Chimp optimization algorithm

•A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented. This paper...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 149; p. 113338
Main Authors Khishe, M., Mosavi, M.R.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.07.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2020.113338

Cover

Abstract •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented. This paper proposes a novel metaheuristic algorithm called Chimp Optimization Algorithm (ChOA) inspired by the individual intelligence and sexual motivation of chimps in their group hunting, which is different from the other social predators. ChOA is designed to further alleviate the two problems of slow convergence speed and trapping in local optima in solving high-dimensional problems. In this paper, a mathematical model of diverse intelligence and sexual motivation of chimps is proposed. In this regard, four types of chimps entitled attacker, barrier, chaser, and driver are employed for simulating the diverse intelligence. Moreover, four main steps of hunting, i.e. driving, chasing, blocking, and attacking, are implemented. The proposed ChOA algorithm is evaluated in 3 main phases. First, a set of 30 mathematical benchmark functions is utilized to investigate various characteristics of ChOA. Secondly, ChOA was tested by 13 high-dimensional test problems. Finally, 10 real-world optimization problems were used to evaluate the performance of ChOA. The results are compared to several newly proposed meta-heuristic algorithms in terms of convergence speed, the probability of getting stuck in local minimums, and exploration, exploitation. Also, statistical tests were employed to investigate the significance of the results. The results indicate that the ChOA outperforms the other benchmark optimization algorithms.
AbstractList This paper proposes a novel metaheuristic algorithm called Chimp Optimization Algorithm (ChOA) inspired by the individual intelligence and sexual motivation of chimps in their group hunting, which is different from the other social predators. ChOA is designed to further alleviate the two problems of slow convergence speed and trapping in local optima in solving high-dimensional problems. In this paper, a mathematical model of diverse intelligence and sexual motivation of chimps is proposed. In this regard, four types of chimps entitled attacker, barrier, chaser, and driver are employed for simulating the diverse intelligence. Moreover, four main steps of hunting, i.e. driving, chasing, blocking, and attacking, are implemented. The proposed ChOA algorithm is evaluated in 3 main phases. First, a set of 30 mathematical benchmark functions is utilized to investigate various characteristics of ChOA. Secondly, ChOA was tested by 13 high-dimensional test problems. Finally, 10 real-world optimization problems were used to evaluate the performance of ChOA. The results are compared to several newly proposed meta-heuristic algorithms in terms of convergence speed, the probability of getting stuck in local minimums, and exploration, exploitation. Also, statistical tests were employed to investigate the significance of the results. The results indicate that the ChOA outperforms the other benchmark optimization algorithms.
•A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA alleviates the problems of slow convergence rate and trapping in local optima.•The four main steps of Chimp hunting are implemented. This paper proposes a novel metaheuristic algorithm called Chimp Optimization Algorithm (ChOA) inspired by the individual intelligence and sexual motivation of chimps in their group hunting, which is different from the other social predators. ChOA is designed to further alleviate the two problems of slow convergence speed and trapping in local optima in solving high-dimensional problems. In this paper, a mathematical model of diverse intelligence and sexual motivation of chimps is proposed. In this regard, four types of chimps entitled attacker, barrier, chaser, and driver are employed for simulating the diverse intelligence. Moreover, four main steps of hunting, i.e. driving, chasing, blocking, and attacking, are implemented. The proposed ChOA algorithm is evaluated in 3 main phases. First, a set of 30 mathematical benchmark functions is utilized to investigate various characteristics of ChOA. Secondly, ChOA was tested by 13 high-dimensional test problems. Finally, 10 real-world optimization problems were used to evaluate the performance of ChOA. The results are compared to several newly proposed meta-heuristic algorithms in terms of convergence speed, the probability of getting stuck in local minimums, and exploration, exploitation. Also, statistical tests were employed to investigate the significance of the results. The results indicate that the ChOA outperforms the other benchmark optimization algorithms.
ArticleNumber 113338
Author Khishe, M.
Mosavi, M.R.
Author_xml – sequence: 1
  givenname: M.
  surname: Khishe
  fullname: Khishe, M.
  email: m_khishe@alumni.iust.ac.ir
  organization: Department of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran
– sequence: 2
  givenname: M.R.
  orcidid: 0000-0002-2389-644X
  surname: Mosavi
  fullname: Mosavi, M.R.
  email: m_mosavi@iust.ac.ir
  organization: Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
BookMark eNp9kMtKxDAUhoOM4MzoC4iLAdcdc2mTFtzI4A0G3Og6nKanTsq0qUlG0ae3ta5cuDpw-L9z-RZk1rkOCTlndM0ok1fNGsMHrDnlQ4MJIfIjMme5EolUhZiROS0ylaRMpSdkEUJDKVOUqjm52Oxs269cH21rvyBa161g_-q8jbv2lBzXsA949luX5OXu9nnzkGyf7h83N9vE8CyPCUiepbmiRYm1YlWZM44SBShuwGApOWSVoSIHWUBlMihpVpsxXlaFlCWIJbmc5vbevR0wRN24g--GlZqnKRPDR4oPqXxKGe9C8FhrY-PPxdGD3WtG9ehCN3p0oUcXenIxoPwP2nvbgv_8H7qeIBxef7fodTAWO4OV9Wiirpz9D_8GC7l5Yg
CitedBy_id crossref_primary_10_3390_pr9122276
crossref_primary_10_32604_iasc_2023_027865
crossref_primary_10_1002_acs_3645
crossref_primary_10_1016_j_heliyon_2024_e25848
crossref_primary_10_3390_fi16120460
crossref_primary_10_1007_s10462_022_10340_z
crossref_primary_10_1007_s41870_023_01366_9
crossref_primary_10_1016_j_eswa_2021_114974
crossref_primary_10_1007_s12530_023_09518_9
crossref_primary_10_1016_j_eswa_2023_119992
crossref_primary_10_1007_s11831_023_09912_1
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_3390_e24081151
crossref_primary_10_1016_j_egyr_2021_11_257
crossref_primary_10_1038_s41598_024_66450_x
crossref_primary_10_1080_15435075_2023_2245024
crossref_primary_10_1155_2022_7596819
crossref_primary_10_1007_s10479_024_06363_0
crossref_primary_10_1007_s13198_023_02005_z
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_3390_biomimetics9090519
crossref_primary_10_1007_s40747_024_01592_z
crossref_primary_10_1007_s42235_024_00539_x
crossref_primary_10_3390_a18030160
crossref_primary_10_1016_j_egyr_2021_04_058
crossref_primary_10_1016_j_ins_2023_119535
crossref_primary_10_1016_j_ins_2024_120924
crossref_primary_10_1002_dac_5720
crossref_primary_10_1016_j_measurement_2024_115302
crossref_primary_10_1016_j_egyr_2021_04_052
crossref_primary_10_1002_int_23091
crossref_primary_10_1016_j_egyr_2021_04_050
crossref_primary_10_1007_s11277_021_08902_5
crossref_primary_10_1016_j_cose_2024_104166
crossref_primary_10_1007_s10462_024_11049_x
crossref_primary_10_1016_j_bspc_2023_105870
crossref_primary_10_1016_j_seta_2021_101359
crossref_primary_10_1063_5_0174861
crossref_primary_10_1155_2021_7567870
crossref_primary_10_5194_npg_30_435_2023
crossref_primary_10_1016_j_asoc_2021_107282
crossref_primary_10_36306_konjes_1209089
crossref_primary_10_2478_jaiscr_2024_0018
crossref_primary_10_3934_math_2024494
crossref_primary_10_1016_j_compeleceng_2022_108014
crossref_primary_10_1155_2022_5677961
crossref_primary_10_1016_j_eswa_2024_123160
crossref_primary_10_3390_app12199709
crossref_primary_10_3390_w15244297
crossref_primary_10_1016_j_swevo_2023_101248
crossref_primary_10_1016_j_engappai_2023_106469
crossref_primary_10_3390_sym16030324
crossref_primary_10_1016_j_rineng_2023_101354
crossref_primary_10_1016_j_egyr_2021_10_118
crossref_primary_10_1177_24056456251320119
crossref_primary_10_1016_j_asoc_2022_109869
crossref_primary_10_1088_1742_6596_1963_1_012027
crossref_primary_10_3390_jmse13030458
crossref_primary_10_1016_j_est_2024_111008
crossref_primary_10_1016_j_scitotenv_2024_172195
crossref_primary_10_1016_j_egyr_2021_03_044
crossref_primary_10_1016_j_eswa_2022_119455
crossref_primary_10_3390_su151612563
crossref_primary_10_1007_s41060_025_00726_x
crossref_primary_10_1109_TNB_2021_3121278
crossref_primary_10_32604_cmc_2024_046304
crossref_primary_10_1142_S1469026824500020
crossref_primary_10_1007_s42835_022_01140_0
crossref_primary_10_1016_j_compeleceng_2025_110178
crossref_primary_10_1016_j_knosys_2024_112026
crossref_primary_10_3390_electronics11223798
crossref_primary_10_1038_s41598_024_57518_9
crossref_primary_10_1080_0954898X_2025_2453032
crossref_primary_10_1016_j_jestch_2024_101897
crossref_primary_10_1007_s00366_021_01591_5
crossref_primary_10_1007_s42044_024_00174_z
crossref_primary_10_3233_JIFS_201755
crossref_primary_10_1007_s10462_024_10838_8
crossref_primary_10_1080_13682199_2023_2178094
crossref_primary_10_1109_ACCESS_2024_3399325
crossref_primary_10_1002_dac_5628
crossref_primary_10_1155_2021_9528664
crossref_primary_10_3390_machines10070561
crossref_primary_10_1080_00405000_2024_2410038
crossref_primary_10_1016_j_array_2023_100317
crossref_primary_10_1016_j_engappai_2021_104419
crossref_primary_10_1016_j_egyr_2021_03_033
crossref_primary_10_1016_j_asoc_2024_111581
crossref_primary_10_1007_s10915_022_01955_z
crossref_primary_10_1007_s12530_022_09443_3
crossref_primary_10_1007_s12665_021_10098_7
crossref_primary_10_1007_s12530_023_09506_z
crossref_primary_10_1111_exsy_13563
crossref_primary_10_1016_j_eswa_2022_119206
crossref_primary_10_1016_j_seta_2022_102605
crossref_primary_10_1007_s10586_024_04545_w
crossref_primary_10_1016_j_asoc_2024_111574
crossref_primary_10_1109_ACCESS_2023_3259548
crossref_primary_10_1016_j_asoc_2025_112968
crossref_primary_10_1016_j_swevo_2024_101724
crossref_primary_10_1016_j_asoc_2024_112428
crossref_primary_10_1007_s10462_024_10729_y
crossref_primary_10_1016_j_suscom_2023_100939
crossref_primary_10_1016_j_engappai_2023_106121
crossref_primary_10_3390_math9141661
crossref_primary_10_1007_s00500_023_09153_1
crossref_primary_10_1007_s12652_021_03564_4
crossref_primary_10_1016_j_aej_2021_04_025
crossref_primary_10_1016_j_asoc_2021_107146
crossref_primary_10_1007_s12204_024_2574_x
crossref_primary_10_1016_j_engappai_2023_106207
crossref_primary_10_1007_s13369_024_08899_6
crossref_primary_10_3390_biomimetics9080501
crossref_primary_10_1016_j_advengsoft_2022_103322
crossref_primary_10_1007_s10462_024_10829_9
crossref_primary_10_1109_ACCESS_2024_3376235
crossref_primary_10_1111_exsy_12642
crossref_primary_10_1016_j_energy_2023_128454
crossref_primary_10_1016_j_isatra_2021_08_036
crossref_primary_10_1109_ACCESS_2022_3174484
crossref_primary_10_1007_s00500_021_05839_6
crossref_primary_10_1371_journal_pone_0282514
crossref_primary_10_32604_cmc_2024_051928
crossref_primary_10_32604_cmc_2022_019876
crossref_primary_10_56294_sctconf2024697
crossref_primary_10_1142_S0219649224500126
crossref_primary_10_32604_cmc_2024_049717
crossref_primary_10_1007_s11280_022_01054_x
crossref_primary_10_1016_j_knosys_2022_109215
crossref_primary_10_1007_s10462_023_10567_4
crossref_primary_10_1016_j_advengsoft_2022_103333
crossref_primary_10_3390_f13111746
crossref_primary_10_1007_s00500_023_09174_w
crossref_primary_10_1016_j_engappai_2022_105069
crossref_primary_10_1155_2021_9114113
crossref_primary_10_1016_j_aei_2022_101636
crossref_primary_10_1016_j_aei_2024_103088
crossref_primary_10_1007_s11277_022_10000_z
crossref_primary_10_1007_s40998_024_00780_4
crossref_primary_10_1007_s13369_024_09807_8
crossref_primary_10_1038_s41598_025_88135_9
crossref_primary_10_1016_j_procs_2023_12_050
crossref_primary_10_1080_21642583_2024_2385310
crossref_primary_10_32604_cmc_2023_033091
crossref_primary_10_1016_j_aej_2022_06_017
crossref_primary_10_3390_diagnostics13182958
crossref_primary_10_1016_j_engappai_2022_105075
crossref_primary_10_1109_ACCESS_2021_3113515
crossref_primary_10_32604_cmc_2024_049847
crossref_primary_10_3390_en15238790
crossref_primary_10_1155_2022_1698137
crossref_primary_10_1002_dac_5713
crossref_primary_10_1007_s00521_021_06747_4
crossref_primary_10_3390_diagnostics13040668
crossref_primary_10_1007_s11277_024_11525_1
crossref_primary_10_3233_JIFS_223224
crossref_primary_10_1007_s10462_022_10343_w
crossref_primary_10_1142_S0218001423560013
crossref_primary_10_3390_electronics12183985
crossref_primary_10_1080_15567036_2022_2074174
crossref_primary_10_1007_s00521_023_08535_8
crossref_primary_10_1007_s10462_023_10678_y
crossref_primary_10_1007_s11042_023_16056_8
crossref_primary_10_1007_s10515_022_00349_7
crossref_primary_10_1051_e3sconf_202456403001
crossref_primary_10_3390_agriculture10100434
crossref_primary_10_1016_j_eswa_2023_119898
crossref_primary_10_1016_j_asoc_2024_111548
crossref_primary_10_1016_j_asoc_2024_111547
crossref_primary_10_1016_j_eswa_2023_121975
crossref_primary_10_1007_s12065_023_00866_8
crossref_primary_10_1016_j_rinp_2024_107795
crossref_primary_10_1002_aisy_202200097
crossref_primary_10_1155_2022_4623980
crossref_primary_10_1016_j_asoc_2020_106903
crossref_primary_10_3390_en17184742
crossref_primary_10_1002_dac_5829
crossref_primary_10_1016_j_dajour_2023_100251
crossref_primary_10_1017_aer_2022_70
crossref_primary_10_1109_ACCESS_2024_3350336
crossref_primary_10_3934_math_2025117
crossref_primary_10_1007_s10586_024_04319_4
crossref_primary_10_1007_s12652_022_04384_w
crossref_primary_10_3934_math_20221091
crossref_primary_10_1007_s13369_024_08952_4
crossref_primary_10_1080_09507116_2024_2430208
crossref_primary_10_32604_iasc_2022_020969
crossref_primary_10_1007_s12652_023_04573_1
crossref_primary_10_1002_ima_22708
crossref_primary_10_1016_j_eswa_2023_121744
crossref_primary_10_1016_j_eswa_2024_124190
crossref_primary_10_1007_s00521_024_10346_4
crossref_primary_10_1007_s00521_024_10577_5
crossref_primary_10_1007_s10115_022_01825_y
crossref_primary_10_1007_s11709_024_1091_1
crossref_primary_10_1142_S0218001424540077
crossref_primary_10_1007_s11042_023_17296_4
crossref_primary_10_1002_oca_3051
crossref_primary_10_1080_15567036_2023_2252672
crossref_primary_10_1007_s11220_023_00457_y
crossref_primary_10_1109_ACCESS_2022_3158357
crossref_primary_10_1007_s10489_021_02415_1
crossref_primary_10_1007_s00607_024_01290_1
crossref_primary_10_3390_computers12100196
crossref_primary_10_1080_0952813X_2021_1960639
crossref_primary_10_3390_w16162232
crossref_primary_10_3934_mbe_2022533
crossref_primary_10_1007_s11042_024_20313_9
crossref_primary_10_1007_s12652_022_03765_5
crossref_primary_10_1016_j_bspc_2023_104706
crossref_primary_10_1093_jcde_qwac113
crossref_primary_10_1016_j_knosys_2022_110146
crossref_primary_10_3233_JIFS_222516
crossref_primary_10_17531_ein_2022_2_19
crossref_primary_10_48084_etasr_6542
crossref_primary_10_1038_s41598_024_81125_3
crossref_primary_10_1109_TITS_2022_3195605
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1177_20552076241306272
crossref_primary_10_1016_j_bspc_2024_106069
crossref_primary_10_3390_math10071100
crossref_primary_10_1016_j_eswa_2021_115651
crossref_primary_10_35193_bseufbd_916804
crossref_primary_10_1016_j_egyr_2022_12_054
crossref_primary_10_1109_ACCESS_2024_3445269
crossref_primary_10_1007_s11063_021_10729_x
crossref_primary_10_1016_j_swevo_2023_101407
crossref_primary_10_1016_j_suscom_2024_100976
crossref_primary_10_3390_a17090417
crossref_primary_10_1155_2023_9169050
crossref_primary_10_3390_fractalfract5040190
crossref_primary_10_1016_j_asoc_2024_111876
crossref_primary_10_1155_2022_3421682
crossref_primary_10_3390_s23156741
crossref_primary_10_1016_j_bspc_2023_105901
crossref_primary_10_1111_exsy_13380
crossref_primary_10_1007_s41060_024_00689_5
crossref_primary_10_1016_j_chaos_2025_116219
crossref_primary_10_1177_30504554251319447
crossref_primary_10_1016_j_eswa_2023_122413
crossref_primary_10_1016_j_chemolab_2023_105043
crossref_primary_10_1016_j_eswa_2023_120594
crossref_primary_10_1007_s40747_023_01265_3
crossref_primary_10_1007_s00521_024_09850_4
crossref_primary_10_1016_j_egyr_2021_06_052
crossref_primary_10_1080_1448837X_2024_2312487
crossref_primary_10_1007_s00500_022_07778_2
crossref_primary_10_3390_app132413086
crossref_primary_10_1007_s12530_023_09547_4
crossref_primary_10_32604_cmes_2023_029404
crossref_primary_10_1007_s10586_024_04768_x
crossref_primary_10_1002_cta_3817
crossref_primary_10_3390_biomimetics8050383
crossref_primary_10_3390_math10111894
crossref_primary_10_1007_s10489_022_03704_z
crossref_primary_10_3390_app13095795
crossref_primary_10_1016_j_solener_2023_02_036
crossref_primary_10_3390_app15020608
crossref_primary_10_1007_s11063_022_10832_7
crossref_primary_10_1155_2022_1917172
crossref_primary_10_1007_s11276_023_03464_9
crossref_primary_10_1109_ACCESS_2022_3183213
crossref_primary_10_3390_biomimetics7040241
crossref_primary_10_1016_j_matcom_2022_01_018
crossref_primary_10_1007_s11227_023_05617_1
crossref_primary_10_1007_s42979_023_02215_z
crossref_primary_10_1016_j_heliyon_2024_e32400
crossref_primary_10_1038_s41598_024_82592_4
crossref_primary_10_1016_j_jksuci_2024_102051
crossref_primary_10_1007_s42835_023_01585_x
crossref_primary_10_1016_j_compeleceng_2022_107904
crossref_primary_10_1016_j_dajour_2023_100299
crossref_primary_10_1007_s11042_023_15415_9
crossref_primary_10_1007_s12652_021_03183_z
crossref_primary_10_1007_s11227_023_05047_z
crossref_primary_10_1016_j_energy_2024_132969
crossref_primary_10_1016_j_heliyon_2023_e21596
crossref_primary_10_3934_math_2024622
crossref_primary_10_7717_peerj_cs_1405
crossref_primary_10_7717_peerj_cs_1526
crossref_primary_10_1007_s11277_023_10197_7
crossref_primary_10_1007_s12065_024_00945_4
crossref_primary_10_1016_j_asej_2022_101728
crossref_primary_10_1016_j_est_2023_107094
crossref_primary_10_1155_2022_1326325
crossref_primary_10_1007_s10462_023_10481_9
crossref_primary_10_3390_jpm12030455
crossref_primary_10_1007_s11709_023_0997_3
crossref_primary_10_1007_s00034_023_02296_4
crossref_primary_10_1007_s00500_022_07410_3
crossref_primary_10_1155_2022_3569261
crossref_primary_10_3390_math9182335
crossref_primary_10_1155_2021_6639671
crossref_primary_10_1080_01969722_2024_2343982
crossref_primary_10_1038_s41598_023_47837_8
crossref_primary_10_1007_s10845_021_01877_x
crossref_primary_10_1109_ACCESS_2021_3138403
crossref_primary_10_1007_s11042_024_19417_z
crossref_primary_10_1016_j_jer_2024_05_008
crossref_primary_10_1016_j_compbiomed_2022_105349
crossref_primary_10_1016_j_seta_2022_102401
crossref_primary_10_1111_exsy_70016
crossref_primary_10_1142_S0219467823500420
crossref_primary_10_1007_s00366_020_01233_2
crossref_primary_10_46460_ijiea_1088408
crossref_primary_10_1155_2021_9651957
crossref_primary_10_1016_j_jclepro_2022_132697
crossref_primary_10_1016_j_bspc_2023_104749
crossref_primary_10_1016_j_compbiomed_2022_105344
crossref_primary_10_3390_sym16091173
crossref_primary_10_1016_j_asoc_2023_110514
crossref_primary_10_3390_machines11020250
crossref_primary_10_1155_2022_4639208
crossref_primary_10_1016_j_iot_2023_101028
crossref_primary_10_1016_j_knosys_2023_110462
crossref_primary_10_1016_j_swevo_2024_101795
crossref_primary_10_3934_mbe_2023546
crossref_primary_10_1016_j_advengsoft_2024_103696
crossref_primary_10_1007_s11356_022_20375_y
crossref_primary_10_4018_IJISP_300326
crossref_primary_10_1007_s11227_022_04755_2
crossref_primary_10_1016_j_apenergy_2023_122071
crossref_primary_10_1016_j_dajour_2025_100551
crossref_primary_10_4018_IJSIR_314210
crossref_primary_10_1007_s10462_023_10416_4
crossref_primary_10_3934_mbe_2022345
crossref_primary_10_3934_mbe_2022344
crossref_primary_10_1016_j_egyr_2021_05_051
crossref_primary_10_1016_j_epsr_2022_107858
crossref_primary_10_18618_REP_2005_1_063070
crossref_primary_10_1016_j_eswa_2023_122578
crossref_primary_10_1016_j_jestch_2023_101408
crossref_primary_10_1007_s40747_024_01502_3
crossref_primary_10_1177_14613484241242737
crossref_primary_10_2166_hydro_2023_026
crossref_primary_10_1007_s12652_022_04386_8
crossref_primary_10_1016_j_egyr_2021_04_016
crossref_primary_10_31590_ejosat_1082451
crossref_primary_10_1016_j_advengsoft_2024_103665
crossref_primary_10_1038_s41598_024_55040_6
crossref_primary_10_1109_ACCESS_2023_3267110
crossref_primary_10_1016_j_jestch_2023_101564
crossref_primary_10_1007_s10462_023_10658_2
crossref_primary_10_1016_j_optcom_2025_131577
crossref_primary_10_1016_j_mlwa_2025_100624
crossref_primary_10_1109_ACCESS_2021_3066329
crossref_primary_10_1016_j_energy_2024_130637
crossref_primary_10_3233_JIFS_235607
crossref_primary_10_1007_s11356_022_24586_1
crossref_primary_10_1016_j_bspc_2023_104965
crossref_primary_10_1016_j_oceaneng_2024_119299
crossref_primary_10_1016_j_swevo_2023_101459
crossref_primary_10_1007_s00500_023_08033_y
crossref_primary_10_1016_j_asoc_2023_110659
crossref_primary_10_1038_s41598_024_76698_y
crossref_primary_10_3390_computation9100102
crossref_primary_10_1016_j_eswa_2023_121450
crossref_primary_10_3390_pr10122606
crossref_primary_10_1007_s11276_024_03800_7
crossref_primary_10_3233_IDT_230211
crossref_primary_10_1007_s42235_022_00316_8
crossref_primary_10_1038_s41598_023_43272_x
crossref_primary_10_1016_j_knosys_2022_110248
crossref_primary_10_33187_jmsm_1115792
crossref_primary_10_3390_math13050717
crossref_primary_10_1007_s11071_023_09246_4
crossref_primary_10_1007_s11042_025_20709_1
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1109_ACCESS_2024_3421286
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1177_09544062231220201
crossref_primary_10_7717_peerj_cs_976
crossref_primary_10_1016_j_bspc_2022_103688
crossref_primary_10_1016_j_energy_2024_130508
crossref_primary_10_18618_REP_e202448
crossref_primary_10_3390_genes13111966
crossref_primary_10_3390_machines10080602
crossref_primary_10_1016_j_egyr_2021_05_070
crossref_primary_10_1109_ACCESS_2021_3130933
crossref_primary_10_1007_s00500_024_09761_5
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1007_s42235_023_00414_1
crossref_primary_10_1007_s00521_022_07000_2
crossref_primary_10_1007_s12530_024_09585_6
crossref_primary_10_1016_j_knosys_2021_107405
crossref_primary_10_1007_s40996_024_01488_5
crossref_primary_10_1109_ACCESS_2024_3367288
crossref_primary_10_1016_j_adhoc_2023_103133
crossref_primary_10_1142_S0219622021500176
crossref_primary_10_1007_s11042_023_18054_2
crossref_primary_10_1007_s11277_022_10092_7
crossref_primary_10_1016_j_energy_2022_125259
crossref_primary_10_1016_j_compbiomed_2023_107723
crossref_primary_10_1038_s41598_024_77240_w
crossref_primary_10_1016_j_egyr_2021_07_031
crossref_primary_10_1016_j_eswa_2022_116887
crossref_primary_10_1109_ACCESS_2021_3106448
crossref_primary_10_1002_for_2888
crossref_primary_10_1039_D2VA00200K
crossref_primary_10_1007_s00500_023_08205_w
crossref_primary_10_1016_j_rsase_2024_101278
crossref_primary_10_1155_2022_9619530
crossref_primary_10_1007_s13755_023_00234_x
crossref_primary_10_1109_ACCESS_2022_3203400
crossref_primary_10_1016_j_cma_2022_114901
crossref_primary_10_1371_journal_pone_0298230
crossref_primary_10_3389_fbioe_2022_830037
crossref_primary_10_3390_electronics11050831
crossref_primary_10_1016_j_engappai_2022_105543
crossref_primary_10_1109_ACCESS_2022_3203999
crossref_primary_10_1007_s10278_022_00765_x
crossref_primary_10_1038_s41598_024_55619_z
crossref_primary_10_1007_s11042_023_14767_6
crossref_primary_10_1007_s11042_023_17725_4
crossref_primary_10_17694_bajece_989467
crossref_primary_10_1016_j_eswa_2022_117961
crossref_primary_10_1016_j_energy_2022_125029
crossref_primary_10_1007_s13042_022_01642_3
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1007_s00500_023_08630_x
crossref_primary_10_1007_s13369_023_07610_5
crossref_primary_10_1007_s00500_024_09878_7
crossref_primary_10_35378_gujs_820805
crossref_primary_10_1016_j_eswa_2025_127026
crossref_primary_10_1109_JSTARS_2023_3348874
crossref_primary_10_1016_j_knosys_2023_110494
crossref_primary_10_3390_en14144086
crossref_primary_10_1016_j_egyr_2022_09_025
crossref_primary_10_3233_IDT_229014
crossref_primary_10_1016_j_eswa_2020_113702
crossref_primary_10_1007_s11356_023_25238_8
crossref_primary_10_1016_j_optlastec_2024_110883
crossref_primary_10_1007_s11227_024_06899_9
crossref_primary_10_1016_j_chemosphere_2021_132251
crossref_primary_10_1007_s10586_022_03953_0
crossref_primary_10_3390_math10091354
crossref_primary_10_1016_j_energy_2023_126844
crossref_primary_10_1007_s13042_024_02197_1
crossref_primary_10_1007_s13369_021_06307_x
crossref_primary_10_1038_s41598_024_78589_8
crossref_primary_10_1007_s00366_021_01530_4
crossref_primary_10_1063_5_0108340
crossref_primary_10_1002_cpe_7597
crossref_primary_10_3390_en15041549
crossref_primary_10_1016_j_bspc_2023_105053
crossref_primary_10_1016_j_heliyon_2023_e19431
crossref_primary_10_1016_j_energy_2024_133894
crossref_primary_10_1007_s00521_021_06775_0
crossref_primary_10_1016_j_solener_2023_112260
crossref_primary_10_1016_j_compbiomed_2024_107922
crossref_primary_10_1007_s00354_023_00222_5
crossref_primary_10_1007_s00521_021_06041_3
crossref_primary_10_3390_app142210248
crossref_primary_10_1108_COMPEL_07_2021_0231
crossref_primary_10_1016_j_egyr_2021_08_177
crossref_primary_10_1016_j_heliyon_2024_e28681
crossref_primary_10_3390_app14199142
crossref_primary_10_1109_ACCESS_2022_3144431
crossref_primary_10_1007_s11063_025_11735_z
crossref_primary_10_1140_epjs_s11734_024_01408_8
crossref_primary_10_1007_s11276_025_03920_8
crossref_primary_10_1016_j_energy_2021_121621
crossref_primary_10_3389_fbioe_2022_1018895
crossref_primary_10_1109_ACCESS_2024_3481034
crossref_primary_10_1007_s11042_023_17440_0
crossref_primary_10_1016_j_energy_2024_132556
crossref_primary_10_1002_ett_70034
crossref_primary_10_1016_j_knosys_2024_112636
crossref_primary_10_1007_s00542_024_05745_5
crossref_primary_10_1007_s42235_023_00394_2
crossref_primary_10_1016_j_egyr_2021_10_098
crossref_primary_10_1007_s42044_022_00120_x
crossref_primary_10_1016_j_engappai_2024_109202
crossref_primary_10_1007_s42235_024_00510_w
crossref_primary_10_1007_s10470_022_02014_1
crossref_primary_10_1109_ACCESS_2021_3051573
crossref_primary_10_3390_app122010292
crossref_primary_10_1155_2022_6627409
crossref_primary_10_1109_ACCESS_2022_3222489
crossref_primary_10_1049_elp2_12302
crossref_primary_10_1007_s00521_023_09236_y
crossref_primary_10_1016_j_ijrefrig_2024_01_012
crossref_primary_10_1007_s10586_023_04172_x
crossref_primary_10_1016_j_engappai_2022_105622
crossref_primary_10_1007_s12065_021_00634_6
crossref_primary_10_1007_s11042_023_15411_z
crossref_primary_10_1080_17455030_2021_1998729
crossref_primary_10_32604_csse_2023_038025
crossref_primary_10_1016_j_ecoinf_2021_101527
crossref_primary_10_1016_j_engstruct_2024_118679
crossref_primary_10_1007_s12065_024_00997_6
crossref_primary_10_1016_j_eswa_2021_115178
crossref_primary_10_1016_j_solener_2022_04_056
crossref_primary_10_1007_s11277_021_09410_2
crossref_primary_10_1016_j_eswa_2022_118734
crossref_primary_10_3934_math_2024972
crossref_primary_10_1038_s41598_024_82580_8
crossref_primary_10_32604_cmc_2021_014590
crossref_primary_10_1007_s11042_024_20301_z
crossref_primary_10_1109_ACCESS_2021_3106233
crossref_primary_10_3934_mbe_2023278
crossref_primary_10_1007_s13369_025_10031_1
crossref_primary_10_1016_j_egyr_2021_10_090
crossref_primary_10_1016_j_measen_2023_100785
crossref_primary_10_1007_s00202_024_02885_9
crossref_primary_10_1007_s10462_024_10954_5
crossref_primary_10_3233_IDT_220036
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_1007_s12065_023_00870_y
crossref_primary_10_3390_app12189036
crossref_primary_10_1016_j_solener_2021_03_087
crossref_primary_10_4018_IJBDCN_349572
crossref_primary_10_1016_j_cma_2023_116199
crossref_primary_10_1007_s11227_022_04886_6
crossref_primary_10_1007_s44230_023_00048_w
crossref_primary_10_1007_s11760_024_03419_3
crossref_primary_10_1016_j_knosys_2021_107625
crossref_primary_10_1038_s41598_024_59597_0
crossref_primary_10_1016_j_chaos_2023_113672
crossref_primary_10_1049_rpg2_12748
crossref_primary_10_1080_15567036_2021_1966138
crossref_primary_10_31590_ejosat_1010484
crossref_primary_10_1038_s41598_022_24343_x
crossref_primary_10_1093_jcde_qwad108
crossref_primary_10_1007_s10586_024_04368_9
crossref_primary_10_1007_s11227_024_06592_x
crossref_primary_10_1016_j_aej_2022_02_009
crossref_primary_10_1007_s12652_023_04546_4
crossref_primary_10_1007_s40996_022_00931_9
crossref_primary_10_1007_s41939_024_00580_7
crossref_primary_10_7717_peerj_cs_1054
crossref_primary_10_1016_j_jksuci_2024_102255
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_1016_j_egyr_2022_11_197
crossref_primary_10_1155_2021_7788491
crossref_primary_10_1002_cpe_6341
crossref_primary_10_1007_s12065_024_00909_8
crossref_primary_10_1016_j_ijepes_2022_108940
crossref_primary_10_1007_s12530_023_09552_7
crossref_primary_10_3390_electronics13081580
crossref_primary_10_1109_ACCESS_2022_3143541
crossref_primary_10_1007_s41939_024_00406_6
crossref_primary_10_1007_s10846_022_01802_1
crossref_primary_10_1109_ACCESS_2021_3064799
crossref_primary_10_1007_s10586_024_04713_y
crossref_primary_10_1016_j_aei_2023_102004
crossref_primary_10_1016_j_eswa_2022_116895
crossref_primary_10_1109_ACCESS_2021_3105485
crossref_primary_10_1007_s40747_021_00346_5
crossref_primary_10_1063_5_0073335
crossref_primary_10_1016_j_eswa_2022_117629
crossref_primary_10_1038_s41598_021_01018_7
crossref_primary_10_1049_rpg2_12640
crossref_primary_10_1007_s10586_024_04602_4
crossref_primary_10_1007_s13369_024_09526_0
crossref_primary_10_1108_EC_05_2024_0415
crossref_primary_10_1007_s11042_022_12882_4
crossref_primary_10_3233_JHS_230043
crossref_primary_10_1007_s00500_023_09398_w
crossref_primary_10_1109_ACCESS_2023_3337602
crossref_primary_10_1007_s13369_025_10034_y
crossref_primary_10_1016_j_bspc_2024_106732
crossref_primary_10_1007_s11227_025_07139_4
crossref_primary_10_1016_j_apor_2021_102837
crossref_primary_10_1016_j_engappai_2024_109879
crossref_primary_10_1109_JSTARS_2024_3408817
crossref_primary_10_1016_j_advengsoft_2022_103404
crossref_primary_10_1016_j_compbiomed_2022_106075
crossref_primary_10_1016_j_advengsoft_2022_103405
crossref_primary_10_1155_2022_3216400
crossref_primary_10_1016_j_aej_2022_04_032
crossref_primary_10_1016_j_ins_2023_119122
crossref_primary_10_1109_ACCESS_2022_3144065
crossref_primary_10_1038_s41598_024_75123_8
crossref_primary_10_1109_ACCESS_2021_3111408
crossref_primary_10_1002_cpe_7730
crossref_primary_10_3390_axioms12030266
crossref_primary_10_1177_14759217241240130
crossref_primary_10_3390_s23031180
crossref_primary_10_1007_s10586_024_04673_3
crossref_primary_10_1016_j_matcom_2022_08_017
crossref_primary_10_1007_s00202_024_02553_y
crossref_primary_10_1109_ACCESS_2024_3392633
crossref_primary_10_1007_s11276_024_03686_5
crossref_primary_10_3390_electronics10172079
crossref_primary_10_1080_15567036_2022_2096723
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1016_j_datak_2023_102243
crossref_primary_10_1007_s11063_023_11285_2
crossref_primary_10_1007_s00500_023_09385_1
crossref_primary_10_1155_2022_4894922
crossref_primary_10_1007_s41315_022_00239_x
crossref_primary_10_1016_j_matcom_2022_12_027
crossref_primary_10_1093_jcde_qwae074
crossref_primary_10_3390_sym14010011
crossref_primary_10_1142_S1469026823500013
crossref_primary_10_32604_iasc_2022_025305
crossref_primary_10_3233_JHS_230028
crossref_primary_10_1007_s40430_024_05241_x
crossref_primary_10_1016_j_eswa_2022_118642
crossref_primary_10_1002_widm_1548
crossref_primary_10_1088_1742_6596_2761_1_012032
crossref_primary_10_3390_a14100282
crossref_primary_10_3390_su14094992
crossref_primary_10_1109_ACCESS_2022_3177218
crossref_primary_10_1155_2022_1283040
crossref_primary_10_1016_j_chaos_2024_115972
crossref_primary_10_3390_axioms12070702
crossref_primary_10_1109_ACCESS_2022_3197290
crossref_primary_10_3233_JIFS_237786
crossref_primary_10_1007_s10462_023_10542_z
crossref_primary_10_1007_s10489_021_02444_w
crossref_primary_10_1080_15376494_2022_2160035
crossref_primary_10_1007_s10489_024_05651_3
crossref_primary_10_1515_mt_2024_0188
crossref_primary_10_32604_cmc_2023_044807
crossref_primary_10_1093_jcde_qwad096
crossref_primary_10_1016_j_eswa_2024_123585
crossref_primary_10_1002_rob_22069
crossref_primary_10_1080_01969722_2022_2148920
crossref_primary_10_3103_S1060992X23040033
crossref_primary_10_1109_ACCESS_2024_3466529
crossref_primary_10_1016_j_isatra_2024_02_023
crossref_primary_10_12677_CSA_2023_137134
crossref_primary_10_1007_s10489_022_03994_3
crossref_primary_10_1109_ACCESS_2022_3153493
crossref_primary_10_3390_buildings14123753
crossref_primary_10_1016_j_future_2022_05_022
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_32604_cmc_2024_050523
crossref_primary_10_1016_j_heliyon_2024_e26665
crossref_primary_10_1016_j_energy_2023_127526
crossref_primary_10_1109_TETCI_2023_3299298
crossref_primary_10_1080_01430750_2022_2029767
crossref_primary_10_1007_s10462_024_11072_y
crossref_primary_10_1080_13682199_2023_2206271
crossref_primary_10_1631_FITEE_2200237
crossref_primary_10_32604_cmc_2022_021517
crossref_primary_10_1007_s11042_023_15926_5
crossref_primary_10_1038_s41598_025_89840_1
crossref_primary_10_1007_s12652_022_03901_1
crossref_primary_10_1016_j_knosys_2024_112550
crossref_primary_10_1142_S0219622022500754
crossref_primary_10_1177_00202940241307629
crossref_primary_10_1007_s12652_022_04098_z
crossref_primary_10_1109_ACCESS_2023_3258187
crossref_primary_10_1016_j_enconman_2024_118974
crossref_primary_10_1016_j_eswa_2022_118460
crossref_primary_10_32604_cmc_2023_031519
crossref_primary_10_1016_j_knosys_2021_107682
crossref_primary_10_1007_s42044_025_00245_9
crossref_primary_10_1080_03772063_2024_2311744
crossref_primary_10_32604_csse_2023_025461
crossref_primary_10_3233_JIFS_236157
crossref_primary_10_1007_s11042_024_18150_x
crossref_primary_10_1002_cpe_6976
crossref_primary_10_1142_S0219622023500311
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_3390_a15060189
crossref_primary_10_1016_j_asoc_2022_108947
crossref_primary_10_1108_COMPEL_10_2024_0419
crossref_primary_10_3390_agriculture15060603
crossref_primary_10_3390_su14138223
crossref_primary_10_1007_s10586_024_04901_w
crossref_primary_10_1016_j_measurement_2022_112230
crossref_primary_10_3390_electronics10020174
crossref_primary_10_3390_math12030435
crossref_primary_10_1007_s00500_023_07930_6
crossref_primary_10_1007_s10489_022_03533_0
crossref_primary_10_1016_j_cma_2024_117411
crossref_primary_10_3390_a14040122
crossref_primary_10_1007_s10489_022_04201_z
crossref_primary_10_1016_j_rineng_2025_104215
crossref_primary_10_1007_s10044_022_01107_x
crossref_primary_10_1007_s00500_025_10412_6
crossref_primary_10_1007_s10462_022_10201_9
crossref_primary_10_1016_j_eswa_2022_117481
crossref_primary_10_1007_s40435_022_01057_6
crossref_primary_10_1007_s13042_024_02308_y
crossref_primary_10_3390_app132212106
crossref_primary_10_1038_s41598_024_56931_4
crossref_primary_10_1038_s41598_024_69544_8
crossref_primary_10_3390_math11102340
crossref_primary_10_1016_j_eswa_2024_124694
crossref_primary_10_1007_s42835_021_00862_x
crossref_primary_10_1016_j_knosys_2021_107467
crossref_primary_10_3390_math12182870
crossref_primary_10_1007_s42044_023_00160_x
crossref_primary_10_1007_s42235_022_00223_y
crossref_primary_10_1016_j_heliyon_2023_e16593
crossref_primary_10_1109_ACCESS_2024_3372851
crossref_primary_10_3390_math10162960
crossref_primary_10_1016_j_knosys_2022_108517
crossref_primary_10_1007_s10462_023_10498_0
crossref_primary_10_1016_j_bspc_2024_106875
crossref_primary_10_1007_s11063_023_11394_y
crossref_primary_10_1007_s11356_024_34369_5
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_1109_ACCESS_2024_3403089
crossref_primary_10_1016_j_suscom_2022_100731
crossref_primary_10_57197_JDR_2024_0033
crossref_primary_10_1016_j_engappai_2024_108891
crossref_primary_10_1007_s11277_022_10004_9
crossref_primary_10_1016_j_aej_2024_08_033
crossref_primary_10_1038_s41598_024_66285_6
crossref_primary_10_1109_ACCESS_2025_3537407
crossref_primary_10_1016_j_asoc_2022_108742
crossref_primary_10_1177_00375497221101058
crossref_primary_10_1002_jeq2_20609
crossref_primary_10_3390_f16030419
crossref_primary_10_1080_01969722_2022_2130248
crossref_primary_10_3390_app13169181
crossref_primary_10_1007_s11063_022_11068_1
crossref_primary_10_1007_s42835_022_01230_z
crossref_primary_10_1080_03772063_2023_2167739
crossref_primary_10_1016_j_knosys_2022_108743
crossref_primary_10_1155_2023_5567629
crossref_primary_10_1016_j_bspc_2023_105492
crossref_primary_10_1109_ACCESS_2023_3303961
crossref_primary_10_1038_s41598_022_18001_5
crossref_primary_10_1007_s11042_024_19927_w
crossref_primary_10_3390_axioms12080767
crossref_primary_10_3390_toxics11040394
crossref_primary_10_1007_s11277_024_11280_3
crossref_primary_10_3390_biomimetics9080474
crossref_primary_10_1080_0952813X_2022_2093409
crossref_primary_10_1007_s12652_022_03749_5
crossref_primary_10_1007_s11042_023_15146_x
crossref_primary_10_1007_s11760_022_02373_2
crossref_primary_10_1038_s41598_024_59960_1
crossref_primary_10_1007_s40815_021_01195_7
crossref_primary_10_32604_cmc_2022_019001
crossref_primary_10_3233_JIFS_237339
crossref_primary_10_3390_pr10061072
crossref_primary_10_1007_s00500_021_06229_8
crossref_primary_10_1016_j_aej_2024_08_021
crossref_primary_10_1016_j_knosys_2023_111081
crossref_primary_10_1080_0954898X_2025_2475070
crossref_primary_10_1016_j_egyr_2022_02_066
crossref_primary_10_3390_e23121637
crossref_primary_10_1016_j_cma_2023_116238
crossref_primary_10_1016_j_eswa_2024_123262
crossref_primary_10_1007_s11227_023_05260_w
crossref_primary_10_1016_j_egyr_2024_04_016
Cites_doi 10.1016/j.ympev.2010.11.005
10.1016/j.apacoust.2019.05.006
10.1038/scientificamerican0792-66
10.1023/A:1008202821328
10.1007/BF02023004
10.1016/j.cad.2010.12.015
10.1016/j.knosys.2017.12.037
10.1109/MCI.2006.329691
10.1007/s11277-019-06520-w
10.2139/ssrn.926132
10.2307/3001968
10.1016/j.knosys.2018.05.009
10.1016/j.cnsns.2012.05.010
10.24425/aoa.2019.126360
10.1023/A:1015059928466
10.1109/4235.585893
10.1525/aa.1996.98.1.02a00090
10.1016/j.tics.2005.03.005
10.1016/j.swevo.2011.02.002
10.1007/s10732-008-9080-4
10.1007/s00521-015-1920-1
10.1126/science.220.4598.671
10.1007/s00500-018-3282-y
10.1016/j.advengsoft.2015.01.010
10.1080/00207160108805080
10.1016/j.oceaneng.2019.04.013
10.1007/s13369-014-1156-x
10.1007/s00500-018-3424-2
10.1016/j.cub.2009.05.034
10.1016/j.apacoust.2018.03.012
10.1016/j.advengsoft.2005.04.005
10.1016/j.apacoust.2016.11.012
10.1155/2019/4182148
10.1007/s12110-002-1013-6
10.1007/s00521-014-1597-x
10.1016/j.ins.2009.03.004
10.1016/j.asoc.2017.06.044
10.1080/0305215X.2019.1565282
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Jul 1, 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Jul 1, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113338
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113338
S0957417420301639
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c258t-a62548709bef71db812e6e3a72caceb62a5dc038a69adc5ab05fc709bbd966ba3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sun Jul 13 04:28:39 EDT 2025
Sat Oct 25 05:11:52 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 23 02:49:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metaheuristic
Mathematical model
Chimp
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c258t-a62548709bef71db812e6e3a72caceb62a5dc038a69adc5ab05fc709bbd966ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2389-644X
PQID 2441311372
PQPubID 2045477
ParticipantIDs proquest_journals_2441311372
crossref_citationtrail_10_1016_j_eswa_2020_113338
crossref_primary_10_1016_j_eswa_2020_113338
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113338
PublicationCentury 2000
PublicationDate 2020-07-01
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Khishe, Mohammadi (bib0021) 2019; 181
Saremi, Mirjalili, Lewis (bib0043) 2014; 25
Wilcoxon (bib0048) 1945; 1
Wolpert, Macready (bib0049) 1997; 1
Mirjalili (bib0031) 2015; 83
Mirjalili, Lewis, Sadiq (bib0033) 2014; 39
Holland (bib0018) 1992; 267
Han, Lu, Hou, Qiao (bib0014) 2016; 99
Emary, Zawbaa, Grosan (bib0009) 2017; 99
Farisa, Mafarja, Heidari, Aljarah, Al-Zoubia, Mirjalili (bib0011) 2018; 154
Kirkpatrick, Gelatt, Vecchi (bib0026) 1983; 13
Heidari, Farisa, Aljarah, Mirjalili (bib0016) 2019; 23
Israfil, Zehr, Mootnick, Ruvolo, Steiper (bib0019) 2011; 58
Khishe, Saffari (bib0025) 2019; 108
Stanford (bib0044) 1996; 98
Yang, Deb (bib0053) 2009
Couzin, Laidre (bib0005) 2009; 19
Garcia, Molina, Lozano, Herrera (bib0013) 2009; 15
Heidari, Abbaspour (bib0015) 2017
Atashpaz-Gargari, Lucas (bib0001) 2007
Digalakis, Margaritis (bib0007) 2001; 77
Beyer, Schwefel (bib0003) 2002; 1
Pijarski, Kacejko (bib0038) 2019; 51
Derrac, García, Molina, Herrera (bib0006) 2011; 1
Sun, Chen, Xu, Tian (bib0046) 2019; 2019
Basturk, Karaboga (bib0002) 2006
Ravakhah, Khishe, Aghababaee, Hashemzadeh (bib0041) 2017; 17
Mafarja, Mirjalili (bib0030) 2019; 23
Gandomi, Alavi (bib0012) 2012; 17
Tomkins, Bergman (bib0047) 2012; 26
Mafarja, Aljarah, Heidari, Hammouri, Farisa, Al-Zoubia (bib0029) 2017; 145
Roth, Dicke (bib0042) 2005; 9
Rao, Savsani, Vakharia (bib0039) 2011; 43
Mishra, S. (2007). Some new test functions for global optimization and performance of repulsive particle swarm method. MPRA Article, no. 2718, posted 13, Available from
Yang (bib0052) 2010
Molga, M., & Smutnicki,.C. (.2005). Test functions for optimization needs. Available from
Rashedi, Nezamabadi-Pour, Saryazdi (bib0040) 2009; 13
Storn, Price (bib0045) 1997; 11
Kumar, Wu, Ali, Mallipeddi, Suganthan, Das (bib0027) 2019; 2019
Mosavi, Khishe, Parvizi, Naseri, Ayat (bib0036) 2019; 44
Erol, Eksin (bib0010) 2006; 37
Heidari, Pahlavani (bib0017) 2017; 60
Khishe, Mosavi, Kaveh (bib0023) 2017; 118
Khishe, Mosavi (bib0022) 2019; 154
Osman (bib0037) 1993; 41
Li, Engelbrecht, Epitropakis (bib0028) 2013
Mirjalili (bib0032) 2016; 27
Boesch (bib0004) 2002; 13
Dorigo, Birattari, Stutzle (bib0008) 2006; 1
Khishe, Mosavi, Moridi (bib0024) 2018; 137
Khishe (10.1016/j.eswa.2020.113338_bib0024) 2018; 137
Ravakhah (10.1016/j.eswa.2020.113338_bib0041) 2017; 17
Yang (10.1016/j.eswa.2020.113338_bib0052) 2010
Khishe (10.1016/j.eswa.2020.113338_bib0021) 2019; 181
Han (10.1016/j.eswa.2020.113338_bib0014) 2016; 99
Israfil (10.1016/j.eswa.2020.113338_bib0019) 2011; 58
Roth (10.1016/j.eswa.2020.113338_bib0042) 2005; 9
Wolpert (10.1016/j.eswa.2020.113338_bib0049) 1997; 1
Saremi (10.1016/j.eswa.2020.113338_bib0043) 2014; 25
Digalakis (10.1016/j.eswa.2020.113338_bib0007) 2001; 77
Khishe (10.1016/j.eswa.2020.113338_bib0023) 2017; 118
Atashpaz-Gargari (10.1016/j.eswa.2020.113338_bib0001) 2007
Mafarja (10.1016/j.eswa.2020.113338_bib0030) 2019; 23
Kumar (10.1016/j.eswa.2020.113338_bib0027) 2019; 2019
Rashedi (10.1016/j.eswa.2020.113338_bib0040) 2009; 13
Khishe (10.1016/j.eswa.2020.113338_bib0022) 2019; 154
Stanford (10.1016/j.eswa.2020.113338_bib0044) 1996; 98
Yang (10.1016/j.eswa.2020.113338_bib0053) 2009
Mirjalili (10.1016/j.eswa.2020.113338_bib0032) 2016; 27
Heidari (10.1016/j.eswa.2020.113338_bib0015) 2017
Basturk (10.1016/j.eswa.2020.113338_bib0002) 2006
Farisa (10.1016/j.eswa.2020.113338_bib0011) 2018; 154
Beyer (10.1016/j.eswa.2020.113338_bib0003) 2002; 1
Kirkpatrick (10.1016/j.eswa.2020.113338_bib0026) 1983; 13
Erol (10.1016/j.eswa.2020.113338_bib0010) 2006; 37
Khishe (10.1016/j.eswa.2020.113338_bib0025) 2019; 108
Derrac (10.1016/j.eswa.2020.113338_bib0006) 2011; 1
Emary (10.1016/j.eswa.2020.113338_bib0009) 2017; 99
Mirjalili (10.1016/j.eswa.2020.113338_bib0031) 2015; 83
Garcia (10.1016/j.eswa.2020.113338_bib0013) 2009; 15
Couzin (10.1016/j.eswa.2020.113338_bib0005) 2009; 19
Dorigo (10.1016/j.eswa.2020.113338_bib0008) 2006; 1
Heidari (10.1016/j.eswa.2020.113338_bib0017) 2017; 60
Sun (10.1016/j.eswa.2020.113338_bib0046) 2019; 2019
Heidari (10.1016/j.eswa.2020.113338_bib0016) 2019; 23
10.1016/j.eswa.2020.113338_bib0034
10.1016/j.eswa.2020.113338_bib0035
Wilcoxon (10.1016/j.eswa.2020.113338_bib0048) 1945; 1
Pijarski (10.1016/j.eswa.2020.113338_bib0038) 2019; 51
Rao (10.1016/j.eswa.2020.113338_bib0039) 2011; 43
Boesch (10.1016/j.eswa.2020.113338_bib0004) 2002; 13
Holland (10.1016/j.eswa.2020.113338_bib0018) 1992; 267
Osman (10.1016/j.eswa.2020.113338_bib0037) 1993; 41
Mafarja (10.1016/j.eswa.2020.113338_bib0029) 2017; 145
Gandomi (10.1016/j.eswa.2020.113338_bib0012) 2012; 17
Tomkins (10.1016/j.eswa.2020.113338_bib0047) 2012; 26
Mirjalili (10.1016/j.eswa.2020.113338_bib0033) 2014; 39
Li (10.1016/j.eswa.2020.113338_bib0028) 2013
Mosavi (10.1016/j.eswa.2020.113338_bib0036) 2019; 44
Storn (10.1016/j.eswa.2020.113338_bib0045) 1997; 11
References_xml – volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0049
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transaction on Evolutionary Computing
– volume: 98
  start-page: 96
  year: 1996
  end-page: 113
  ident: bib0044
  article-title: The hunting ecology of wild chimpanzees: Implications for the evolutionary ecology of pliocene hominids
  publication-title: American Anthropologist
– start-page: 693
  year: 2017
  end-page: 727
  ident: bib0015
  article-title: Enhanced chaotic grey wolf optimizer for real-world optimization problems: A comparative study
  publication-title: Handbook of Research on Emergent Applications of Optimization Algorithms
– volume: 2019
  start-page: 20
  year: 2019
  ident: bib0046
  article-title: Improved monarch butterfly optimization algorithm based on opposition-based learning and random local perturbation
  publication-title: Complexity
– start-page: 65
  year: 2010
  end-page: 74
  ident: bib0052
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Proceedings of the 2010 workshop on nature inspired cooperative strategies for optimization (NICSO 2010)
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: bib0031
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
– volume: 118
  start-page: 15
  year: 2017
  end-page: 29
  ident: bib0023
  article-title: Improved migration models of biogeography-based optimization for sonar data set classification using neural network
  publication-title: Applied Acoustic
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0045
  article-title: Differential evolution – A Simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– start-page: 12
  year: 2006
  end-page: 14
  ident: bib0002
  article-title: An artificial bee colony (ABC) algorithm for numeric function optimization
  publication-title: Proceedings of the 2006 IEEE Swarm Intelligence Symposium
– volume: 1
  start-page: 29
  year: 2006
  end-page: 39
  ident: bib0008
  article-title: Ant colony optimization
  publication-title: IEEE Computational Intelligence Magazine
– volume: 15
  start-page: 617
  year: 2009
  end-page: 644
  ident: bib0013
  article-title: A study on the use of non-parametric tests for analysing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization
  publication-title: Journal of Heuristics
– volume: 17
  start-page: 58
  year: 2017
  end-page: 65
  ident: bib0041
  article-title: Sonar false alarm rate suppression using classification methods based on interior search algorithm
  publication-title: International Journal of Computer Science and Network Security
– volume: 181
  start-page: 98
  year: 2019
  end-page: 108
  ident: bib0021
  article-title: Sonar target classification using multi-layer perceptron trained by salp swarm algorithm
  publication-title: Ocean Engineering
– volume: 44
  start-page: 137
  year: 2019
  end-page: 151
  ident: bib0036
  article-title: Training multi-layer perceptron utilizing adaptive best-mass gravitational search algorithm to classify sonar dataset
  publication-title: Archive of Acoustics
– volume: 37
  start-page: 106
  year: 2006
  end-page: 111
  ident: bib0010
  article-title: A new optimization method: Big bang-big crunch
  publication-title: Advances in Engineering Software
– volume: 17
  start-page: 4831
  year: 2012
  end-page: 4845
  ident: bib0012
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib0027
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm and Evolutionary Computation
– volume: 154
  start-page: 176
  year: 2019
  end-page: 192
  ident: bib0022
  article-title: Improved whale trainer for sonar datasets classification using neural network
  publication-title: Applied Acoustic
– start-page: 210
  year: 2009
  end-page: 214
  ident: bib0053
  article-title: Cuckoo search via lévy flights
  publication-title: Proceedings of the 2009 IEEE world congress on nature & biologically inspired computing
– volume: 39
  start-page: 4683
  year: 2014
  end-page: 4697
  ident: bib0033
  article-title: Autonomous particles groups for particle swarm optimization
  publication-title: Arabian Journal for Science and Engineering
– year: 2013
  ident: bib0028
  article-title: Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization
  publication-title: Evolutionary Computation and Machine Learning Group
– volume: 23
  start-page: 1432
  year: 2019
  end-page: 7643
  ident: bib0016
  article-title: An efficient hybrid multilayer perceptron neural network with grasshopper optimization
  publication-title: Soft Computing
– volume: 77
  start-page: 481
  year: 2001
  end-page: 506
  ident: bib0007
  article-title: On benchmarking functions for genetic algorithms
  publication-title: International Journal of Computer Mathematics
– reference: Mishra, S. (2007). Some new test functions for global optimization and performance of repulsive particle swarm method. MPRA Article, no. 2718, posted 13, Available from:
– volume: 19
  start-page: 633
  year: 2009
  end-page: 635
  ident: bib0005
  article-title: Fission-fusion populations
  publication-title: Current Biology
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: bib0032
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Application
– volume: 99
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0009
  article-title: Experienced grey wolf optimization through reinforcement learning and neural networks
  publication-title: IEEE Transaction on Neural Network Learning System
– volume: 137
  start-page: 121
  year: 2018
  end-page: 139
  ident: bib0024
  article-title: Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation
  publication-title: Applied Acoustics
– volume: 13
  start-page: 671
  year: 1983
  end-page: 680
  ident: bib0026
  article-title: Optimization by simulated annealing
  publication-title: Science (New York, N.Y.) (New York, N.Y.)
– volume: 58
  start-page: 447
  year: 2011
  end-page: 455
  ident: bib0019
  article-title: Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid miocene radiation or sudden vicariance event
  publication-title: Molecular Phylogenetics and Evolution
– volume: 145
  start-page: 25
  year: 2017
  end-page: 45
  ident: bib0029
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowledge-Based Systems
– volume: 41
  start-page: 421
  year: 1993
  end-page: 451
  ident: bib0037
  article-title: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem
  publication-title: Annals of Operations Research
– reference: Molga, M., & Smutnicki,.C. (.2005). Test functions for optimization needs. Available from:
– volume: 9
  start-page: 250
  year: 2005
  end-page: 257
  ident: bib0042
  article-title: Evolution of the brain and intelligence
  publication-title: Trends in Cognitive Sciences
– volume: 43
  start-page: 227
  year: 2011
  end-page: 330
  ident: bib0039
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
– volume: 99
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib0014
  article-title: An adaptive-pso-based self-organizing rbf neural network
  publication-title: IEEE Transaction on Neural Network Learning System
– volume: 13
  start-page: 27
  year: 2002
  end-page: 46
  ident: bib0004
  article-title: Cooperative hunting roles among taï chimpanzees
  publication-title: Human Nature
– volume: 267
  start-page: 66
  year: 1992
  end-page: 72
  ident: bib0018
  article-title: Genetic algorithms
  publication-title: Scientific America
– start-page: 4661
  year: 2007
  end-page: 4667
  ident: bib0001
  article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
  publication-title: Proceedings of the 2007 IEEE congress on evolutionary computation
– volume: 60
  start-page: 115
  year: 2017
  end-page: 134
  ident: bib0017
  article-title: An efficient modified grey wolf optimizer with levy ´ flight for optimization tasks
  publication-title: Applied Soft Computing
– volume: 13
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: bib0040
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Science
– volume: 51
  start-page: 2049
  year: 2019
  end-page: 2068
  ident: bib0038
  article-title: A new metaheuristic optimization method: The algorithm of the innovative gunner (AIG)
  publication-title: Engineering Optimization
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: bib0011
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowledge-Based Systems
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0006
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 23
  start-page: 6249
  year: 2019
  end-page: 6265
  ident: bib0030
  article-title: Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection
  publication-title: Soft Computing
– volume: 108
  start-page: 2241
  year: 2019
  end-page: 2260
  ident: bib0025
  article-title: Classification of sonar targets using an MLP neural network trained by dragonfly algorithm
  publication-title: Wireless Personal System
– volume: 26
  start-page: 94
  year: 2012
  end-page: 100
  ident: bib0047
  article-title: Genomic monkey business-estimates of nearly identical human-chimp dna similarity
  publication-title: Journal of Creation
– volume: 25
  start-page: 1077
  year: 2014
  end-page: 1097
  ident: bib0043
  article-title: Biogeography-based optimization with chaos
  publication-title: Neural Computing and Applications
– volume: 1
  start-page: 3
  year: 2002
  end-page: 52
  ident: bib0003
  article-title: Evolution strategies—A comprehensive introduction
  publication-title: Natural Computing
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib0048
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bulletin
– year: 2013
  ident: 10.1016/j.eswa.2020.113338_bib0028
  article-title: Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization
– volume: 58
  start-page: 447
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2020.113338_bib0019
  article-title: Unresolved molecular phylogenies of gibbons and siamangs (Family: Hylobatidae) based on mitochondrial, Y-linked, and X-linked loci indicate a rapid miocene radiation or sudden vicariance event
  publication-title: Molecular Phylogenetics and Evolution
  doi: 10.1016/j.ympev.2010.11.005
– volume: 154
  start-page: 176
  year: 2019
  ident: 10.1016/j.eswa.2020.113338_bib0022
  article-title: Improved whale trainer for sonar datasets classification using neural network
  publication-title: Applied Acoustic
  doi: 10.1016/j.apacoust.2019.05.006
– volume: 267
  start-page: 66
  year: 1992
  ident: 10.1016/j.eswa.2020.113338_bib0018
  article-title: Genetic algorithms
  publication-title: Scientific America
  doi: 10.1038/scientificamerican0792-66
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.eswa.2020.113338_bib0045
  article-title: Differential evolution – A Simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 41
  start-page: 421
  issue: 4
  year: 1993
  ident: 10.1016/j.eswa.2020.113338_bib0037
  article-title: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02023004
– volume: 43
  start-page: 227
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2020.113338_bib0039
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2010.12.015
– start-page: 12
  year: 2006
  ident: 10.1016/j.eswa.2020.113338_bib0002
  article-title: An artificial bee colony (ABC) algorithm for numeric function optimization
– volume: 145
  start-page: 25
  year: 2017
  ident: 10.1016/j.eswa.2020.113338_bib0029
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.12.037
– volume: 1
  start-page: 29
  issue: 4
  year: 2006
  ident: 10.1016/j.eswa.2020.113338_bib0008
  article-title: Ant colony optimization
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2006.329691
– volume: 108
  start-page: 2241
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2020.113338_bib0025
  article-title: Classification of sonar targets using an MLP neural network trained by dragonfly algorithm
  publication-title: Wireless Personal System
  doi: 10.1007/s11277-019-06520-w
– ident: 10.1016/j.eswa.2020.113338_bib0034
  doi: 10.2139/ssrn.926132
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.eswa.2020.113338_bib0048
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bulletin
  doi: 10.2307/3001968
– volume: 154
  start-page: 43
  year: 2018
  ident: 10.1016/j.eswa.2020.113338_bib0011
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.05.009
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 10.1016/j.eswa.2020.113338_bib0012
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 44
  start-page: 137
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.113338_bib0036
  article-title: Training multi-layer perceptron utilizing adaptive best-mass gravitational search algorithm to classify sonar dataset
  publication-title: Archive of Acoustics
  doi: 10.24425/aoa.2019.126360
– volume: 1
  start-page: 3
  issue: 1
  year: 2002
  ident: 10.1016/j.eswa.2020.113338_bib0003
  article-title: Evolution strategies—A comprehensive introduction
  publication-title: Natural Computing
  doi: 10.1023/A:1015059928466
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.eswa.2020.113338_bib0049
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transaction on Evolutionary Computing
  doi: 10.1109/4235.585893
– volume: 17
  start-page: 58
  issue: 7
  year: 2017
  ident: 10.1016/j.eswa.2020.113338_bib0041
  article-title: Sonar false alarm rate suppression using classification methods based on interior search algorithm
  publication-title: International Journal of Computer Science and Network Security
– volume: 98
  start-page: 96
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2020.113338_bib0044
  article-title: The hunting ecology of wild chimpanzees: Implications for the evolutionary ecology of pliocene hominids
  publication-title: American Anthropologist
  doi: 10.1525/aa.1996.98.1.02a00090
– start-page: 693
  year: 2017
  ident: 10.1016/j.eswa.2020.113338_bib0015
  article-title: Enhanced chaotic grey wolf optimizer for real-world optimization problems: A comparative study
  publication-title: Handbook of Research on Emergent Applications of Optimization Algorithms
– volume: 9
  start-page: 250
  issue: 5
  year: 2005
  ident: 10.1016/j.eswa.2020.113338_bib0042
  article-title: Evolution of the brain and intelligence
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2005.03.005
– start-page: 210
  year: 2009
  ident: 10.1016/j.eswa.2020.113338_bib0053
  article-title: Cuckoo search via lévy flights
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2020.113338_bib0006
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– start-page: 4661
  year: 2007
  ident: 10.1016/j.eswa.2020.113338_bib0001
  article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition
– volume: 15
  start-page: 617
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2020.113338_bib0013
  article-title: A study on the use of non-parametric tests for analysing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-008-9080-4
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2020.113338_bib0032
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Application
  doi: 10.1007/s00521-015-1920-1
– volume: 13
  start-page: 671
  issue: 220
  year: 1983
  ident: 10.1016/j.eswa.2020.113338_bib0026
  article-title: Optimization by simulated annealing
  publication-title: Science (New York, N.Y.) (New York, N.Y.)
  doi: 10.1126/science.220.4598.671
– volume: 23
  start-page: 6249
  year: 2019
  ident: 10.1016/j.eswa.2020.113338_bib0030
  article-title: Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3282-y
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.eswa.2020.113338_bib0031
  article-title: The ant lion optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 77
  start-page: 481
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2020.113338_bib0007
  article-title: On benchmarking functions for genetic algorithms
  publication-title: International Journal of Computer Mathematics
  doi: 10.1080/00207160108805080
– volume: 181
  start-page: 98
  year: 2019
  ident: 10.1016/j.eswa.2020.113338_bib0021
  article-title: Sonar target classification using multi-layer perceptron trained by salp swarm algorithm
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2019.04.013
– volume: 39
  start-page: 4683
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2020.113338_bib0033
  article-title: Autonomous particles groups for particle swarm optimization
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-014-1156-x
– volume: 23
  start-page: 1432
  year: 2019
  ident: 10.1016/j.eswa.2020.113338_bib0016
  article-title: An efficient hybrid multilayer perceptron neural network with grasshopper optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3424-2
– volume: 19
  start-page: 633
  issue: 15
  year: 2009
  ident: 10.1016/j.eswa.2020.113338_bib0005
  article-title: Fission-fusion populations
  publication-title: Current Biology
  doi: 10.1016/j.cub.2009.05.034
– volume: 137
  start-page: 121
  year: 2018
  ident: 10.1016/j.eswa.2020.113338_bib0024
  article-title: Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2018.03.012
– start-page: 65
  year: 2010
  ident: 10.1016/j.eswa.2020.113338_bib0052
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 37
  start-page: 106
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2020.113338_bib0010
  article-title: A new optimization method: Big bang-big crunch
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 118
  start-page: 15
  year: 2017
  ident: 10.1016/j.eswa.2020.113338_bib0023
  article-title: Improved migration models of biogeography-based optimization for sonar data set classification using neural network
  publication-title: Applied Acoustic
  doi: 10.1016/j.apacoust.2016.11.012
– volume: 2019
  start-page: 20
  year: 2019
  ident: 10.1016/j.eswa.2020.113338_bib0046
  article-title: Improved monarch butterfly optimization algorithm based on opposition-based learning and random local perturbation
  publication-title: Complexity
  doi: 10.1155/2019/4182148
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.113338_bib0027
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm and Evolutionary Computation
– volume: 13
  start-page: 27
  year: 2002
  ident: 10.1016/j.eswa.2020.113338_bib0004
  article-title: Cooperative hunting roles among taï chimpanzees
  publication-title: Human Nature
  doi: 10.1007/s12110-002-1013-6
– volume: 99
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2020.113338_bib0014
  article-title: An adaptive-pso-based self-organizing rbf neural network
  publication-title: IEEE Transaction on Neural Network Learning System
– volume: 26
  start-page: 94
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2020.113338_bib0047
  article-title: Genomic monkey business-estimates of nearly identical human-chimp dna similarity re-evaluated using omitted data
  publication-title: Journal of Creation
– volume: 99
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2020.113338_bib0009
  article-title: Experienced grey wolf optimization through reinforcement learning and neural networks
  publication-title: IEEE Transaction on Neural Network Learning System
– volume: 25
  start-page: 1077
  issue: 5
  year: 2014
  ident: 10.1016/j.eswa.2020.113338_bib0043
  article-title: Biogeography-based optimization with chaos
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-014-1597-x
– ident: 10.1016/j.eswa.2020.113338_bib0035
– volume: 13
  start-page: 2232
  issue: 179
  year: 2009
  ident: 10.1016/j.eswa.2020.113338_bib0040
  article-title: GSA: A gravitational search algorithm
  publication-title: Information Science
  doi: 10.1016/j.ins.2009.03.004
– volume: 60
  start-page: 115
  year: 2017
  ident: 10.1016/j.eswa.2020.113338_bib0017
  article-title: An efficient modified grey wolf optimizer with levy ´ flight for optimization tasks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.06.044
– volume: 51
  start-page: 2049
  issue: 12
  year: 2019
  ident: 10.1016/j.eswa.2020.113338_bib0038
  article-title: A new metaheuristic optimization method: The algorithm of the innovative gunner (AIG)
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2019.1565282
SSID ssj0017007
Score 2.722839
Snippet •A novel optimizer called Chimp Optimization Algorithm (ChOA) is proposed.•ChOA is inspired by individual intelligence and sexual motivation of chimps.•ChOA...
This paper proposes a novel metaheuristic algorithm called Chimp Optimization Algorithm (ChOA) inspired by the individual intelligence and sexual motivation of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113338
SubjectTerms Algorithms
Benchmarks
Chimp
Computer simulation
Convergence
Heuristic methods
Hunting
Intelligence
Mathematical analysis
Mathematical model
Metaheuristic
Optimization
Optimization algorithms
Performance evaluation
Predators
Statistical analysis
Statistical tests
Title Chimp optimization algorithm
URI https://dx.doi.org/10.1016/j.eswa.2020.113338
https://www.proquest.com/docview/2441311372
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLVZrycGbxKZJNpscS7FUhV600Nuyu9nYSF-0EW_-dmeSTUERDx4TdpfkS-YF33wDcIM5SCY5GpJMUg8LlCR14yxgbi_1JemPRVKVbItxNJqEj1M2bcCg7oUhWqX1_ZVPL721vdO1aHbXed59xuQAwyGWdpTVY6ClDvaQ0xSDu88dzYPk53ilt8ddWm0bZyqOl9l-kPaQX442CahH5ffg9MNNl7FneAQHNml0-tVzHUPDLE_gsB7I4Fj7PIX2YJYv1s4K3cDC9lc6cv662uTFbHEGk-H9y2Dk2vEHrvZZXLgSSxMsJ7xEmYz3UoWh2EQmkNzXUhsV-ZKl2gtiGSUy1QxBZZmm5SrFGkbJ4Byay9XSXICTKGYUnpUlOgtZnCmVeJ6ONPcDHXqhakGvfm-hrTY4jaiYi5oE9iYIK0FYiQqrFtzu9qwrZYw_V7MaTvHt-wp03X_ua9fYC2tdW4EpCakEBdy__OexV7BPVxXvtg3NYvNurjG7KFSn_H06sNd_eBqNvwC5wszU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG1EokIENhaZOHDcjqqgKlC60UjfLdhwa1JfaIDZ-O-fEqQRCHVgT20q-5B6fdPcdwA3mIIlgaEgiij0kKFHsthKfus2YCKM_FgqZV1v0w-4weBrRUQXaZS-MKau0vr_w6bm3tlcaFs3GIk0br5gcYDhEameyegy0W7AdUMIMA7v7Wtd5GP05VgjuMdcst50zRZGXXn0a8SGSzzbxTZPK39Hpl5_Og0_nAPZs1ujcFw92CBU9O4L9ciKDYw30GOrtcTpdOHP0A1PbYOmIydt8mWbj6QkMOw-Ddte18w9cRWgrcwVyE-QTXiR1wpqxxFisQ-0LRpRQWoZE0Fh5fkuEkYgVRVRposxyGSOJkcI_hepsPtNn4ESSaolnJZFKAtpKpIw8T4WKEV8FXiBr0CzfmysrDm5mVEx4WQX2zg1W3GDFC6xqcLvesyikMTaupiWc_McH5ui7N-6rl9hza14rjjmJkQnyGTn_57HXsNMdvPR477H_fAG75k5RhFuHarb80JeYamTyKv-VvgGqvs5p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chimp+optimization+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Khishe%2C+M.&rft.au=Mosavi%2C+M.R.&rft.date=2020-07-01&rft.issn=0957-4174&rft.volume=149&rft.spage=113338&rft_id=info:doi/10.1016%2Fj.eswa.2020.113338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_113338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon