Scalable Representation Learning for Dynamic Heterogeneous Information Networks via Metagraphs

Content representation is a fundamental task in information retrieval. Representation learning is aimed at capturing features of an information object in a low-dimensional space. Most research on representation learning for heterogeneous information networks (HINs) focuses on static HINs. In practic...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on information systems Vol. 40; no. 4; pp. 1 - 27
Main Authors Fang, Yang, Zhao, Xiang, Huang, Peixin, Xiao, Weidong, de Rijke, Maarten
Format Journal Article
LanguageEnglish
Published 01.10.2022
Online AccessGet full text
ISSN1046-8188
1558-2868
1558-2868
DOI10.1145/3485189

Cover

Abstract Content representation is a fundamental task in information retrieval. Representation learning is aimed at capturing features of an information object in a low-dimensional space. Most research on representation learning for heterogeneous information networks (HINs) focuses on static HINs. In practice, however, networks are dynamic and subject to constant change. In this article, we propose a novel and scalable representation learning model, M-DHIN , to explore the evolution of a dynamic HIN. We regard a dynamic HIN as a series of snapshots with different time stamps. We first use a static embedding method to learn the initial embeddings of a dynamic HIN at the first time stamp. We describe the features of the initial HIN via metagraphs, which retains more structural and semantic information than traditional path-oriented static models. We also adopt a complex embedding scheme to better distinguish between symmetric and asymmetric metagraphs. Unlike traditional models that process an entire network at each time stamp, we build a so-called change dataset that only includes nodes involved in a triadic closure or opening process, as well as newly added or deleted nodes. Then, we utilize the above metagraph-based mechanism to train on the change dataset. As a result of this setup, M-DHIN is scalable to large dynamic HINs since it only needs to model the entire HIN once while only the changed parts need to be processed over time. Existing dynamic embedding models only express the existing snapshots and cannot predict the future network structure. To equip M-DHIN with this ability, we introduce an LSTM-based deep autoencoder model that processes the evolution of the graph via an LSTM encoder and outputs the predicted graph. Finally, we evaluate the proposed model, M-DHIN , on real-life datasets and demonstrate that it significantly and consistently outperforms state-of-the-art models.
AbstractList Content representation is a fundamental task in information retrieval. Representation learning is aimed at capturing features of an information object in a low-dimensional space. Most research on representation learning for heterogeneous information networks (HINs) focuses on static HINs. In practice, however, networks are dynamic and subject to constant change. In this article, we propose a novel and scalable representation learning model, M-DHIN , to explore the evolution of a dynamic HIN. We regard a dynamic HIN as a series of snapshots with different time stamps. We first use a static embedding method to learn the initial embeddings of a dynamic HIN at the first time stamp. We describe the features of the initial HIN via metagraphs, which retains more structural and semantic information than traditional path-oriented static models. We also adopt a complex embedding scheme to better distinguish between symmetric and asymmetric metagraphs. Unlike traditional models that process an entire network at each time stamp, we build a so-called change dataset that only includes nodes involved in a triadic closure or opening process, as well as newly added or deleted nodes. Then, we utilize the above metagraph-based mechanism to train on the change dataset. As a result of this setup, M-DHIN is scalable to large dynamic HINs since it only needs to model the entire HIN once while only the changed parts need to be processed over time. Existing dynamic embedding models only express the existing snapshots and cannot predict the future network structure. To equip M-DHIN with this ability, we introduce an LSTM-based deep autoencoder model that processes the evolution of the graph via an LSTM encoder and outputs the predicted graph. Finally, we evaluate the proposed model, M-DHIN , on real-life datasets and demonstrate that it significantly and consistently outperforms state-of-the-art models.
Author de Rijke, Maarten
Fang, Yang
Xiao, Weidong
Zhao, Xiang
Huang, Peixin
Author_xml – sequence: 1
  givenname: Yang
  surname: Fang
  fullname: Fang, Yang
  organization: National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Xiang
  surname: Zhao
  fullname: Zhao, Xiang
  organization: National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Peixin
  surname: Huang
  fullname: Huang, Peixin
  organization: National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Weidong
  surname: Xiao
  fullname: Xiao, Weidong
  organization: National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Maarten
  orcidid: 0000-0002-1086-0202
  surname: de Rijke
  fullname: de Rijke, Maarten
  organization: University of Amsterdam Amsterdam, Amsterdam, The Netherlands
BookMark eNp1kEtPwzAQhC0EEm1B_AXf4BKwk_jRIyqPViog8bgSbc26BFI7sl2q_nuC0hOC0-xoPo20MyT7zjsk5ISzc85LcVGUWnA93iMDLoTOci31fnezUmaaa31IhjF-MNZ5yQbk9clAA4sG6SO2ASO6BKn2js4Rgqvdklof6NXWwao2dIoJg1-iQ7-OdOa6bNXj95g2PnxG-lUDvcMEywDtezwiBxaaiMc7HZGXm-vnyTSbP9zOJpfzzORCp8wawTQvNcNFUY65AgPWoimYykFbLRfWFpopprhSbxYY4Fham-dKoFBSFsWInPW9a9fCdgNNU7WhXkHYVpxVP7tUu106NOtRE3yMAW1l6v7nFKBu_uBPf_H_NX8DM7pzzA
CitedBy_id crossref_primary_10_1145_3721434
crossref_primary_10_1155_2023_5917750
crossref_primary_10_1016_j_neucom_2023_02_060
crossref_primary_10_1109_ACCESS_2024_3418957
crossref_primary_10_1016_j_future_2023_09_007
crossref_primary_10_1016_j_patrec_2024_03_023
crossref_primary_10_1093_comjnl_bxad123
crossref_primary_10_1108_EL_01_2024_0011
crossref_primary_10_1007_s13278_023_01178_6
crossref_primary_10_1016_j_knosys_2023_111225
crossref_primary_10_1007_s12530_024_09616_2
crossref_primary_10_1016_j_knosys_2025_113150
crossref_primary_10_1007_s10115_022_01792_4
crossref_primary_10_1016_j_ins_2023_119371
crossref_primary_10_1109_TCSS_2023_3260118
Cites_doi 10.1145/2623330.2623732
10.1145/2488388.2488393
10.1109/TKDE.2016.2591009
10.1038/30918
10.1126/science.290.5500.2323
10.1145/3331184.3331273
10.1109/ICDM50108.2020.00022
10.1145/2939672.2939754
10.1109/TNNLS.2018.2829867
10.14778/2732286.2732289
10.1145/2783258.2783307
10.1007/978-3-319-93037-4_16
10.1016/j.knosys.2019.06.024
10.1609/aaai.v32i1.11299
10.1007/s10618-014-0365-y
10.1109/TNNLS.2017.2650978
10.1145/2939672.2939753
10.1609/aaai.v32i1.11257
10.1145/3331184.3331281
10.1609/aimag.v10i4.972
10.1145/3341161.3342859
10.1145/3269206.3272010
10.1145/3132847.3132953
10.1145/3097983.3098036
10.1145/2736277.2741093
10.1145/3308558.3313562
10.1145/3292500.3330961
10.1145/2806416.2806512
10.1145/3219819.3219947
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1145/3485189
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1558-2868
EndPage 27
ExternalDocumentID 10.1145/3485189
10_1145_3485189
GroupedDBID --Z
-DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
77I
77K
85S
8US
AAKMM
AALFJ
AAYFX
AAYXX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AENEX
AENSD
AETEA
AFWIH
AFWXC
AIAGR
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
D0L
EBS
EDO
FEDTE
GUFHI
HGAVV
H~9
I07
IAO
ICD
IOF
LHSKQ
MK~
ML~
MS~
P1C
P2P
PQQKQ
RNS
ROL
RXW
TAE
TUS
U5U
UHB
UPT
WH7
X6Y
XH6
XSW
YR2
ZCA
9M8
AAFWJ
ADTOC
AFFNX
AI.
BAAKF
EJD
HF~
IEA
IGS
ITC
MVM
N95
NEJ
UNPAY
VH1
XJT
ZY4
ID FETCH-LOGICAL-c258t-fc5081480eb34917acaffec3072a8f86bff380707177dfa0ae96ff2275e576633
IEDL.DBID UNPAY
ISSN 1046-8188
1558-2868
IngestDate Tue Aug 19 22:23:23 EDT 2025
Wed Oct 01 05:56:46 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c258t-fc5081480eb34917acaffec3072a8f86bff380707177dfa0ae96ff2275e576633
ORCID 0000-0002-1086-0202
OpenAccessLink https://proxy.k.utb.cz/login?url=https://dl.acm.org/doi/pdf/10.1145/3485189
PageCount 27
ParticipantIDs unpaywall_primary_10_1145_3485189
crossref_citationtrail_10_1145_3485189
crossref_primary_10_1145_3485189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle ACM transactions on information systems
PublicationYear 2022
References Belkin Mikhail (e_1_3_3_4_2) 2001
Shang Jingbo (e_1_3_3_28_2) 2016; 1610
Cox Michael A. A. (e_1_3_3_7_2) 2008
Goyal Palash (e_1_3_3_15_2) 2018; 1805
e_1_3_3_16_2
e_1_3_3_38_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
Kingma Diederik P. (e_1_3_3_18_2) 2015
Rahman Mahmudur (e_1_3_3_24_2) 2018; 1804
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
Huang Zhipeng (e_1_3_3_17_2) 2017; 1701
e_1_3_3_9_2
e_1_3_3_27_2
Kipf Thomas N. (e_1_3_3_19_2) 2017
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
Trouillon Théo (e_1_3_3_31_2) 2017; 18
References_xml – ident: e_1_3_3_23_2
  doi: 10.1145/2623330.2623732
– ident: e_1_3_3_2_2
  doi: 10.1145/2488388.2488393
– ident: e_1_3_3_39_2
  doi: 10.1109/TKDE.2016.2591009
– volume: 18
  start-page: 130:1–130:38
  year: 2017
  ident: e_1_3_3_31_2
  article-title: Knowledge graph completion via complex tensor factorization
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_34_2
  doi: 10.1038/30918
– ident: e_1_3_3_26_2
  doi: 10.1126/science.290.5500.2323
– ident: e_1_3_3_5_2
  doi: 10.1145/3331184.3331273
– volume: 1805
  year: 2018
  ident: e_1_3_3_15_2
  article-title: DynGEM: Deep embedding method for dynamic graphs
  publication-title: CoRR
– ident: e_1_3_3_10_2
  doi: 10.1109/ICDM50108.2020.00022
– ident: e_1_3_3_16_2
  doi: 10.1145/2939672.2939754
– ident: e_1_3_3_20_2
  doi: 10.1109/TNNLS.2018.2829867
– ident: e_1_3_3_9_2
  doi: 10.14778/2732286.2732289
– ident: e_1_3_3_29_2
  doi: 10.1145/2783258.2783307
– ident: e_1_3_3_36_2
  doi: 10.1007/978-3-319-93037-4_16
– ident: e_1_3_3_14_2
  doi: 10.1016/j.knosys.2019.06.024
– ident: e_1_3_3_37_2
  doi: 10.1609/aaai.v32i1.11299
– ident: e_1_3_3_3_2
  doi: 10.1007/s10618-014-0365-y
– ident: e_1_3_3_22_2
  doi: 10.1109/TNNLS.2017.2650978
– ident: e_1_3_3_32_2
  doi: 10.1145/2939672.2939753
– ident: e_1_3_3_38_2
  doi: 10.1609/aaai.v32i1.11257
– ident: e_1_3_3_11_2
  doi: 10.1145/3331184.3331281
– ident: e_1_3_3_25_2
  doi: 10.1609/aimag.v10i4.972
– volume: 1610
  year: 2016
  ident: e_1_3_3_28_2
  article-title: Meta-path guided embedding for similarity search in large-scale heterogeneous information networks
  publication-title: CoRR
– volume: 1701
  year: 2017
  ident: e_1_3_3_17_2
  article-title: Heterogeneous information network embedding for meta path based proximity
  publication-title: CoRR
– ident: e_1_3_3_27_2
  doi: 10.1145/3341161.3342859
– ident: e_1_3_3_21_2
  doi: 10.1145/3269206.3272010
– ident: e_1_3_3_12_2
  doi: 10.1145/3132847.3132953
– volume: 1804
  year: 2018
  ident: e_1_3_3_24_2
  article-title: DyLink2Vec: Effective feature representation for link prediction in dynamic networks
  publication-title: CoRR
– ident: e_1_3_3_8_2
  doi: 10.1145/3097983.3098036
– volume-title: 5th International Conference on Learning Representations (ICLR’17), Conference Track Proceedings
  year: 2017
  ident: e_1_3_3_19_2
– volume-title: Multidimensional Scaling
  year: 2008
  ident: e_1_3_3_7_2
– start-page: 585
  volume-title: Advances in Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural and Synthetic] (NIPS’01)
  year: 2001
  ident: e_1_3_3_4_2
– volume-title: 3rd International Conference on Learning Representations (ICLR’15), Conference Track Proceedings
  year: 2015
  ident: e_1_3_3_18_2
– ident: e_1_3_3_30_2
  doi: 10.1145/2736277.2741093
– ident: e_1_3_3_33_2
  doi: 10.1145/3308558.3313562
– ident: e_1_3_3_35_2
  doi: 10.1145/3292500.3330961
– ident: e_1_3_3_6_2
  doi: 10.1145/2806416.2806512
– ident: e_1_3_3_13_2
  doi: 10.1145/3219819.3219947
SSID ssj0004660
Score 2.4503288
Snippet Content representation is a fundamental task in information retrieval. Representation learning is aimed at capturing features of an information object in a...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 1
Title Scalable Representation Learning for Dynamic Heterogeneous Information Networks via Metagraphs
URI https://dl.acm.org/doi/pdf/10.1145/3485189
UnpaywallVersion publishedVersion
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1558-2868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004660
  issn: 1046-8188
  databaseCode: ADMLS
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26gfritzg_RgTxrbplTZo9DucY4oY4B_PFkaaJiLMbtlX013uTZmMqwt5vS8m94d5DzzkXoVNZIZFfJ4Enhe97fjVUHqcMwEokuDFbkcKq0jpd1u771wM6cDY5RgsTjeA9r_YXvrnTk0g7Q1t6UfNhOuD1ZVRkFObuAir2u7eNh9xugHnQeazujVJIPWc8V8jOP_mj9axm8UR8fojRaK6ftDbyxUSJtSE0NJKX8ywNz-XXL5PGxT51E627sRI38jrYQksq3kYrU1b7DnrsQS6MSgrfWeqrUxzF2PmrPmEYXnEzX0-P24YjM4bSUuMswU6xZMO7OWs8we_PAndUKqzhdbKL-q2r-8u251YreJJQnnpawmAGSKgCWNoHxCakMPQRuPBEcM1ZqLVxojdgL4i0qAhVZ1oTElAFAIXVanuoEI9jtY8wjTgJuOLVoBr6SkshCSMSYBchOtJal9DZ9NSH0vmOm_UXo2GuiaZDd1olhGeBk9xq42_IySxt_8UcLBBziNaIkTFYUt4RKqRvmTqG4SINy6jYaHZuemVXXd-vMMvK
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26gfritzi_iCC-dW5Zk2aPQx1D2BB1MF8caZqIOLthW0V_vTcfG1MRfL8tJfeGew8951yETmSNJGGTRIEUYRiE9VgFnDIAK4ngxmxFCqtK6_ZYpx9eDejA2-QYLUwygve82F_45k5PEu0NbelZI4TpgDcXUZlRmLtLqNzvXbfund0AC6DzWN0bpZB6zrhTyM4_-a31LBfpRHy8i9Forp-019xioszaEBoayXO1yOOq_Pxh0vi_T11Hq36sxC1XBxtoQaWbaGnKat9CD7eQC6OSwjeW-uoVRyn2_qqPGIZXfOHW0-OO4ciMobTUuMiwVyzZ8J5jjWf47UngrsqFNbzOtlG_fXl33gn8aoVAEsrzQEsYzAAJ1QBLh4DYhBSGPgIXngiuOYu1Nk70BuxFiRY1oZpMa0IiqgCgsEZjB5XScap2EaYJJxFXvB7V41BpKSRhRALsIkQnWusKOp2e-lB633Gz_mI0dJpoOvSnVUF4FjhxVhu_Q45nafsrZu8fMftohRgZgyXlHaBS_lqoQxgu8vjIV9UXWNHKNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Representation+Learning+for+Dynamic+Heterogeneous+Information+Networks+via+Metagraphs&rft.jtitle=ACM+transactions+on+information+systems&rft.au=Fang%2C+Yang&rft.au=Zhao%2C+Xiang&rft.au=Huang%2C+Peixin&rft.au=Xiao%2C+Weidong&rft.date=2022-10-01&rft.issn=1046-8188&rft.eissn=1558-2868&rft.volume=40&rft.issue=4&rft.spage=1&rft.epage=27&rft_id=info:doi/10.1145%2F3485189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3485189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-8188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-8188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-8188&client=summon