478 issue: 1 year: 2004 end-page: 483 article-title: Numerical Simulation of the Brazilian Test and the Tensile Strength of Anisotropic Rocks and Rocks With Pre‐Existing Cracks publication-title: International Journal of Rock Mechanics and Mining Sciences – volume: 279 year: 2023 article-title: A Novel Machine Learning Framework for Efficient Calibration of Complex DEM Model: A Case Study of a Conglomerate Sample publication-title: Engineering Fracture Mechanics – volume: 292 year: 2023 article-title: Parameter Calibration Method of Clustered‐Particle Logic Concrete DEM Model Using BP Neural Network‐Particle Swarm Optimisation Algorithm (BP‐PSO) Inversion Method publication-title: Engineering Fracture Mechanics – volume: 4 start-page: 415 year: 1992 end-page: 447 article-title: Bayesian Interpolation publication-title: Neural Computation – volume: 11 start-page: 431 year: 1963 end-page: 441 article-title: An Algorithm for Least‐Squares Estimation of Nonlinear Parameters publication-title: Journal of the Society for Industrial and Applied Mathematics – volume: 43 start-page: 236 issue: 2 year: 2006 end-page: 252 article-title: Numerical Simulation of Brazilian Disk Rock Failure Under Static and Dynamic Loading publication-title: International Journal of Rock Mechanics and Mining Sciences – volume: 53 start-page: 180 year: 2022 end-page: 191 article-title: Study on Macro‐Mesoscopic Corresponding Relationship and Parameter Calibration Method of Loess Particle Flow publication-title: Water Resources and Hydropower Engineering – volume: 4 start-page: 141 year: 1992 end-page: 166 article-title: First‐ and Second‐Order Methods for Learning: Between Steepest Descent and Newton's Method publication-title: Neural Computation – volume: 3 start-page: 1930 year: 1997 end-page: 1935 article-title: Gauss–Newton Approximation to Bayesian Learning publication-title: Proceedings of International Conference on Neural Networks – volume: 147 year: 2020 article-title: Calibration of the Microparameters of the Discrete Element Method Using a Relevance Vector Machine and Its Application to Rockfill Materials publication-title: Advances in Engineering Software – volume: 8 start-page: 487 year: 2023 end-page: 501 article-title: Study on the Correlation of Macro and Meso Parameters of Parallel Bond Model Sandstone publication-title: Journal of Mining Science and Technology – volume: 140 year: 2021 article-title: Study on the Effect of Micro‐Geometric Heterogeneity on Mechanical Properties of Brittle Rock Using a Grain‐Based Discrete Element Method Coupling With the Cohesive Zone Model publication-title: International Journal of Rock Mechanics and Mining Sciences – volume: 32 start-page: 141 year: 2017 end-page: 152 article-title: Bonded‐Particle Model Calibration Using Response Surface Methodology publication-title: Particuology – volume: 379 start-page: 602 year: 2021 end-page: 616 article-title: Optimization of DEM Parameters Using Multi‐Objective Reinforcement Learning publication-title: Powder Technology – volume: 156 start-page: 537 year: 2023 end-page: 547 article-title: A DEM Parameters Calibration Method for Three‐Dimensional Model of the Lunar Rock Based on the Approximate Model publication-title: Engineering Analysis with Boundary Elements – volume: 262 year: 2022 article-title: Bond Calibration Method for Macroparameters Using the Discrete Element Method Framework publication-title: Engineering Fracture Mechanics – year: 2020 – volume: 44 start-page: 871 year: 2007 end-page: 889 article-title: Application of Experimental Design and Optimization to PFC Model Calibration in Uniaxial Compression Simulation publication-title: International Journal of Rock Mechanics and Mining Sciences – volume: 42 start-page: 113 year: 2022 end-page: 118 article-title: Study on Mesoscopic Parameter Calibration of Layered Ore Rock Based on Particle Flow publication-title: Mining Research and Development – volume: 350 start-page: 268 year: 2019 end-page: 294 article-title: An Iterative Bayesian Filtering Framework for Fast and Automated Calibration of DEM Models publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 10 start-page: 1031 year: 2023 end-page: 1047 article-title: A Methodology for Calibrating Parameters in Discrete Element Models Based on Machine Learning Surrogates publication-title: Computational Particle Mechanics – volume: 168 year: 2024 article-title: The Potential of a Multi‐Fidelity Residual Neural Network Based Optimizer to Calibrate DEM Parameters of Rock‐Like Bonded Granular Materials publication-title: Computers and Geotechnics – volume: 124 start-page: 160 year: 2002 end-page: 173 article-title: Discrete Element Simulation and Experiment for Dynamic Response of Two‐Dimensional Granular Matter to the Impact of a Spherical Projectile publication-title: Powder Technology – volume: 15 start-page: 225 issue: 5 year: 1978 end-page: 235 article-title: The Observation of Cracks Propagating in Diametrically‐Compressed Rock Discs publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts – volume-title: Calibration Method and Sensitivity Analysis of Micromechanic Parameters for Limestone year: 2018 ident: e_1_2_12_12_1 – ident: e_1_2_12_4_1 doi: 10.1016/S0032-5910(01)00489-2 – volume: 43 start-page: 393 year: 2021 ident: e_1_2_12_32_1 article-title: A Calibration Method for Micro Parameters Based on Neural Network and Flat‐Joint Contact Model publication-title: Mechanics in Engineering – ident: e_1_2_12_53_1 doi: 10.1162/neco.1992.4.2.141 – ident: e_1_2_12_54_1 doi: 10.1007/s40571-024-00806-y – ident: e_1_2_12_52_1 doi: 10.1109/72.329697 – ident: e_1_2_12_63_1 doi: 10.1016/j.engfracmech.2023.109044 – volume-title: Study on Meso‐Parameter Calibration of Chlorite Schist Particle Flow Based on Discrete Element Method year: 2020 ident: e_1_2_12_16_1 – ident: e_1_2_12_29_1 doi: 10.1016/j.simpat.2023.102834 – ident: e_1_2_12_35_1 doi: 10.3934/mbe.2021370 – ident: e_1_2_12_34_1 doi: 10.1016/j.compgeo.2024.106137 – ident: e_1_2_12_40_1 doi: 10.1016/j.ijmst.2021.11.003 – volume: 8 start-page: 487 year: 2023 ident: e_1_2_12_13_1 article-title: Study on the Correlation of Macro and Meso Parameters of Parallel Bond Model Sandstone publication-title: Journal of Mining Science and Technology – ident: e_1_2_12_38_1 doi: 10.1016/j.cma.2019.01.027 – ident: e_1_2_12_60_1 doi: 10.1007/s10704-004-3177-z – ident: e_1_2_12_62_1 doi: 10.1016/j.ijrmms.2005.06.008 – ident: e_1_2_12_47_1 doi: 10.1016/j.tafmec.2023.103829 – ident: e_1_2_12_43_1 doi: 10.1016/j.cma.2024.116835 – ident: e_1_2_12_57_1 doi: 10.1016/j.ijrmms.2004.03.002 – ident: e_1_2_12_3_1 doi: 10.1007/s10035-014-0506-4 – ident: e_1_2_12_59_1 doi: 10.17159/2411-9717/2015/v115n3a3 – ident: e_1_2_12_49_1 doi: 10.1162/neco.1992.4.3.415 – ident: e_1_2_12_51_1 doi: 10.1137/0111030 – ident: e_1_2_12_9_1 doi: 10.1016/j.engfracmech.2021.108223 – volume: 42 start-page: 113 year: 2022 ident: e_1_2_12_19_1 article-title: Study on Mesoscopic Parameter Calibration of Layered Ore Rock Based on Particle Flow publication-title: Mining Research and Development – ident: e_1_2_12_42_1 doi: 10.1016/j.advengsoft.2020.102833 – ident: e_1_2_12_41_1 doi: 10.1016/j.enganabound.2023.08.028 – volume-title: Study on the Influence Mechanism of Parallel Bond Model Meso Parameters on Macro Parameters and Destruction Mechanisation year: 2022 ident: e_1_2_12_18_1 – ident: e_1_2_12_25_1 doi: 10.1016/j.ijrmms.2007.01.004 – volume: 42 start-page: 1867 year: 2020 ident: e_1_2_12_11_1 article-title: Application of Orthogonal‐Contour Method in Calibration of Microscopic Parameters of Rockfill Materials publication-title: Chinese Journal of Geotechnical Engineering – ident: e_1_2_12_28_1 doi: 10.1016/j.ijrmms.2021.104680 – ident: e_1_2_12_39_1 doi: 10.1016/j.ijrmms.2019.03.024 – ident: e_1_2_12_55_1 doi: 10.1007/s00603-012-0257-7 – ident: e_1_2_12_26_1 doi: 10.1016/j.partic.2016.07.012 – ident: e_1_2_12_48_1 doi: 10.1016/j.compgeo.2019.103363 – ident: e_1_2_12_23_1 doi: 10.1016/j.apt.2020.12.015 – ident: e_1_2_12_14_1 doi: 10.1016/j.compgeo.2021.104573 – ident: e_1_2_12_5_1 doi: 10.1016/j.ijrmms.2004.09.011 – volume: 15 start-page: 435 year: 2019 ident: e_1_2_12_7_1 article-title: Study on the Strength Parameters of Loess in Granular Discrete Element Method publication-title: Chinese Journal of Underground Space and Engineering – ident: e_1_2_12_33_1 doi: 10.1016/j.powtec.2020.10.067 – volume: 41 start-page: 655 year: 2019 ident: e_1_2_12_27_1 article-title: Application of Design of Experiments in Microscopic Parameter Calibration for Hard Rocks of PFC3D Mode publication-title: Chinese Journal of Geotechnical Engineering – volume: 39 start-page: 1156 issue: 6 year: 2017 ident: e_1_2_12_56_1 article-title: Limit Analysis Solution of Dynamic Brazilian Tests publication-title: Chinese Journal of Geotechnical Engineering – ident: e_1_2_12_58_1 doi: 10.1016/0148-9062(78)90955-5 – ident: e_1_2_12_44_1 doi: 10.1016/j.engfracmech.2023.109659 – volume: 53 start-page: 180 year: 2022 ident: e_1_2_12_17_1 article-title: Study on Macro‐Mesoscopic Corresponding Relationship and Parameter Calibration Method of Loess Particle Flow publication-title: Water Resources and Hydropower Engineering – volume: 20 start-page: 9155 year: 2020 ident: e_1_2_12_15_1 article-title: The Influence of Macro and Micro Parameters of Rock‐Like Materials of Parallel Bonding Model publication-title: Science Technology and Engineering – ident: e_1_2_12_30_1 doi: 10.1016/j.powtec.2021.10.061 – start-page: 1 year: 2023 ident: e_1_2_12_31_1 article-title: Research on Mesoscopic Parameters Calibration of Geopolymer Concrete Upon BP Neural Network publication-title: Engineering Mechanics – ident: e_1_2_12_45_1 doi: 10.1007/s40571-022-00550-1 – volume: 3 start-page: 1930 year: 1997 ident: e_1_2_12_50_1 article-title: Gauss–Newton Approximation to Bayesian Learning publication-title: Proceedings of International Conference on Neural Networks – ident: e_1_2_12_10_1 doi: 10.1007/s10035-019-0889-3 – ident: e_1_2_12_61_1 doi: 10.1016/j.ijrmms.2004.03.086 – ident: e_1_2_12_24_1 doi: 10.1016/j.jobe.2022.104317 – ident: e_1_2_12_46_1 doi: 10.1016/j.ijrmms.2018.01.019 – ident: e_1_2_12_37_1 doi: 10.1016/j.powtec.2019.09.016 – ident: e_1_2_12_6_1 doi: 10.1016/j.proeng.2017.05.208 – volume: 31 start-page: 1842 year: 2023 ident: e_1_2_12_20_1 article-title: Study on the Construction Method of Particle Flow Model of Rock With Primary Hidden Micro‐Fissures and the Calibration Method of Micro‐Parameters publication-title: Journal of Engineering Geology – volume: 50 start-page: 132 year: 2022 ident: e_1_2_12_21_1 article-title: Study on Determination Micro‐Parameters of Rock PFC2D Model publication-title: Coal Science and Technology – ident: e_1_2_12_22_1 doi: 10.3390/en15176290 – ident: e_1_2_12_64_1 doi: 10.1088/1755-1315/565/1/012070 – volume: 35 start-page: 1147 year: 2020 ident: e_1_2_12_65_1 article-title: Analysis of the Relevance Between Macro‐Micro Parameters for Clays Based on Particle Flow Simulation publication-title: Journal of Experimental Mechanics – volume: 18 start-page: 428 year: 2022 ident: e_1_2_12_2_1 article-title: Study on the Calibration of Meso‐Scale Parameters of Limestone Based on Microscopic Mineral Content publication-title: Chinese Journal of Underground Space and Engineering – ident: e_1_2_12_36_1 doi: 10.1002/nag.3061 – ident: e_1_2_12_8_1 doi: 10.1016/j.compgeo.2018.01.012 |
| SSID | ssj0005096 |
| Score | 2.4304678 |
| Snippet | ABSTRACT
The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks.... The discrete element method (DEM) represents a crucial numerical simulation approach for investigating the internal damage mechanisms of rocks. However, in... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3897 |
| SubjectTerms | Algorithms Back propagation networks BP neural network Calibration Computer simulation Discrete element method discrete element method (DEM) genetic algorithm (GA) Genetic algorithms Mathematical models Neural networks parameter calibration Parameters particle flow code (PFC) Simulation models |
| Title | A DEM Parameter Calibration Method Based on BP Neural Network and Genetic Algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.70043 https://www.proquest.com/docview/3258938552 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0363-9061 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1096-9853 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005096 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD2EkP_hanU4J48NJtbZJmwVMnziFsDHWwg1CaNJmibrJ1F_96X9J1m4Ig3lpo0_Ylr-_72rxPELqgIYhqqownQtX0qCa-Z3Wyp5WEaKk4N66QttsLOwN6N2TDEroqamFyPsTyg5v1DPe-tg6eyFl9DRqajGqWzW5Jnz4JXTp1v0JHWaxJ8Z9SQNAqqEKNoL4883ssWgnMdZnq4kx7Gz0Vd5hPL3mtzTNZU58_4I3_fIQdtLXQnzjKB8wuKunxHtpcoxLuo4cIQ-_gfmLnbYHZsa3fkvlIwV234jRuQfBLMey3-tjyPaDJXj6hHCfjFFuYNVwAR2-jyfQle34_QIP2zeN1x1usveApSIiIR5nPIekWimlDE5WmzEg_pUILzVNpwPUl4Sn3A0WMr5RgWipITvyGabLACE4OUXk8GesjhEVgCKjOlFGeUF-HMqSSaM2ZkFQkIa2g86IX4o8csRHnMOUgBgvFzkIVVC36J1542SwmAQO51WQsqKBLZ-jfG4h70a3bOP77oSdoI7DL_brSwyoqZ9O5PgUNkskzN9i-AEop1Rs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8LcTAkkJiO64lloKA8mhVQZFYUBQ7NiCgIGgXfj1np2kLEhJiS6TEie-R-865-wyww2IE1UzbQMa6GjBDw8Dh5MBohdFSC2F9I22jGddv2Pktvx2Dg6IXJueHGCy4Oc_w32vn4G5Bem-ENTS9rzhydjoOEyzGPMVBoqsheZQjNin-VEoMWwWv0H60N7j1ezQaQsxRoOojzcks3BXvmBeYPFV6XVXRnz_oG_87iTmY6UNQUsttZh7GTGcBpkeICRfhukZQQaSVutItlDxxLVwqNxbS8JtOk0OMfxnB88MWcRQfOGQzryknaScjjs8aH0Bqz_ev74_dh5cluDk5bh_Vg_72C4HGnIgGjIcC826pubEs1VnGrQozJo00IlMWvV9RkYkw0tSGWktulMb8JNy3VR5ZKegylDqvHbMCREaWIvDMOBMpC02sYqaoMYJLxWQaszJsF2pI3nKWjSTnU44SlFDiJVSG9UJBSd_RPhIacURcVc6jMux6Sf8-QNKsnfqD1b9fugWT9XbjMrk8a16swVTkdv_1nYjrUOq-98wGQpKu2vSW9wW7O9k8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB48QPTBW6znIj74ktpkd7Nd8KUe9S7FA3yRkL1U1CpaX_z1zm4arYIgviWQbJI5Mt8kM98ArLMUQTXTLpKprkfM0jjyODmyWmG01EK40Eh72koPLtnRFb8agK2yF6bgh_j84OY9I7yvvYPbZ-M2-1hD85uqJ2engzDMuKz7gr7dsy_yKE9sUv6plBi2Sl6hWrL5eer3aPQFMfuBaog0zQm4Lu-xKDC5r751VVW__6Bv_O9DTMJ4D4KSRmEzUzBgO9Mw1kdMOAPnDYIKIu3cl26h5Ilv4VKFsZDTMHSabGP8MwT3t9vEU3zgkq2ippzkHUM8nzVegDQebp5e7rq3j7Nw2dy72DmIeuMXIo05EY0YjwXm3VJz61iujeFOxYZJK60wyqH3KyqMiBNNXay15FZpzE_imqvzxElB52Co89Sx80Bk4igCT8OZyFlsU5UyRa0VXCom85RVYK1UQ_ZcsGxkBZ9ykqGEsiChCiyVCsp6jvaa0YQj4qpznlRgI0j69wWyVmM_bCz8_dBVGGnvNrOTw9bxIowmfvhvaERcgqHuy5tdRkTSVSvB8D4Al0bYwA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DEM+Parameter+Calibration+Method+Based+on+BP+Neural+Network+and+Genetic+Algorithm&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=Ni%2C+Yaodong&rft.au=Leng%2C+Xianlun&rft.au=Wang%2C+Ruirui&rft.au=Xia%2C+Fengmin&rft.date=2025-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=49&rft.issue=16&rft.spage=3897&rft.epage=3916&rft_id=info:doi/10.1002%2Fnag.70043&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon |