State Dependent Delay Maps: Numerical Algorithms and Dynamics of Projections
This work concerns the dynamics of a certain class of delay differential equations (DDEs) which we refer to as state dependent delay maps. These maps are generated by delay differential equations where the derivative of the current state depends only on delayed variables, and not on the un-delayed s...
Saved in:
| Published in | Experimental mathematics Vol. 34; no. 2; pp. 176 - 199 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Taylor & Francis
03.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1058-6458 1944-950X |
| DOI | 10.1080/10586458.2024.2337910 |
Cover
| Abstract | This work concerns the dynamics of a certain class of delay differential equations (DDEs) which we refer to as state dependent delay maps. These maps are generated by delay differential equations where the derivative of the current state depends only on delayed variables, and not on the un-delayed state. However, we allow that the delay is itself a function of the state variable. A delay map with constant delays can be rewritten explicitly as a discrete time dynamical system on an appropriate function space, and a delay map with small state dependent terms can be viewed as a "non-autonomous" perturbation. We develop a fixed point formulation for the Cauchy problem of such perturbations, and under appropriate assumptions obtain the existence of forward iterates of the map. The proof is constructive and leads to numerical procedures which we implement for illustrative examples, including the cubic Ikeda and Mackey-Glass systems with constant and state-dependent delays. After proving a local convergence result for the method, we study more qualitative/global convergence issues using data analytic tools for time series analysis (dimension and topological measures derived from persistent homology). Using these tools we quantify the convergence of the dynamics in the finite dimensional projections to the dynamics of the infinite dimensional system. |
|---|---|
| AbstractList | This work concerns the dynamics of a certain class of delay differential equations (DDEs) which we refer to as state dependent delay maps. These maps are generated by delay differential equations where the derivative of the current state depends only on delayed variables, and not on the un-delayed state. However, we allow that the delay is itself a function of the state variable. A delay map with constant delays can be rewritten explicitly as a discrete time dynamical system on an appropriate function space, and a delay map with small state dependent terms can be viewed as a "non-autonomous" perturbation. We develop a fixed point formulation for the Cauchy problem of such perturbations, and under appropriate assumptions obtain the existence of forward iterates of the map. The proof is constructive and leads to numerical procedures which we implement for illustrative examples, including the cubic Ikeda and Mackey-Glass systems with constant and state-dependent delays. After proving a local convergence result for the method, we study more qualitative/global convergence issues using data analytic tools for time series analysis (dimension and topological measures derived from persistent homology). Using these tools we quantify the convergence of the dynamics in the finite dimensional projections to the dynamics of the infinite dimensional system. |
| Author | Mireles James, J. D. Naudot, Vincent Motta, Francis C. |
| Author_xml | – sequence: 1 givenname: J. D. surname: Mireles James fullname: Mireles James, J. D. organization: Department of Mathematical Sciences, Florida Atlantic University – sequence: 2 givenname: Francis C. surname: Motta fullname: Motta, Francis C. organization: Department of Mathematical Sciences, Florida Atlantic University – sequence: 3 givenname: Vincent surname: Naudot fullname: Naudot, Vincent organization: Department of Mathematical Sciences, Florida Atlantic University |
| BookMark | eNp9kMtKAzEARYNUsK1-gpAfmJr3zLiytFaF-gAV3IU0D02ZSUoyIvP3Tmndurp3cc9dnAkYhRgsAJcYzTCq0BVGvBKMVzOCCJsRSssaoxMwxjVjRc3Rx2jow6bYj87AJOctQpjxuhqD9WunOguXdmeDsaEbWqN6-Kh2-Ro-fbc2ea0aOG8-Y_LdV5uhCgYu-6BarzOMDr6kuLW68zHkc3DqVJPtxTGn4H11-7a4L9bPdw-L-brQhFddYbAlnFK0IUzUG6ap49xRXJfClgoxXWJjsaOCE6wYppVQ2mghCCo3ptSY0ingh1-dYs7JOrlLvlWplxjJvRL5p0TulcijkoG7OXA-uJha9RNTY2Sn-iYml1TQPkv6_8Uv3OlpaA |
| Cites_doi | 10.1016/j.jde.2021.02.052 10.14232/ejqtde.2016.1.85 10.1016/0167-2789(83)90298-1 10.1103/physreva.45.3403 10.1007/s10884-014-9420-z 10.1016/j.physleta.2007.01.083 10.1007/BF01457179 10.1126/science.267326 10.1016/j.jde.2022.07.033 10.1016/j.indag.2017.11.004 10.1007/s41468-021-00071-5 10.1016/j.jde.2016.04.024 10.3389/frai.2021.667963 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1016/0022-247X(76)90033-0 10.1140/epjds/s13688-017-0109-5 10.1007/s10711-013-9937-z 10.1137/20M1347577 10.1137/20M1336965 10.1145/1542362.1542408 10.1016/j.jde.2021.05.024 10.1016/S1874-5725(06)80009-X 10.1088/1751-8121/ab7b9e 10.1007/s10208-010-9060-6 10.1016/S0167-2789(00)00084-1 10.1016/j.jde.2003.07.001 10.1137/20M1311430 10.1016/0167-2789(82)90042-2 10.1007/s10884-016-9522-x 10.3389/frai.2021.668302 10.21105/joss.00925 |
| ContentType | Journal Article |
| Copyright | 2024 Taylor & Francis Group, LLC 2024 |
| Copyright_xml | – notice: 2024 Taylor & Francis Group, LLC 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/10586458.2024.2337910 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1944-950X |
| EndPage | 199 |
| ExternalDocumentID | 10_1080_10586458_2024_2337910 2337910 |
| Genre | Research Article |
| GroupedDBID | -~9 .7F .QJ 0BK 0R~ 30N 4.4 5GY 70C AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFO ACGFS ACIPV ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 DGEBU DKSSO E3Z EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- OK1 P2P RBF RIG RNANH ROSJB RPE RTWRZ S-T SJN SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ UKR UT5 UU3 WH7 ZCA ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c258t-d1e25330b2469b4c3f55f31976e7a04c71de1f36521a41386acdc66207bd7c133 |
| ISSN | 1058-6458 |
| IngestDate | Wed Oct 01 06:04:24 EDT 2025 Mon Oct 20 23:46:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c258t-d1e25330b2469b4c3f55f31976e7a04c71de1f36521a41386acdc66207bd7c133 |
| PageCount | 24 |
| ParticipantIDs | crossref_primary_10_1080_10586458_2024_2337910 informaworld_taylorfrancis_310_1080_10586458_2024_2337910 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-03 |
| PublicationDateYYYYMMDD | 2025-04-03 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Experimental mathematics |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_26_1 Hale J. K. (e_1_3_2_16_1) 1993 Walther H.-O. (e_1_3_2_35_1) 2016; 48 Walther H.-O. (e_1_3_2_32_1) 2003; 1269 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 Walther H.-O. (e_1_3_2_37_1) 2022; 35 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 Mason J. C. (e_1_3_2_25_1) 2003 |
| References_xml | – volume: 48 start-page: 507 issue: 2 year: 2016 ident: e_1_3_2_35_1 article-title: Semiflows for differential equations with locally bounded delay on solution manifolds in the space publication-title: Topol. Methods Nonlinear Anal. – ident: e_1_3_2_11_1 doi: 10.1016/j.jde.2021.02.052 – ident: e_1_3_2_34_1 doi: 10.14232/ejqtde.2016.1.85 – ident: e_1_3_2_15_1 doi: 10.1016/0167-2789(83)90298-1 – volume-title: Applied Mathematical Sciences year: 1993 ident: e_1_3_2_16_1 – ident: e_1_3_2_13_1 – ident: e_1_3_2_21_1 doi: 10.1103/physreva.45.3403 – ident: e_1_3_2_22_1 doi: 10.1007/s10884-014-9420-z – ident: e_1_3_2_30_1 doi: 10.1016/j.physleta.2007.01.083 – ident: e_1_3_2_18_1 doi: 10.1007/BF01457179 – ident: e_1_3_2_24_1 doi: 10.1126/science.267326 – ident: e_1_3_2_39_1 doi: 10.1016/j.jde.2022.07.033 – ident: e_1_3_2_8_1 doi: 10.1016/j.indag.2017.11.004 – volume: 35 start-page: 241 issue: 5 year: 2022 ident: e_1_3_2_37_1 article-title: A finite atlas for solution manifolds of differential systems with discrete state-dependent delays publication-title: Differ. Integral Equ – ident: e_1_3_2_3_1 doi: 10.1007/s41468-021-00071-5 – ident: e_1_3_2_19_1 doi: 10.1016/j.jde.2016.04.024 – ident: e_1_3_2_7_1 doi: 10.3389/frai.2021.667963 – ident: e_1_3_2_23_1 doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – ident: e_1_3_2_26_1 doi: 10.1016/0022-247X(76)90033-0 – ident: e_1_3_2_27_1 doi: 10.1140/epjds/s13688-017-0109-5 – ident: e_1_3_2_6_1 doi: 10.1007/s10711-013-9937-z – ident: e_1_3_2_10_1 doi: 10.1137/20M1347577 – ident: e_1_3_2_14_1 doi: 10.1137/20M1336965 – ident: e_1_3_2_4_1 doi: 10.1145/1542362.1542408 – ident: e_1_3_2_36_1 doi: 10.1016/j.jde.2021.05.024 – ident: e_1_3_2_17_1 doi: 10.1016/S1874-5725(06)80009-X – volume-title: Chebyshev polynomials year: 2003 ident: e_1_3_2_25_1 – ident: e_1_3_2_5_1 doi: 10.1088/1751-8121/ab7b9e – ident: e_1_3_2_9_1 doi: 10.1007/s10208-010-9060-6 – ident: e_1_3_2_28_1 doi: 10.1016/S0167-2789(00)00084-1 – ident: e_1_3_2_33_1 doi: 10.1016/j.jde.2003.07.001 – ident: e_1_3_2_38_1 doi: 10.1137/20M1311430 – ident: e_1_3_2_12_1 doi: 10.1016/0167-2789(82)90042-2 – ident: e_1_3_2_20_1 doi: 10.1007/s10884-016-9522-x – volume: 1269 start-page: 57 issue: 41 year: 2003 ident: e_1_3_2_32_1 article-title: Differentiable semiflows for differential equations with state-dependent delays. Zeszyty Naukowe Uniwersytetu Jagiellonskiego publication-title: Universitatis Iagellonicae Acta Mathematica – ident: e_1_3_2_2_1 doi: 10.3389/frai.2021.668302 – ident: e_1_3_2_29_1 – ident: e_1_3_2_31_1 doi: 10.21105/joss.00925 |
| SSID | ssj0014598 |
| Score | 2.3489838 |
| Snippet | This work concerns the dynamics of a certain class of delay differential equations (DDEs) which we refer to as state dependent delay maps. These maps are... |
| SourceID | crossref informaworld |
| SourceType | Index Database Publisher |
| StartPage | 176 |
| SubjectTerms | dynamics of attractors finite dimensional projections state dependent delay topological data analysis |
| Title | State Dependent Delay Maps: Numerical Algorithms and Dynamics of Projections |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10586458.2024.2337910 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1944-950X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014598 issn: 1058-6458 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1944-950X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014598 issn: 1058-6458 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4ED4imWl3zgViXEiR8Jt9UWVCHaU1dUXKL4BUW77WpJD_DrmdiOk2pXiIcURamt1NHMp_HY_mYGodcdbIyyNpHM6oRy3iQwK9qkspqJRhptTRc7vFjy-Rn9sGbr4UTXRZe0MlU_b4wr-RetQhvotYuS_QvNxj-FBngG_cIdNAz3P9Kx8xTBZPg6ti08nTc_povm0vHclnt_GgM6OP-yu9q0Xy98QuaZr0Lv-W9-Jybu2n2L1Lwh8f9FTO0aHfDFpiu28t2TbB0S0uksjb271juloWzH9DR2LZs9rIMdu3azVT3rJmw75MyxVYoIlNW1CiAjI5qxMuHUp2RPjW-rKE0qlq3HljdsY25GC2BvRongoxmZ-BJK14y9Z0d2o3WDwVo_p2leFKIKRNnDPNqh5zY6ymECyCbo6GQ--_wpHjlRVvm4yfDxfbhXmb25cYgDR-Ygze3IQVndR_fCygKfeJg8QLfM9iG6uxh09wh9dIDBETDYAQZ3gHmLI1zwABcMcME9XPDO4hFcHqOz9-9Wp_MklNNIVM7KNtHE5B2XWOaUV5KqwjJmwQILbkSTUSWINsQWHBy6BlybkjdKKw6iElILRYriCZpsd1vzFGHopYbSzFBF4MokgWWvJQJ-aKmz8hilvWzqS581pSYhGW0vzLoTZh2EeYyqsQTr1sHLemTVxW_fffYf7z5HdwZwv0CT9mpvXoKX2cpXAR-_APqQdmc |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN6I8PbCmysN2khFRqgJNxNBK3aL4BYjSojYd4NdzjpOqRYKlUqREiuzY53Pu4bv7ELoxbKOE1g6nWjqEsdwBqaidWEsa5lxJrUzucJKy7oA8DulwKRfGhFUaG1rbQhHlv9psbuOMrkPi4E4jRqiJzPJJyw-CMDZZVpsUlH2DYhC46eIkgdDYpsPRyDFt6iyev7pZkU8r1UuX5E5nD4l6xDbc5L01L3hLfP8q5rjelPbRbqWW4lvLRwdoQ40P0U6yqOk6O0K9Ui_F7Qo1t4CnUf6Fkxw-j9O5PfmBLkYvk-lb8foxwzAa3LaI9zM80fjZen0Mox-jQee-f9d1KiwGR_g0KhzpKd8EonIf7GlORKAp1bB9Q6bC3CUi9KTydMBAG8hBLkYsF1Iw5rshl6EAQ_gENcaTsTpFGN4SRYiriPDgcrkHNpM2QOxCculGTdSqVyD7tCU3Mq-qZFqTKTNkyioyNVG8vE5ZUfo6tAUmyYJ_256t0fYabXX7SS_rPaRP52jbN8jAJqYnuECNYjpXl6CuFPyq5McfSLzcIA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yQfTBb3F-5sHXlH4kafsozjF1K3tw4FtpvlSc21jbB_3rTZp2bIK-DAotlKTJ5dK7y_3uDoAbwzaSK4UYUQJhSjOkpaJCsRIkzJgUSprY4UFCeyP8-EIaNGFewyqNDa1soojqX20290yoBhGn7ySimBhglo8dPwjC2ARZbVLjFTNRHG6ycCRgEttoOBIh06YJ4vmrmxXxtJK8dEnsdPcAawZs0SYfTlkwh3__yuW41oz2wW6tlMJby0UHYENODsHOYJHRNT8C_UorhZ26Zm6hn8bZFxxk-uswKa3fR3cxfp3O34u3zxzqwcCOrXefw6mCQ3vmY9j8GIy69893PVRXYkDcJ1GBhCd9A0NlvramGeaBIkTpzRtSGWYu5qEnpKcCqnWBTEvFiGZccEp9N2Qi5NoMPgGtyXQiTwHUb7HE2JWYe_pymactJmXKsHPBhBu1gdMsQDqzCTdSr85j2pApNWRKazK1Qby8TGlRnXQoW5YkDf5te7ZG22uwNex00_5D8nQOtn1TFtgAeoIL0CrmpbzUukrBripu_AGksdrE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+Dependent+Delay+Maps%3A+Numerical+Algorithms+and+Dynamics+of+Projections&rft.jtitle=Experimental+mathematics&rft.au=Mireles+James%2C+J.+D.&rft.au=Motta%2C+Francis+C.&rft.au=Naudot%2C+Vincent&rft.date=2025-04-03&rft.pub=Taylor+%26+Francis&rft.issn=1058-6458&rft.eissn=1944-950X&rft.volume=34&rft.issue=2&rft.spage=176&rft.epage=199&rft_id=info:doi/10.1080%2F10586458.2024.2337910&rft.externalDocID=2337910 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-6458&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-6458&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-6458&client=summon |