Approximation and the Multidimensional Moment Problem

The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First,...

Full description

Saved in:
Bibliographic Details
Published inAxioms Vol. 14; no. 1; p. 59
Main Author Olteanu, Octav
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2025
Subjects
Online AccessGet full text
ISSN2075-1680
2075-1680
DOI10.3390/axioms14010059

Cover

Abstract The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire R2, or on R+2, are considered. Such results are discussed in Lμ1R2 and in CS1×S2-type spaces, for a large class of measures, μ, for compact subsets Si, i=1,2 of the interval [0,+∞). Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined.
AbstractList The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire R 2 , or on R +2 , are considered. Such results are discussed in Lμ1 R 2 and in C S1×S2 -type spaces, for a large class of measures, μ, for compact subsets Si, i=1,2 of the interval [0,+∞) . Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined.
The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire R2, or on R+2, are considered. Such results are discussed in Lμ1R2 and in CS1×S2-type spaces, for a large class of measures, μ, for compact subsets Si, i=1,2 of the interval [0,+∞). Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined.
The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general idea is to approximate any element of the positive cone of the involved function space with sums whose terms are squares of polynomials. First, approximations on a Cartesian product of intervals by polynomials taking nonnegative values on the entire R2, or on R+2, are considered. Such results are discussed in Lμ1R2 and in CS1×S2-type spaces, for a large class of measures, μ, for compact subsets Si, i=1,2 of the interval [0,+∞). Thus, on such subsets, any nonnegative function is a limit of sums of squares. Secondly, applications to the bidimensional moment problem are derived in terms of quadratic expressions. As is well known, in multidimensional cases, such results are difficult to prove. Directions for future work are also outlined.
Author Olteanu, Octav
Author_xml – sequence: 1
  givenname: Octav
  orcidid: 0000-0001-7059-9387
  surname: Olteanu
  fullname: Olteanu, Octav
BookMark eNqFkM1Lw0AQxRepYK29eg54Tjv7kTQ5luJHoUUPel4mm11NSbJxN8X2v3drRPTkXOYxM-_H8C7JqLWtJuSawozzHOZ4qGzjqQAKkORnZMxgkcQ0zWD0S1-Qqfc7CJVTnlE-Jsmy65w9VA32lW0jbMuof9PRdl_3VVk1uvVhjHW0tUH30ZOzRa2bK3JusPZ6-t0n5OXu9nn1EG8e79er5SZWLMn6WKWCQykE5xmaBVMAhiEXsBBFoVR4yqTUpJnKc1VAjkwppJkpCpMYBoDAJ2Q9cEuLO9m58KY7SouV_BpY9yrR9ZWqtUxQpwwUYpkkItU5CsxTlopAzLSmLLDmA2vfdnj8wLr-AVKQpxDl3xCD42ZwhITe99r3cmf3LqThJadhzzKAE3c2XClnvXfa_If9BJcjgnY
Cites_doi 10.1515/math-2022-0001
10.1007/BF01420423
10.3390/math12172685
10.1016/j.kjs.2023.12.007
10.3390/sym15091743
10.1007/978-81-322-2148-7
10.1137/S0040585X97T990083
10.3390/math12172740
10.1007/978-1-4612-1468-7
10.1080/13873954.2024.2335382
10.1007/s11785-023-01339-7
10.3390/math9040309
10.1007/978-3-030-48412-5
10.1016/j.jfa.2022.109674
10.3390/sym13060986
10.1007/978-3-319-64546-9
10.3390/math12182878
10.3390/axioms13010028
10.1016/0022-1236(84)90042-9
10.1007/BF01446568
10.1007/s40314-024-02946-6
10.1090/S0002-9947-2012-05701-1
10.1090/S0002-9939-1991-1059628-5
10.1007/s13398-020-00905-4
10.1016/j.aej.2024.07.015
ContentType Journal Article
Copyright 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/axioms14010059
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2075-1680
ExternalDocumentID oai_doaj_org_article_5ae620caad5546e9a4a96264a188ee12
10.3390/axioms14010059
10_3390_axioms14010059
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EAD
EAP
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
QF4
QN7
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c258t-c6430d44338af72c00f2a34074bbcc075f61f68c99cb09a2cca18fbbf5f200a03
IEDL.DBID DOA
ISSN 2075-1680
IngestDate Fri Oct 03 12:43:15 EDT 2025
Sun Oct 26 05:54:10 EDT 2025
Fri Jul 25 12:01:20 EDT 2025
Thu Oct 16 04:33:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c258t-c6430d44338af72c00f2a34074bbcc075f61f68c99cb09a2cca18fbbf5f200a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7059-9387
OpenAccessLink https://doaj.org/article/5ae620caad5546e9a4a96264a188ee12
PQID 3159328002
PQPubID 2032429
ParticipantIDs doaj_primary_oai_doaj_org_article_5ae620caad5546e9a4a96264a188ee12
unpaywall_primary_10_3390_axioms14010059
proquest_journals_3159328002
crossref_primary_10_3390_axioms14010059
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Axioms
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Aslan (ref_26) 2024; 51
Cassier (ref_10) 1984; 58
Stoyanov (ref_16) 2020; 65
ref_32
ref_30
Niculescu (ref_22) 2020; 114
Olteanu (ref_29) 1991; 313
Lemnete (ref_15) 1991; 112
ref_19
ref_18
ref_17
Lasserre (ref_14) 2013; 365
Rao (ref_25) 2024; 43
Turhan (ref_28) 2024; 30
Aslan (ref_27) 2024; 107
Berg (ref_9) 1979; 243
Berg (ref_20) 2022; 283
(ref_11) 1991; 289
Olteanu (ref_31) 2022; 20
Putinar (ref_12) 1993; 42
ref_24
ref_23
(ref_21) 2023; 17
ref_1
ref_3
ref_2
ref_8
ref_5
Putinar (ref_13) 1996; 323
ref_4
ref_7
ref_6
References_xml – volume: 20
  start-page: 366
  year: 2022
  ident: ref_31
  article-title: On Hahn-Banach theorem and some of its applications
  publication-title: Open Math.
  doi: 10.1515/math-2022-0001
– volume: 243
  start-page: 163
  year: 1979
  ident: ref_9
  article-title: A remark on the multidimensional moment problem
  publication-title: Math. Ann.
  doi: 10.1007/BF01420423
– ident: ref_5
– volume: 42
  start-page: 969
  year: 1993
  ident: ref_12
  article-title: Positive polynomials on compact semi-algebraic sets
  publication-title: IU Math. J.
– ident: ref_3
– volume: 323
  start-page: 787
  year: 1996
  ident: ref_13
  article-title: The moment problem on semi-algebraic compacts
  publication-title: Comptes Rendus Acad. Sci. Paris Ser. I
– ident: ref_24
  doi: 10.3390/math12172685
– volume: 51
  start-page: 100168
  year: 2024
  ident: ref_26
  article-title: Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators
  publication-title: Kuwait J. Sci.
  doi: 10.1016/j.kjs.2023.12.007
– ident: ref_18
  doi: 10.3390/sym15091743
– ident: ref_1
  doi: 10.1007/978-81-322-2148-7
– volume: 65
  start-page: 497
  year: 2020
  ident: ref_16
  article-title: New Checkable Conditions for Moment Determinacy of Probability Distributions
  publication-title: Theory Probab. Its Appl.
  doi: 10.1137/S0040585X97T990083
– ident: ref_23
  doi: 10.3390/math12172740
– ident: ref_4
  doi: 10.1007/978-1-4612-1468-7
– volume: 30
  start-page: 228
  year: 2024
  ident: ref_28
  article-title: Kantorovich-Stancu type (α,λ,s)—Bernstein operators and their approximation properties
  publication-title: Math. Comput. Model. Dyn. Syst.
  doi: 10.1080/13873954.2024.2335382
– volume: 17
  start-page: 75
  year: 2023
  ident: ref_21
  article-title: Stability in Truncated Trigonometric Scalar Moment Problems
  publication-title: Complex Anal. Oper. Theory
  doi: 10.1007/s11785-023-01339-7
– ident: ref_17
  doi: 10.3390/math9040309
– ident: ref_6
– ident: ref_7
  doi: 10.1007/978-3-030-48412-5
– volume: 283
  start-page: 109674
  year: 2022
  ident: ref_20
  article-title: Self-adjoint operators associated with Hankel moment matrices
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2022.109674
– volume: 313
  start-page: 739
  year: 1991
  ident: ref_29
  article-title: Applications of theorems on extension of linear operators to the moment problem and to a generalization of Mazur-Orlicz theorem
  publication-title: C. R. Acad. Sci. Paris
– ident: ref_2
– ident: ref_30
  doi: 10.3390/sym13060986
– ident: ref_8
  doi: 10.1007/978-3-319-64546-9
– ident: ref_32
  doi: 10.3390/math12182878
– ident: ref_19
  doi: 10.3390/axioms13010028
– volume: 58
  start-page: 254
  year: 1984
  ident: ref_10
  article-title: Moment problem on a compact subset of R2 and decomposition of polynomials of several variables
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(84)90042-9
– volume: 289
  start-page: 203
  year: 1991
  ident: ref_11
  article-title: The K-moment problem for compact semi-algebraic sets
  publication-title: Math. Ann.
  doi: 10.1007/BF01446568
– volume: 43
  start-page: 428
  year: 2024
  ident: ref_25
  article-title: A note on a general sequence of λ-Szász Kantorovich type operators
  publication-title: Comp. Appl. Math.
  doi: 10.1007/s40314-024-02946-6
– volume: 365
  start-page: 2489
  year: 2013
  ident: ref_14
  article-title: The K-moment problem for continuous linear functionals
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-2012-05701-1
– volume: 112
  start-page: 1023
  year: 1991
  ident: ref_15
  article-title: An operator-valued moment problem
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1991-1059628-5
– volume: 114
  start-page: 171
  year: 2020
  ident: ref_22
  article-title: From the Hahn–Banach extension theorem to the isotonicity of convex functions and the majorization theory
  publication-title: Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat.
  doi: 10.1007/s13398-020-00905-4
– volume: 107
  start-page: 205
  year: 2024
  ident: ref_27
  article-title: Approximation by a new Stancu variant of generalized (λ, μ)- Bern- stein operators
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.07.015
SSID ssj0000913813
Score 2.281346
Snippet The aim of this paper is to apply polynomial approximation by sums of squares in several real variables to the multidimensional moment problem. The general...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 59
SubjectTerms Algebra
Approximation
Banach spaces
determinate measure
Function space
moment problem
polynomial approximation
Polynomials
Real variables
several dimensions
sums of squares
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhZ1LSwMxEMeH2h7Ug_jE-mIPgl4Ws9mHyUHESksRWooo9LYk2USEuq19oH57J9ndai963SwhzGwy888mvwE4Z9eCCXNN_Ay1gx_xRPqCmcTXGTcBlzEh0p226Cfd5-hhGA9r0K_uwthjldWa6BbqbKzsHvlViHE3pDa9uZ28-7ZqlP27WpXQEGVphezGIcbWoEEtGasOjVa7P3hc7rpYCiYLwoLeGKLevxKfr-O3mZUZxAFLf0UnB_FfyTzXF_lEfH2I0ehXEOpsw1aZPXp3hbt3oKbzXdjsLdGrsz2I7ywl_PO1uJLoiTzzsNVzF20zi_IvMBxez6IX5t6gKCizD8-d9tN91y9rI_iKxmzuK8wkSBZFqDDR1FQRYqgIUZ1FUiqFeYBJApMwxbmShAuKjgqYkdLEBueFIOEB1PNxrg_BM9o47F-iiY4wYEvs0ygdcmxgKjRNuKhskk4KBEaK0sFaL121XhNa1mTLtyy62j0YT1_SciaksdAJJUqIzB6Q01xEgqOqinB8TOuANuGkMnhazqdZ-uP9JlwunfDPcI7-7ukYNqgt5uv2U06gPp8u9ClmGHN5Vn4234530WA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA0yLtSFb3F80YWgm9o0TTPJSkZRRFBcOKCrkqSJDI6dwXZ8fb03aWdQN4rbJi1pT9J7Trg5F6F93pFc2g4Oc9AOIRVMhZJbFppc2FioFGPlsy2u2UWPXt6ld01uTtmkVYIU7_ufNIF4FsaM4yimURylIhrl9vil2UiKOwmD6MmcleQsS4GKt9Bs7_qme-8Kyk1urY0aE5D2kXzrD59Kpyiw9yb9Eoi8X_83kjk3Lkby_VUOBl_izflSXVS19DaFLs3k8WhcqSP98cPE8d-vsowWGyYadOups4JmTLGKFq6mNq7lGkq7znH8rV8fbwxkkQfQGvhDu7krC1BbegRXzsahCm7q4jTrqHd-dnt6ETZ1FkJNUl6FGlgJzikFtQqwEY2xJTIBpUeV0hoGbllsGddCaIWFJAB6zK1SNrWwxiRONlCrGBZmEwXWWG8hyAw2FIK_gmdabRIBDVwnto0OJh89G9V2GhnIEAdP9h2eNjpxmEx7ORtsf2H4_JA1qypLpWEEaylzl2xnhKRSgEKjMD5uTEzaaGeCaNaszTJLgMElxBHlNjqcovzLcLb-3nUbzRNXJNjv0-ygVvU8NrvAXCq118zPT2M66WY
  priority: 102
  providerName: Unpaywall
Title Approximation and the Multidimensional Moment Problem
URI https://www.proquest.com/docview/3159328002
https://www.mdpi.com/2075-1680/14/1/59/pdf?version=1736846602
https://doaj.org/article/5ae620caad5546e9a4a96264a188ee12
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: AMVHM
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2075-1680
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913813
  issn: 2075-1680
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa8IwFH5s7rDtMPaTdXPSw2C7FNOfJkcdOhkoMia4U0nSBARXZVbm_vu9pCp68rJjm1Ae30v7vq8k3wN4pA1OuW4QL0Pt4EUsER6nOvFUxrTPREyIsLst-kl3GL2N4tFWqy-zJ6y0By6Bq8dcJQGRnGdmP5ViPOIMSXjEfUqVsv2FA0LZlpiy32DmYykKS5fGEHV9nS_H06-5kRPEGpNuVSFr1r_DMI8X-Yz__vDJZKvYdM7hbMUS3WYZ3QUcqPwSTnsbi9X5FcRN4wa-HJdHD12eZy6OuvZAbWYs-0u7DbdnLBYKd1A2jrmGYaf98dL1Vj0QPBnEtPAkMgaSRREqSYQ0kITogIeowiIhpMR6rxNfJ1QyJgVhPMCE-FQLoWON65-T8AYq-TRXt-Bqpa29X6KIirAwC3ymlipkOEBlqB14WmOSzkqrixQlgkEv3UXPgZaBbDPLWFTbG5i4dJW4dF_iHKiuAU9X7808DZFdhYEhsQ48b5KwJ5y7_wjnHk4C09rX_l2pQqX4XqgH5BuFqMEh7bzW4KjV7g_ea3ah4dWwP2h-_gG-DNex
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOAAHxKvqllcOILhEOLYT7ANCPLUUdoUQSNxS27ErJMhu2UXAn-tv69hJFrjQE9c4spzx2DOf4_k-gA2xq4RyuyQuEDvEXGY6VsJlsS2kS6ROCdHhtkU3a9_wn7fp7Rj8bWph_LXKZk8MG3XRM_6MfIdh3GXUpzf7_T-xV43yf1cbCQ1VSysUe4FirC7sOLevzwjhBntnxzjfm5SenlwfteNaZSA2NBXD2GBMJgXniNVw0NQQ4qhiiHO41sZgRHVZ4jJhpDSaSEXxkxPhtHapQw9ThGG_4zDJGZcI_iYPT7qXV6NTHs-6KRJWsUUyJsmOernrPQw8rCGBIPVdNAyiAR8y3amnsq9en9X9_bugdzoHs3W2Gh1U7jUPY7ZcgJnOiOp1sAjpgWclf7mrSiAjVRYRtkahsLfw0gEV7UfU8VQPw-iyErBZgpsvsdI3mCh7pf0OkbMu0AxmlliOCYLGPp2xTGKDMMy1YKuxSd6vKDdyhCreevlH67Xg0Jts9Janyg4Peo-_83rl5amyGSVGqcJfyLNScSURxXEcn7A2oS1YaQye1-t3kL95Wwu2R5Pwn-H8-LyndZhqX3cu8ouz7vkyTFMvJBzOclZgYvj4ZFcxuxnqtdqFIvj11V77DzB3Dq8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTtwwEB0tVCrtAbUF1G23JYdW7SVax06y9qFCS-mylII4FIlbsB27QqLZLbsI-LV-HTNOsoULPXGNo5EzHnvmOTNvAD7IgZbaD1hcInaIU5WbWEufx65UPlEmY8yEbIvDfHycfj_JTjrwt62FobTK9kwMB3U5sXRH3hfodwWn8Kbvm7SIo53R1vRPTB2k6E9r206jNpF9d3OF8G32ZW8H1_oj56NvP7-O46bDQGx5JuexRX_MyjRFnIYT5pYxz7VAjJMaYy16U58nPpdWKWuY0hw_N5HeGJ95tC7NBMpdgicDYnGnKvXR7uJ-h_g2ZSJqnkghFOvr67PJ7xkBGhaoUe_4wdAu4F6Mu3JZTfXNlT4_v-PuRi9gtYlTo2FtWC-h46pX8PxgQfI6W4NsSHzk12d18WOkqzLC0SiU9JbUNKAm_IgOiORhHh3VrWvW4fhRdLQBy9Wkcq8h8s4HgsHcMZdiaGBQprdOKByQVvgufGp1Ukxrso0CQQppr7ivvS5sk8oWbxFJdngwufhVNHuuyLTLObNal5SK55ROtUL8luL8pHMJ70KvVXjR7NxZ8c_OuvB5sQj_mc6bhyVtwlO01eLH3uH-W3jGqYNwuMTpwfL84tK9w7Bmbt4H-4ng9LEN9hbSiAxJ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA0yLtSFb3F80YWgm9o0TTPJSkZRRFBcOKCrkqSJDI6dwXZ8fb03aWdQN4rbJi1pT9J7Trg5F6F93pFc2g4Oc9AOIRVMhZJbFppc2FioFGPlsy2u2UWPXt6ld01uTtmkVYIU7_ufNIF4FsaM4yimURylIhrl9vil2UiKOwmD6MmcleQsS4GKt9Bs7_qme-8Kyk1urY0aE5D2kXzrD59Kpyiw9yb9Eoi8X_83kjk3Lkby_VUOBl_izflSXVS19DaFLs3k8WhcqSP98cPE8d-vsowWGyYadOups4JmTLGKFq6mNq7lGkq7znH8rV8fbwxkkQfQGvhDu7krC1BbegRXzsahCm7q4jTrqHd-dnt6ETZ1FkJNUl6FGlgJzikFtQqwEY2xJTIBpUeV0hoGbllsGddCaIWFJAB6zK1SNrWwxiRONlCrGBZmEwXWWG8hyAw2FIK_gmdabRIBDVwnto0OJh89G9V2GhnIEAdP9h2eNjpxmEx7ORtsf2H4_JA1qypLpWEEaylzl2xnhKRSgEKjMD5uTEzaaGeCaNaszTJLgMElxBHlNjqcovzLcLb-3nUbzRNXJNjv0-ygVvU8NrvAXCq118zPT2M66WY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+and+the+Multidimensional+Moment+Problem&rft.jtitle=Axioms&rft.au=Olteanu%2C+Octav&rft.date=2025-01-01&rft.issn=2075-1680&rft.eissn=2075-1680&rft.volume=14&rft.issue=1&rft.spage=59&rft_id=info:doi/10.3390%2Faxioms14010059&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_axioms14010059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1680&client=summon