Approximation and the Multidimensional Moment Problem
The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First,...
Saved in:
| Published in | Axioms Vol. 14; no. 1; p. 59 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-1680 2075-1680 |
| DOI | 10.3390/axioms14010059 |
Cover
| Abstract | The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire R2, or on R+2, are considered. Such results are discussed in Lμ1R2 and in CS1×S2-type spaces, for a large class of measures, μ, for compact subsets Si, i=1,2 of the interval [0,+∞). Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined. |
|---|---|
| AbstractList | The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire R 2 , or on R +2 , are considered. Such results are discussed in Lμ1 R 2 and in C S1×S2 -type spaces, for a large class of measures, μ, for compact subsets Si, i=1,2 of the interval [0,+∞) . Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined. The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire R2, or on R+2, are considered. Such results are discussed in Lμ1R2 and in CS1×S2-type spaces, for a large class of measures, μ, for compact subsets Si, i=1,2 of the interval [0,+∞). Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined. The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire R2, or on R+2, are considered. Such results are discussed in Lμ1R2 and in CS1×S2-type spaces, for a large class of measures, μ, for compact subsets Si, i=1,2 of the interval [0,+∞). Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined. |
| Author | Olteanu, Octav |
| Author_xml | – sequence: 1 givenname: Octav orcidid: 0000-0001-7059-9387 surname: Olteanu fullname: Olteanu, Octav |
| BookMark | eNqFkM1Lw0AQxRepYK29eg54Tjv7kTQ5luJHoUUPel4mm11NSbJxN8X2v3drRPTkXOYxM-_H8C7JqLWtJuSawozzHOZ4qGzjqQAKkORnZMxgkcQ0zWD0S1-Qqfc7CJVTnlE-Jsmy65w9VA32lW0jbMuof9PRdl_3VVk1uvVhjHW0tUH30ZOzRa2bK3JusPZ6-t0n5OXu9nn1EG8e79er5SZWLMn6WKWCQykE5xmaBVMAhiEXsBBFoVR4yqTUpJnKc1VAjkwppJkpCpMYBoDAJ2Q9cEuLO9m58KY7SouV_BpY9yrR9ZWqtUxQpwwUYpkkItU5CsxTlopAzLSmLLDmA2vfdnj8wLr-AVKQpxDl3xCD42ZwhITe99r3cmf3LqThJadhzzKAE3c2XClnvXfa_If9BJcjgnY |
| Cites_doi | 10.1515/math-2022-0001 10.1007/BF01420423 10.3390/math12172685 10.1016/j.kjs.2023.12.007 10.3390/sym15091743 10.1007/978-81-322-2148-7 10.1137/S0040585X97T990083 10.3390/math12172740 10.1007/978-1-4612-1468-7 10.1080/13873954.2024.2335382 10.1007/s11785-023-01339-7 10.3390/math9040309 10.1007/978-3-030-48412-5 10.1016/j.jfa.2022.109674 10.3390/sym13060986 10.1007/978-3-319-64546-9 10.3390/math12182878 10.3390/axioms13010028 10.1016/0022-1236(84)90042-9 10.1007/BF01446568 10.1007/s40314-024-02946-6 10.1090/S0002-9947-2012-05701-1 10.1090/S0002-9939-1991-1059628-5 10.1007/s13398-020-00905-4 10.1016/j.aej.2024.07.015 |
| ContentType | Journal Article |
| Copyright | 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/axioms14010059 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2075-1680 |
| ExternalDocumentID | oai_doaj_org_article_5ae620caad5546e9a4a96264a188ee12 10.3390/axioms14010059 10_3390_axioms14010059 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO EAD EAP ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS QF4 QN7 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c258t-c6430d44338af72c00f2a34074bbcc075f61f68c99cb09a2cca18fbbf5f200a03 |
| IEDL.DBID | DOA |
| ISSN | 2075-1680 |
| IngestDate | Fri Oct 03 12:43:15 EDT 2025 Sun Oct 26 05:54:10 EDT 2025 Fri Jul 25 12:01:20 EDT 2025 Thu Oct 16 04:33:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c258t-c6430d44338af72c00f2a34074bbcc075f61f68c99cb09a2cca18fbbf5f200a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7059-9387 |
| OpenAccessLink | https://doaj.org/article/5ae620caad5546e9a4a96264a188ee12 |
| PQID | 3159328002 |
| PQPubID | 2032429 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5ae620caad5546e9a4a96264a188ee12 unpaywall_primary_10_3390_axioms14010059 proquest_journals_3159328002 crossref_primary_10_3390_axioms14010059 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Axioms |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Aslan (ref_26) 2024; 51 Cassier (ref_10) 1984; 58 Stoyanov (ref_16) 2020; 65 ref_32 ref_30 Niculescu (ref_22) 2020; 114 Olteanu (ref_29) 1991; 313 Lemnete (ref_15) 1991; 112 ref_19 ref_18 ref_17 Lasserre (ref_14) 2013; 365 Rao (ref_25) 2024; 43 Turhan (ref_28) 2024; 30 Aslan (ref_27) 2024; 107 Berg (ref_9) 1979; 243 Berg (ref_20) 2022; 283 (ref_11) 1991; 289 Olteanu (ref_31) 2022; 20 Putinar (ref_12) 1993; 42 ref_24 ref_23 (ref_21) 2023; 17 ref_1 ref_3 ref_2 ref_8 ref_5 Putinar (ref_13) 1996; 323 ref_4 ref_7 ref_6 |
| References_xml | – volume: 20 start-page: 366 year: 2022 ident: ref_31 article-title: On Hahn-Banach theorem and some of its applications publication-title: Open Math. doi: 10.1515/math-2022-0001 – volume: 243 start-page: 163 year: 1979 ident: ref_9 article-title: A remark on the multidimensional moment problem publication-title: Math. Ann. doi: 10.1007/BF01420423 – ident: ref_5 – volume: 42 start-page: 969 year: 1993 ident: ref_12 article-title: Positive polynomials on compact semi-algebraic sets publication-title: IU Math. J. – ident: ref_3 – volume: 323 start-page: 787 year: 1996 ident: ref_13 article-title: The moment problem on semi-algebraic compacts publication-title: Comptes Rendus Acad. Sci. Paris Ser. I – ident: ref_24 doi: 10.3390/math12172685 – volume: 51 start-page: 100168 year: 2024 ident: ref_26 article-title: Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators publication-title: Kuwait J. Sci. doi: 10.1016/j.kjs.2023.12.007 – ident: ref_18 doi: 10.3390/sym15091743 – ident: ref_1 doi: 10.1007/978-81-322-2148-7 – volume: 65 start-page: 497 year: 2020 ident: ref_16 article-title: New Checkable Conditions for Moment Determinacy of Probability Distributions publication-title: Theory Probab. Its Appl. doi: 10.1137/S0040585X97T990083 – ident: ref_23 doi: 10.3390/math12172740 – ident: ref_4 doi: 10.1007/978-1-4612-1468-7 – volume: 30 start-page: 228 year: 2024 ident: ref_28 article-title: Kantorovich-Stancu type (α,λ,s)—Bernstein operators and their approximation properties publication-title: Math. Comput. Model. Dyn. Syst. doi: 10.1080/13873954.2024.2335382 – volume: 17 start-page: 75 year: 2023 ident: ref_21 article-title: Stability in Truncated Trigonometric Scalar Moment Problems publication-title: Complex Anal. Oper. Theory doi: 10.1007/s11785-023-01339-7 – ident: ref_17 doi: 10.3390/math9040309 – ident: ref_6 – ident: ref_7 doi: 10.1007/978-3-030-48412-5 – volume: 283 start-page: 109674 year: 2022 ident: ref_20 article-title: Self-adjoint operators associated with Hankel moment matrices publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2022.109674 – volume: 313 start-page: 739 year: 1991 ident: ref_29 article-title: Applications of theorems on extension of linear operators to the moment problem and to a generalization of Mazur-Orlicz theorem publication-title: C. R. Acad. Sci. Paris – ident: ref_2 – ident: ref_30 doi: 10.3390/sym13060986 – ident: ref_8 doi: 10.1007/978-3-319-64546-9 – ident: ref_32 doi: 10.3390/math12182878 – ident: ref_19 doi: 10.3390/axioms13010028 – volume: 58 start-page: 254 year: 1984 ident: ref_10 article-title: Moment problem on a compact subset of R2 and decomposition of polynomials of several variables publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(84)90042-9 – volume: 289 start-page: 203 year: 1991 ident: ref_11 article-title: The K-moment problem for compact semi-algebraic sets publication-title: Math. Ann. doi: 10.1007/BF01446568 – volume: 43 start-page: 428 year: 2024 ident: ref_25 article-title: A note on a general sequence of λ-Szász Kantorovich type operators publication-title: Comp. Appl. Math. doi: 10.1007/s40314-024-02946-6 – volume: 365 start-page: 2489 year: 2013 ident: ref_14 article-title: The K-moment problem for continuous linear functionals publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-2012-05701-1 – volume: 112 start-page: 1023 year: 1991 ident: ref_15 article-title: An operator-valued moment problem publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1991-1059628-5 – volume: 114 start-page: 171 year: 2020 ident: ref_22 article-title: From the Hahn–Banach extension theorem to the isotonicity of convex functions and the majorization theory publication-title: Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. doi: 10.1007/s13398-020-00905-4 – volume: 107 start-page: 205 year: 2024 ident: ref_27 article-title: Approximation by a new Stancu variant of generalized (λ, μ)- Bern- stein operators publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2024.07.015 |
| SSID | ssj0000913813 |
| Score | 2.281346 |
| Snippet | The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 59 |
| SubjectTerms | Algebra Approximation Banach spaces determinate measure Function space moment problem polynomial approximation Polynomials Real variables several dimensions sums of squares |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ1LSwMxEMeH2h7Ug_jE-mIPgl4Ws9mHyUHESksRWooo9LYk2USEuq19oH57J9ndai963SwhzGwy888mvwE4Z9eCCXNN_Ay1gx_xRPqCmcTXGTcBlzEh0p226Cfd5-hhGA9r0K_uwthjldWa6BbqbKzsHvlViHE3pDa9uZ28-7ZqlP27WpXQEGVphezGIcbWoEEtGasOjVa7P3hc7rpYCiYLwoLeGKLevxKfr-O3mZUZxAFLf0UnB_FfyTzXF_lEfH2I0ehXEOpsw1aZPXp3hbt3oKbzXdjsLdGrsz2I7ywl_PO1uJLoiTzzsNVzF20zi_IvMBxez6IX5t6gKCizD8-d9tN91y9rI_iKxmzuK8wkSBZFqDDR1FQRYqgIUZ1FUiqFeYBJApMwxbmShAuKjgqYkdLEBueFIOEB1PNxrg_BM9o47F-iiY4wYEvs0ygdcmxgKjRNuKhskk4KBEaK0sFaL121XhNa1mTLtyy62j0YT1_SciaksdAJJUqIzB6Q01xEgqOqinB8TOuANuGkMnhazqdZ-uP9JlwunfDPcI7-7ukYNqgt5uv2U06gPp8u9ClmGHN5Vn4234530WA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA0yLtSFb3F80YWgm9o0TTPJSkZRRFBcOKCrkqSJDI6dwXZ8fb03aWdQN4rbJi1pT9J7Trg5F6F93pFc2g4Oc9AOIRVMhZJbFppc2FioFGPlsy2u2UWPXt6ld01uTtmkVYIU7_ufNIF4FsaM4yimURylIhrl9vil2UiKOwmD6MmcleQsS4GKt9Bs7_qme-8Kyk1urY0aE5D2kXzrD59Kpyiw9yb9Eoi8X_83kjk3Lkby_VUOBl_izflSXVS19DaFLs3k8WhcqSP98cPE8d-vsowWGyYadOups4JmTLGKFq6mNq7lGkq7znH8rV8fbwxkkQfQGvhDu7krC1BbegRXzsahCm7q4jTrqHd-dnt6ETZ1FkJNUl6FGlgJzikFtQqwEY2xJTIBpUeV0hoGbllsGddCaIWFJAB6zK1SNrWwxiRONlCrGBZmEwXWWG8hyAw2FIK_gmdabRIBDVwnto0OJh89G9V2GhnIEAdP9h2eNjpxmEx7ORtsf2H4_JA1qypLpWEEaylzl2xnhKRSgEKjMD5uTEzaaGeCaNaszTJLgMElxBHlNjqcovzLcLb-3nUbzRNXJNjv0-ygVvU8NrvAXCq118zPT2M66WY priority: 102 providerName: Unpaywall |
| Title | Approximation and the Multidimensional Moment Problem |
| URI | https://www.proquest.com/docview/3159328002 https://www.mdpi.com/2075-1680/14/1/59/pdf?version=1736846602 https://doaj.org/article/5ae620caad5546e9a4a96264a188ee12 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: AMVHM dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2075-1680 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913813 issn: 2075-1680 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa8IwFH5s7rDtMPaTdXPSw2C7FNOfJkcdOhkoMia4U0nSBARXZVbm_vu9pCp68rJjm1Ae30v7vq8k3wN4pA1OuW4QL0Pt4EUsER6nOvFUxrTPREyIsLst-kl3GL2N4tFWqy-zJ6y0By6Bq8dcJQGRnGdmP5ViPOIMSXjEfUqVsv2FA0LZlpiy32DmYykKS5fGEHV9nS_H06-5kRPEGpNuVSFr1r_DMI8X-Yz__vDJZKvYdM7hbMUS3WYZ3QUcqPwSTnsbi9X5FcRN4wa-HJdHD12eZy6OuvZAbWYs-0u7DbdnLBYKd1A2jrmGYaf98dL1Vj0QPBnEtPAkMgaSRREqSYQ0kITogIeowiIhpMR6rxNfJ1QyJgVhPMCE-FQLoWON65-T8AYq-TRXt-Bqpa29X6KIirAwC3ymlipkOEBlqB14WmOSzkqrixQlgkEv3UXPgZaBbDPLWFTbG5i4dJW4dF_iHKiuAU9X7808DZFdhYEhsQ48b5KwJ5y7_wjnHk4C09rX_l2pQqX4XqgH5BuFqMEh7bzW4KjV7g_ea3ah4dWwP2h-_gG-DNex |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOAAHxKvqllcOILhEOLYT7ANCPLUUdoUQSNxS27ErJMhu2UXAn-tv69hJFrjQE9c4spzx2DOf4_k-gA2xq4RyuyQuEDvEXGY6VsJlsS2kS6ROCdHhtkU3a9_wn7fp7Rj8bWph_LXKZk8MG3XRM_6MfIdh3GXUpzf7_T-xV43yf1cbCQ1VSysUe4FirC7sOLevzwjhBntnxzjfm5SenlwfteNaZSA2NBXD2GBMJgXniNVw0NQQ4qhiiHO41sZgRHVZ4jJhpDSaSEXxkxPhtHapQw9ThGG_4zDJGZcI_iYPT7qXV6NTHs-6KRJWsUUyJsmOernrPQw8rCGBIPVdNAyiAR8y3amnsq9en9X9_bugdzoHs3W2Gh1U7jUPY7ZcgJnOiOp1sAjpgWclf7mrSiAjVRYRtkahsLfw0gEV7UfU8VQPw-iyErBZgpsvsdI3mCh7pf0OkbMu0AxmlliOCYLGPp2xTGKDMMy1YKuxSd6vKDdyhCreevlH67Xg0Jts9Janyg4Peo-_83rl5amyGSVGqcJfyLNScSURxXEcn7A2oS1YaQye1-t3kL95Wwu2R5Pwn-H8-LyndZhqX3cu8ouz7vkyTFMvJBzOclZgYvj4ZFcxuxnqtdqFIvj11V77DzB3Dq8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTtwwEB0tVCrtAbUF1G23JYdW7SVax06y9qFCS-mylII4FIlbsB27QqLZLbsI-LV-HTNOsoULPXGNo5EzHnvmOTNvAD7IgZbaD1hcInaIU5WbWEufx65UPlEmY8yEbIvDfHycfj_JTjrwt62FobTK9kwMB3U5sXRH3hfodwWn8Kbvm7SIo53R1vRPTB2k6E9r206jNpF9d3OF8G32ZW8H1_oj56NvP7-O46bDQGx5JuexRX_MyjRFnIYT5pYxz7VAjJMaYy16U58nPpdWKWuY0hw_N5HeGJ95tC7NBMpdgicDYnGnKvXR7uJ-h_g2ZSJqnkghFOvr67PJ7xkBGhaoUe_4wdAu4F6Mu3JZTfXNlT4_v-PuRi9gtYlTo2FtWC-h46pX8PxgQfI6W4NsSHzk12d18WOkqzLC0SiU9JbUNKAm_IgOiORhHh3VrWvW4fhRdLQBy9Wkcq8h8s4HgsHcMZdiaGBQprdOKByQVvgufGp1Ukxrso0CQQppr7ivvS5sk8oWbxFJdngwufhVNHuuyLTLObNal5SK55ROtUL8luL8pHMJ70KvVXjR7NxZ8c_OuvB5sQj_mc6bhyVtwlO01eLH3uH-W3jGqYNwuMTpwfL84tK9w7Bmbt4H-4ng9LEN9hbSiAxJ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA0yLtSFb3F80YWgm9o0TTPJSkZRRFBcOKCrkqSJDI6dwXZ8fb03aWdQN4rbJi1pT9J7Trg5F6F93pFc2g4Oc9AOIRVMhZJbFppc2FioFGPlsy2u2UWPXt6ld01uTtmkVYIU7_ufNIF4FsaM4yimURylIhrl9vil2UiKOwmD6MmcleQsS4GKt9Bs7_qme-8Kyk1urY0aE5D2kXzrD59Kpyiw9yb9Eoi8X_83kjk3Lkby_VUOBl_izflSXVS19DaFLs3k8WhcqSP98cPE8d-vsowWGyYadOups4JmTLGKFq6mNq7lGkq7znH8rV8fbwxkkQfQGvhDu7krC1BbegRXzsahCm7q4jTrqHd-dnt6ETZ1FkJNUl6FGlgJzikFtQqwEY2xJTIBpUeV0hoGbllsGddCaIWFJAB6zK1SNrWwxiRONlCrGBZmEwXWWG8hyAw2FIK_gmdabRIBDVwnto0OJh89G9V2GhnIEAdP9h2eNjpxmEx7ORtsf2H4_JA1qypLpWEEaylzl2xnhKRSgEKjMD5uTEzaaGeCaNaszTJLgMElxBHlNjqcovzLcLb-3nUbzRNXJNjv0-ygVvU8NrvAXCq118zPT2M66WY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+and+the+Multidimensional+Moment+Problem&rft.jtitle=Axioms&rft.au=Olteanu%2C+Octav&rft.date=2025-01-01&rft.issn=2075-1680&rft.eissn=2075-1680&rft.volume=14&rft.issue=1&rft.spage=59&rft_id=info:doi/10.3390%2Faxioms14010059&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_axioms14010059 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon |