Chimp optimization algorithm
•A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented. This paper...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 149; p. 113338 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Elsevier Ltd
    
        01.07.2020
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2020.113338 | 
Cover
| Abstract | •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented.
This paper proposes a novel metaheuristic algorithm called Chimp Optimization Algorithm (ChOA) inspired by the individual intelligence and sexual motivation of chimps in their group hunting, which is different from the other social predators. ChOA is designed to further alleviate the two problems of slow convergence speed and trapping in local optima in solving high-dimensional problems. In this paper, a mathematical model of diverse intelligence and sexual motivation of chimps is proposed. In this regard, four types of chimps entitled attacker, barrier, chaser, and driver are employed for simulating the diverse intelligence. Moreover, four main steps of hunting, i.e. driving, chasing, blocking, and attacking, are implemented. The proposed ChOA algorithm is evaluated in 3 main phases. First, a set of 30 mathematical benchmark functions is utilized to investigate various characteristics of ChOA. Secondly, ChOA was tested by 13 high-dimensional test problems. Finally, 10 real-world optimization problems were used to evaluate the performance of ChOA. The results are compared to several newly proposed meta-heuristic algorithms in terms of convergence speed, the probability of getting stuck in local minimums, and exploration, exploitation. Also, statistical tests were employed to investigate the significance of the results. The results indicate that the ChOA outperforms the other benchmark optimization algorithms. | 
    
|---|---|
| AbstractList | This paper proposes a novel metaheuristic algorithm called Chimp Optimization Algorithm (ChOA) inspired by the individual intelligence and sexual motivation of chimps in their group hunting, which is different from the other social predators. ChOA is designed to further alleviate the two problems of slow convergence speed and trapping in local optima in solving high-dimensional problems. In this paper, a mathematical model of diverse intelligence and sexual motivation of chimps is proposed. In this regard, four types of chimps entitled attacker, barrier, chaser, and driver are employed for simulating the diverse intelligence. Moreover, four main steps of hunting, i.e. driving, chasing, blocking, and attacking, are implemented. The proposed ChOA algorithm is evaluated in 3 main phases. First, a set of 30 mathematical benchmark functions is utilized to investigate various characteristics of ChOA. Secondly, ChOA was tested by 13 high-dimensional test problems. Finally, 10 real-world optimization problems were used to evaluate the performance of ChOA. The results are compared to several newly proposed meta-heuristic algorithms in terms of convergence speed, the probability of getting stuck in local minimums, and exploration, exploitation. Also, statistical tests were employed to investigate the significance of the results. The results indicate that the ChOA outperforms the other benchmark optimization algorithms. •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented. This paper proposes a novel metaheuristic algorithm called Chimp Optimization Algorithm (ChOA) inspired by the individual intelligence and sexual motivation of chimps in their group hunting, which is different from the other social predators. ChOA is designed to further alleviate the two problems of slow convergence speed and trapping in local optima in solving high-dimensional problems. In this paper, a mathematical model of diverse intelligence and sexual motivation of chimps is proposed. In this regard, four types of chimps entitled attacker, barrier, chaser, and driver are employed for simulating the diverse intelligence. Moreover, four main steps of hunting, i.e. driving, chasing, blocking, and attacking, are implemented. The proposed ChOA algorithm is evaluated in 3 main phases. First, a set of 30 mathematical benchmark functions is utilized to investigate various characteristics of ChOA. Secondly, ChOA was tested by 13 high-dimensional test problems. Finally, 10 real-world optimization problems were used to evaluate the performance of ChOA. The results are compared to several newly proposed meta-heuristic algorithms in terms of convergence speed, the probability of getting stuck in local minimums, and exploration, exploitation. Also, statistical tests were employed to investigate the significance of the results. The results indicate that the ChOA outperforms the other benchmark optimization algorithms.  | 
    
| ArticleNumber | 113338 | 
    
| Author | Khishe, M. Mosavi, M.R.  | 
    
| Author_xml | – sequence: 1 givenname: M. surname: Khishe fullname: Khishe, M. email: m_khishe@alumni.iust.ac.ir organization: Department of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran – sequence: 2 givenname: M.R. orcidid: 0000-0002-2389-644X surname: Mosavi fullname: Mosavi, M.R. email: m_mosavi@iust.ac.ir organization: Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran  | 
    
| BookMark | eNp9kMtKxDAUhoOM4MzoC4iLAdcdc2mTFtzI4A0G3Og6nKanTsq0qUlG0ae3ta5cuDpw-L9z-RZk1rkOCTlndM0ok1fNGsMHrDnlQ4MJIfIjMme5EolUhZiROS0ylaRMpSdkEUJDKVOUqjm52Oxs269cH21rvyBa161g_-q8jbv2lBzXsA949luX5OXu9nnzkGyf7h83N9vE8CyPCUiepbmiRYm1YlWZM44SBShuwGApOWSVoSIHWUBlMihpVpsxXlaFlCWIJbmc5vbevR0wRN24g--GlZqnKRPDR4oPqXxKGe9C8FhrY-PPxdGD3WtG9ehCN3p0oUcXenIxoPwP2nvbgv_8H7qeIBxef7fodTAWO4OV9Wiirpz9D_8GC7l5Yg | 
    
| CitedBy_id | crossref_primary_10_3390_pr9122276 crossref_primary_10_32604_iasc_2023_027865 crossref_primary_10_1002_acs_3645 crossref_primary_10_1016_j_heliyon_2024_e25848 crossref_primary_10_3390_fi16120460 crossref_primary_10_1007_s10462_022_10340_z crossref_primary_10_1007_s41870_023_01366_9 crossref_primary_10_1016_j_eswa_2021_114974 crossref_primary_10_1007_s12530_023_09518_9 crossref_primary_10_1016_j_eswa_2023_119992 crossref_primary_10_1007_s11831_023_09912_1 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_3390_e24081151 crossref_primary_10_1016_j_egyr_2021_11_257 crossref_primary_10_1038_s41598_024_66450_x crossref_primary_10_1080_15435075_2023_2245024 crossref_primary_10_1155_2022_7596819 crossref_primary_10_1007_s10479_024_06363_0 crossref_primary_10_1007_s13198_023_02005_z crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_3390_biomimetics9090519 crossref_primary_10_1007_s40747_024_01592_z crossref_primary_10_1007_s42235_024_00539_x crossref_primary_10_3390_a18030160 crossref_primary_10_1016_j_egyr_2021_04_058 crossref_primary_10_1016_j_ins_2023_119535 crossref_primary_10_1016_j_ins_2024_120924 crossref_primary_10_1002_dac_5720 crossref_primary_10_1016_j_measurement_2024_115302 crossref_primary_10_1016_j_egyr_2021_04_052 crossref_primary_10_1002_int_23091 crossref_primary_10_1016_j_egyr_2021_04_050 crossref_primary_10_1007_s11277_021_08902_5 crossref_primary_10_1016_j_cose_2024_104166 crossref_primary_10_1007_s10462_024_11049_x crossref_primary_10_1016_j_bspc_2023_105870 crossref_primary_10_1016_j_seta_2021_101359 crossref_primary_10_1063_5_0174861 crossref_primary_10_1155_2021_7567870 crossref_primary_10_5194_npg_30_435_2023 crossref_primary_10_1016_j_asoc_2021_107282 crossref_primary_10_36306_konjes_1209089 crossref_primary_10_2478_jaiscr_2024_0018 crossref_primary_10_3934_math_2024494 crossref_primary_10_1016_j_compeleceng_2022_108014 crossref_primary_10_1155_2022_5677961 crossref_primary_10_1016_j_eswa_2024_123160 crossref_primary_10_3390_app12199709 crossref_primary_10_3390_w15244297 crossref_primary_10_1016_j_swevo_2023_101248 crossref_primary_10_1016_j_engappai_2023_106469 crossref_primary_10_3390_sym16030324 crossref_primary_10_1016_j_rineng_2023_101354 crossref_primary_10_1016_j_egyr_2021_10_118 crossref_primary_10_1177_24056456251320119 crossref_primary_10_1016_j_asoc_2022_109869 crossref_primary_10_1088_1742_6596_1963_1_012027 crossref_primary_10_3390_jmse13030458 crossref_primary_10_1016_j_est_2024_111008 crossref_primary_10_1016_j_scitotenv_2024_172195 crossref_primary_10_1016_j_egyr_2021_03_044 crossref_primary_10_1016_j_eswa_2022_119455 crossref_primary_10_3390_su151612563 crossref_primary_10_1007_s41060_025_00726_x crossref_primary_10_1109_TNB_2021_3121278 crossref_primary_10_32604_cmc_2024_046304 crossref_primary_10_1142_S1469026824500020 crossref_primary_10_1007_s42835_022_01140_0 crossref_primary_10_1016_j_compeleceng_2025_110178 crossref_primary_10_1016_j_knosys_2024_112026 crossref_primary_10_3390_electronics11223798 crossref_primary_10_1038_s41598_024_57518_9 crossref_primary_10_1080_0954898X_2025_2453032 crossref_primary_10_1016_j_jestch_2024_101897 crossref_primary_10_1007_s00366_021_01591_5 crossref_primary_10_1007_s42044_024_00174_z crossref_primary_10_3233_JIFS_201755 crossref_primary_10_1007_s10462_024_10838_8 crossref_primary_10_1080_13682199_2023_2178094 crossref_primary_10_1109_ACCESS_2024_3399325 crossref_primary_10_1002_dac_5628 crossref_primary_10_1155_2021_9528664 crossref_primary_10_3390_machines10070561 crossref_primary_10_1080_00405000_2024_2410038 crossref_primary_10_1016_j_array_2023_100317 crossref_primary_10_1016_j_engappai_2021_104419 crossref_primary_10_1016_j_egyr_2021_03_033 crossref_primary_10_1016_j_asoc_2024_111581 crossref_primary_10_1007_s10915_022_01955_z crossref_primary_10_1007_s12530_022_09443_3 crossref_primary_10_1007_s12665_021_10098_7 crossref_primary_10_1007_s12530_023_09506_z crossref_primary_10_1111_exsy_13563 crossref_primary_10_1016_j_eswa_2022_119206 crossref_primary_10_1016_j_seta_2022_102605 crossref_primary_10_1007_s10586_024_04545_w crossref_primary_10_1016_j_asoc_2024_111574 crossref_primary_10_1109_ACCESS_2023_3259548 crossref_primary_10_1016_j_asoc_2025_112968 crossref_primary_10_1016_j_swevo_2024_101724 crossref_primary_10_1016_j_asoc_2024_112428 crossref_primary_10_1007_s10462_024_10729_y crossref_primary_10_1016_j_suscom_2023_100939 crossref_primary_10_1016_j_engappai_2023_106121 crossref_primary_10_3390_math9141661 crossref_primary_10_1007_s00500_023_09153_1 crossref_primary_10_1007_s12652_021_03564_4 crossref_primary_10_1016_j_aej_2021_04_025 crossref_primary_10_1016_j_asoc_2021_107146 crossref_primary_10_1007_s12204_024_2574_x crossref_primary_10_1016_j_engappai_2023_106207 crossref_primary_10_1007_s13369_024_08899_6 crossref_primary_10_3390_biomimetics9080501 crossref_primary_10_1016_j_advengsoft_2022_103322 crossref_primary_10_1007_s10462_024_10829_9 crossref_primary_10_1109_ACCESS_2024_3376235 crossref_primary_10_1111_exsy_12642 crossref_primary_10_1016_j_energy_2023_128454 crossref_primary_10_1016_j_isatra_2021_08_036 crossref_primary_10_1109_ACCESS_2022_3174484 crossref_primary_10_1007_s00500_021_05839_6 crossref_primary_10_1371_journal_pone_0282514 crossref_primary_10_32604_cmc_2024_051928 crossref_primary_10_32604_cmc_2022_019876 crossref_primary_10_56294_sctconf2024697 crossref_primary_10_1142_S0219649224500126 crossref_primary_10_32604_cmc_2024_049717 crossref_primary_10_1007_s11280_022_01054_x crossref_primary_10_1016_j_knosys_2022_109215 crossref_primary_10_1007_s10462_023_10567_4 crossref_primary_10_1016_j_advengsoft_2022_103333 crossref_primary_10_3390_f13111746 crossref_primary_10_1007_s00500_023_09174_w crossref_primary_10_1016_j_engappai_2022_105069 crossref_primary_10_1155_2021_9114113 crossref_primary_10_1016_j_aei_2022_101636 crossref_primary_10_1016_j_aei_2024_103088 crossref_primary_10_1007_s11277_022_10000_z crossref_primary_10_1007_s40998_024_00780_4 crossref_primary_10_1007_s13369_024_09807_8 crossref_primary_10_1038_s41598_025_88135_9 crossref_primary_10_1016_j_procs_2023_12_050 crossref_primary_10_1080_21642583_2024_2385310 crossref_primary_10_32604_cmc_2023_033091 crossref_primary_10_1016_j_aej_2022_06_017 crossref_primary_10_3390_diagnostics13182958 crossref_primary_10_1016_j_engappai_2022_105075 crossref_primary_10_1109_ACCESS_2021_3113515 crossref_primary_10_32604_cmc_2024_049847 crossref_primary_10_3390_en15238790 crossref_primary_10_1155_2022_1698137 crossref_primary_10_1002_dac_5713 crossref_primary_10_1007_s00521_021_06747_4 crossref_primary_10_3390_diagnostics13040668 crossref_primary_10_1007_s11277_024_11525_1 crossref_primary_10_3233_JIFS_223224 crossref_primary_10_1007_s10462_022_10343_w crossref_primary_10_1142_S0218001423560013 crossref_primary_10_3390_electronics12183985 crossref_primary_10_1080_15567036_2022_2074174 crossref_primary_10_1007_s00521_023_08535_8 crossref_primary_10_1007_s10462_023_10678_y crossref_primary_10_1007_s11042_023_16056_8 crossref_primary_10_1007_s10515_022_00349_7 crossref_primary_10_1051_e3sconf_202456403001 crossref_primary_10_3390_agriculture10100434 crossref_primary_10_1016_j_eswa_2023_119898 crossref_primary_10_1016_j_asoc_2024_111548 crossref_primary_10_1016_j_asoc_2024_111547 crossref_primary_10_1016_j_eswa_2023_121975 crossref_primary_10_1007_s12065_023_00866_8 crossref_primary_10_1016_j_rinp_2024_107795 crossref_primary_10_1002_aisy_202200097 crossref_primary_10_1155_2022_4623980 crossref_primary_10_1016_j_asoc_2020_106903 crossref_primary_10_3390_en17184742 crossref_primary_10_1002_dac_5829 crossref_primary_10_1016_j_dajour_2023_100251 crossref_primary_10_1017_aer_2022_70 crossref_primary_10_1109_ACCESS_2024_3350336 crossref_primary_10_3934_math_2025117 crossref_primary_10_1007_s10586_024_04319_4 crossref_primary_10_1007_s12652_022_04384_w crossref_primary_10_3934_math_20221091 crossref_primary_10_1007_s13369_024_08952_4 crossref_primary_10_1080_09507116_2024_2430208 crossref_primary_10_32604_iasc_2022_020969 crossref_primary_10_1007_s12652_023_04573_1 crossref_primary_10_1002_ima_22708 crossref_primary_10_1016_j_eswa_2023_121744 crossref_primary_10_1016_j_eswa_2024_124190 crossref_primary_10_1007_s00521_024_10346_4 crossref_primary_10_1007_s00521_024_10577_5 crossref_primary_10_1007_s10115_022_01825_y crossref_primary_10_1007_s11709_024_1091_1 crossref_primary_10_1142_S0218001424540077 crossref_primary_10_1007_s11042_023_17296_4 crossref_primary_10_1002_oca_3051 crossref_primary_10_1080_15567036_2023_2252672 crossref_primary_10_1007_s11220_023_00457_y crossref_primary_10_1109_ACCESS_2022_3158357 crossref_primary_10_1007_s10489_021_02415_1 crossref_primary_10_1007_s00607_024_01290_1 crossref_primary_10_3390_computers12100196 crossref_primary_10_1080_0952813X_2021_1960639 crossref_primary_10_3390_w16162232 crossref_primary_10_3934_mbe_2022533 crossref_primary_10_1007_s11042_024_20313_9 crossref_primary_10_1007_s12652_022_03765_5 crossref_primary_10_1016_j_bspc_2023_104706 crossref_primary_10_1093_jcde_qwac113 crossref_primary_10_1016_j_knosys_2022_110146 crossref_primary_10_3233_JIFS_222516 crossref_primary_10_17531_ein_2022_2_19 crossref_primary_10_48084_etasr_6542 crossref_primary_10_1038_s41598_024_81125_3 crossref_primary_10_1109_TITS_2022_3195605 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1177_20552076241306272 crossref_primary_10_1016_j_bspc_2024_106069 crossref_primary_10_3390_math10071100 crossref_primary_10_1016_j_eswa_2021_115651 crossref_primary_10_35193_bseufbd_916804 crossref_primary_10_1016_j_egyr_2022_12_054 crossref_primary_10_1109_ACCESS_2024_3445269 crossref_primary_10_1007_s11063_021_10729_x crossref_primary_10_1016_j_swevo_2023_101407 crossref_primary_10_1016_j_suscom_2024_100976 crossref_primary_10_3390_a17090417 crossref_primary_10_1155_2023_9169050 crossref_primary_10_3390_fractalfract5040190 crossref_primary_10_1016_j_asoc_2024_111876 crossref_primary_10_1155_2022_3421682 crossref_primary_10_3390_s23156741 crossref_primary_10_1016_j_bspc_2023_105901 crossref_primary_10_1111_exsy_13380 crossref_primary_10_1007_s41060_024_00689_5 crossref_primary_10_1016_j_chaos_2025_116219 crossref_primary_10_1177_30504554251319447 crossref_primary_10_1016_j_eswa_2023_122413 crossref_primary_10_1016_j_chemolab_2023_105043 crossref_primary_10_1016_j_eswa_2023_120594 crossref_primary_10_1007_s40747_023_01265_3 crossref_primary_10_1007_s00521_024_09850_4 crossref_primary_10_1016_j_egyr_2021_06_052 crossref_primary_10_1080_1448837X_2024_2312487 crossref_primary_10_1007_s00500_022_07778_2 crossref_primary_10_3390_app132413086 crossref_primary_10_1007_s12530_023_09547_4 crossref_primary_10_32604_cmes_2023_029404 crossref_primary_10_1007_s10586_024_04768_x crossref_primary_10_1002_cta_3817 crossref_primary_10_3390_biomimetics8050383 crossref_primary_10_3390_math10111894 crossref_primary_10_1007_s10489_022_03704_z crossref_primary_10_3390_app13095795 crossref_primary_10_1016_j_solener_2023_02_036 crossref_primary_10_3390_app15020608 crossref_primary_10_1007_s11063_022_10832_7 crossref_primary_10_1155_2022_1917172 crossref_primary_10_1007_s11276_023_03464_9 crossref_primary_10_1109_ACCESS_2022_3183213 crossref_primary_10_3390_biomimetics7040241 crossref_primary_10_1016_j_matcom_2022_01_018 crossref_primary_10_1007_s11227_023_05617_1 crossref_primary_10_1007_s42979_023_02215_z crossref_primary_10_1016_j_heliyon_2024_e32400 crossref_primary_10_1038_s41598_024_82592_4 crossref_primary_10_1016_j_jksuci_2024_102051 crossref_primary_10_1007_s42835_023_01585_x crossref_primary_10_1016_j_compeleceng_2022_107904 crossref_primary_10_1016_j_dajour_2023_100299 crossref_primary_10_1007_s11042_023_15415_9 crossref_primary_10_1007_s12652_021_03183_z crossref_primary_10_1007_s11227_023_05047_z crossref_primary_10_1016_j_energy_2024_132969 crossref_primary_10_1016_j_heliyon_2023_e21596 crossref_primary_10_3934_math_2024622 crossref_primary_10_7717_peerj_cs_1405 crossref_primary_10_7717_peerj_cs_1526 crossref_primary_10_1007_s11277_023_10197_7 crossref_primary_10_1007_s12065_024_00945_4 crossref_primary_10_1016_j_asej_2022_101728 crossref_primary_10_1016_j_est_2023_107094 crossref_primary_10_1155_2022_1326325 crossref_primary_10_1007_s10462_023_10481_9 crossref_primary_10_3390_jpm12030455 crossref_primary_10_1007_s11709_023_0997_3 crossref_primary_10_1007_s00034_023_02296_4 crossref_primary_10_1007_s00500_022_07410_3 crossref_primary_10_1155_2022_3569261 crossref_primary_10_3390_math9182335 crossref_primary_10_1155_2021_6639671 crossref_primary_10_1080_01969722_2024_2343982 crossref_primary_10_1038_s41598_023_47837_8 crossref_primary_10_1007_s10845_021_01877_x crossref_primary_10_1109_ACCESS_2021_3138403 crossref_primary_10_1007_s11042_024_19417_z crossref_primary_10_1016_j_jer_2024_05_008 crossref_primary_10_1016_j_compbiomed_2022_105349 crossref_primary_10_1016_j_seta_2022_102401 crossref_primary_10_1111_exsy_70016 crossref_primary_10_1142_S0219467823500420 crossref_primary_10_1007_s00366_020_01233_2 crossref_primary_10_46460_ijiea_1088408 crossref_primary_10_1155_2021_9651957 crossref_primary_10_1016_j_jclepro_2022_132697 crossref_primary_10_1016_j_bspc_2023_104749 crossref_primary_10_1016_j_compbiomed_2022_105344 crossref_primary_10_3390_sym16091173 crossref_primary_10_1016_j_asoc_2023_110514 crossref_primary_10_3390_machines11020250 crossref_primary_10_1155_2022_4639208 crossref_primary_10_1016_j_iot_2023_101028 crossref_primary_10_1016_j_knosys_2023_110462 crossref_primary_10_1016_j_swevo_2024_101795 crossref_primary_10_3934_mbe_2023546 crossref_primary_10_1016_j_advengsoft_2024_103696 crossref_primary_10_1007_s11356_022_20375_y crossref_primary_10_4018_IJISP_300326 crossref_primary_10_1007_s11227_022_04755_2 crossref_primary_10_1016_j_apenergy_2023_122071 crossref_primary_10_1016_j_dajour_2025_100551 crossref_primary_10_4018_IJSIR_314210 crossref_primary_10_1007_s10462_023_10416_4 crossref_primary_10_3934_mbe_2022345 crossref_primary_10_3934_mbe_2022344 crossref_primary_10_1016_j_egyr_2021_05_051 crossref_primary_10_1016_j_epsr_2022_107858 crossref_primary_10_18618_REP_2005_1_063070 crossref_primary_10_1016_j_eswa_2023_122578 crossref_primary_10_1016_j_jestch_2023_101408 crossref_primary_10_1007_s40747_024_01502_3 crossref_primary_10_1177_14613484241242737 crossref_primary_10_2166_hydro_2023_026 crossref_primary_10_1007_s12652_022_04386_8 crossref_primary_10_1016_j_egyr_2021_04_016 crossref_primary_10_31590_ejosat_1082451 crossref_primary_10_1016_j_advengsoft_2024_103665 crossref_primary_10_1038_s41598_024_55040_6 crossref_primary_10_1109_ACCESS_2023_3267110 crossref_primary_10_1016_j_jestch_2023_101564 crossref_primary_10_1007_s10462_023_10658_2 crossref_primary_10_1016_j_optcom_2025_131577 crossref_primary_10_1016_j_mlwa_2025_100624 crossref_primary_10_1109_ACCESS_2021_3066329 crossref_primary_10_1016_j_energy_2024_130637 crossref_primary_10_3233_JIFS_235607 crossref_primary_10_1007_s11356_022_24586_1 crossref_primary_10_1016_j_bspc_2023_104965 crossref_primary_10_1016_j_oceaneng_2024_119299 crossref_primary_10_1016_j_swevo_2023_101459 crossref_primary_10_1007_s00500_023_08033_y crossref_primary_10_1016_j_asoc_2023_110659 crossref_primary_10_1038_s41598_024_76698_y crossref_primary_10_3390_computation9100102 crossref_primary_10_1016_j_eswa_2023_121450 crossref_primary_10_3390_pr10122606 crossref_primary_10_1007_s11276_024_03800_7 crossref_primary_10_3233_IDT_230211 crossref_primary_10_1007_s42235_022_00316_8 crossref_primary_10_1038_s41598_023_43272_x crossref_primary_10_1016_j_knosys_2022_110248 crossref_primary_10_33187_jmsm_1115792 crossref_primary_10_3390_math13050717 crossref_primary_10_1007_s11071_023_09246_4 crossref_primary_10_1007_s11042_025_20709_1 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1109_ACCESS_2024_3421286 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1177_09544062231220201 crossref_primary_10_7717_peerj_cs_976 crossref_primary_10_1016_j_bspc_2022_103688 crossref_primary_10_1016_j_energy_2024_130508 crossref_primary_10_18618_REP_e202448 crossref_primary_10_3390_genes13111966 crossref_primary_10_3390_machines10080602 crossref_primary_10_1016_j_egyr_2021_05_070 crossref_primary_10_1109_ACCESS_2021_3130933 crossref_primary_10_1007_s00500_024_09761_5 crossref_primary_10_1007_s00521_024_10694_1 crossref_primary_10_1007_s42235_023_00414_1 crossref_primary_10_1007_s00521_022_07000_2 crossref_primary_10_1007_s12530_024_09585_6 crossref_primary_10_1016_j_knosys_2021_107405 crossref_primary_10_1007_s40996_024_01488_5 crossref_primary_10_1109_ACCESS_2024_3367288 crossref_primary_10_1016_j_adhoc_2023_103133 crossref_primary_10_1142_S0219622021500176 crossref_primary_10_1007_s11042_023_18054_2 crossref_primary_10_1007_s11277_022_10092_7 crossref_primary_10_1016_j_energy_2022_125259 crossref_primary_10_1016_j_compbiomed_2023_107723 crossref_primary_10_1038_s41598_024_77240_w crossref_primary_10_1016_j_egyr_2021_07_031 crossref_primary_10_1016_j_eswa_2022_116887 crossref_primary_10_1109_ACCESS_2021_3106448 crossref_primary_10_1002_for_2888 crossref_primary_10_1039_D2VA00200K crossref_primary_10_1007_s00500_023_08205_w crossref_primary_10_1016_j_rsase_2024_101278 crossref_primary_10_1155_2022_9619530 crossref_primary_10_1007_s13755_023_00234_x crossref_primary_10_1109_ACCESS_2022_3203400 crossref_primary_10_1016_j_cma_2022_114901 crossref_primary_10_1371_journal_pone_0298230 crossref_primary_10_3389_fbioe_2022_830037 crossref_primary_10_3390_electronics11050831 crossref_primary_10_1016_j_engappai_2022_105543 crossref_primary_10_1109_ACCESS_2022_3203999 crossref_primary_10_1007_s10278_022_00765_x crossref_primary_10_1038_s41598_024_55619_z crossref_primary_10_1007_s11042_023_14767_6 crossref_primary_10_1007_s11042_023_17725_4 crossref_primary_10_17694_bajece_989467 crossref_primary_10_1016_j_eswa_2022_117961 crossref_primary_10_1016_j_energy_2022_125029 crossref_primary_10_1007_s13042_022_01642_3 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1007_s00500_023_08630_x crossref_primary_10_1007_s13369_023_07610_5 crossref_primary_10_1007_s00500_024_09878_7 crossref_primary_10_35378_gujs_820805 crossref_primary_10_1016_j_eswa_2025_127026 crossref_primary_10_1109_JSTARS_2023_3348874 crossref_primary_10_1016_j_knosys_2023_110494 crossref_primary_10_3390_en14144086 crossref_primary_10_1016_j_egyr_2022_09_025 crossref_primary_10_3233_IDT_229014 crossref_primary_10_1016_j_eswa_2020_113702 crossref_primary_10_1007_s11356_023_25238_8 crossref_primary_10_1016_j_optlastec_2024_110883 crossref_primary_10_1007_s11227_024_06899_9 crossref_primary_10_1016_j_chemosphere_2021_132251 crossref_primary_10_1007_s10586_022_03953_0 crossref_primary_10_3390_math10091354 crossref_primary_10_1016_j_energy_2023_126844 crossref_primary_10_1007_s13042_024_02197_1 crossref_primary_10_1007_s13369_021_06307_x crossref_primary_10_1038_s41598_024_78589_8 crossref_primary_10_1007_s00366_021_01530_4 crossref_primary_10_1063_5_0108340 crossref_primary_10_1002_cpe_7597 crossref_primary_10_3390_en15041549 crossref_primary_10_1016_j_bspc_2023_105053 crossref_primary_10_1016_j_heliyon_2023_e19431 crossref_primary_10_1016_j_energy_2024_133894 crossref_primary_10_1007_s00521_021_06775_0 crossref_primary_10_1016_j_solener_2023_112260 crossref_primary_10_1016_j_compbiomed_2024_107922 crossref_primary_10_1007_s00354_023_00222_5 crossref_primary_10_1007_s00521_021_06041_3 crossref_primary_10_3390_app142210248 crossref_primary_10_1108_COMPEL_07_2021_0231 crossref_primary_10_1016_j_egyr_2021_08_177 crossref_primary_10_1016_j_heliyon_2024_e28681 crossref_primary_10_3390_app14199142 crossref_primary_10_1109_ACCESS_2022_3144431 crossref_primary_10_1007_s11063_025_11735_z crossref_primary_10_1140_epjs_s11734_024_01408_8 crossref_primary_10_1007_s11276_025_03920_8 crossref_primary_10_1016_j_energy_2021_121621 crossref_primary_10_3389_fbioe_2022_1018895 crossref_primary_10_1109_ACCESS_2024_3481034 crossref_primary_10_1007_s11042_023_17440_0 crossref_primary_10_1016_j_energy_2024_132556 crossref_primary_10_1002_ett_70034 crossref_primary_10_1016_j_knosys_2024_112636 crossref_primary_10_1007_s00542_024_05745_5 crossref_primary_10_1007_s42235_023_00394_2 crossref_primary_10_1016_j_egyr_2021_10_098 crossref_primary_10_1007_s42044_022_00120_x crossref_primary_10_1016_j_engappai_2024_109202 crossref_primary_10_1007_s42235_024_00510_w crossref_primary_10_1007_s10470_022_02014_1 crossref_primary_10_1109_ACCESS_2021_3051573 crossref_primary_10_3390_app122010292 crossref_primary_10_1155_2022_6627409 crossref_primary_10_1109_ACCESS_2022_3222489 crossref_primary_10_1049_elp2_12302 crossref_primary_10_1007_s00521_023_09236_y crossref_primary_10_1016_j_ijrefrig_2024_01_012 crossref_primary_10_1007_s10586_023_04172_x crossref_primary_10_1016_j_engappai_2022_105622 crossref_primary_10_1007_s12065_021_00634_6 crossref_primary_10_1007_s11042_023_15411_z crossref_primary_10_1080_17455030_2021_1998729 crossref_primary_10_32604_csse_2023_038025 crossref_primary_10_1016_j_ecoinf_2021_101527 crossref_primary_10_1016_j_engstruct_2024_118679 crossref_primary_10_1007_s12065_024_00997_6 crossref_primary_10_1016_j_eswa_2021_115178 crossref_primary_10_1016_j_solener_2022_04_056 crossref_primary_10_1007_s11277_021_09410_2 crossref_primary_10_1016_j_eswa_2022_118734 crossref_primary_10_3934_math_2024972 crossref_primary_10_1038_s41598_024_82580_8 crossref_primary_10_32604_cmc_2021_014590 crossref_primary_10_1007_s11042_024_20301_z crossref_primary_10_1109_ACCESS_2021_3106233 crossref_primary_10_3934_mbe_2023278 crossref_primary_10_1007_s13369_025_10031_1 crossref_primary_10_1016_j_egyr_2021_10_090 crossref_primary_10_1016_j_measen_2023_100785 crossref_primary_10_1007_s00202_024_02885_9 crossref_primary_10_1007_s10462_024_10954_5 crossref_primary_10_3233_IDT_220036 crossref_primary_10_1007_s10462_024_10747_w crossref_primary_10_1007_s12065_023_00870_y crossref_primary_10_3390_app12189036 crossref_primary_10_1016_j_solener_2021_03_087 crossref_primary_10_4018_IJBDCN_349572 crossref_primary_10_1016_j_cma_2023_116199 crossref_primary_10_1007_s11227_022_04886_6 crossref_primary_10_1007_s44230_023_00048_w crossref_primary_10_1007_s11760_024_03419_3 crossref_primary_10_1016_j_knosys_2021_107625 crossref_primary_10_1038_s41598_024_59597_0 crossref_primary_10_1016_j_chaos_2023_113672 crossref_primary_10_1049_rpg2_12748 crossref_primary_10_1080_15567036_2021_1966138 crossref_primary_10_31590_ejosat_1010484 crossref_primary_10_1038_s41598_022_24343_x crossref_primary_10_1093_jcde_qwad108 crossref_primary_10_1007_s10586_024_04368_9 crossref_primary_10_1007_s11227_024_06592_x crossref_primary_10_1016_j_aej_2022_02_009 crossref_primary_10_1007_s12652_023_04546_4 crossref_primary_10_1007_s40996_022_00931_9 crossref_primary_10_1007_s41939_024_00580_7 crossref_primary_10_7717_peerj_cs_1054 crossref_primary_10_1016_j_jksuci_2024_102255 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_1016_j_egyr_2022_11_197 crossref_primary_10_1155_2021_7788491 crossref_primary_10_1002_cpe_6341 crossref_primary_10_1007_s12065_024_00909_8 crossref_primary_10_1016_j_ijepes_2022_108940 crossref_primary_10_1007_s12530_023_09552_7 crossref_primary_10_3390_electronics13081580 crossref_primary_10_1109_ACCESS_2022_3143541 crossref_primary_10_1007_s41939_024_00406_6 crossref_primary_10_1007_s10846_022_01802_1 crossref_primary_10_1109_ACCESS_2021_3064799 crossref_primary_10_1007_s10586_024_04713_y crossref_primary_10_1016_j_aei_2023_102004 crossref_primary_10_1016_j_eswa_2022_116895 crossref_primary_10_1109_ACCESS_2021_3105485 crossref_primary_10_1007_s40747_021_00346_5 crossref_primary_10_1063_5_0073335 crossref_primary_10_1016_j_eswa_2022_117629 crossref_primary_10_1038_s41598_021_01018_7 crossref_primary_10_1049_rpg2_12640 crossref_primary_10_1007_s10586_024_04602_4 crossref_primary_10_1007_s13369_024_09526_0 crossref_primary_10_1108_EC_05_2024_0415 crossref_primary_10_1007_s11042_022_12882_4 crossref_primary_10_3233_JHS_230043 crossref_primary_10_1007_s00500_023_09398_w crossref_primary_10_1109_ACCESS_2023_3337602 crossref_primary_10_1007_s13369_025_10034_y crossref_primary_10_1016_j_bspc_2024_106732 crossref_primary_10_1007_s11227_025_07139_4 crossref_primary_10_1016_j_apor_2021_102837 crossref_primary_10_1016_j_engappai_2024_109879 crossref_primary_10_1109_JSTARS_2024_3408817 crossref_primary_10_1016_j_advengsoft_2022_103404 crossref_primary_10_1016_j_compbiomed_2022_106075 crossref_primary_10_1016_j_advengsoft_2022_103405 crossref_primary_10_1155_2022_3216400 crossref_primary_10_1016_j_aej_2022_04_032 crossref_primary_10_1016_j_ins_2023_119122 crossref_primary_10_1109_ACCESS_2022_3144065 crossref_primary_10_1038_s41598_024_75123_8 crossref_primary_10_1109_ACCESS_2021_3111408 crossref_primary_10_1002_cpe_7730 crossref_primary_10_3390_axioms12030266 crossref_primary_10_1177_14759217241240130 crossref_primary_10_3390_s23031180 crossref_primary_10_1007_s10586_024_04673_3 crossref_primary_10_1016_j_matcom_2022_08_017 crossref_primary_10_1007_s00202_024_02553_y crossref_primary_10_1109_ACCESS_2024_3392633 crossref_primary_10_1007_s11276_024_03686_5 crossref_primary_10_3390_electronics10172079 crossref_primary_10_1080_15567036_2022_2096723 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1016_j_datak_2023_102243 crossref_primary_10_1007_s11063_023_11285_2 crossref_primary_10_1007_s00500_023_09385_1 crossref_primary_10_1155_2022_4894922 crossref_primary_10_1007_s41315_022_00239_x crossref_primary_10_1016_j_matcom_2022_12_027 crossref_primary_10_1093_jcde_qwae074 crossref_primary_10_3390_sym14010011 crossref_primary_10_1142_S1469026823500013 crossref_primary_10_32604_iasc_2022_025305 crossref_primary_10_3233_JHS_230028 crossref_primary_10_1007_s40430_024_05241_x crossref_primary_10_1016_j_eswa_2022_118642 crossref_primary_10_1002_widm_1548 crossref_primary_10_1088_1742_6596_2761_1_012032 crossref_primary_10_3390_a14100282 crossref_primary_10_3390_su14094992 crossref_primary_10_1109_ACCESS_2022_3177218 crossref_primary_10_1155_2022_1283040 crossref_primary_10_1016_j_chaos_2024_115972 crossref_primary_10_3390_axioms12070702 crossref_primary_10_1109_ACCESS_2022_3197290 crossref_primary_10_3233_JIFS_237786 crossref_primary_10_1007_s10462_023_10542_z crossref_primary_10_1007_s10489_021_02444_w crossref_primary_10_1080_15376494_2022_2160035 crossref_primary_10_1007_s10489_024_05651_3 crossref_primary_10_1515_mt_2024_0188 crossref_primary_10_32604_cmc_2023_044807 crossref_primary_10_1093_jcde_qwad096 crossref_primary_10_1016_j_eswa_2024_123585 crossref_primary_10_1002_rob_22069 crossref_primary_10_1080_01969722_2022_2148920 crossref_primary_10_3103_S1060992X23040033 crossref_primary_10_1109_ACCESS_2024_3466529 crossref_primary_10_1016_j_isatra_2024_02_023 crossref_primary_10_12677_CSA_2023_137134 crossref_primary_10_1007_s10489_022_03994_3 crossref_primary_10_1109_ACCESS_2022_3153493 crossref_primary_10_3390_buildings14123753 crossref_primary_10_1016_j_future_2022_05_022 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_32604_cmc_2024_050523 crossref_primary_10_1016_j_heliyon_2024_e26665 crossref_primary_10_1016_j_energy_2023_127526 crossref_primary_10_1109_TETCI_2023_3299298 crossref_primary_10_1080_01430750_2022_2029767 crossref_primary_10_1007_s10462_024_11072_y crossref_primary_10_1080_13682199_2023_2206271 crossref_primary_10_1631_FITEE_2200237 crossref_primary_10_32604_cmc_2022_021517 crossref_primary_10_1007_s11042_023_15926_5 crossref_primary_10_1038_s41598_025_89840_1 crossref_primary_10_1007_s12652_022_03901_1 crossref_primary_10_1016_j_knosys_2024_112550 crossref_primary_10_1142_S0219622022500754 crossref_primary_10_1177_00202940241307629 crossref_primary_10_1007_s12652_022_04098_z crossref_primary_10_1109_ACCESS_2023_3258187 crossref_primary_10_1016_j_enconman_2024_118974 crossref_primary_10_1016_j_eswa_2022_118460 crossref_primary_10_32604_cmc_2023_031519 crossref_primary_10_1016_j_knosys_2021_107682 crossref_primary_10_1007_s42044_025_00245_9 crossref_primary_10_1080_03772063_2024_2311744 crossref_primary_10_32604_csse_2023_025461 crossref_primary_10_3233_JIFS_236157 crossref_primary_10_1007_s11042_024_18150_x crossref_primary_10_1002_cpe_6976 crossref_primary_10_1142_S0219622023500311 crossref_primary_10_1080_19942060_2022_2098826 crossref_primary_10_3390_a15060189 crossref_primary_10_1016_j_asoc_2022_108947 crossref_primary_10_1108_COMPEL_10_2024_0419 crossref_primary_10_3390_agriculture15060603 crossref_primary_10_3390_su14138223 crossref_primary_10_1007_s10586_024_04901_w crossref_primary_10_1016_j_measurement_2022_112230 crossref_primary_10_3390_electronics10020174 crossref_primary_10_3390_math12030435 crossref_primary_10_1007_s00500_023_07930_6 crossref_primary_10_1007_s10489_022_03533_0 crossref_primary_10_1016_j_cma_2024_117411 crossref_primary_10_3390_a14040122 crossref_primary_10_1007_s10489_022_04201_z crossref_primary_10_1016_j_rineng_2025_104215 crossref_primary_10_1007_s10044_022_01107_x crossref_primary_10_1007_s00500_025_10412_6 crossref_primary_10_1007_s10462_022_10201_9 crossref_primary_10_1016_j_eswa_2022_117481 crossref_primary_10_1007_s40435_022_01057_6 crossref_primary_10_1007_s13042_024_02308_y crossref_primary_10_3390_app132212106 crossref_primary_10_1038_s41598_024_56931_4 crossref_primary_10_1038_s41598_024_69544_8 crossref_primary_10_3390_math11102340 crossref_primary_10_1016_j_eswa_2024_124694 crossref_primary_10_1007_s42835_021_00862_x crossref_primary_10_1016_j_knosys_2021_107467 crossref_primary_10_3390_math12182870 crossref_primary_10_1007_s42044_023_00160_x crossref_primary_10_1007_s42235_022_00223_y crossref_primary_10_1016_j_heliyon_2023_e16593 crossref_primary_10_1109_ACCESS_2024_3372851 crossref_primary_10_3390_math10162960 crossref_primary_10_1016_j_knosys_2022_108517 crossref_primary_10_1007_s10462_023_10498_0 crossref_primary_10_1016_j_bspc_2024_106875 crossref_primary_10_1007_s11063_023_11394_y crossref_primary_10_1007_s11356_024_34369_5 crossref_primary_10_1038_s41598_025_92983_w crossref_primary_10_1109_ACCESS_2024_3403089 crossref_primary_10_1016_j_suscom_2022_100731 crossref_primary_10_57197_JDR_2024_0033 crossref_primary_10_1016_j_engappai_2024_108891 crossref_primary_10_1007_s11277_022_10004_9 crossref_primary_10_1016_j_aej_2024_08_033 crossref_primary_10_1038_s41598_024_66285_6 crossref_primary_10_1109_ACCESS_2025_3537407 crossref_primary_10_1016_j_asoc_2022_108742 crossref_primary_10_1177_00375497221101058 crossref_primary_10_1002_jeq2_20609 crossref_primary_10_3390_f16030419 crossref_primary_10_1080_01969722_2022_2130248 crossref_primary_10_3390_app13169181 crossref_primary_10_1007_s11063_022_11068_1 crossref_primary_10_1007_s42835_022_01230_z crossref_primary_10_1080_03772063_2023_2167739 crossref_primary_10_1016_j_knosys_2022_108743 crossref_primary_10_1155_2023_5567629 crossref_primary_10_1016_j_bspc_2023_105492 crossref_primary_10_1109_ACCESS_2023_3303961 crossref_primary_10_1038_s41598_022_18001_5 crossref_primary_10_1007_s11042_024_19927_w crossref_primary_10_3390_axioms12080767 crossref_primary_10_3390_toxics11040394 crossref_primary_10_1007_s11277_024_11280_3 crossref_primary_10_3390_biomimetics9080474 crossref_primary_10_1080_0952813X_2022_2093409 crossref_primary_10_1007_s12652_022_03749_5 crossref_primary_10_1007_s11042_023_15146_x crossref_primary_10_1007_s11760_022_02373_2 crossref_primary_10_1038_s41598_024_59960_1 crossref_primary_10_1007_s40815_021_01195_7 crossref_primary_10_32604_cmc_2022_019001 crossref_primary_10_3233_JIFS_237339 crossref_primary_10_3390_pr10061072 crossref_primary_10_1007_s00500_021_06229_8 crossref_primary_10_1016_j_aej_2024_08_021 crossref_primary_10_1016_j_knosys_2023_111081 crossref_primary_10_1080_0954898X_2025_2475070 crossref_primary_10_1016_j_egyr_2022_02_066 crossref_primary_10_3390_e23121637 crossref_primary_10_1016_j_cma_2023_116238 crossref_primary_10_1016_j_eswa_2024_123262 crossref_primary_10_1007_s11227_023_05260_w crossref_primary_10_1016_j_egyr_2024_04_016  | 
    
| Cites_doi | 10.1016/j.ympev.2010.11.005 10.1016/j.apacoust.2019.05.006 10.1038/scientificamerican0792-66 10.1023/A:1008202821328 10.1007/BF02023004 10.1016/j.cad.2010.12.015 10.1016/j.knosys.2017.12.037 10.1109/MCI.2006.329691 10.1007/s11277-019-06520-w 10.2139/ssrn.926132 10.2307/3001968 10.1016/j.knosys.2018.05.009 10.1016/j.cnsns.2012.05.010 10.24425/aoa.2019.126360 10.1023/A:1015059928466 10.1109/4235.585893 10.1525/aa.1996.98.1.02a00090 10.1016/j.tics.2005.03.005 10.1016/j.swevo.2011.02.002 10.1007/s10732-008-9080-4 10.1007/s00521-015-1920-1 10.1126/science.220.4598.671 10.1007/s00500-018-3282-y 10.1016/j.advengsoft.2015.01.010 10.1080/00207160108805080 10.1016/j.oceaneng.2019.04.013 10.1007/s13369-014-1156-x 10.1007/s00500-018-3424-2 10.1016/j.cub.2009.05.034 10.1016/j.apacoust.2018.03.012 10.1016/j.advengsoft.2005.04.005 10.1016/j.apacoust.2016.11.012 10.1155/2019/4182148 10.1007/s12110-002-1013-6 10.1007/s00521-014-1597-x 10.1016/j.ins.2009.03.004 10.1016/j.asoc.2017.06.044 10.1080/0305215X.2019.1565282  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Copyright Elsevier BV Jul 1, 2020  | 
    
| Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Jul 1, 2020  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.eswa.2020.113338 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-6793 | 
    
| ExternalDocumentID | 10_1016_j_eswa_2020_113338 S0957417420301639  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c258t-a62548709bef71db812e6e3a72caceb62a5dc038a69adc5ab05fc709bbd966ba3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Sun Jul 13 04:28:39 EDT 2025 Sat Oct 25 05:11:52 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 23 02:49:58 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Metaheuristic Mathematical model Chimp Optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c258t-a62548709bef71db812e6e3a72caceb62a5dc038a69adc5ab05fc709bbd966ba3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2389-644X | 
    
| PQID | 2441311372 | 
    
| PQPubID | 2045477 | 
    
| ParticipantIDs | proquest_journals_2441311372 crossref_citationtrail_10_1016_j_eswa_2020_113338 crossref_primary_10_1016_j_eswa_2020_113338 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113338  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-07-01 2020-07-00 20200701  | 
    
| PublicationDateYYYYMMDD | 2020-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Khishe, Mohammadi (bib0021) 2019; 181 Saremi, Mirjalili, Lewis (bib0043) 2014; 25 Wilcoxon (bib0048) 1945; 1 Wolpert, Macready (bib0049) 1997; 1 Mirjalili (bib0031) 2015; 83 Mirjalili, Lewis, Sadiq (bib0033) 2014; 39 Holland (bib0018) 1992; 267 Han, Lu, Hou, Qiao (bib0014) 2016; 99 Emary, Zawbaa, Grosan (bib0009) 2017; 99 Farisa, Mafarja, Heidari, Aljarah, Al-Zoubia, Mirjalili (bib0011) 2018; 154 Kirkpatrick, Gelatt, Vecchi (bib0026) 1983; 13 Heidari, Farisa, Aljarah, Mirjalili (bib0016) 2019; 23 Israfil, Zehr, Mootnick, Ruvolo, Steiper (bib0019) 2011; 58 Khishe, Saffari (bib0025) 2019; 108 Stanford (bib0044) 1996; 98 Yang, Deb (bib0053) 2009 Couzin, Laidre (bib0005) 2009; 19 Garcia, Molina, Lozano, Herrera (bib0013) 2009; 15 Heidari, Abbaspour (bib0015) 2017 Atashpaz-Gargari, Lucas (bib0001) 2007 Digalakis, Margaritis (bib0007) 2001; 77 Beyer, Schwefel (bib0003) 2002; 1 Pijarski, Kacejko (bib0038) 2019; 51 Derrac, García, Molina, Herrera (bib0006) 2011; 1 Sun, Chen, Xu, Tian (bib0046) 2019; 2019 Basturk, Karaboga (bib0002) 2006 Ravakhah, Khishe, Aghababaee, Hashemzadeh (bib0041) 2017; 17 Mafarja, Mirjalili (bib0030) 2019; 23 Gandomi, Alavi (bib0012) 2012; 17 Tomkins, Bergman (bib0047) 2012; 26 Mafarja, Aljarah, Heidari, Hammouri, Farisa, Al-Zoubia (bib0029) 2017; 145 Roth, Dicke (bib0042) 2005; 9 Rao, Savsani, Vakharia (bib0039) 2011; 43 Mishra, S. (2007). Some new test functions for global optimization and performance of repulsive particle swarm method. MPRA Article, no. 2718, posted 13, Available from Yang (bib0052) 2010 Molga, M., & Smutnicki,.C. (.2005). Test functions for optimization needs. Available from Rashedi, Nezamabadi-Pour, Saryazdi (bib0040) 2009; 13 Storn, Price (bib0045) 1997; 11 Kumar, Wu, Ali, Mallipeddi, Suganthan, Das (bib0027) 2019; 2019 Mosavi, Khishe, Parvizi, Naseri, Ayat (bib0036) 2019; 44 Erol, Eksin (bib0010) 2006; 37 Heidari, Pahlavani (bib0017) 2017; 60 Khishe, Mosavi, Kaveh (bib0023) 2017; 118 Khishe, Mosavi (bib0022) 2019; 154 Osman (bib0037) 1993; 41 Li, Engelbrecht, Epitropakis (bib0028) 2013 Mirjalili (bib0032) 2016; 27 Boesch (bib0004) 2002; 13 Dorigo, Birattari, Stutzle (bib0008) 2006; 1 Khishe, Mosavi, Moridi (bib0024) 2018; 137 Khishe (10.1016/j.eswa.2020.113338_bib0024) 2018; 137 Ravakhah (10.1016/j.eswa.2020.113338_bib0041) 2017; 17 Yang (10.1016/j.eswa.2020.113338_bib0052) 2010 Khishe (10.1016/j.eswa.2020.113338_bib0021) 2019; 181 Han (10.1016/j.eswa.2020.113338_bib0014) 2016; 99 Israfil (10.1016/j.eswa.2020.113338_bib0019) 2011; 58 Roth (10.1016/j.eswa.2020.113338_bib0042) 2005; 9 Wolpert (10.1016/j.eswa.2020.113338_bib0049) 1997; 1 Saremi (10.1016/j.eswa.2020.113338_bib0043) 2014; 25 Digalakis (10.1016/j.eswa.2020.113338_bib0007) 2001; 77 Khishe (10.1016/j.eswa.2020.113338_bib0023) 2017; 118 Atashpaz-Gargari (10.1016/j.eswa.2020.113338_bib0001) 2007 Mafarja (10.1016/j.eswa.2020.113338_bib0030) 2019; 23 Kumar (10.1016/j.eswa.2020.113338_bib0027) 2019; 2019 Rashedi (10.1016/j.eswa.2020.113338_bib0040) 2009; 13 Khishe (10.1016/j.eswa.2020.113338_bib0022) 2019; 154 Stanford (10.1016/j.eswa.2020.113338_bib0044) 1996; 98 Yang (10.1016/j.eswa.2020.113338_bib0053) 2009 Mirjalili (10.1016/j.eswa.2020.113338_bib0032) 2016; 27 Heidari (10.1016/j.eswa.2020.113338_bib0015) 2017 Basturk (10.1016/j.eswa.2020.113338_bib0002) 2006 Farisa (10.1016/j.eswa.2020.113338_bib0011) 2018; 154 Beyer (10.1016/j.eswa.2020.113338_bib0003) 2002; 1 Kirkpatrick (10.1016/j.eswa.2020.113338_bib0026) 1983; 13 Erol (10.1016/j.eswa.2020.113338_bib0010) 2006; 37 Khishe (10.1016/j.eswa.2020.113338_bib0025) 2019; 108 Derrac (10.1016/j.eswa.2020.113338_bib0006) 2011; 1 Emary (10.1016/j.eswa.2020.113338_bib0009) 2017; 99 Mirjalili (10.1016/j.eswa.2020.113338_bib0031) 2015; 83 Garcia (10.1016/j.eswa.2020.113338_bib0013) 2009; 15 Couzin (10.1016/j.eswa.2020.113338_bib0005) 2009; 19 Dorigo (10.1016/j.eswa.2020.113338_bib0008) 2006; 1 Heidari (10.1016/j.eswa.2020.113338_bib0017) 2017; 60 Sun (10.1016/j.eswa.2020.113338_bib0046) 2019; 2019 Heidari (10.1016/j.eswa.2020.113338_bib0016) 2019; 23 10.1016/j.eswa.2020.113338_bib0034 10.1016/j.eswa.2020.113338_bib0035 Wilcoxon (10.1016/j.eswa.2020.113338_bib0048) 1945; 1 Pijarski (10.1016/j.eswa.2020.113338_bib0038) 2019; 51 Rao (10.1016/j.eswa.2020.113338_bib0039) 2011; 43 Boesch (10.1016/j.eswa.2020.113338_bib0004) 2002; 13 Holland (10.1016/j.eswa.2020.113338_bib0018) 1992; 267 Osman (10.1016/j.eswa.2020.113338_bib0037) 1993; 41 Mafarja (10.1016/j.eswa.2020.113338_bib0029) 2017; 145 Gandomi (10.1016/j.eswa.2020.113338_bib0012) 2012; 17 Tomkins (10.1016/j.eswa.2020.113338_bib0047) 2012; 26 Mirjalili (10.1016/j.eswa.2020.113338_bib0033) 2014; 39 Li (10.1016/j.eswa.2020.113338_bib0028) 2013 Mosavi (10.1016/j.eswa.2020.113338_bib0036) 2019; 44 Storn (10.1016/j.eswa.2020.113338_bib0045) 1997; 11  | 
    
| References_xml | – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0049 article-title: No free lunch theorems for optimization publication-title: IEEE Transaction on Evolutionary Computing – volume: 98 start-page: 96 year: 1996 end-page: 113 ident: bib0044 article-title: The hunting ecology of wild chimpanzees: Implications for the evolutionary ecology of pliocene hominids publication-title: American Anthropologist – start-page: 693 year: 2017 end-page: 727 ident: bib0015 article-title: Enhanced chaotic grey wolf optimizer for real-world optimization problems: A comparative study publication-title: Handbook of Research on Emergent Applications of Optimization Algorithms – volume: 2019 start-page: 20 year: 2019 ident: bib0046 article-title: Improved monarch butterfly optimization algorithm based on opposition-based learning and random local perturbation publication-title: Complexity – start-page: 65 year: 2010 end-page: 74 ident: bib0052 article-title: A new metaheuristic bat-inspired algorithm publication-title: Proceedings of the 2010 workshop on nature inspired cooperative strategies for optimization (NICSO 2010) – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: bib0031 article-title: The ant lion optimizer publication-title: Advances in Engineering Software – volume: 118 start-page: 15 year: 2017 end-page: 29 ident: bib0023 article-title: Improved migration models of biogeography-based optimization for sonar data set classification using neural network publication-title: Applied Acoustic – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0045 article-title: Differential evolution – A Simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – start-page: 12 year: 2006 end-page: 14 ident: bib0002 article-title: An artificial bee colony (ABC) algorithm for numeric function optimization publication-title: Proceedings of the 2006 IEEE Swarm Intelligence Symposium – volume: 1 start-page: 29 year: 2006 end-page: 39 ident: bib0008 article-title: Ant colony optimization publication-title: IEEE Computational Intelligence Magazine – volume: 15 start-page: 617 year: 2009 end-page: 644 ident: bib0013 article-title: A study on the use of non-parametric tests for analysing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization publication-title: Journal of Heuristics – volume: 17 start-page: 58 year: 2017 end-page: 65 ident: bib0041 article-title: Sonar false alarm rate suppression using classification methods based on interior search algorithm publication-title: International Journal of Computer Science and Network Security – volume: 181 start-page: 98 year: 2019 end-page: 108 ident: bib0021 article-title: Sonar target classification using multi-layer perceptron trained by salp swarm algorithm publication-title: Ocean Engineering – volume: 44 start-page: 137 year: 2019 end-page: 151 ident: bib0036 article-title: Training multi-layer perceptron utilizing adaptive best-mass gravitational search algorithm to classify sonar dataset publication-title: Archive of Acoustics – volume: 37 start-page: 106 year: 2006 end-page: 111 ident: bib0010 article-title: A new optimization method: Big bang-big crunch publication-title: Advances in Engineering Software – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: bib0012 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation – volume: 2019 start-page: 1 year: 2019 end-page: 15 ident: bib0027 article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results publication-title: Swarm and Evolutionary Computation – volume: 154 start-page: 176 year: 2019 end-page: 192 ident: bib0022 article-title: Improved whale trainer for sonar datasets classification using neural network publication-title: Applied Acoustic – start-page: 210 year: 2009 end-page: 214 ident: bib0053 article-title: Cuckoo search via lévy flights publication-title: Proceedings of the 2009 IEEE world congress on nature & biologically inspired computing – volume: 39 start-page: 4683 year: 2014 end-page: 4697 ident: bib0033 article-title: Autonomous particles groups for particle swarm optimization publication-title: Arabian Journal for Science and Engineering – year: 2013 ident: bib0028 article-title: Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization publication-title: Evolutionary Computation and Machine Learning Group – volume: 23 start-page: 1432 year: 2019 end-page: 7643 ident: bib0016 article-title: An efficient hybrid multilayer perceptron neural network with grasshopper optimization publication-title: Soft Computing – volume: 77 start-page: 481 year: 2001 end-page: 506 ident: bib0007 article-title: On benchmarking functions for genetic algorithms publication-title: International Journal of Computer Mathematics – reference: Mishra, S. (2007). Some new test functions for global optimization and performance of repulsive particle swarm method. MPRA Article, no. 2718, posted 13, Available from: – volume: 19 start-page: 633 year: 2009 end-page: 635 ident: bib0005 article-title: Fission-fusion populations publication-title: Current Biology – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: bib0032 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Application – volume: 99 start-page: 1 year: 2017 end-page: 14 ident: bib0009 article-title: Experienced grey wolf optimization through reinforcement learning and neural networks publication-title: IEEE Transaction on Neural Network Learning System – volume: 137 start-page: 121 year: 2018 end-page: 139 ident: bib0024 article-title: Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation publication-title: Applied Acoustics – volume: 13 start-page: 671 year: 1983 end-page: 680 ident: bib0026 article-title: Optimization by simulated annealing publication-title: Science (New York, N.Y.) (New York, N.Y.) – volume: 58 start-page: 447 year: 2011 end-page: 455 ident: bib0019 article-title: Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid miocene radiation or sudden vicariance event publication-title: Molecular Phylogenetics and Evolution – volume: 145 start-page: 25 year: 2017 end-page: 45 ident: bib0029 article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems publication-title: Knowledge-Based Systems – volume: 41 start-page: 421 year: 1993 end-page: 451 ident: bib0037 article-title: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem publication-title: Annals of Operations Research – reference: Molga, M., & Smutnicki,.C. (.2005). Test functions for optimization needs. Available from: – volume: 9 start-page: 250 year: 2005 end-page: 257 ident: bib0042 article-title: Evolution of the brain and intelligence publication-title: Trends in Cognitive Sciences – volume: 43 start-page: 227 year: 2011 end-page: 330 ident: bib0039 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design – volume: 99 start-page: 1 year: 2016 end-page: 14 ident: bib0014 article-title: An adaptive-pso-based self-organizing rbf neural network publication-title: IEEE Transaction on Neural Network Learning System – volume: 13 start-page: 27 year: 2002 end-page: 46 ident: bib0004 article-title: Cooperative hunting roles among taï chimpanzees publication-title: Human Nature – volume: 267 start-page: 66 year: 1992 end-page: 72 ident: bib0018 article-title: Genetic algorithms publication-title: Scientific America – start-page: 4661 year: 2007 end-page: 4667 ident: bib0001 article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition publication-title: Proceedings of the 2007 IEEE congress on evolutionary computation – volume: 60 start-page: 115 year: 2017 end-page: 134 ident: bib0017 article-title: An efficient modified grey wolf optimizer with levy ´ flight for optimization tasks publication-title: Applied Soft Computing – volume: 13 start-page: 2232 year: 2009 end-page: 2248 ident: bib0040 article-title: GSA: A gravitational search algorithm publication-title: Information Science – volume: 51 start-page: 2049 year: 2019 end-page: 2068 ident: bib0038 article-title: A new metaheuristic optimization method: The algorithm of the innovative gunner (AIG) publication-title: Engineering Optimization – volume: 154 start-page: 43 year: 2018 end-page: 67 ident: bib0011 article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems publication-title: Knowledge-Based Systems – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0006 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – volume: 23 start-page: 6249 year: 2019 end-page: 6265 ident: bib0030 article-title: Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection publication-title: Soft Computing – volume: 108 start-page: 2241 year: 2019 end-page: 2260 ident: bib0025 article-title: Classification of sonar targets using an MLP neural network trained by dragonfly algorithm publication-title: Wireless Personal System – volume: 26 start-page: 94 year: 2012 end-page: 100 ident: bib0047 article-title: Genomic monkey business-estimates of nearly identical human-chimp dna similarity publication-title: Journal of Creation – volume: 25 start-page: 1077 year: 2014 end-page: 1097 ident: bib0043 article-title: Biogeography-based optimization with chaos publication-title: Neural Computing and Applications – volume: 1 start-page: 3 year: 2002 end-page: 52 ident: bib0003 article-title: Evolution strategies—A comprehensive introduction publication-title: Natural Computing – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: bib0048 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bulletin – year: 2013 ident: 10.1016/j.eswa.2020.113338_bib0028 article-title: Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization – volume: 58 start-page: 447 issue: 3 year: 2011 ident: 10.1016/j.eswa.2020.113338_bib0019 article-title: Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid miocene radiation or sudden vicariance event publication-title: Molecular Phylogenetics and Evolution doi: 10.1016/j.ympev.2010.11.005 – volume: 154 start-page: 176 year: 2019 ident: 10.1016/j.eswa.2020.113338_bib0022 article-title: Improved whale trainer for sonar datasets classification using neural network publication-title: Applied Acoustic doi: 10.1016/j.apacoust.2019.05.006 – volume: 267 start-page: 66 year: 1992 ident: 10.1016/j.eswa.2020.113338_bib0018 article-title: Genetic algorithms publication-title: Scientific America doi: 10.1038/scientificamerican0792-66 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.eswa.2020.113338_bib0045 article-title: Differential evolution – A Simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 41 start-page: 421 issue: 4 year: 1993 ident: 10.1016/j.eswa.2020.113338_bib0037 article-title: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem publication-title: Annals of Operations Research doi: 10.1007/BF02023004 – volume: 43 start-page: 227 issue: 3 year: 2011 ident: 10.1016/j.eswa.2020.113338_bib0039 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design doi: 10.1016/j.cad.2010.12.015 – start-page: 12 year: 2006 ident: 10.1016/j.eswa.2020.113338_bib0002 article-title: An artificial bee colony (ABC) algorithm for numeric function optimization – volume: 145 start-page: 25 year: 2017 ident: 10.1016/j.eswa.2020.113338_bib0029 article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.12.037 – volume: 1 start-page: 29 issue: 4 year: 2006 ident: 10.1016/j.eswa.2020.113338_bib0008 article-title: Ant colony optimization publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2006.329691 – volume: 108 start-page: 2241 issue: 4 year: 2019 ident: 10.1016/j.eswa.2020.113338_bib0025 article-title: Classification of sonar targets using an MLP neural network trained by dragonfly algorithm publication-title: Wireless Personal System doi: 10.1007/s11277-019-06520-w – ident: 10.1016/j.eswa.2020.113338_bib0034 doi: 10.2139/ssrn.926132 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.eswa.2020.113338_bib0048 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bulletin doi: 10.2307/3001968 – volume: 154 start-page: 43 year: 2018 ident: 10.1016/j.eswa.2020.113338_bib0011 article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.05.009 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 10.1016/j.eswa.2020.113338_bib0012 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2012.05.010 – volume: 44 start-page: 137 issue: 1 year: 2019 ident: 10.1016/j.eswa.2020.113338_bib0036 article-title: Training multi-layer perceptron utilizing adaptive best-mass gravitational search algorithm to classify sonar dataset publication-title: Archive of Acoustics doi: 10.24425/aoa.2019.126360 – volume: 1 start-page: 3 issue: 1 year: 2002 ident: 10.1016/j.eswa.2020.113338_bib0003 article-title: Evolution strategies—A comprehensive introduction publication-title: Natural Computing doi: 10.1023/A:1015059928466 – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.eswa.2020.113338_bib0049 article-title: No free lunch theorems for optimization publication-title: IEEE Transaction on Evolutionary Computing doi: 10.1109/4235.585893 – volume: 17 start-page: 58 issue: 7 year: 2017 ident: 10.1016/j.eswa.2020.113338_bib0041 article-title: Sonar false alarm rate suppression using classification methods based on interior search algorithm publication-title: International Journal of Computer Science and Network Security – volume: 98 start-page: 96 issue: 1 year: 1996 ident: 10.1016/j.eswa.2020.113338_bib0044 article-title: The hunting ecology of wild chimpanzees: Implications for the evolutionary ecology of pliocene hominids publication-title: American Anthropologist doi: 10.1525/aa.1996.98.1.02a00090 – start-page: 693 year: 2017 ident: 10.1016/j.eswa.2020.113338_bib0015 article-title: Enhanced chaotic grey wolf optimizer for real-world optimization problems: A comparative study publication-title: Handbook of Research on Emergent Applications of Optimization Algorithms – volume: 9 start-page: 250 issue: 5 year: 2005 ident: 10.1016/j.eswa.2020.113338_bib0042 article-title: Evolution of the brain and intelligence publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2005.03.005 – start-page: 210 year: 2009 ident: 10.1016/j.eswa.2020.113338_bib0053 article-title: Cuckoo search via lévy flights – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.eswa.2020.113338_bib0006 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – start-page: 4661 year: 2007 ident: 10.1016/j.eswa.2020.113338_bib0001 article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition – volume: 15 start-page: 617 issue: 6 year: 2009 ident: 10.1016/j.eswa.2020.113338_bib0013 article-title: A study on the use of non-parametric tests for analysing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization publication-title: Journal of Heuristics doi: 10.1007/s10732-008-9080-4 – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 10.1016/j.eswa.2020.113338_bib0032 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Application doi: 10.1007/s00521-015-1920-1 – volume: 13 start-page: 671 issue: 220 year: 1983 ident: 10.1016/j.eswa.2020.113338_bib0026 article-title: Optimization by simulated annealing publication-title: Science (New York, N.Y.) (New York, N.Y.) doi: 10.1126/science.220.4598.671 – volume: 23 start-page: 6249 year: 2019 ident: 10.1016/j.eswa.2020.113338_bib0030 article-title: Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection publication-title: Soft Computing doi: 10.1007/s00500-018-3282-y – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.eswa.2020.113338_bib0031 article-title: The ant lion optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.01.010 – volume: 77 start-page: 481 issue: 4 year: 2001 ident: 10.1016/j.eswa.2020.113338_bib0007 article-title: On benchmarking functions for genetic algorithms publication-title: International Journal of Computer Mathematics doi: 10.1080/00207160108805080 – volume: 181 start-page: 98 year: 2019 ident: 10.1016/j.eswa.2020.113338_bib0021 article-title: Sonar target classification using multi-layer perceptron trained by salp swarm algorithm publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2019.04.013 – volume: 39 start-page: 4683 issue: 6 year: 2014 ident: 10.1016/j.eswa.2020.113338_bib0033 article-title: Autonomous particles groups for particle swarm optimization publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-014-1156-x – volume: 23 start-page: 1432 year: 2019 ident: 10.1016/j.eswa.2020.113338_bib0016 article-title: An efficient hybrid multilayer perceptron neural network with grasshopper optimization publication-title: Soft Computing doi: 10.1007/s00500-018-3424-2 – volume: 19 start-page: 633 issue: 15 year: 2009 ident: 10.1016/j.eswa.2020.113338_bib0005 article-title: Fission-fusion populations publication-title: Current Biology doi: 10.1016/j.cub.2009.05.034 – volume: 137 start-page: 121 year: 2018 ident: 10.1016/j.eswa.2020.113338_bib0024 article-title: Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2018.03.012 – start-page: 65 year: 2010 ident: 10.1016/j.eswa.2020.113338_bib0052 article-title: A new metaheuristic bat-inspired algorithm – volume: 37 start-page: 106 issue: 2 year: 2006 ident: 10.1016/j.eswa.2020.113338_bib0010 article-title: A new optimization method: Big bang-big crunch publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2005.04.005 – volume: 118 start-page: 15 year: 2017 ident: 10.1016/j.eswa.2020.113338_bib0023 article-title: Improved migration models of biogeography-based optimization for sonar data set classification using neural network publication-title: Applied Acoustic doi: 10.1016/j.apacoust.2016.11.012 – volume: 2019 start-page: 20 year: 2019 ident: 10.1016/j.eswa.2020.113338_bib0046 article-title: Improved monarch butterfly optimization algorithm based on opposition-based learning and random local perturbation publication-title: Complexity doi: 10.1155/2019/4182148 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.113338_bib0027 article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results publication-title: Swarm and Evolutionary Computation – volume: 13 start-page: 27 year: 2002 ident: 10.1016/j.eswa.2020.113338_bib0004 article-title: Cooperative hunting roles among taï chimpanzees publication-title: Human Nature doi: 10.1007/s12110-002-1013-6 – volume: 99 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2020.113338_bib0014 article-title: An adaptive-pso-based self-organizing rbf neural network publication-title: IEEE Transaction on Neural Network Learning System – volume: 26 start-page: 94 issue: 1 year: 2012 ident: 10.1016/j.eswa.2020.113338_bib0047 article-title: Genomic monkey business-estimates of nearly identical human-chimp dna similarity re-evaluated using omitted data publication-title: Journal of Creation – volume: 99 start-page: 1 year: 2017 ident: 10.1016/j.eswa.2020.113338_bib0009 article-title: Experienced grey wolf optimization through reinforcement learning and neural networks publication-title: IEEE Transaction on Neural Network Learning System – volume: 25 start-page: 1077 issue: 5 year: 2014 ident: 10.1016/j.eswa.2020.113338_bib0043 article-title: Biogeography-based optimization with chaos publication-title: Neural Computing and Applications doi: 10.1007/s00521-014-1597-x – ident: 10.1016/j.eswa.2020.113338_bib0035 – volume: 13 start-page: 2232 issue: 179 year: 2009 ident: 10.1016/j.eswa.2020.113338_bib0040 article-title: GSA: A gravitational search algorithm publication-title: Information Science doi: 10.1016/j.ins.2009.03.004 – volume: 60 start-page: 115 year: 2017 ident: 10.1016/j.eswa.2020.113338_bib0017 article-title: An efficient modified grey wolf optimizer with levy ´ flight for optimization tasks publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.06.044 – volume: 51 start-page: 2049 issue: 12 year: 2019 ident: 10.1016/j.eswa.2020.113338_bib0038 article-title: A new metaheuristic optimization method: The algorithm of the innovative gunner (AIG) publication-title: Engineering Optimization doi: 10.1080/0305215X.2019.1565282  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.722839 | 
    
| Snippet | •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA... This paper proposes a novel metaheuristic algorithm called Chimp Optimization Algorithm (ChOA) inspired by the individual intelligence and sexual motivation of...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 113338 | 
    
| SubjectTerms | Algorithms Benchmarks Chimp Computer simulation Convergence Heuristic methods Hunting Intelligence Mathematical analysis Mathematical model Metaheuristic Optimization Optimization algorithms Performance evaluation Predators Statistical analysis Statistical tests  | 
    
| Title | Chimp optimization algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2020.113338 https://www.proquest.com/docview/2441311372  | 
    
| Volume | 149 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLVZrycGbxKZJNpscS7FUhV600Nuyu9nYSF-0EW_-dmeSTUERDx4TdpfkS-YF33wDcIM5SCY5GpJMUg8LlCR14yxgbi_1JemPRVKVbItxNJqEj1M2bcCg7oUhWqX1_ZVPL721vdO1aHbXed59xuQAwyGWdpTVY6ClDvaQ0xSDu88dzYPk53ilt8ddWm0bZyqOl9l-kPaQX442CahH5ffg9MNNl7FneAQHNml0-tVzHUPDLE_gsB7I4Fj7PIX2YJYv1s4K3cDC9lc6cv662uTFbHEGk-H9y2Dk2vEHrvZZXLgSSxMsJ7xEmYz3UoWh2EQmkNzXUhsV-ZKl2gtiGSUy1QxBZZmm5SrFGkbJ4Byay9XSXICTKGYUnpUlOgtZnCmVeJ6ONPcDHXqhakGvfm-hrTY4jaiYi5oE9iYIK0FYiQqrFtzu9qwrZYw_V7MaTvHt-wp03X_ua9fYC2tdW4EpCakEBdy__OexV7BPVxXvtg3NYvNurjG7KFSn_H06sNd_eBqNvwC5wszU | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG1EokIENhaZOHDcjqqgKlC60UjfLdhwa1JfaIDZ-O-fEqQRCHVgT20q-5B6fdPcdwA3mIIlgaEgiij0kKFHsthKfus2YCKM_FgqZV1v0w-4weBrRUQXaZS-MKau0vr_w6bm3tlcaFs3GIk0br5gcYDhEameyegy0W7AdUMIMA7v7Wtd5GP05VgjuMdcst50zRZGXXn0a8SGSzzbxTZPK39Hpl5_Og0_nAPZs1ujcFw92CBU9O4L9ciKDYw30GOrtcTpdOHP0A1PbYOmIydt8mWbj6QkMOw-Ddte18w9cRWgrcwVyE-QTXiR1wpqxxFisQ-0LRpRQWoZE0Fh5fkuEkYgVRVRposxyGSOJkcI_hepsPtNn4ESSaolnJZFKAtpKpIw8T4WKEV8FXiBr0CzfmysrDm5mVEx4WQX2zg1W3GDFC6xqcLvesyikMTaupiWc_McH5ui7N-6rl9hza14rjjmJkQnyGTn_57HXsNMdvPR477H_fAG75k5RhFuHarb80JeYamTyKv-VvgGqvs5p | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chimp+optimization+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Khishe%2C+M.&rft.au=Mosavi%2C+M.R.&rft.date=2020-07-01&rft.issn=0957-4174&rft.volume=149&rft.spage=113338&rft_id=info:doi/10.1016%2Fj.eswa.2020.113338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_113338 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |