State Dependent Delay Maps: Numerical Algorithms and Dynamics of Projections

This work concerns the dynamics of a certain class of delay differential equations (DDEs) which we refer to as state dependent delay maps. These maps are generated by delay differential equations where the derivative of the current state depends only on delayed variables, and not on the un-delayed s...

Full description

Saved in:
Bibliographic Details
Published inExperimental mathematics Vol. 34; no. 2; pp. 176 - 199
Main Authors Mireles James, J. D., Motta, Francis C., Naudot, Vincent
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.04.2025
Subjects
Online AccessGet full text
ISSN1058-6458
1944-950X
DOI10.1080/10586458.2024.2337910

Cover

Abstract This work concerns the dynamics of a certain class of delay differential equations (DDEs) which we refer to as state dependent delay maps. These maps are generated by delay differential equations where the derivative of the current state depends only on delayed variables, and not on the un-delayed state. However, we allow that the delay is itself a function of the state variable. A delay map with constant delays can be rewritten explicitly as a discrete time dynamical system on an appropriate function space, and a delay map with small state dependent terms can be viewed as a "non-autonomous" perturbation. We develop a fixed point formulation for the Cauchy problem of such perturbations, and under appropriate assumptions obtain the existence of forward iterates of the map. The proof is constructive and leads to numerical procedures which we implement for illustrative examples, including the cubic Ikeda and Mackey-Glass systems with constant and state-dependent delays. After proving a local convergence result for the method, we study more qualitative/global convergence issues using data analytic tools for time series analysis (dimension and topological measures derived from persistent homology). Using these tools we quantify the convergence of the dynamics in the finite dimensional projections to the dynamics of the infinite dimensional system.
AbstractList This work concerns the dynamics of a certain class of delay differential equations (DDEs) which we refer to as state dependent delay maps. These maps are generated by delay differential equations where the derivative of the current state depends only on delayed variables, and not on the un-delayed state. However, we allow that the delay is itself a function of the state variable. A delay map with constant delays can be rewritten explicitly as a discrete time dynamical system on an appropriate function space, and a delay map with small state dependent terms can be viewed as a "non-autonomous" perturbation. We develop a fixed point formulation for the Cauchy problem of such perturbations, and under appropriate assumptions obtain the existence of forward iterates of the map. The proof is constructive and leads to numerical procedures which we implement for illustrative examples, including the cubic Ikeda and Mackey-Glass systems with constant and state-dependent delays. After proving a local convergence result for the method, we study more qualitative/global convergence issues using data analytic tools for time series analysis (dimension and topological measures derived from persistent homology). Using these tools we quantify the convergence of the dynamics in the finite dimensional projections to the dynamics of the infinite dimensional system.
Author Mireles James, J. D.
Naudot, Vincent
Motta, Francis C.
Author_xml – sequence: 1
  givenname: J. D.
  surname: Mireles James
  fullname: Mireles James, J. D.
  organization: Department of Mathematical Sciences, Florida Atlantic University
– sequence: 2
  givenname: Francis C.
  surname: Motta
  fullname: Motta, Francis C.
  organization: Department of Mathematical Sciences, Florida Atlantic University
– sequence: 3
  givenname: Vincent
  surname: Naudot
  fullname: Naudot, Vincent
  organization: Department of Mathematical Sciences, Florida Atlantic University
BookMark eNp9kMtKAzEARYNUsK1-gpAfmJr3zLiytFaF-gAV3IU0D02ZSUoyIvP3Tmndurp3cc9dnAkYhRgsAJcYzTCq0BVGvBKMVzOCCJsRSssaoxMwxjVjRc3Rx2jow6bYj87AJOctQpjxuhqD9WunOguXdmeDsaEbWqN6-Kh2-Ro-fbc2ea0aOG8-Y_LdV5uhCgYu-6BarzOMDr6kuLW68zHkc3DqVJPtxTGn4H11-7a4L9bPdw-L-brQhFddYbAlnFK0IUzUG6ap49xRXJfClgoxXWJjsaOCE6wYppVQ2mghCCo3ptSY0ingh1-dYs7JOrlLvlWplxjJvRL5p0TulcijkoG7OXA-uJha9RNTY2Sn-iYml1TQPkv6_8Uv3OlpaA
Cites_doi 10.1016/j.jde.2021.02.052
10.14232/ejqtde.2016.1.85
10.1016/0167-2789(83)90298-1
10.1103/physreva.45.3403
10.1007/s10884-014-9420-z
10.1016/j.physleta.2007.01.083
10.1007/BF01457179
10.1126/science.267326
10.1016/j.jde.2022.07.033
10.1016/j.indag.2017.11.004
10.1007/s41468-021-00071-5
10.1016/j.jde.2016.04.024
10.3389/frai.2021.667963
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1016/0022-247X(76)90033-0
10.1140/epjds/s13688-017-0109-5
10.1007/s10711-013-9937-z
10.1137/20M1347577
10.1137/20M1336965
10.1145/1542362.1542408
10.1016/j.jde.2021.05.024
10.1016/S1874-5725(06)80009-X
10.1088/1751-8121/ab7b9e
10.1007/s10208-010-9060-6
10.1016/S0167-2789(00)00084-1
10.1016/j.jde.2003.07.001
10.1137/20M1311430
10.1016/0167-2789(82)90042-2
10.1007/s10884-016-9522-x
10.3389/frai.2021.668302
10.21105/joss.00925
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
DBID AAYXX
CITATION
DOI 10.1080/10586458.2024.2337910
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1944-950X
EndPage 199
ExternalDocumentID 10_1080_10586458_2024_2337910
2337910
Genre Research Article
GroupedDBID -~9
.7F
.QJ
0BK
0R~
30N
4.4
5GY
70C
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFO
ACGFS
ACIPV
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
DGEBU
DKSSO
E3Z
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
OK1
P2P
RBF
RIG
RNANH
ROSJB
RPE
RTWRZ
S-T
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
UKR
UT5
UU3
WH7
ZCA
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-d1e25330b2469b4c3f55f31976e7a04c71de1f36521a41386acdc66207bd7c133
ISSN 1058-6458
IngestDate Wed Oct 01 06:04:24 EDT 2025
Mon Oct 20 23:46:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-d1e25330b2469b4c3f55f31976e7a04c71de1f36521a41386acdc66207bd7c133
PageCount 24
ParticipantIDs crossref_primary_10_1080_10586458_2024_2337910
informaworld_taylorfrancis_310_1080_10586458_2024_2337910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-03
PublicationDateYYYYMMDD 2025-04-03
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-03
  day: 03
PublicationDecade 2020
PublicationTitle Experimental mathematics
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_26_1
Hale J. K. (e_1_3_2_16_1) 1993
Walther H.-O. (e_1_3_2_35_1) 2016; 48
Walther H.-O. (e_1_3_2_32_1) 2003; 1269
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
Walther H.-O. (e_1_3_2_37_1) 2022; 35
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
Mason J. C. (e_1_3_2_25_1) 2003
References_xml – volume: 48
  start-page: 507
  issue: 2
  year: 2016
  ident: e_1_3_2_35_1
  article-title: Semiflows for differential equations with locally bounded delay on solution manifolds in the space
  publication-title: Topol. Methods Nonlinear Anal.
– ident: e_1_3_2_11_1
  doi: 10.1016/j.jde.2021.02.052
– ident: e_1_3_2_34_1
  doi: 10.14232/ejqtde.2016.1.85
– ident: e_1_3_2_15_1
  doi: 10.1016/0167-2789(83)90298-1
– volume-title: Applied Mathematical Sciences
  year: 1993
  ident: e_1_3_2_16_1
– ident: e_1_3_2_13_1
– ident: e_1_3_2_21_1
  doi: 10.1103/physreva.45.3403
– ident: e_1_3_2_22_1
  doi: 10.1007/s10884-014-9420-z
– ident: e_1_3_2_30_1
  doi: 10.1016/j.physleta.2007.01.083
– ident: e_1_3_2_18_1
  doi: 10.1007/BF01457179
– ident: e_1_3_2_24_1
  doi: 10.1126/science.267326
– ident: e_1_3_2_39_1
  doi: 10.1016/j.jde.2022.07.033
– ident: e_1_3_2_8_1
  doi: 10.1016/j.indag.2017.11.004
– volume: 35
  start-page: 241
  issue: 5
  year: 2022
  ident: e_1_3_2_37_1
  article-title: A finite atlas for solution manifolds of differential systems with discrete state-dependent delays
  publication-title: Differ. Integral Equ
– ident: e_1_3_2_3_1
  doi: 10.1007/s41468-021-00071-5
– ident: e_1_3_2_19_1
  doi: 10.1016/j.jde.2016.04.024
– ident: e_1_3_2_7_1
  doi: 10.3389/frai.2021.667963
– ident: e_1_3_2_23_1
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– ident: e_1_3_2_26_1
  doi: 10.1016/0022-247X(76)90033-0
– ident: e_1_3_2_27_1
  doi: 10.1140/epjds/s13688-017-0109-5
– ident: e_1_3_2_6_1
  doi: 10.1007/s10711-013-9937-z
– ident: e_1_3_2_10_1
  doi: 10.1137/20M1347577
– ident: e_1_3_2_14_1
  doi: 10.1137/20M1336965
– ident: e_1_3_2_4_1
  doi: 10.1145/1542362.1542408
– ident: e_1_3_2_36_1
  doi: 10.1016/j.jde.2021.05.024
– ident: e_1_3_2_17_1
  doi: 10.1016/S1874-5725(06)80009-X
– volume-title: Chebyshev polynomials
  year: 2003
  ident: e_1_3_2_25_1
– ident: e_1_3_2_5_1
  doi: 10.1088/1751-8121/ab7b9e
– ident: e_1_3_2_9_1
  doi: 10.1007/s10208-010-9060-6
– ident: e_1_3_2_28_1
  doi: 10.1016/S0167-2789(00)00084-1
– ident: e_1_3_2_33_1
  doi: 10.1016/j.jde.2003.07.001
– ident: e_1_3_2_38_1
  doi: 10.1137/20M1311430
– ident: e_1_3_2_12_1
  doi: 10.1016/0167-2789(82)90042-2
– ident: e_1_3_2_20_1
  doi: 10.1007/s10884-016-9522-x
– volume: 1269
  start-page: 57
  issue: 41
  year: 2003
  ident: e_1_3_2_32_1
  article-title: Differentiable semiflows for differential equations with state-dependent delays. Zeszyty Naukowe Uniwersytetu Jagiellonskiego
  publication-title: Universitatis Iagellonicae Acta Mathematica
– ident: e_1_3_2_2_1
  doi: 10.3389/frai.2021.668302
– ident: e_1_3_2_29_1
– ident: e_1_3_2_31_1
  doi: 10.21105/joss.00925
SSID ssj0014598
Score 2.3489838
Snippet This work concerns the dynamics of a certain class of delay differential equations (DDEs) which we refer to as state dependent delay maps. These maps are...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 176
SubjectTerms dynamics of attractors
finite dimensional projections
state dependent delay
topological data analysis
Title State Dependent Delay Maps: Numerical Algorithms and Dynamics of Projections
URI https://www.tandfonline.com/doi/abs/10.1080/10586458.2024.2337910
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1944-950X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014598
  issn: 1058-6458
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1944-950X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014598
  issn: 1058-6458
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4ED4imWl3zgViXEiR8Jt9UWVCHaU1dUXKL4BUW77WpJD_DrmdiOk2pXiIcURamt1NHMp_HY_mYGodcdbIyyNpHM6oRy3iQwK9qkspqJRhptTRc7vFjy-Rn9sGbr4UTXRZe0MlU_b4wr-RetQhvotYuS_QvNxj-FBngG_cIdNAz3P9Kx8xTBZPg6ti08nTc_povm0vHclnt_GgM6OP-yu9q0Xy98QuaZr0Lv-W9-Jybu2n2L1Lwh8f9FTO0aHfDFpiu28t2TbB0S0uksjb271juloWzH9DR2LZs9rIMdu3azVT3rJmw75MyxVYoIlNW1CiAjI5qxMuHUp2RPjW-rKE0qlq3HljdsY25GC2BvRongoxmZ-BJK14y9Z0d2o3WDwVo_p2leFKIKRNnDPNqh5zY6ymECyCbo6GQ--_wpHjlRVvm4yfDxfbhXmb25cYgDR-Ygze3IQVndR_fCygKfeJg8QLfM9iG6uxh09wh9dIDBETDYAQZ3gHmLI1zwABcMcME9XPDO4hFcHqOz9-9Wp_MklNNIVM7KNtHE5B2XWOaUV5KqwjJmwQILbkSTUSWINsQWHBy6BlybkjdKKw6iElILRYriCZpsd1vzFGHopYbSzFBF4MokgWWvJQJ-aKmz8hilvWzqS581pSYhGW0vzLoTZh2EeYyqsQTr1sHLemTVxW_fffYf7z5HdwZwv0CT9mpvXoKX2cpXAR-_APqQdmc
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN6I8PbCmysN2khFRqgJNxNBK3aL4BYjSojYd4NdzjpOqRYKlUqREiuzY53Pu4bv7ELoxbKOE1g6nWjqEsdwBqaidWEsa5lxJrUzucJKy7oA8DulwKRfGhFUaG1rbQhHlv9psbuOMrkPi4E4jRqiJzPJJyw-CMDZZVpsUlH2DYhC46eIkgdDYpsPRyDFt6iyev7pZkU8r1UuX5E5nD4l6xDbc5L01L3hLfP8q5rjelPbRbqWW4lvLRwdoQ40P0U6yqOk6O0K9Ui_F7Qo1t4CnUf6Fkxw-j9O5PfmBLkYvk-lb8foxwzAa3LaI9zM80fjZen0Mox-jQee-f9d1KiwGR_g0KhzpKd8EonIf7GlORKAp1bB9Q6bC3CUi9KTydMBAG8hBLkYsF1Iw5rshl6EAQ_gENcaTsTpFGN4SRYiriPDgcrkHNpM2QOxCculGTdSqVyD7tCU3Mq-qZFqTKTNkyioyNVG8vE5ZUfo6tAUmyYJ_256t0fYabXX7SS_rPaRP52jbN8jAJqYnuECNYjpXl6CuFPyq5McfSLzcIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yQfTBb3F-5sHXlH4kafsozjF1K3tw4FtpvlSc21jbB_3rTZp2bIK-DAotlKTJ5dK7y_3uDoAbwzaSK4UYUQJhSjOkpaJCsRIkzJgUSprY4UFCeyP8-EIaNGFewyqNDa1soojqX20290yoBhGn7ySimBhglo8dPwjC2ARZbVLjFTNRHG6ycCRgEttoOBIh06YJ4vmrmxXxtJK8dEnsdPcAawZs0SYfTlkwh3__yuW41oz2wW6tlMJby0UHYENODsHOYJHRNT8C_UorhZ26Zm6hn8bZFxxk-uswKa3fR3cxfp3O34u3zxzqwcCOrXefw6mCQ3vmY9j8GIy69893PVRXYkDcJ1GBhCd9A0NlvramGeaBIkTpzRtSGWYu5qEnpKcCqnWBTEvFiGZccEp9N2Qi5NoMPgGtyXQiTwHUb7HE2JWYe_pymactJmXKsHPBhBu1gdMsQDqzCTdSr85j2pApNWRKazK1Qby8TGlRnXQoW5YkDf5te7ZG22uwNex00_5D8nQOtn1TFtgAeoIL0CrmpbzUukrBripu_AGksdrE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+Dependent+Delay+Maps%3A+Numerical+Algorithms+and+Dynamics+of+Projections&rft.jtitle=Experimental+mathematics&rft.au=Mireles+James%2C+J.+D.&rft.au=Motta%2C+Francis+C.&rft.au=Naudot%2C+Vincent&rft.date=2025-04-03&rft.pub=Taylor+%26+Francis&rft.issn=1058-6458&rft.eissn=1944-950X&rft.volume=34&rft.issue=2&rft.spage=176&rft.epage=199&rft_id=info:doi/10.1080%2F10586458.2024.2337910&rft.externalDocID=2337910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-6458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-6458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-6458&client=summon