Probabilistic normalization conditions of polytomous knowledge structures

Constructing a probability distribution of knowledge states reasonably is a fundamental and important issue in dichotomous probabilistic knowledge structure (PKS). Recently, the dichotomous knowledge structure has been extended to the polytomous knowledge structure, but the establishment of the prob...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 54; no. 15; pp. 4877 - 4895
Main Authors Chen, Zhuoheng, Li, Jinjin, Wang, Bo, Xu, Bochi
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.08.2025
Subjects
Online AccessGet full text
ISSN0361-0926
1532-415X
DOI10.1080/03610926.2024.2430735

Cover

Abstract Constructing a probability distribution of knowledge states reasonably is a fundamental and important issue in dichotomous probabilistic knowledge structure (PKS). Recently, the dichotomous knowledge structure has been extended to the polytomous knowledge structure, but the establishment of the probability distribution of the polytomous knowledge state has not yet been constructed. So it is necessary to find the relevant definition and normalization conditions for its establishment. To this end, this article builds two appropriate probability definitions of the polytomous knowledge state from different perspectives, and proves the equivalence of the two definitions. In addition, we obtain the probabilistic normalization conditions for the polytomous knowledge structure ( Q , L , K ) , where ( L , ≤ ) is a linear order and supply some examples. The results generalize the according conclusions of the dichotomous knowledge states of learning space. Moreover, such findings provide the way for the construction of a number of probabilistic models with polytomous data for the applications of knowledge structure theory (KST).
AbstractList Constructing a probability distribution of knowledge states reasonably is a fundamental and important issue in dichotomous probabilistic knowledge structure (PKS). Recently, the dichotomous knowledge structure has been extended to the polytomous knowledge structure, but the establishment of the probability distribution of the polytomous knowledge state has not yet been constructed. So it is necessary to find the relevant definition and normalization conditions for its establishment. To this end, this article builds two appropriate probability definitions of the polytomous knowledge state from different perspectives, and proves the equivalence of the two definitions. In addition, we obtain the probabilistic normalization conditions for the polytomous knowledge structure ( Q , L , K ) , where ( L , ≤ ) is a linear order and supply some examples. The results generalize the according conclusions of the dichotomous knowledge states of learning space. Moreover, such findings provide the way for the construction of a number of probabilistic models with polytomous data for the applications of knowledge structure theory (KST).
Author Wang, Bo
Chen, Zhuoheng
Xu, Bochi
Li, Jinjin
Author_xml – sequence: 1
  givenname: Zhuoheng
  surname: Chen
  fullname: Chen, Zhuoheng
  organization: School of Mathematical Science, Huaqiao University
– sequence: 2
  givenname: Jinjin
  surname: Li
  fullname: Li, Jinjin
  organization: School of Mathematics and Statistics, Minnan Normal University
– sequence: 3
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: School of Mathematical Science, Huaqiao University
– sequence: 4
  givenname: Bochi
  surname: Xu
  fullname: Xu, Bochi
  organization: School of Mathematical Science, Huaqiao University
BookMark eNp9kM1KAzEcxINUsK0-grAvsDX5Z7PJ3pTiR6GgBwVvIZsPiW6TkqSU-vS6tF49zRxmBuY3Q5MQg0XomuAFwQLfYNoS3EG7AAzNAhqKOWVnaEoYhboh7H2CpmOmHkMXaJbzJ8aEcUGnaPWSYq96P_hcvK5CTBs1-G9VfAyVjsH40eUqumobh0OJm7jL1VeI-8GaD1vlkna67JLNl-jcqSHbq5PO0dvD_evyqV4_P66Wd-taAxOl1g5bZlvlcIsNA-gbQygF23bM8VaBEAKIMYor65TVALYTvO8whx4I7xSdI3bc1SnmnKyT2-Q3Kh0kwXLkIf94yJGHPPH47d0eez648eU-psHIog5DTC6poH2W9P-JHyBOay8
Cites_doi 10.1017/CBO9780511805967
10.1016/j.jmp.2006.07.003
10.1007/978-3-642-58625-5
10.1037/met0000050
10.1016/j.jmp.2020.102451
10.1111/j.1745-3984.2010.00119.x
10.1016/S0020-7373(85)80031-6
10.1007/s11336-020-09722-5
10.1016/j.jmp.2023.102770
10.1016/j.jmp.2021.102549
10.1111/j.2044-8317.1988.tb00884.x
10.1016/j.jmp.2021.102542
10.1016/j.endm.2013.05.144
10.1007/s11336-018-9645-6
10.3233/JIFS-212018
10.1016/0022-2496(88)90011-9
10.1007/978-1-4612-4308-3_6
10.1007/978-3-642-01039-2
10.1111/bmsp.12095
10.1016/j.jmp.2019.102306
10.1016/j.jmp.2021.102552
10.1007/s11336-015-9457-x
10.1016/j.jmp.2021.102515
10.1561/2000000043
10.1006/jmps.1997.1169
10.1111/bmsp.12283
10.3758/s13428-010-0036-x
10.1016/j.fss.2023.108540
10.1016/j.fss.2020.10.004
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
DBID AAYXX
CITATION
DOI 10.1080/03610926.2024.2430735
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 4895
ExternalDocumentID 10_1080_03610926_2024_2430735
2430735
Genre Research Article
GrantInformation_xml – fundername: Doctoral Fund of Huaqiao University
  grantid: 605-50Y17078
– fundername: the Natural Science Foundation of Fujian Province
  grantid: 2023J01122
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
TWZ
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~02
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-cf0e5e6af060d522b4d1332e695f76a288821dda7aefaec22e987b9072b2179a3
ISSN 0361-0926
IngestDate Wed Oct 01 05:47:02 EDT 2025
Mon Oct 20 23:44:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-cf0e5e6af060d522b4d1332e695f76a288821dda7aefaec22e987b9072b2179a3
PageCount 19
ParticipantIDs crossref_primary_10_1080_03610926_2024_2430735
informaworld_taylorfrancis_310_1080_03610926_2024_2430735
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-03
PublicationDateYYYYMMDD 2025-08-03
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-03
  day: 03
PublicationDecade 2020
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
Birkhoff G. (e_1_3_2_4_1) 1948
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
Korossy K. (e_1_3_2_16_1) 1999
References_xml – ident: e_1_3_2_22_1
  doi: 10.1017/CBO9780511805967
– ident: e_1_3_2_23_1
  doi: 10.1016/j.jmp.2006.07.003
– ident: e_1_3_2_8_1
  doi: 10.1007/978-3-642-58625-5
– ident: e_1_3_2_6_1
  doi: 10.1037/met0000050
– ident: e_1_3_2_21_1
  doi: 10.1016/j.jmp.2020.102451
– ident: e_1_3_2_19_1
  doi: 10.1111/j.1745-3984.2010.00119.x
– ident: e_1_3_2_7_1
  doi: 10.1016/S0020-7373(85)80031-6
– ident: e_1_3_2_26_1
  doi: 10.1007/s11336-020-09722-5
– ident: e_1_3_2_29_1
  doi: 10.1016/j.jmp.2023.102770
– ident: e_1_3_2_3_1
  doi: 10.1016/j.jmp.2021.102549
– volume-title: Lattice theory
  year: 1948
  ident: e_1_3_2_4_1
– ident: e_1_3_2_11_1
  doi: 10.1111/j.2044-8317.1988.tb00884.x
– ident: e_1_3_2_17_1
  doi: 10.1016/j.jmp.2021.102542
– ident: e_1_3_2_5_1
  doi: 10.1016/j.endm.2013.05.144
– ident: e_1_3_2_18_1
  doi: 10.1007/s11336-018-9645-6
– ident: e_1_3_2_32_1
  doi: 10.3233/JIFS-212018
– ident: e_1_3_2_12_1
  doi: 10.1016/0022-2496(88)90011-9
– start-page: 103
  volume-title: Knowledge spaces: Theories, empirical research, and applications
  year: 1999
  ident: e_1_3_2_16_1
– ident: e_1_3_2_10_1
  doi: 10.1007/978-1-4612-4308-3_6
– ident: e_1_3_2_13_1
  doi: 10.1007/978-3-642-01039-2
– ident: e_1_3_2_2_1
  doi: 10.1111/bmsp.12095
– ident: e_1_3_2_25_1
  doi: 10.1016/j.jmp.2019.102306
– ident: e_1_3_2_27_1
  doi: 10.1016/j.jmp.2021.102552
– ident: e_1_3_2_15_1
  doi: 10.1007/s11336-015-9457-x
– ident: e_1_3_2_14_1
  doi: 10.1016/j.jmp.2021.102515
– ident: e_1_3_2_9_1
  doi: 10.1561/2000000043
– ident: e_1_3_2_20_1
  doi: 10.1006/jmps.1997.1169
– ident: e_1_3_2_30_1
  doi: 10.1111/bmsp.12283
– ident: e_1_3_2_24_1
  doi: 10.3758/s13428-010-0036-x
– ident: e_1_3_2_31_1
  doi: 10.1016/j.fss.2023.108540
– ident: e_1_3_2_28_1
  doi: 10.1016/j.fss.2020.10.004
SSID ssj0015783
Score 2.386127
Snippet Constructing a probability distribution of knowledge states reasonably is a fundamental and important issue in dichotomous probabilistic knowledge structure...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 4877
SubjectTerms master fringe
neighboring polytomous knowledge state
polytomous knowledge state
Probabilistic knowledge structure
probabilistic normalization conditions
well-graded
Title Probabilistic normalization conditions of polytomous knowledge structures
URI https://www.tandfonline.com/doi/abs/10.1080/03610926.2024.2430735
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-415X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015783
  issn: 0361-0926
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELW2cKEH1NJWhRaUA7dVVontfB1bVARIICRArHqJYscuW6EE0eyh_RX9yZ2JHcdLESq9RLuW1pvNvB3P2G_eELIfcRGpuKhDmXIdco1tXpiGLEUwyZlWMq-wwPn0LD264ifzZD6Z_PZYS8tOzOSvR-tK_seqMAZ2xSrZZ1jWTQoD8BrsC1ewMFz_ycbn9_BvRHYrii1PGww_b21dJdLJ64Wjud21tz-7FtP8qdtFmxrt2OW9pREOegV-yUjPlsWiI6PnPLO1_P2Rg2k-7WLyA1vn8fVmiSUf3xzVp-cLnCya7wsHxGu7S_25HUbmS_Ne3iz8jQia9DQ45vkrlsZhVFCrbD34UxpCjDD3Ha5RjR6AlXjuE7KnzFuKeW4acP7l5i0vkqFWPEWiCeUzytFdJeO6NpzlP1juHAkxHtRR7TQlTlPaaV6QdQrrBDYDYdGZO5cC_2YabtufOtSEoVr7Y3ezEu2saOF6UczlK7Jp04_gk8HSazJRzRZ5eeq0e39skY0LZ-435HgFYsEKxIIRYkGrgxFigYNYMELsLbk6_HJ5cBTa7huhpEnehVJHKlFppaM0qiFKF7yOGaMqLRKdpRXNITeL67rKKqUrJSlVRZ6JIsqogDS3qNg7sta0jXpPAppQ8AKoQKs1V4pVQtaw4IuY1xAPK71NZsNTKu-MyEr5pHW2SeE_y7Lrd7e0aUVTsic_u_PcL_tANka4fyRr8ODULkSindjrwfEHUbWEUw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BGSgDHwVE-czAmpLYTtqMCFG10FYMrdQtih17oUoqSAf49dzVSdUiwdI1kiPnfLbvXd69A7j3hPS0H6WuCoVxhaE2L9wgSpFcCW606iRU4Dwchb2JeJkG07VaGKJVEoY2VihieVbT5qZkdEWJe8BT1_ciRgwDJlpMkJ8Gu7AXYLBPXQy4N1r9SUCPtC2SQ4TNOKaq4vnrNRv304Z66dq90z0CVc3Y0k3eW4tCttT3LzHH7T7pGA7LsNR5tH50Ajs6a8DBcKXp-tmAOsWlVtb5FPpvH3gQELGWHjgZTX9WlnQ6CLFTywRzcuPM89lXkVOGwVkl8BwrW7tArH8Gk-7z-Knnll0ZXMWCTuEq4-lAh4nxQi_F6E2KFHEu02EUmHaYMITUzE_TpJ1ok2jFmI46bYkYnEmEP1HCz6GW5Zm-AIcFDL2DlEmNEVrzRKoULwLpixTjJG2a0KrWIp5b8Y3YrzRNS4PFZLC4NFgTovUVi4tl1sPYFiUx_3fs5RZj72C_Nx4O4kF_9HoFdUY9golWwq-hhvbUNxi4FPJ26Zk_SsrilQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BkVAZ-CggyqcH1oTEcdJmREDVAq06UIktimN7oWoqmg7w67mrk6pFgqVrJEfO-XK-Z797B3DrCelpP1ZOFgnjCENtXgKDKEUGmQiMztopFTj3B1F3JJ7fw4pNOCtplYShjRWKWMRq-rmnylSMuDsMur4XcyIYcOFyQW4absNORLdiVMXhDZYXCeiQtkNyhKgZx1RFPH-9Zm17WhMvXdl2OgcgqwlbtsmHOy-km33_0nLc6IsOYb9MStm99aIj2NKTBuz1l4quswbUKSu1os7H0Bt-YhggWi09YBOa_bgs6GQIsJXlgbHcsGk-_ipyOl9gy-M7ZkVr54j0T2DUeXp76DplTwYn42G7cDLj6VBHqfEiT2HuJoVClMt1FIemFaUcATX3lUpbqTapzjjXcbslEYFzieAnToNTqE3yiT4DxkOOvkG6pMYIrYNUZgq3AekLhVmSNk1wq6VIplZ6I_ErRdPSYAkZLCkN1oR4dcGSYnHmYWyDkiT4d-z5BmNvYHf42Elee4OXC6hzahBMnJLgEmpoTn2FWUshrxd--QOXzeE5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+normalization+conditions+of+polytomous+knowledge+structures&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Chen%2C+Zhuoheng&rft.au=Li%2C+Jinjin&rft.au=Wang%2C+Bo&rft.au=Xu%2C+Bochi&rft.date=2025-08-03&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=54&rft.issue=15&rft.spage=4877&rft.epage=4895&rft_id=info:doi/10.1080%2F03610926.2024.2430735&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610926_2024_2430735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon