Application of a hybrid PSO-GA optimization algorithm in determining pyrolysis kinetics of biomass
•A new hybrid PSO-GA algorithm is proposed to gain advantages of PSO and GA.•Genetic evolution is incorporated into PSO to increase its population diversity.•TGA results of two pseudo solids and beech wood are analyzed.•Convergency efficiency and accuracy are both improved in PSO-GA.•Compensation ef...
        Saved in:
      
    
          | Published in | Fuel (Guildford) Vol. 323; p. 124344 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Kidlington
          Elsevier Ltd
    
        01.09.2022
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0016-2361 1873-7153  | 
| DOI | 10.1016/j.fuel.2022.124344 | 
Cover
| Abstract | •A new hybrid PSO-GA algorithm is proposed to gain advantages of PSO and GA.•Genetic evolution is incorporated into PSO to increase its population diversity.•TGA results of two pseudo solids and beech wood are analyzed.•Convergency efficiency and accuracy are both improved in PSO-GA.•Compensation effect is found in parameterizing pyrolysis model of wood.
A hybrid optimization algorithm, combining both Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), is proposed to gain the favorable features of each individual algorithm when determining the pyrolysis kinetics of biomass. High convergence efficiency and the capability of avoiding being trapped in local optimal solution are primarily associated with PSO and GA, respectively. Gene operations in GA, including selection, crossover and mutation, are partially incorporated into PSO to increase the population diversity. Pyrolysis of beech wood was experimentally studied at three heating rates, and a numerical solver was established to simulate the pyrolysis details. In order to demonstrate the improved performance of PSO-GA, two pyrolysis models with given reaction schemes and kinetic parameters were adopted to create the acritical thermogravimetric analysis (TGA) curves. Then the kinetics was estimated using PSO-GA and individual GA and PSO. Subsequently, the experimental data were analyzed with the same manner. The results show that PSO-GA has the highest possibility of obtaining desired outcomes followed by PSO and then GA. With fixed population size, PSO-GA converges to a lower fitness function value, corresponding to higher accuracy. The attained kinetics of wood falls into the reported ranges in the literature. In some scenarios, the optimized results of hemicellulose and lignin contradict with the existing conclusions even though the global curves match the experimental measurements well. This implies the general concept of the pyrolysis process should also be given adequate consideration to avoid potential compensation effect when encountering complex issues. | 
    
|---|---|
| AbstractList | A hybrid optimization algorithm, combining both Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), is proposed to gain the favorable features of each individual algorithm when determining the pyrolysis kinetics of biomass. High convergence efficiency and the capability of avoiding being trapped in local optimal solution are primarily associated with PSO and GA, respectively. Gene operations in GA, including selection, crossover and mutation, are partially incorporated into PSO to increase the population diversity. Pyrolysis of beech wood was experimentally studied at three heating rates, and a numerical solver was established to simulate the pyrolysis details. In order to demonstrate the improved performance of PSO-GA, two pyrolysis models with given reaction schemes and kinetic parameters were adopted to create the acritical thermogravimetric analysis (TGA) curves. Then the kinetics was estimated using PSO-GA and individual GA and PSO. Subsequently, the experimental data were analyzed with the same manner. The results show that PSO-GA has the highest possibility of obtaining desired outcomes followed by PSO and then GA. With fixed population size, PSO-GA converges to a lower fitness function value, corresponding to higher accuracy. The attained kinetics of wood falls into the reported ranges in the literature. In some scenarios, the optimized results of hemicellulose and lignin contradict with the existing conclusions even though the global curves match the experimental measurements well. This implies the general concept of the pyrolysis process should also be given adequate consideration to avoid potential compensation effect when encountering complex issues. •A new hybrid PSO-GA algorithm is proposed to gain advantages of PSO and GA.•Genetic evolution is incorporated into PSO to increase its population diversity.•TGA results of two pseudo solids and beech wood are analyzed.•Convergency efficiency and accuracy are both improved in PSO-GA.•Compensation effect is found in parameterizing pyrolysis model of wood. A hybrid optimization algorithm, combining both Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), is proposed to gain the favorable features of each individual algorithm when determining the pyrolysis kinetics of biomass. High convergence efficiency and the capability of avoiding being trapped in local optimal solution are primarily associated with PSO and GA, respectively. Gene operations in GA, including selection, crossover and mutation, are partially incorporated into PSO to increase the population diversity. Pyrolysis of beech wood was experimentally studied at three heating rates, and a numerical solver was established to simulate the pyrolysis details. In order to demonstrate the improved performance of PSO-GA, two pyrolysis models with given reaction schemes and kinetic parameters were adopted to create the acritical thermogravimetric analysis (TGA) curves. Then the kinetics was estimated using PSO-GA and individual GA and PSO. Subsequently, the experimental data were analyzed with the same manner. The results show that PSO-GA has the highest possibility of obtaining desired outcomes followed by PSO and then GA. With fixed population size, PSO-GA converges to a lower fitness function value, corresponding to higher accuracy. The attained kinetics of wood falls into the reported ranges in the literature. In some scenarios, the optimized results of hemicellulose and lignin contradict with the existing conclusions even though the global curves match the experimental measurements well. This implies the general concept of the pyrolysis process should also be given adequate consideration to avoid potential compensation effect when encountering complex issues.  | 
    
| ArticleNumber | 124344 | 
    
| Author | Shi, Leilei Gong, Junhui Zhai, Chunjie  | 
    
| Author_xml | – sequence: 1 givenname: Leilei surname: Shi fullname: Shi, Leilei organization: College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China – sequence: 2 givenname: Junhui surname: Gong fullname: Gong, Junhui email: gjh9896@njtech.edu.cn organization: College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China – sequence: 3 givenname: Chunjie surname: Zhai fullname: Zhai, Chunjie organization: Department of Information Technology, Nanjing Forest Police College, Nanjing, Jiangsu 210023, China  | 
    
| BookMark | eNp9kMFq3DAQhkVJoZu0L9CTIGdvJdmyZMhlCcm2EEih7VnI8jiZrS05kjawefradU455DSH-b9_mO-cnPnggZCvnG054_W3w7Y_wrAVTIgtF1VZVR_IhmtVForL8oxs2JwqRFnzT-Q8pQNjTGlZbUi7m6YBnc0YPA09tfTx1Ebs6M9f98V-R8OUccSXdW-HhxAxP44UPe0gQxzRo3-g0ymG4ZQw0b_oIaNLS1eLYbQpfSYfezsk-PI6L8if25vf19-Lu_v9j-vdXeGE1LloelY6KKGqawmqVLxqVG-dtVLpvpOSi1o1TeckOK5b2bYVr5WS0NYt07q35QW5XHunGJ6OkLI5hGP080kjat2IRZSeU2JNuRhSitCbKeJo48lwZpaIOZjFpVlcmtXlDOk3kMP830mOFof30asVhfn1Z4RokkPwDjqM4LLpAr6H_wODAZJO | 
    
| CitedBy_id | crossref_primary_10_1016_j_jaap_2025_106988 crossref_primary_10_1016_j_pnucene_2023_105040 crossref_primary_10_1016_j_renene_2024_120267 crossref_primary_10_1016_j_fuel_2022_127123 crossref_primary_10_1007_s11664_024_10945_w crossref_primary_10_3390_app14166862 crossref_primary_10_1002_qre_3515 crossref_primary_10_1080_23302674_2024_2401033 crossref_primary_10_1007_s11696_022_02518_0 crossref_primary_10_1002_mop_33994 crossref_primary_10_1016_j_rico_2022_100187 crossref_primary_10_1016_j_heliyon_2023_e20602 crossref_primary_10_1016_j_fuel_2024_132469 crossref_primary_10_1016_j_egyr_2024_06_042 crossref_primary_10_1007_s00170_024_13790_7 crossref_primary_10_1038_s41598_024_61306_w crossref_primary_10_1016_j_jmapro_2025_02_049 crossref_primary_10_1109_ACCESS_2023_3287859 crossref_primary_10_3390_s24103097 crossref_primary_10_48130_EMST_2023_0009 crossref_primary_10_1109_TGRS_2023_3317845 crossref_primary_10_3390_app14125211 crossref_primary_10_1080_00102202_2024_2329303 crossref_primary_10_1021_acs_jctc_3c00081 crossref_primary_10_1016_j_matpr_2023_06_226 crossref_primary_10_7717_peerj_cs_2253 crossref_primary_10_1007_s10694_022_01339_7 crossref_primary_10_1016_j_csite_2024_105457 crossref_primary_10_1016_j_heliyon_2024_e38555 crossref_primary_10_1155_er_6184508 crossref_primary_10_1016_j_firesaf_2023_103917 crossref_primary_10_1016_j_fuel_2024_133474  | 
    
| Cites_doi | 10.1021/ef501380c 10.2478/s11696-009-0109-4 10.1021/ef0580117 10.1007/BF02055937 10.1016/j.fuel.2014.01.014 10.1016/j.firesaf.2005.12.004 10.1016/j.enconman.2016.04.104 10.1016/j.combustflame.2006.04.013 10.1016/j.biortech.2016.05.091 10.1021/ef700267m 10.1016/j.energy.2019.04.030 10.1016/j.tca.2011.03.034 10.1016/j.compositesb.2020.108055 10.1016/j.firesaf.2017.03.082 10.1016/j.tca.2014.05.036 10.1016/0960-8524(92)90025-S 10.1007/s10973-017-6212-9 10.1016/j.combustflame.2013.06.001 10.1177/0734904120982887 10.1016/j.energy.2015.04.089 10.1016/j.pecs.2006.12.001 10.1016/j.fuproc.2009.01.010 10.1016/j.biortech.2015.10.082 10.1080/03052150601131000 10.1002/kin.20176 10.1016/j.ins.2012.01.005 10.1007/s10086-005-0763-2 10.1016/j.biortech.2010.06.110 10.1016/j.combustflame.2019.01.003 10.1016/j.biortech.2015.05.062 10.1016/j.enconman.2016.11.016 10.1016/j.conbuildmat.2017.11.096 10.1016/j.fuproc.2015.05.001 10.1016/j.applthermaleng.2018.10.070 10.1016/j.tca.2020.178597 10.1021/ef1001265 10.1016/j.enconman.2017.05.020 10.1016/j.solener.2019.04.017 10.1016/j.ijleo.2020.164978 10.1016/j.energy.2020.117010 10.1016/j.biortech.2018.05.092 10.1007/s10694-019-00922-9 10.1016/j.enconman.2015.03.106 10.1016/j.biortech.2019.122079 10.1016/j.biortech.2014.01.040 10.1016/j.polymdegradstab.2016.05.014 10.1016/j.firesaf.2020.103083 10.1016/j.energy.2019.116414 10.1016/j.tca.2020.178708 10.1016/j.fuel.2018.05.140 10.1016/j.fuel.2019.04.169 10.1016/j.firesaf.2009.03.011 10.1016/j.proci.2018.06.080 10.1016/j.proci.2018.05.073 10.1016/0040-6031(91)80005-4 10.1021/ie0201157 10.1016/j.energy.2019.05.021 10.1016/j.applthermaleng.2018.03.045  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Sep 1, 2022  | 
    
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Sep 1, 2022  | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64  | 
    
| DOI | 10.1016/j.fuel.2022.124344 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts  | 
    
| DatabaseTitleList | Materials Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-7153 | 
    
| ExternalDocumentID | 10_1016_j_fuel_2022_124344 S0016236122011966  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AATTM AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64  | 
    
| ID | FETCH-LOGICAL-c258t-9f03ce3e4665e7371497facaa578fd55126799dc5ec18b5bb416775eb6b088fa3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0016-2361 | 
    
| IngestDate | Wed Aug 13 02:39:05 EDT 2025 Thu Apr 24 23:13:10 EDT 2025 Wed Oct 01 04:04:18 EDT 2025 Sat Oct 19 15:54:01 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Pyrolysis Genetic algorithm (GA) PSO-GA Kinetics Particle Swarm Optimization (PSO) Beech wood  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c258t-9f03ce3e4665e7371497facaa578fd55126799dc5ec18b5bb416775eb6b088fa3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2689210168 | 
    
| PQPubID | 2045474 | 
    
| ParticipantIDs | proquest_journals_2689210168 crossref_primary_10_1016_j_fuel_2022_124344 crossref_citationtrail_10_1016_j_fuel_2022_124344 elsevier_sciencedirect_doi_10_1016_j_fuel_2022_124344  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-09-01 2022-09-00 20220901  | 
    
| PublicationDateYYYYMMDD | 2022-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Kidlington | 
    
| PublicationPlace_xml | – name: Kidlington | 
    
| PublicationTitle | Fuel (Guildford) | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Liu, Lin (b0245) 2007; 39 Xu, Chai, Dong, Rahman, Yu, Cai (b0320) 2018; 265 Ding, Ezekoye, Lu, Wang, Zhou (b0285) 2017; 132 Cueff, Mindeguia, Dréan, Breysse, Auguin (b0035) 2018; 160 Chen, Xu, Zhang, Lo, Lu (b0180) 2018; 136 Ceylan, Topçu (b0025) 2014; 156 Anca-Couce, Berger, Zobel (b0295) 2014; 123 Sun, Wu, Palade, Fang, Lai, Xu (b0190) 2012; 193 Ira, Hasalová, Šálek, Jahoda, Vystrčil (b0100) 2020; 56 Papadikis, Gu, Bridgwater, Gerhauser (b0030) 2009; 90 Ding, McKinnon, Stoliarov, Fontaine, Bourbigot (b0075) 2016; 129 Vyazovkin, Chrissafis, Di Lorenzo, Koga, Pijolat, Roduit (b0050) 2014; 590 Buyukada (b0250) 2016; 216 Ferreiro, Rabaçal, Costa (b0110) 2016; 125 McKinnon, Stoliarov, Witkowski (b0060) 2013; 160 Richter, Rein (b0150) 2017; 91 Jamali, Rasekh, Jamadi, Gandomkar, Makiabadi (b0205) 2019; 147 Vlker, Rieckmann (b0300) 2001 Vyazovkin, Burnham, Favergeon, Koga, Moukhina, Perez-Maqueda, Sbirrazzuoli (b0055) 2020; 689 Liu, Dai, Zhao, Zhang, Shang, Li, Zheng, Lan, Wang (b0210) 2020; 219 Fiola, Chaudhari, Stoliarov (b0140) 2021; 120 Song (b0155) 2011 Di Blasi (b0020) 2008; 34 Aghbashlo, Tabatabaei, Nadian, Davoodnia, Soltanian (b0165) 2019; 253 Gong, Zhu, Zhou, Stoliarov (b0145) 2021; 39 Maschio, Koufopanos, Lucchesi (b0015) 1992; 42 Hillier, Bezzant, Fletcher (b0200) 2010; 24 Soria-Verdugo, Morgano, Matzing, Goos, Leibold, Merz, Riedel, Stapf (b0040) 2020; 212 Ding, Kwon, Stoliarov, Kraemer (b0065) 2019; 37 Ding, Zhang, Yu, Lu (b0170) 2019; 176 Koga, Tanaka (b0305) 1991; 37 Yang, Yan, Chen, Zheng, Lee, Liang (b0260) 2006; 20 Kim, Jung, Kim (b0265) 2010; 101 Lautenberger, Rein, Fernandez-Pello (b0240) 2006; 41 Liu, Zhai, Fu, Wang, Yang (b0220) 2019; 184 Jalalifar, Masoudi, Abbassi, Garaniya, Ghiji, Salehi (b0195) 2020; 191 Rein, Lautenberger, Fernandezpello, Torero, Urban (b0230) 2006; 146 Galwey, Mortimer (b0315) 2006; 38 Lautenberger, Fernandez-Pello (b0080) 2009; 44 Chen, Hu, Zhu, Guo, Liu, Hu (b0280) 2015; 192 Ding, Wang, Lu (b0095) 2015; 98 Sun, Ding, Stoliarov, Sun, Fontaine, Bourbigot (b0105) 2020; 194 Ding, Huang, Li, Du, Lu, Zhang (b0125) 2020; 195 Gong, Gu, Zhai, Wang (b0185) 2020; 690 Shooli, Vosoughi, Banan (b0225) 2019; 85 Gašparovič, Koreňová, Jelemenský (b0290) 2010; 64 Richter, Atreya, Kotsovinos, Rein (b0085) 2019; 37 Xu, Jiang, Wang (b0160) 2017; 146 Witkowski, Stec, Hull (b0255) 2016 Garg (b0215) 2016; 274 Abdelouahed, Leveneur, Vernieres-Hassimi, Balland, Taouk (b0115) 2017; 129 Ding, Zhang, Zhang, Zhou, Ren, Guo (b0120) 2019; 293 Li, Li (b0275) 2006; 52 Huang, Chen, Liu, Li, Liu, Gao (b0005) 2015; 87 Rulkens (b0010) 2008; 22 Jiang, Xiao, He, Sun, Gong, Sun (b0235) 2015; 138 Ding, Ezekoye, Zhang, Wang, Lu (b0090) 2018; 232 Ding, Stanislav, Roland (b0070) 2019; 202 Grønli, Várhegyi, Di Blasi (b0270) 2002; 41 Vyazovkin, Burnham, Criado, Pérez-Maqueda, Popescu, Sbirrazzuoli (b0045) 2011; 520 Ding, Wang, Chaos, Chen, Lu (b0135) 2016; 200 Ding, Zhang, He, Huang, Mao (b0130) 2019; 179 Li, Huang, Fleischmann, Rein, Ji (b0175) 2014; 28 Koga, Šesták (b0310) 1991; 182 Ding (10.1016/j.fuel.2022.124344_b0125) 2020; 195 Galwey (10.1016/j.fuel.2022.124344_b0315) 2006; 38 Aghbashlo (10.1016/j.fuel.2022.124344_b0165) 2019; 253 Ding (10.1016/j.fuel.2022.124344_b0075) 2016; 129 Xu (10.1016/j.fuel.2022.124344_b0160) 2017; 146 Lautenberger (10.1016/j.fuel.2022.124344_b0080) 2009; 44 Rulkens (10.1016/j.fuel.2022.124344_b0010) 2008; 22 Huang (10.1016/j.fuel.2022.124344_b0005) 2015; 87 Richter (10.1016/j.fuel.2022.124344_b0085) 2019; 37 Fiola (10.1016/j.fuel.2022.124344_b0140) 2021; 120 Song (10.1016/j.fuel.2022.124344_b0155) 2011 Hillier (10.1016/j.fuel.2022.124344_b0200) 2010; 24 Vyazovkin (10.1016/j.fuel.2022.124344_b0045) 2011; 520 Sun (10.1016/j.fuel.2022.124344_b0105) 2020; 194 Ding (10.1016/j.fuel.2022.124344_b0065) 2019; 37 Vyazovkin (10.1016/j.fuel.2022.124344_b0055) 2020; 689 Koga (10.1016/j.fuel.2022.124344_b0310) 1991; 182 Xu (10.1016/j.fuel.2022.124344_b0320) 2018; 265 Li (10.1016/j.fuel.2022.124344_b0275) 2006; 52 Ding (10.1016/j.fuel.2022.124344_b0285) 2017; 132 Liu (10.1016/j.fuel.2022.124344_b0210) 2020; 219 Lautenberger (10.1016/j.fuel.2022.124344_b0240) 2006; 41 Ding (10.1016/j.fuel.2022.124344_b0070) 2019; 202 Ceylan (10.1016/j.fuel.2022.124344_b0025) 2014; 156 Chen (10.1016/j.fuel.2022.124344_b0280) 2015; 192 Cueff (10.1016/j.fuel.2022.124344_b0035) 2018; 160 Abdelouahed (10.1016/j.fuel.2022.124344_b0115) 2017; 129 Jalalifar (10.1016/j.fuel.2022.124344_b0195) 2020; 191 McKinnon (10.1016/j.fuel.2022.124344_b0060) 2013; 160 Ferreiro (10.1016/j.fuel.2022.124344_b0110) 2016; 125 Rein (10.1016/j.fuel.2022.124344_b0230) 2006; 146 Sun (10.1016/j.fuel.2022.124344_b0190) 2012; 193 Witkowski (10.1016/j.fuel.2022.124344_b0255) 2016 Soria-Verdugo (10.1016/j.fuel.2022.124344_b0040) 2020; 212 Ding (10.1016/j.fuel.2022.124344_b0130) 2019; 179 Ding (10.1016/j.fuel.2022.124344_b0135) 2016; 200 Ding (10.1016/j.fuel.2022.124344_b0120) 2019; 293 Ding (10.1016/j.fuel.2022.124344_b0090) 2018; 232 Garg (10.1016/j.fuel.2022.124344_b0215) 2016; 274 Maschio (10.1016/j.fuel.2022.124344_b0015) 1992; 42 Gašparovič (10.1016/j.fuel.2022.124344_b0290) 2010; 64 Ding (10.1016/j.fuel.2022.124344_b0170) 2019; 176 Anca-Couce (10.1016/j.fuel.2022.124344_b0295) 2014; 123 Vyazovkin (10.1016/j.fuel.2022.124344_b0050) 2014; 590 Kim (10.1016/j.fuel.2022.124344_b0265) 2010; 101 Koga (10.1016/j.fuel.2022.124344_b0305) 1991; 37 Vlker (10.1016/j.fuel.2022.124344_b0300) 2001 Buyukada (10.1016/j.fuel.2022.124344_b0250) 2016; 216 Ira (10.1016/j.fuel.2022.124344_b0100) 2020; 56 Di Blasi (10.1016/j.fuel.2022.124344_b0020) 2008; 34 Papadikis (10.1016/j.fuel.2022.124344_b0030) 2009; 90 Jiang (10.1016/j.fuel.2022.124344_b0235) 2015; 138 Liu (10.1016/j.fuel.2022.124344_b0220) 2019; 184 Ding (10.1016/j.fuel.2022.124344_b0095) 2015; 98 Jamali (10.1016/j.fuel.2022.124344_b0205) 2019; 147 Gong (10.1016/j.fuel.2022.124344_b0185) 2020; 690 Yang (10.1016/j.fuel.2022.124344_b0260) 2006; 20 Shooli (10.1016/j.fuel.2022.124344_b0225) 2019; 85 Gong (10.1016/j.fuel.2022.124344_b0145) 2021; 39 Li (10.1016/j.fuel.2022.124344_b0175) 2014; 28 Grønli (10.1016/j.fuel.2022.124344_b0270) 2002; 41 Liu (10.1016/j.fuel.2022.124344_b0245) 2007; 39 Chen (10.1016/j.fuel.2022.124344_b0180) 2018; 136 Richter (10.1016/j.fuel.2022.124344_b0150) 2017; 91  | 
    
| References_xml | – start-page: 167 year: 2016 end-page: 254 ident: b0255 article-title: Thermal decomposition of polymeric materials publication-title: SFPE handbook of fire protection engineering (5th edition) – volume: 191 year: 2020 ident: b0195 article-title: A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor publication-title: Energy – volume: 232 start-page: 147 year: 2018 end-page: 153 ident: b0090 article-title: The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass publication-title: Fuel – volume: 123 start-page: 230 year: 2014 end-page: 240 ident: b0295 article-title: How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme publication-title: Fuel – volume: 52 start-page: 331 year: 2006 end-page: 336 ident: b0275 article-title: Pyrolysis of medium density fiberboard impregnated with phenol-formaldehyde resin publication-title: J Wood Sci – volume: 182 start-page: 201 year: 1991 end-page: 208 ident: b0310 article-title: Kinetic compensation effect as a mathematical consequence of the exponential rate constant publication-title: Thermochim Acta – volume: 274 start-page: 292 year: 2016 end-page: 305 ident: b0215 article-title: A hybrid PSO-GA algorithm for constrained optimization problems publication-title: Appl Math Comput – start-page: 2354 year: 2011 end-page: 2357 ident: b0155 article-title: Parameter estimation of the pyrolysis model for fir based on particle swarm algorithm publication-title: 2011 Second international conference on mechanic automation and control engineering Hohhot, Inner Mongolia, China – volume: 22 start-page: 9 year: 2008 end-page: 15 ident: b0010 article-title: Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options publication-title: Energ Fuel – volume: 689 year: 2020 ident: b0055 article-title: ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics publication-title: Thermochim Acta – volume: 91 start-page: 191 year: 2017 end-page: 199 ident: b0150 article-title: Pyrolysis kinetics and multi-objective inverse modelling of cellulose at the microscale publication-title: Fire Safety J – volume: 184 start-page: 391 year: 2019 end-page: 409 ident: b0220 article-title: Optimization study of thermal-storage PV-CSP integrated system based on GA-PSO algorithm publication-title: Sol Energy – volume: 146 start-page: 95 year: 2006 end-page: 108 ident: b0230 article-title: Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion publication-title: Combust Flame – volume: 28 start-page: 6130 year: 2014 end-page: 6139 ident: b0175 article-title: Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger's method publication-title: Energy Fuel – volume: 87 start-page: 31 year: 2015 end-page: 40 ident: b0005 article-title: Non-isothermal pyrolysis characteristics of giant reed (Arundo donax L.) using thermogravimetric analysis publication-title: Energy – volume: 136 start-page: 484 year: 2018 end-page: 491 ident: b0180 article-title: Kinetic study on pyrolysis of waste phenolic fibre-reinforced plastic publication-title: Appl Therm Eng – volume: 56 start-page: 1099 year: 2020 end-page: 1132 ident: b0100 article-title: Thermal analysis and cone calorimeter study of engineered wood with an emphasis on fire modelling publication-title: Fire Technol – volume: 129 start-page: 347 year: 2016 end-page: 362 ident: b0075 article-title: Determination of kinetics and thermodynamics of thermal decomposition for polymers containing reactive flame retardants: Application to poly(lactic acid) blended with melamine and ammonium polyphosphate publication-title: Polym Degrad Stabil – volume: 160 start-page: 2595 year: 2013 end-page: 2607 ident: b0060 article-title: Development of a pyrolysis model for corrugated cardboard publication-title: Combust Flame – volume: 44 start-page: 819 year: 2009 end-page: 839 ident: b0080 article-title: Generalized pyrolysis model for combustible solids publication-title: Fire Safety J – volume: 202 start-page: 43 year: 2019 end-page: 57 ident: b0070 article-title: Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition publication-title: Combust Flame – volume: 37 start-page: 4247 year: 2019 end-page: 4255 ident: b0065 article-title: Development of a semi-global reaction mechanism for thermal decomposition of a polymer containing reactive flame retardant publication-title: P Combust Inst – volume: 156 start-page: 182 year: 2014 end-page: 188 ident: b0025 article-title: Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis publication-title: Bioresource Technol – volume: 98 start-page: 500 year: 2015 end-page: 506 ident: b0095 article-title: Modeling the pyrolysis of wet wood using FireFOAM publication-title: Energy Convers Magane – volume: 129 start-page: 1201 year: 2017 end-page: 1213 ident: b0115 article-title: Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis publication-title: J Therm Anal Calorim – volume: 20 start-page: 388 year: 2006 end-page: 393 ident: b0260 article-title: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin publication-title: Energ Fuel – volume: 41 start-page: 4201 year: 2002 end-page: 4208 ident: b0270 article-title: Thermogravimetric analysis and devolatilization kinetics of wood publication-title: Ind Eng Chem Res – volume: 39 start-page: 190 year: 2021 end-page: 204 ident: b0145 article-title: Development of a pyrolysis model for oriented strand board. Part I: Kinetics and thermodynamics of the thermal decomposition publication-title: J Fire Sci – volume: 160 start-page: 668 year: 2018 end-page: 678 ident: b0035 article-title: Experimental and numerical study of the thermomechanical behaviour of wood-based panels exposed to fire publication-title: Constr Build Mater – volume: 37 start-page: 4053 year: 2019 end-page: 4061 ident: b0085 article-title: The effect of chemical composition on the charring of wood across scales publication-title: P Combust Inst – volume: 195 year: 2020 ident: b0125 article-title: Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis publication-title: Energy – volume: 253 start-page: 189 year: 2019 end-page: 198 ident: b0165 article-title: Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm publication-title: Fuel – volume: 200 start-page: 658 year: 2016 end-page: 665 ident: b0135 article-title: Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution publication-title: Bioresource Technol – volume: 125 start-page: 290 year: 2016 end-page: 300 ident: b0110 article-title: A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues publication-title: Energ Convers Magane – volume: 146 start-page: 124 year: 2017 end-page: 133 ident: b0160 article-title: Thermal decomposition of rape straw: Pyrolysis modeling and kinetic study via particle swarm optimization publication-title: Energy Convers Magane – volume: 192 start-page: 441 year: 2015 end-page: 450 ident: b0280 article-title: Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis publication-title: Bioresource Technol – volume: 42 start-page: 219 year: 1992 end-page: 231 ident: b0015 article-title: Pyrolysis, a promising route for biomass utilization publication-title: Bioresource Technol – volume: 138 start-page: 48 year: 2015 end-page: 55 ident: b0235 article-title: Application of genetic algorithm to pyrolysis of typical polymers publication-title: Fuel Process Technol – volume: 590 start-page: 1 year: 2014 end-page: 23 ident: b0050 article-title: ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations publication-title: Thermochim Acta – volume: 90 start-page: 504 year: 2009 end-page: 512 ident: b0030 article-title: Application of CFD to model fast pyrolysis of biomass publication-title: Fuel Process Technol – volume: 37 start-page: 347 year: 1991 end-page: 363 ident: b0305 article-title: A kinetic compensation effect established for the thermal decomposition of a solid publication-title: J Therm Anal – volume: 38 start-page: 464 year: 2006 end-page: 473 ident: b0315 article-title: Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions publication-title: Int J Chem Kinet – volume: 179 start-page: 784 year: 2019 end-page: 791 ident: b0130 article-title: The application and validity of various reaction kinetic models on woody biomass pyrolysis publication-title: Energy – volume: 120 year: 2021 ident: b0140 article-title: Comparison of pyrolysis properties of extruded and cast Poly (methyl methacrylate) publication-title: Fire Safety J – volume: 39 start-page: 287 year: 2007 end-page: 305 ident: b0245 article-title: Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization publication-title: Eng Optimiz – volume: 132 start-page: 102 year: 2017 end-page: 109 ident: b0285 article-title: Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood publication-title: Energ Convers Magane – start-page: 1076 year: 2001 end-page: 1090 ident: b0300 article-title: The potential of multivariate regression in determining formal kinetics of biomass pyrolysis publication-title: progress in thermochemical biomass conversion – volume: 520 start-page: 1 year: 2011 end-page: 19 ident: b0045 article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data publication-title: Thermochim Acta – volume: 219 year: 2020 ident: b0210 article-title: Optimization of five-parameter BRDF model based on hybrid GA-PSO algorithm publication-title: Optik – volume: 293 year: 2019 ident: b0120 article-title: Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with Particle Swarm Optimization and global sensitivity analysis publication-title: Bioresource Technol – volume: 34 start-page: 47 year: 2008 end-page: 90 ident: b0020 article-title: Modeling chemical and physical processes of wood and biomass pyrolysis publication-title: Prog Energ Combust – volume: 101 start-page: 9294 year: 2010 end-page: 9300 ident: b0265 article-title: Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds publication-title: Bioresource Technol – volume: 41 start-page: 204 year: 2006 end-page: 214 ident: b0240 article-title: The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data publication-title: Fire Safety J – volume: 690 year: 2020 ident: b0185 article-title: A hybrid pyrolysis mechanism of phenol formaldehyde and kinetics evaluation using isoconversional methods and genetic algorithm publication-title: Thermochim Acta – volume: 265 start-page: 139 year: 2018 end-page: 145 ident: b0320 article-title: Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis publication-title: Biorecour Technol – volume: 216 start-page: 280 year: 2016 end-page: 286 ident: b0250 article-title: Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation publication-title: Bioresource Technol – volume: 24 start-page: 2841 year: 2010 end-page: 2847 ident: b0200 article-title: Improved method for the determination of kinetic parameters from non-isothermal thermogravimetric analysis (TGA) data publication-title: Energ Fuel – volume: 85 year: 2019 ident: b0225 article-title: A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frames publication-title: Appl Soft Comput – volume: 176 start-page: 582 year: 2019 end-page: 588 ident: b0170 article-title: The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis publication-title: Energy – volume: 194 year: 2020 ident: b0105 article-title: Development of a pyrolysis model for an intumescent flame retardant system: Poly (lactic acid) blended with melamine and ammonium polyphosphate publication-title: Compos Part B-Eng – volume: 193 start-page: 81 year: 2012 end-page: 103 ident: b0190 article-title: Convergence analysis and improvements of quantum-behaved particle swarm optimization publication-title: Inform Sci – volume: 147 start-page: 647 year: 2019 end-page: 660 ident: b0205 article-title: Using PSO-GA algorithm for training artificial neural network to forecast solar space heating system parameters publication-title: Appl Therm Eng – volume: 212 year: 2020 ident: b0040 article-title: Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods publication-title: Energy Convers Magane – volume: 64 year: 2010 ident: b0290 article-title: Kinetic study of wood chips decomposition by TGA publication-title: Chem Pap – volume: 28 start-page: 6130 year: 2014 ident: 10.1016/j.fuel.2022.124344_b0175 article-title: Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger's method publication-title: Energy Fuel doi: 10.1021/ef501380c – volume: 64 issue: 2 year: 2010 ident: 10.1016/j.fuel.2022.124344_b0290 article-title: Kinetic study of wood chips decomposition by TGA publication-title: Chem Pap doi: 10.2478/s11696-009-0109-4 – volume: 20 start-page: 388 year: 2006 ident: 10.1016/j.fuel.2022.124344_b0260 article-title: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin publication-title: Energ Fuel doi: 10.1021/ef0580117 – volume: 37 start-page: 347 issue: 2 year: 1991 ident: 10.1016/j.fuel.2022.124344_b0305 article-title: A kinetic compensation effect established for the thermal decomposition of a solid publication-title: J Therm Anal doi: 10.1007/BF02055937 – volume: 123 start-page: 230 year: 2014 ident: 10.1016/j.fuel.2022.124344_b0295 article-title: How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme publication-title: Fuel doi: 10.1016/j.fuel.2014.01.014 – volume: 41 start-page: 204 year: 2006 ident: 10.1016/j.fuel.2022.124344_b0240 article-title: The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data publication-title: Fire Safety J doi: 10.1016/j.firesaf.2005.12.004 – volume: 125 start-page: 290 year: 2016 ident: 10.1016/j.fuel.2022.124344_b0110 article-title: A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues publication-title: Energ Convers Magane doi: 10.1016/j.enconman.2016.04.104 – volume: 146 start-page: 95 issue: 1-2 year: 2006 ident: 10.1016/j.fuel.2022.124344_b0230 article-title: Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion publication-title: Combust Flame doi: 10.1016/j.combustflame.2006.04.013 – volume: 216 start-page: 280 year: 2016 ident: 10.1016/j.fuel.2022.124344_b0250 article-title: Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation publication-title: Bioresource Technol doi: 10.1016/j.biortech.2016.05.091 – volume: 22 start-page: 9 year: 2008 ident: 10.1016/j.fuel.2022.124344_b0010 article-title: Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options publication-title: Energ Fuel doi: 10.1021/ef700267m – volume: 176 start-page: 582 year: 2019 ident: 10.1016/j.fuel.2022.124344_b0170 article-title: The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis publication-title: Energy doi: 10.1016/j.energy.2019.04.030 – volume: 520 start-page: 1 issue: 1-2 year: 2011 ident: 10.1016/j.fuel.2022.124344_b0045 article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data publication-title: Thermochim Acta doi: 10.1016/j.tca.2011.03.034 – volume: 194 year: 2020 ident: 10.1016/j.fuel.2022.124344_b0105 article-title: Development of a pyrolysis model for an intumescent flame retardant system: Poly (lactic acid) blended with melamine and ammonium polyphosphate publication-title: Compos Part B-Eng doi: 10.1016/j.compositesb.2020.108055 – volume: 91 start-page: 191 year: 2017 ident: 10.1016/j.fuel.2022.124344_b0150 article-title: Pyrolysis kinetics and multi-objective inverse modelling of cellulose at the microscale publication-title: Fire Safety J doi: 10.1016/j.firesaf.2017.03.082 – volume: 590 start-page: 1 year: 2014 ident: 10.1016/j.fuel.2022.124344_b0050 article-title: ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations publication-title: Thermochim Acta doi: 10.1016/j.tca.2014.05.036 – volume: 42 start-page: 219 year: 1992 ident: 10.1016/j.fuel.2022.124344_b0015 article-title: Pyrolysis, a promising route for biomass utilization publication-title: Bioresource Technol doi: 10.1016/0960-8524(92)90025-S – volume: 129 start-page: 1201 issue: 2 year: 2017 ident: 10.1016/j.fuel.2022.124344_b0115 article-title: Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis publication-title: J Therm Anal Calorim doi: 10.1007/s10973-017-6212-9 – volume: 160 start-page: 2595 issue: 11 year: 2013 ident: 10.1016/j.fuel.2022.124344_b0060 article-title: Development of a pyrolysis model for corrugated cardboard publication-title: Combust Flame doi: 10.1016/j.combustflame.2013.06.001 – volume: 39 start-page: 190 year: 2021 ident: 10.1016/j.fuel.2022.124344_b0145 article-title: Development of a pyrolysis model for oriented strand board. Part I: Kinetics and thermodynamics of the thermal decomposition publication-title: J Fire Sci doi: 10.1177/0734904120982887 – volume: 87 start-page: 31 year: 2015 ident: 10.1016/j.fuel.2022.124344_b0005 article-title: Non-isothermal pyrolysis characteristics of giant reed (Arundo donax L.) using thermogravimetric analysis publication-title: Energy doi: 10.1016/j.energy.2015.04.089 – volume: 34 start-page: 47 year: 2008 ident: 10.1016/j.fuel.2022.124344_b0020 article-title: Modeling chemical and physical processes of wood and biomass pyrolysis publication-title: Prog Energ Combust doi: 10.1016/j.pecs.2006.12.001 – volume: 90 start-page: 504 year: 2009 ident: 10.1016/j.fuel.2022.124344_b0030 article-title: Application of CFD to model fast pyrolysis of biomass publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2009.01.010 – volume: 200 start-page: 658 year: 2016 ident: 10.1016/j.fuel.2022.124344_b0135 article-title: Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution publication-title: Bioresource Technol doi: 10.1016/j.biortech.2015.10.082 – volume: 39 start-page: 287 issue: 3 year: 2007 ident: 10.1016/j.fuel.2022.124344_b0245 article-title: Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization publication-title: Eng Optimiz doi: 10.1080/03052150601131000 – volume: 38 start-page: 464 issue: 7 year: 2006 ident: 10.1016/j.fuel.2022.124344_b0315 article-title: Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions publication-title: Int J Chem Kinet doi: 10.1002/kin.20176 – volume: 274 start-page: 292 year: 2016 ident: 10.1016/j.fuel.2022.124344_b0215 article-title: A hybrid PSO-GA algorithm for constrained optimization problems publication-title: Appl Math Comput – volume: 212 year: 2020 ident: 10.1016/j.fuel.2022.124344_b0040 article-title: Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods publication-title: Energy Convers Magane – volume: 193 start-page: 81 year: 2012 ident: 10.1016/j.fuel.2022.124344_b0190 article-title: Convergence analysis and improvements of quantum-behaved particle swarm optimization publication-title: Inform Sci doi: 10.1016/j.ins.2012.01.005 – volume: 52 start-page: 331 issue: 4 year: 2006 ident: 10.1016/j.fuel.2022.124344_b0275 article-title: Pyrolysis of medium density fiberboard impregnated with phenol-formaldehyde resin publication-title: J Wood Sci doi: 10.1007/s10086-005-0763-2 – volume: 101 start-page: 9294 year: 2010 ident: 10.1016/j.fuel.2022.124344_b0265 article-title: Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds publication-title: Bioresource Technol doi: 10.1016/j.biortech.2010.06.110 – start-page: 1076 year: 2001 ident: 10.1016/j.fuel.2022.124344_b0300 article-title: The potential of multivariate regression in determining formal kinetics of biomass pyrolysis – volume: 202 start-page: 43 year: 2019 ident: 10.1016/j.fuel.2022.124344_b0070 article-title: Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.01.003 – volume: 192 start-page: 441 year: 2015 ident: 10.1016/j.fuel.2022.124344_b0280 article-title: Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis publication-title: Bioresource Technol doi: 10.1016/j.biortech.2015.05.062 – volume: 132 start-page: 102 year: 2017 ident: 10.1016/j.fuel.2022.124344_b0285 article-title: Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood publication-title: Energ Convers Magane doi: 10.1016/j.enconman.2016.11.016 – volume: 160 start-page: 668 year: 2018 ident: 10.1016/j.fuel.2022.124344_b0035 article-title: Experimental and numerical study of the thermomechanical behaviour of wood-based panels exposed to fire publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.11.096 – volume: 138 start-page: 48 year: 2015 ident: 10.1016/j.fuel.2022.124344_b0235 article-title: Application of genetic algorithm to pyrolysis of typical polymers publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2015.05.001 – volume: 147 start-page: 647 year: 2019 ident: 10.1016/j.fuel.2022.124344_b0205 article-title: Using PSO-GA algorithm for training artificial neural network to forecast solar space heating system parameters publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.10.070 – volume: 689 year: 2020 ident: 10.1016/j.fuel.2022.124344_b0055 article-title: ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics publication-title: Thermochim Acta doi: 10.1016/j.tca.2020.178597 – volume: 24 start-page: 2841 issue: 5 year: 2010 ident: 10.1016/j.fuel.2022.124344_b0200 article-title: Improved method for the determination of kinetic parameters from non-isothermal thermogravimetric analysis (TGA) data publication-title: Energ Fuel doi: 10.1021/ef1001265 – start-page: 2354 year: 2011 ident: 10.1016/j.fuel.2022.124344_b0155 article-title: Parameter estimation of the pyrolysis model for fir based on particle swarm algorithm – volume: 146 start-page: 124 year: 2017 ident: 10.1016/j.fuel.2022.124344_b0160 article-title: Thermal decomposition of rape straw: Pyrolysis modeling and kinetic study via particle swarm optimization publication-title: Energy Convers Magane doi: 10.1016/j.enconman.2017.05.020 – volume: 184 start-page: 391 year: 2019 ident: 10.1016/j.fuel.2022.124344_b0220 article-title: Optimization study of thermal-storage PV-CSP integrated system based on GA-PSO algorithm publication-title: Sol Energy doi: 10.1016/j.solener.2019.04.017 – volume: 219 year: 2020 ident: 10.1016/j.fuel.2022.124344_b0210 article-title: Optimization of five-parameter BRDF model based on hybrid GA-PSO algorithm publication-title: Optik doi: 10.1016/j.ijleo.2020.164978 – volume: 195 year: 2020 ident: 10.1016/j.fuel.2022.124344_b0125 article-title: Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis publication-title: Energy doi: 10.1016/j.energy.2020.117010 – volume: 265 start-page: 139 year: 2018 ident: 10.1016/j.fuel.2022.124344_b0320 article-title: Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis publication-title: Biorecour Technol doi: 10.1016/j.biortech.2018.05.092 – volume: 56 start-page: 1099 issue: 3 year: 2020 ident: 10.1016/j.fuel.2022.124344_b0100 article-title: Thermal analysis and cone calorimeter study of engineered wood with an emphasis on fire modelling publication-title: Fire Technol doi: 10.1007/s10694-019-00922-9 – volume: 98 start-page: 500 year: 2015 ident: 10.1016/j.fuel.2022.124344_b0095 article-title: Modeling the pyrolysis of wet wood using FireFOAM publication-title: Energy Convers Magane doi: 10.1016/j.enconman.2015.03.106 – volume: 293 year: 2019 ident: 10.1016/j.fuel.2022.124344_b0120 article-title: Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with Particle Swarm Optimization and global sensitivity analysis publication-title: Bioresource Technol doi: 10.1016/j.biortech.2019.122079 – volume: 156 start-page: 182 year: 2014 ident: 10.1016/j.fuel.2022.124344_b0025 article-title: Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis publication-title: Bioresource Technol doi: 10.1016/j.biortech.2014.01.040 – volume: 129 start-page: 347 year: 2016 ident: 10.1016/j.fuel.2022.124344_b0075 article-title: Determination of kinetics and thermodynamics of thermal decomposition for polymers containing reactive flame retardants: Application to poly(lactic acid) blended with melamine and ammonium polyphosphate publication-title: Polym Degrad Stabil doi: 10.1016/j.polymdegradstab.2016.05.014 – volume: 120 year: 2021 ident: 10.1016/j.fuel.2022.124344_b0140 article-title: Comparison of pyrolysis properties of extruded and cast Poly (methyl methacrylate) publication-title: Fire Safety J doi: 10.1016/j.firesaf.2020.103083 – volume: 191 year: 2020 ident: 10.1016/j.fuel.2022.124344_b0195 article-title: A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor publication-title: Energy doi: 10.1016/j.energy.2019.116414 – start-page: 167 year: 2016 ident: 10.1016/j.fuel.2022.124344_b0255 article-title: Thermal decomposition of polymeric materials – volume: 690 year: 2020 ident: 10.1016/j.fuel.2022.124344_b0185 article-title: A hybrid pyrolysis mechanism of phenol formaldehyde and kinetics evaluation using isoconversional methods and genetic algorithm publication-title: Thermochim Acta doi: 10.1016/j.tca.2020.178708 – volume: 232 start-page: 147 year: 2018 ident: 10.1016/j.fuel.2022.124344_b0090 article-title: The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass publication-title: Fuel doi: 10.1016/j.fuel.2018.05.140 – volume: 253 start-page: 189 year: 2019 ident: 10.1016/j.fuel.2022.124344_b0165 article-title: Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm publication-title: Fuel doi: 10.1016/j.fuel.2019.04.169 – volume: 44 start-page: 819 issue: 6 year: 2009 ident: 10.1016/j.fuel.2022.124344_b0080 article-title: Generalized pyrolysis model for combustible solids publication-title: Fire Safety J doi: 10.1016/j.firesaf.2009.03.011 – volume: 37 start-page: 4053 issue: 3 year: 2019 ident: 10.1016/j.fuel.2022.124344_b0085 article-title: The effect of chemical composition on the charring of wood across scales publication-title: P Combust Inst doi: 10.1016/j.proci.2018.06.080 – volume: 37 start-page: 4247 issue: 3 year: 2019 ident: 10.1016/j.fuel.2022.124344_b0065 article-title: Development of a semi-global reaction mechanism for thermal decomposition of a polymer containing reactive flame retardant publication-title: P Combust Inst doi: 10.1016/j.proci.2018.05.073 – volume: 182 start-page: 201 issue: 2 year: 1991 ident: 10.1016/j.fuel.2022.124344_b0310 article-title: Kinetic compensation effect as a mathematical consequence of the exponential rate constant publication-title: Thermochim Acta doi: 10.1016/0040-6031(91)80005-4 – volume: 41 start-page: 4201 issue: 17 year: 2002 ident: 10.1016/j.fuel.2022.124344_b0270 article-title: Thermogravimetric analysis and devolatilization kinetics of wood publication-title: Ind Eng Chem Res doi: 10.1021/ie0201157 – volume: 179 start-page: 784 year: 2019 ident: 10.1016/j.fuel.2022.124344_b0130 article-title: The application and validity of various reaction kinetic models on woody biomass pyrolysis publication-title: Energy doi: 10.1016/j.energy.2019.05.021 – volume: 136 start-page: 484 year: 2018 ident: 10.1016/j.fuel.2022.124344_b0180 article-title: Kinetic study on pyrolysis of waste phenolic fibre-reinforced plastic publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.03.045 – volume: 85 year: 2019 ident: 10.1016/j.fuel.2022.124344_b0225 article-title: A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frames publication-title: Appl Soft Comput  | 
    
| SSID | ssj0007854 | 
    
| Score | 2.5473423 | 
    
| Snippet | •A new hybrid PSO-GA algorithm is proposed to gain advantages of PSO and GA.•Genetic evolution is incorporated into PSO to increase its population... A hybrid optimization algorithm, combining both Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), is proposed to gain the favorable features of...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 124344 | 
    
| SubjectTerms | Algorithms Beech Beech wood Biomass Convergence Genetic algorithm (GA) Genetic algorithms Hemicellulose Kinetics Optimization algorithms Particle swarm optimization Particle Swarm Optimization (PSO) Population number PSO-GA Pyrolysis Thermogravimetric analysis Wood  | 
    
| Title | Application of a hybrid PSO-GA optimization algorithm in determining pyrolysis kinetics of biomass | 
    
| URI | https://dx.doi.org/10.1016/j.fuel.2022.124344 https://www.proquest.com/docview/2689210168  | 
    
| Volume | 323 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BSFUnlgQ2mbxHaSsaooBaSCBEhslu04tHw0VWmHLvx27hqHAhIMjIl8p-hsv7vI954JOUkTkUIdojyVCvhB8XXbU22deVwbzdoKEkbRIDsQ_Xt2-cAfKqRbcmGwrdJhf4HpS7R2b1oumq3JaIQcX1-gdEiAOQyqdmSwswhvMWi-r9o8opgXSsy-8HC0I84UPV7Z3OLxQxA0Ic2FjP2WnH7A9DL39LbIpisaaaf4rm1SseMdsvFFSnCX6M7qJJrmGVV0uEAyFr25vfbOOzQHaHh1nEuqXh7z6Wg2fKWjMU1dQwy4oZPFNF9qlNBncI0KzugLKfpQY--R-97ZXbfvufsTPBPweOYlWTs0NrRMCG4jlOZLokwZpWCXZimUSoGIkiQ13Bo_1lxrKM6iiFstNGBPpsJ9Uh3nY3tAaGRNauI4YbCFWZwYrfyQMxX6qckALU2N-GXgpHHi4njHxYssu8ieJAZbYrBlEewaOf20mRTSGn-O5uV8yG8LRAL2_2lXLydPuu35JgMRJwEaxIf_dHtE1vGp6Dark-psOrfHUJ7MdGO5_hpkrXNx1R98ABND5Cc | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIo3HthQ2iaxnWSsEFBeBYkisVm249DwaKpSBhZ-O3eNQwGJDqyxfYrO9nef5bvPhBykiUiBhyhPpQIOKL5ueKqhM49ro1lDQcAoE2TbonXHzu_5_RQ5qmphMK3SYX-J6SO0dl_qzpv1fp5jja8vUDokwBgGrH2azDIeRHgCq32M8zyimJdSzL7wsLurnCmTvLI3i_cPQVCDOBcy9ld0-oXTo-BzskQWHWukzfLHlsmU7a2QhW9agqtEN8dX0bTIqKLdd6zGoje3195pkxaADS-u6JKq54dikA-7LzTv0dRlxIAZ2n8fFCOREvoEplHCGW1hjT6Q7DVyd3LcOWp57gEFzwQ8HnpJ1giNDS0TgtsItfmSKFNGKdimWQpcKRBRkqSGW-PHmmsN7CyKuNVCA_hkKlwnM72iZzcIjaxJTRwnDPYwixOjlR9ypkI_NRnApdkkfuU4aZy6OD5y8SyrNLJHic6W6GxZOnuTHH6N6ZfaGhN782o-5I8VIgH8J47bqSZPuv35KgMRJwEOiLf-aXafzLU6V5fy8qx9sU3msaVMPdshM8PBm90FrjLUe6O1-AlwNuW8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+hybrid+PSO-GA+optimization+algorithm+in+determining+pyrolysis+kinetics+of+biomass&rft.jtitle=Fuel+%28Guildford%29&rft.au=Shi%2C+Leilei&rft.au=Gong%2C+Junhui&rft.au=Zhai%2C+Chunjie&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.volume=323&rft_id=info:doi/10.1016%2Fj.fuel.2022.124344&rft.externalDocID=S0016236122011966 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |