Application of a hybrid PSO-GA optimization algorithm in determining pyrolysis kinetics of biomass

•A new hybrid PSO-GA algorithm is proposed to gain advantages of PSO and GA.•Genetic evolution is incorporated into PSO to increase its population diversity.•TGA results of two pseudo solids and beech wood are analyzed.•Convergency efficiency and accuracy are both improved in PSO-GA.•Compensation ef...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 323; p. 124344
Main Authors Shi, Leilei, Gong, Junhui, Zhai, Chunjie
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.09.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0016-2361
1873-7153
DOI10.1016/j.fuel.2022.124344

Cover

Abstract •A new hybrid PSO-GA algorithm is proposed to gain advantages of PSO and GA.•Genetic evolution is incorporated into PSO to increase its population diversity.•TGA results of two pseudo solids and beech wood are analyzed.•Convergency efficiency and accuracy are both improved in PSO-GA.•Compensation effect is found in parameterizing pyrolysis model of wood. A hybrid optimization algorithm, combining both Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), is proposed to gain the favorable features of each individual algorithm when determining the pyrolysis kinetics of biomass. High convergence efficiency and the capability of avoiding being trapped in local optimal solution are primarily associated with PSO and GA, respectively. Gene operations in GA, including selection, crossover and mutation, are partially incorporated into PSO to increase the population diversity. Pyrolysis of beech wood was experimentally studied at three heating rates, and a numerical solver was established to simulate the pyrolysis details. In order to demonstrate the improved performance of PSO-GA, two pyrolysis models with given reaction schemes and kinetic parameters were adopted to create the acritical thermogravimetric analysis (TGA) curves. Then the kinetics was estimated using PSO-GA and individual GA and PSO. Subsequently, the experimental data were analyzed with the same manner. The results show that PSO-GA has the highest possibility of obtaining desired outcomes followed by PSO and then GA. With fixed population size, PSO-GA converges to a lower fitness function value, corresponding to higher accuracy. The attained kinetics of wood falls into the reported ranges in the literature. In some scenarios, the optimized results of hemicellulose and lignin contradict with the existing conclusions even though the global curves match the experimental measurements well. This implies the general concept of the pyrolysis process should also be given adequate consideration to avoid potential compensation effect when encountering complex issues.
AbstractList A hybrid optimization algorithm, combining both Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), is proposed to gain the favorable features of each individual algorithm when determining the pyrolysis kinetics of biomass. High convergence efficiency and the capability of avoiding being trapped in local optimal solution are primarily associated with PSO and GA, respectively. Gene operations in GA, including selection, crossover and mutation, are partially incorporated into PSO to increase the population diversity. Pyrolysis of beech wood was experimentally studied at three heating rates, and a numerical solver was established to simulate the pyrolysis details. In order to demonstrate the improved performance of PSO-GA, two pyrolysis models with given reaction schemes and kinetic parameters were adopted to create the acritical thermogravimetric analysis (TGA) curves. Then the kinetics was estimated using PSO-GA and individual GA and PSO. Subsequently, the experimental data were analyzed with the same manner. The results show that PSO-GA has the highest possibility of obtaining desired outcomes followed by PSO and then GA. With fixed population size, PSO-GA converges to a lower fitness function value, corresponding to higher accuracy. The attained kinetics of wood falls into the reported ranges in the literature. In some scenarios, the optimized results of hemicellulose and lignin contradict with the existing conclusions even though the global curves match the experimental measurements well. This implies the general concept of the pyrolysis process should also be given adequate consideration to avoid potential compensation effect when encountering complex issues.
•A new hybrid PSO-GA algorithm is proposed to gain advantages of PSO and GA.•Genetic evolution is incorporated into PSO to increase its population diversity.•TGA results of two pseudo solids and beech wood are analyzed.•Convergency efficiency and accuracy are both improved in PSO-GA.•Compensation effect is found in parameterizing pyrolysis model of wood. A hybrid optimization algorithm, combining both Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), is proposed to gain the favorable features of each individual algorithm when determining the pyrolysis kinetics of biomass. High convergence efficiency and the capability of avoiding being trapped in local optimal solution are primarily associated with PSO and GA, respectively. Gene operations in GA, including selection, crossover and mutation, are partially incorporated into PSO to increase the population diversity. Pyrolysis of beech wood was experimentally studied at three heating rates, and a numerical solver was established to simulate the pyrolysis details. In order to demonstrate the improved performance of PSO-GA, two pyrolysis models with given reaction schemes and kinetic parameters were adopted to create the acritical thermogravimetric analysis (TGA) curves. Then the kinetics was estimated using PSO-GA and individual GA and PSO. Subsequently, the experimental data were analyzed with the same manner. The results show that PSO-GA has the highest possibility of obtaining desired outcomes followed by PSO and then GA. With fixed population size, PSO-GA converges to a lower fitness function value, corresponding to higher accuracy. The attained kinetics of wood falls into the reported ranges in the literature. In some scenarios, the optimized results of hemicellulose and lignin contradict with the existing conclusions even though the global curves match the experimental measurements well. This implies the general concept of the pyrolysis process should also be given adequate consideration to avoid potential compensation effect when encountering complex issues.
ArticleNumber 124344
Author Shi, Leilei
Gong, Junhui
Zhai, Chunjie
Author_xml – sequence: 1
  givenname: Leilei
  surname: Shi
  fullname: Shi, Leilei
  organization: College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
– sequence: 2
  givenname: Junhui
  surname: Gong
  fullname: Gong, Junhui
  email: gjh9896@njtech.edu.cn
  organization: College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China
– sequence: 3
  givenname: Chunjie
  surname: Zhai
  fullname: Zhai, Chunjie
  organization: Department of Information Technology, Nanjing Forest Police College, Nanjing, Jiangsu 210023, China
BookMark eNp9kMFq3DAQhkVJoZu0L9CTIGdvJdmyZMhlCcm2EEih7VnI8jiZrS05kjawefradU455DSH-b9_mO-cnPnggZCvnG054_W3w7Y_wrAVTIgtF1VZVR_IhmtVForL8oxs2JwqRFnzT-Q8pQNjTGlZbUi7m6YBnc0YPA09tfTx1Ebs6M9f98V-R8OUccSXdW-HhxAxP44UPe0gQxzRo3-g0ymG4ZQw0b_oIaNLS1eLYbQpfSYfezsk-PI6L8if25vf19-Lu_v9j-vdXeGE1LloelY6KKGqawmqVLxqVG-dtVLpvpOSi1o1TeckOK5b2bYVr5WS0NYt07q35QW5XHunGJ6OkLI5hGP080kjat2IRZSeU2JNuRhSitCbKeJo48lwZpaIOZjFpVlcmtXlDOk3kMP830mOFof30asVhfn1Z4RokkPwDjqM4LLpAr6H_wODAZJO
CitedBy_id crossref_primary_10_1016_j_jaap_2025_106988
crossref_primary_10_1016_j_pnucene_2023_105040
crossref_primary_10_1016_j_renene_2024_120267
crossref_primary_10_1016_j_fuel_2022_127123
crossref_primary_10_1007_s11664_024_10945_w
crossref_primary_10_3390_app14166862
crossref_primary_10_1002_qre_3515
crossref_primary_10_1080_23302674_2024_2401033
crossref_primary_10_1007_s11696_022_02518_0
crossref_primary_10_1002_mop_33994
crossref_primary_10_1016_j_rico_2022_100187
crossref_primary_10_1016_j_heliyon_2023_e20602
crossref_primary_10_1016_j_fuel_2024_132469
crossref_primary_10_1016_j_egyr_2024_06_042
crossref_primary_10_1007_s00170_024_13790_7
crossref_primary_10_1038_s41598_024_61306_w
crossref_primary_10_1016_j_jmapro_2025_02_049
crossref_primary_10_1109_ACCESS_2023_3287859
crossref_primary_10_3390_s24103097
crossref_primary_10_48130_EMST_2023_0009
crossref_primary_10_1109_TGRS_2023_3317845
crossref_primary_10_3390_app14125211
crossref_primary_10_1080_00102202_2024_2329303
crossref_primary_10_1021_acs_jctc_3c00081
crossref_primary_10_1016_j_matpr_2023_06_226
crossref_primary_10_7717_peerj_cs_2253
crossref_primary_10_1007_s10694_022_01339_7
crossref_primary_10_1016_j_csite_2024_105457
crossref_primary_10_1016_j_heliyon_2024_e38555
crossref_primary_10_1155_er_6184508
crossref_primary_10_1016_j_firesaf_2023_103917
crossref_primary_10_1016_j_fuel_2024_133474
Cites_doi 10.1021/ef501380c
10.2478/s11696-009-0109-4
10.1021/ef0580117
10.1007/BF02055937
10.1016/j.fuel.2014.01.014
10.1016/j.firesaf.2005.12.004
10.1016/j.enconman.2016.04.104
10.1016/j.combustflame.2006.04.013
10.1016/j.biortech.2016.05.091
10.1021/ef700267m
10.1016/j.energy.2019.04.030
10.1016/j.tca.2011.03.034
10.1016/j.compositesb.2020.108055
10.1016/j.firesaf.2017.03.082
10.1016/j.tca.2014.05.036
10.1016/0960-8524(92)90025-S
10.1007/s10973-017-6212-9
10.1016/j.combustflame.2013.06.001
10.1177/0734904120982887
10.1016/j.energy.2015.04.089
10.1016/j.pecs.2006.12.001
10.1016/j.fuproc.2009.01.010
10.1016/j.biortech.2015.10.082
10.1080/03052150601131000
10.1002/kin.20176
10.1016/j.ins.2012.01.005
10.1007/s10086-005-0763-2
10.1016/j.biortech.2010.06.110
10.1016/j.combustflame.2019.01.003
10.1016/j.biortech.2015.05.062
10.1016/j.enconman.2016.11.016
10.1016/j.conbuildmat.2017.11.096
10.1016/j.fuproc.2015.05.001
10.1016/j.applthermaleng.2018.10.070
10.1016/j.tca.2020.178597
10.1021/ef1001265
10.1016/j.enconman.2017.05.020
10.1016/j.solener.2019.04.017
10.1016/j.ijleo.2020.164978
10.1016/j.energy.2020.117010
10.1016/j.biortech.2018.05.092
10.1007/s10694-019-00922-9
10.1016/j.enconman.2015.03.106
10.1016/j.biortech.2019.122079
10.1016/j.biortech.2014.01.040
10.1016/j.polymdegradstab.2016.05.014
10.1016/j.firesaf.2020.103083
10.1016/j.energy.2019.116414
10.1016/j.tca.2020.178708
10.1016/j.fuel.2018.05.140
10.1016/j.fuel.2019.04.169
10.1016/j.firesaf.2009.03.011
10.1016/j.proci.2018.06.080
10.1016/j.proci.2018.05.073
10.1016/0040-6031(91)80005-4
10.1021/ie0201157
10.1016/j.energy.2019.05.021
10.1016/j.applthermaleng.2018.03.045
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Sep 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 1, 2022
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2022.124344
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2022_124344
S0016236122011966
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c258t-9f03ce3e4665e7371497facaa578fd55126799dc5ec18b5bb416775eb6b088fa3
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Wed Aug 13 02:39:05 EDT 2025
Thu Apr 24 23:13:10 EDT 2025
Wed Oct 01 04:04:18 EDT 2025
Sat Oct 19 15:54:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Pyrolysis
Genetic algorithm (GA)
PSO-GA
Kinetics
Particle Swarm Optimization (PSO)
Beech wood
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c258t-9f03ce3e4665e7371497facaa578fd55126799dc5ec18b5bb416775eb6b088fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2689210168
PQPubID 2045474
ParticipantIDs proquest_journals_2689210168
crossref_primary_10_1016_j_fuel_2022_124344
crossref_citationtrail_10_1016_j_fuel_2022_124344
elsevier_sciencedirect_doi_10_1016_j_fuel_2022_124344
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Liu, Lin (b0245) 2007; 39
Xu, Chai, Dong, Rahman, Yu, Cai (b0320) 2018; 265
Ding, Ezekoye, Lu, Wang, Zhou (b0285) 2017; 132
Cueff, Mindeguia, Dréan, Breysse, Auguin (b0035) 2018; 160
Chen, Xu, Zhang, Lo, Lu (b0180) 2018; 136
Ceylan, Topçu (b0025) 2014; 156
Anca-Couce, Berger, Zobel (b0295) 2014; 123
Sun, Wu, Palade, Fang, Lai, Xu (b0190) 2012; 193
Ira, Hasalová, Šálek, Jahoda, Vystrčil (b0100) 2020; 56
Papadikis, Gu, Bridgwater, Gerhauser (b0030) 2009; 90
Ding, McKinnon, Stoliarov, Fontaine, Bourbigot (b0075) 2016; 129
Vyazovkin, Chrissafis, Di Lorenzo, Koga, Pijolat, Roduit (b0050) 2014; 590
Buyukada (b0250) 2016; 216
Ferreiro, Rabaçal, Costa (b0110) 2016; 125
McKinnon, Stoliarov, Witkowski (b0060) 2013; 160
Richter, Rein (b0150) 2017; 91
Jamali, Rasekh, Jamadi, Gandomkar, Makiabadi (b0205) 2019; 147
Vlker, Rieckmann (b0300) 2001
Vyazovkin, Burnham, Favergeon, Koga, Moukhina, Perez-Maqueda, Sbirrazzuoli (b0055) 2020; 689
Liu, Dai, Zhao, Zhang, Shang, Li, Zheng, Lan, Wang (b0210) 2020; 219
Fiola, Chaudhari, Stoliarov (b0140) 2021; 120
Song (b0155) 2011
Di Blasi (b0020) 2008; 34
Aghbashlo, Tabatabaei, Nadian, Davoodnia, Soltanian (b0165) 2019; 253
Gong, Zhu, Zhou, Stoliarov (b0145) 2021; 39
Maschio, Koufopanos, Lucchesi (b0015) 1992; 42
Hillier, Bezzant, Fletcher (b0200) 2010; 24
Soria-Verdugo, Morgano, Matzing, Goos, Leibold, Merz, Riedel, Stapf (b0040) 2020; 212
Ding, Kwon, Stoliarov, Kraemer (b0065) 2019; 37
Ding, Zhang, Yu, Lu (b0170) 2019; 176
Koga, Tanaka (b0305) 1991; 37
Yang, Yan, Chen, Zheng, Lee, Liang (b0260) 2006; 20
Kim, Jung, Kim (b0265) 2010; 101
Lautenberger, Rein, Fernandez-Pello (b0240) 2006; 41
Liu, Zhai, Fu, Wang, Yang (b0220) 2019; 184
Jalalifar, Masoudi, Abbassi, Garaniya, Ghiji, Salehi (b0195) 2020; 191
Rein, Lautenberger, Fernandezpello, Torero, Urban (b0230) 2006; 146
Galwey, Mortimer (b0315) 2006; 38
Lautenberger, Fernandez-Pello (b0080) 2009; 44
Chen, Hu, Zhu, Guo, Liu, Hu (b0280) 2015; 192
Ding, Wang, Lu (b0095) 2015; 98
Sun, Ding, Stoliarov, Sun, Fontaine, Bourbigot (b0105) 2020; 194
Ding, Huang, Li, Du, Lu, Zhang (b0125) 2020; 195
Gong, Gu, Zhai, Wang (b0185) 2020; 690
Shooli, Vosoughi, Banan (b0225) 2019; 85
Gašparovič, Koreňová, Jelemenský (b0290) 2010; 64
Richter, Atreya, Kotsovinos, Rein (b0085) 2019; 37
Xu, Jiang, Wang (b0160) 2017; 146
Witkowski, Stec, Hull (b0255) 2016
Garg (b0215) 2016; 274
Abdelouahed, Leveneur, Vernieres-Hassimi, Balland, Taouk (b0115) 2017; 129
Ding, Zhang, Zhang, Zhou, Ren, Guo (b0120) 2019; 293
Li, Li (b0275) 2006; 52
Huang, Chen, Liu, Li, Liu, Gao (b0005) 2015; 87
Rulkens (b0010) 2008; 22
Jiang, Xiao, He, Sun, Gong, Sun (b0235) 2015; 138
Ding, Ezekoye, Zhang, Wang, Lu (b0090) 2018; 232
Ding, Stanislav, Roland (b0070) 2019; 202
Grønli, Várhegyi, Di Blasi (b0270) 2002; 41
Vyazovkin, Burnham, Criado, Pérez-Maqueda, Popescu, Sbirrazzuoli (b0045) 2011; 520
Ding, Wang, Chaos, Chen, Lu (b0135) 2016; 200
Ding, Zhang, He, Huang, Mao (b0130) 2019; 179
Li, Huang, Fleischmann, Rein, Ji (b0175) 2014; 28
Koga, Šesták (b0310) 1991; 182
Ding (10.1016/j.fuel.2022.124344_b0125) 2020; 195
Galwey (10.1016/j.fuel.2022.124344_b0315) 2006; 38
Aghbashlo (10.1016/j.fuel.2022.124344_b0165) 2019; 253
Ding (10.1016/j.fuel.2022.124344_b0075) 2016; 129
Xu (10.1016/j.fuel.2022.124344_b0160) 2017; 146
Lautenberger (10.1016/j.fuel.2022.124344_b0080) 2009; 44
Rulkens (10.1016/j.fuel.2022.124344_b0010) 2008; 22
Huang (10.1016/j.fuel.2022.124344_b0005) 2015; 87
Richter (10.1016/j.fuel.2022.124344_b0085) 2019; 37
Fiola (10.1016/j.fuel.2022.124344_b0140) 2021; 120
Song (10.1016/j.fuel.2022.124344_b0155) 2011
Hillier (10.1016/j.fuel.2022.124344_b0200) 2010; 24
Vyazovkin (10.1016/j.fuel.2022.124344_b0045) 2011; 520
Sun (10.1016/j.fuel.2022.124344_b0105) 2020; 194
Ding (10.1016/j.fuel.2022.124344_b0065) 2019; 37
Vyazovkin (10.1016/j.fuel.2022.124344_b0055) 2020; 689
Koga (10.1016/j.fuel.2022.124344_b0310) 1991; 182
Xu (10.1016/j.fuel.2022.124344_b0320) 2018; 265
Li (10.1016/j.fuel.2022.124344_b0275) 2006; 52
Ding (10.1016/j.fuel.2022.124344_b0285) 2017; 132
Liu (10.1016/j.fuel.2022.124344_b0210) 2020; 219
Lautenberger (10.1016/j.fuel.2022.124344_b0240) 2006; 41
Ding (10.1016/j.fuel.2022.124344_b0070) 2019; 202
Ceylan (10.1016/j.fuel.2022.124344_b0025) 2014; 156
Chen (10.1016/j.fuel.2022.124344_b0280) 2015; 192
Cueff (10.1016/j.fuel.2022.124344_b0035) 2018; 160
Abdelouahed (10.1016/j.fuel.2022.124344_b0115) 2017; 129
Jalalifar (10.1016/j.fuel.2022.124344_b0195) 2020; 191
McKinnon (10.1016/j.fuel.2022.124344_b0060) 2013; 160
Ferreiro (10.1016/j.fuel.2022.124344_b0110) 2016; 125
Rein (10.1016/j.fuel.2022.124344_b0230) 2006; 146
Sun (10.1016/j.fuel.2022.124344_b0190) 2012; 193
Witkowski (10.1016/j.fuel.2022.124344_b0255) 2016
Soria-Verdugo (10.1016/j.fuel.2022.124344_b0040) 2020; 212
Ding (10.1016/j.fuel.2022.124344_b0130) 2019; 179
Ding (10.1016/j.fuel.2022.124344_b0135) 2016; 200
Ding (10.1016/j.fuel.2022.124344_b0120) 2019; 293
Ding (10.1016/j.fuel.2022.124344_b0090) 2018; 232
Garg (10.1016/j.fuel.2022.124344_b0215) 2016; 274
Maschio (10.1016/j.fuel.2022.124344_b0015) 1992; 42
Gašparovič (10.1016/j.fuel.2022.124344_b0290) 2010; 64
Ding (10.1016/j.fuel.2022.124344_b0170) 2019; 176
Anca-Couce (10.1016/j.fuel.2022.124344_b0295) 2014; 123
Vyazovkin (10.1016/j.fuel.2022.124344_b0050) 2014; 590
Kim (10.1016/j.fuel.2022.124344_b0265) 2010; 101
Koga (10.1016/j.fuel.2022.124344_b0305) 1991; 37
Vlker (10.1016/j.fuel.2022.124344_b0300) 2001
Buyukada (10.1016/j.fuel.2022.124344_b0250) 2016; 216
Ira (10.1016/j.fuel.2022.124344_b0100) 2020; 56
Di Blasi (10.1016/j.fuel.2022.124344_b0020) 2008; 34
Papadikis (10.1016/j.fuel.2022.124344_b0030) 2009; 90
Jiang (10.1016/j.fuel.2022.124344_b0235) 2015; 138
Liu (10.1016/j.fuel.2022.124344_b0220) 2019; 184
Ding (10.1016/j.fuel.2022.124344_b0095) 2015; 98
Jamali (10.1016/j.fuel.2022.124344_b0205) 2019; 147
Gong (10.1016/j.fuel.2022.124344_b0185) 2020; 690
Yang (10.1016/j.fuel.2022.124344_b0260) 2006; 20
Shooli (10.1016/j.fuel.2022.124344_b0225) 2019; 85
Gong (10.1016/j.fuel.2022.124344_b0145) 2021; 39
Li (10.1016/j.fuel.2022.124344_b0175) 2014; 28
Grønli (10.1016/j.fuel.2022.124344_b0270) 2002; 41
Liu (10.1016/j.fuel.2022.124344_b0245) 2007; 39
Chen (10.1016/j.fuel.2022.124344_b0180) 2018; 136
Richter (10.1016/j.fuel.2022.124344_b0150) 2017; 91
References_xml – start-page: 167
  year: 2016
  end-page: 254
  ident: b0255
  article-title: Thermal decomposition of polymeric materials
  publication-title: SFPE handbook of fire protection engineering (5th edition)
– volume: 191
  year: 2020
  ident: b0195
  article-title: A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor
  publication-title: Energy
– volume: 232
  start-page: 147
  year: 2018
  end-page: 153
  ident: b0090
  article-title: The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass
  publication-title: Fuel
– volume: 123
  start-page: 230
  year: 2014
  end-page: 240
  ident: b0295
  article-title: How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme
  publication-title: Fuel
– volume: 52
  start-page: 331
  year: 2006
  end-page: 336
  ident: b0275
  article-title: Pyrolysis of medium density fiberboard impregnated with phenol-formaldehyde resin
  publication-title: J Wood Sci
– volume: 182
  start-page: 201
  year: 1991
  end-page: 208
  ident: b0310
  article-title: Kinetic compensation effect as a mathematical consequence of the exponential rate constant
  publication-title: Thermochim Acta
– volume: 274
  start-page: 292
  year: 2016
  end-page: 305
  ident: b0215
  article-title: A hybrid PSO-GA algorithm for constrained optimization problems
  publication-title: Appl Math Comput
– start-page: 2354
  year: 2011
  end-page: 2357
  ident: b0155
  article-title: Parameter estimation of the pyrolysis model for fir based on particle swarm algorithm
  publication-title: 2011 Second international conference on mechanic automation and control engineering Hohhot, Inner Mongolia, China
– volume: 22
  start-page: 9
  year: 2008
  end-page: 15
  ident: b0010
  article-title: Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options
  publication-title: Energ Fuel
– volume: 689
  year: 2020
  ident: b0055
  article-title: ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics
  publication-title: Thermochim Acta
– volume: 91
  start-page: 191
  year: 2017
  end-page: 199
  ident: b0150
  article-title: Pyrolysis kinetics and multi-objective inverse modelling of cellulose at the microscale
  publication-title: Fire Safety J
– volume: 184
  start-page: 391
  year: 2019
  end-page: 409
  ident: b0220
  article-title: Optimization study of thermal-storage PV-CSP integrated system based on GA-PSO algorithm
  publication-title: Sol Energy
– volume: 146
  start-page: 95
  year: 2006
  end-page: 108
  ident: b0230
  article-title: Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion
  publication-title: Combust Flame
– volume: 28
  start-page: 6130
  year: 2014
  end-page: 6139
  ident: b0175
  article-title: Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger's method
  publication-title: Energy Fuel
– volume: 87
  start-page: 31
  year: 2015
  end-page: 40
  ident: b0005
  article-title: Non-isothermal pyrolysis characteristics of giant reed (Arundo donax L.) using thermogravimetric analysis
  publication-title: Energy
– volume: 136
  start-page: 484
  year: 2018
  end-page: 491
  ident: b0180
  article-title: Kinetic study on pyrolysis of waste phenolic fibre-reinforced plastic
  publication-title: Appl Therm Eng
– volume: 56
  start-page: 1099
  year: 2020
  end-page: 1132
  ident: b0100
  article-title: Thermal analysis and cone calorimeter study of engineered wood with an emphasis on fire modelling
  publication-title: Fire Technol
– volume: 129
  start-page: 347
  year: 2016
  end-page: 362
  ident: b0075
  article-title: Determination of kinetics and thermodynamics of thermal decomposition for polymers containing reactive flame retardants: Application to poly(lactic acid) blended with melamine and ammonium polyphosphate
  publication-title: Polym Degrad Stabil
– volume: 160
  start-page: 2595
  year: 2013
  end-page: 2607
  ident: b0060
  article-title: Development of a pyrolysis model for corrugated cardboard
  publication-title: Combust Flame
– volume: 44
  start-page: 819
  year: 2009
  end-page: 839
  ident: b0080
  article-title: Generalized pyrolysis model for combustible solids
  publication-title: Fire Safety J
– volume: 202
  start-page: 43
  year: 2019
  end-page: 57
  ident: b0070
  article-title: Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition
  publication-title: Combust Flame
– volume: 37
  start-page: 4247
  year: 2019
  end-page: 4255
  ident: b0065
  article-title: Development of a semi-global reaction mechanism for thermal decomposition of a polymer containing reactive flame retardant
  publication-title: P Combust Inst
– volume: 156
  start-page: 182
  year: 2014
  end-page: 188
  ident: b0025
  article-title: Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis
  publication-title: Bioresource Technol
– volume: 98
  start-page: 500
  year: 2015
  end-page: 506
  ident: b0095
  article-title: Modeling the pyrolysis of wet wood using FireFOAM
  publication-title: Energy Convers Magane
– volume: 129
  start-page: 1201
  year: 2017
  end-page: 1213
  ident: b0115
  article-title: Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis
  publication-title: J Therm Anal Calorim
– volume: 20
  start-page: 388
  year: 2006
  end-page: 393
  ident: b0260
  article-title: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin
  publication-title: Energ Fuel
– volume: 41
  start-page: 4201
  year: 2002
  end-page: 4208
  ident: b0270
  article-title: Thermogravimetric analysis and devolatilization kinetics of wood
  publication-title: Ind Eng Chem Res
– volume: 39
  start-page: 190
  year: 2021
  end-page: 204
  ident: b0145
  article-title: Development of a pyrolysis model for oriented strand board. Part I: Kinetics and thermodynamics of the thermal decomposition
  publication-title: J Fire Sci
– volume: 160
  start-page: 668
  year: 2018
  end-page: 678
  ident: b0035
  article-title: Experimental and numerical study of the thermomechanical behaviour of wood-based panels exposed to fire
  publication-title: Constr Build Mater
– volume: 37
  start-page: 4053
  year: 2019
  end-page: 4061
  ident: b0085
  article-title: The effect of chemical composition on the charring of wood across scales
  publication-title: P Combust Inst
– volume: 195
  year: 2020
  ident: b0125
  article-title: Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis
  publication-title: Energy
– volume: 253
  start-page: 189
  year: 2019
  end-page: 198
  ident: b0165
  article-title: Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm
  publication-title: Fuel
– volume: 200
  start-page: 658
  year: 2016
  end-page: 665
  ident: b0135
  article-title: Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution
  publication-title: Bioresource Technol
– volume: 125
  start-page: 290
  year: 2016
  end-page: 300
  ident: b0110
  article-title: A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues
  publication-title: Energ Convers Magane
– volume: 146
  start-page: 124
  year: 2017
  end-page: 133
  ident: b0160
  article-title: Thermal decomposition of rape straw: Pyrolysis modeling and kinetic study via particle swarm optimization
  publication-title: Energy Convers Magane
– volume: 192
  start-page: 441
  year: 2015
  end-page: 450
  ident: b0280
  article-title: Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis
  publication-title: Bioresource Technol
– volume: 42
  start-page: 219
  year: 1992
  end-page: 231
  ident: b0015
  article-title: Pyrolysis, a promising route for biomass utilization
  publication-title: Bioresource Technol
– volume: 138
  start-page: 48
  year: 2015
  end-page: 55
  ident: b0235
  article-title: Application of genetic algorithm to pyrolysis of typical polymers
  publication-title: Fuel Process Technol
– volume: 590
  start-page: 1
  year: 2014
  end-page: 23
  ident: b0050
  article-title: ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations
  publication-title: Thermochim Acta
– volume: 90
  start-page: 504
  year: 2009
  end-page: 512
  ident: b0030
  article-title: Application of CFD to model fast pyrolysis of biomass
  publication-title: Fuel Process Technol
– volume: 37
  start-page: 347
  year: 1991
  end-page: 363
  ident: b0305
  article-title: A kinetic compensation effect established for the thermal decomposition of a solid
  publication-title: J Therm Anal
– volume: 38
  start-page: 464
  year: 2006
  end-page: 473
  ident: b0315
  article-title: Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions
  publication-title: Int J Chem Kinet
– volume: 179
  start-page: 784
  year: 2019
  end-page: 791
  ident: b0130
  article-title: The application and validity of various reaction kinetic models on woody biomass pyrolysis
  publication-title: Energy
– volume: 120
  year: 2021
  ident: b0140
  article-title: Comparison of pyrolysis properties of extruded and cast Poly (methyl methacrylate)
  publication-title: Fire Safety J
– volume: 39
  start-page: 287
  year: 2007
  end-page: 305
  ident: b0245
  article-title: Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization
  publication-title: Eng Optimiz
– volume: 132
  start-page: 102
  year: 2017
  end-page: 109
  ident: b0285
  article-title: Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood
  publication-title: Energ Convers Magane
– start-page: 1076
  year: 2001
  end-page: 1090
  ident: b0300
  article-title: The potential of multivariate regression in determining formal kinetics of biomass pyrolysis
  publication-title: progress in thermochemical biomass conversion
– volume: 520
  start-page: 1
  year: 2011
  end-page: 19
  ident: b0045
  article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data
  publication-title: Thermochim Acta
– volume: 219
  year: 2020
  ident: b0210
  article-title: Optimization of five-parameter BRDF model based on hybrid GA-PSO algorithm
  publication-title: Optik
– volume: 293
  year: 2019
  ident: b0120
  article-title: Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with Particle Swarm Optimization and global sensitivity analysis
  publication-title: Bioresource Technol
– volume: 34
  start-page: 47
  year: 2008
  end-page: 90
  ident: b0020
  article-title: Modeling chemical and physical processes of wood and biomass pyrolysis
  publication-title: Prog Energ Combust
– volume: 101
  start-page: 9294
  year: 2010
  end-page: 9300
  ident: b0265
  article-title: Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds
  publication-title: Bioresource Technol
– volume: 41
  start-page: 204
  year: 2006
  end-page: 214
  ident: b0240
  article-title: The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data
  publication-title: Fire Safety J
– volume: 690
  year: 2020
  ident: b0185
  article-title: A hybrid pyrolysis mechanism of phenol formaldehyde and kinetics evaluation using isoconversional methods and genetic algorithm
  publication-title: Thermochim Acta
– volume: 265
  start-page: 139
  year: 2018
  end-page: 145
  ident: b0320
  article-title: Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis
  publication-title: Biorecour Technol
– volume: 216
  start-page: 280
  year: 2016
  end-page: 286
  ident: b0250
  article-title: Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation
  publication-title: Bioresource Technol
– volume: 24
  start-page: 2841
  year: 2010
  end-page: 2847
  ident: b0200
  article-title: Improved method for the determination of kinetic parameters from non-isothermal thermogravimetric analysis (TGA) data
  publication-title: Energ Fuel
– volume: 85
  year: 2019
  ident: b0225
  article-title: A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frames
  publication-title: Appl Soft Comput
– volume: 176
  start-page: 582
  year: 2019
  end-page: 588
  ident: b0170
  article-title: The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis
  publication-title: Energy
– volume: 194
  year: 2020
  ident: b0105
  article-title: Development of a pyrolysis model for an intumescent flame retardant system: Poly (lactic acid) blended with melamine and ammonium polyphosphate
  publication-title: Compos Part B-Eng
– volume: 193
  start-page: 81
  year: 2012
  end-page: 103
  ident: b0190
  article-title: Convergence analysis and improvements of quantum-behaved particle swarm optimization
  publication-title: Inform Sci
– volume: 147
  start-page: 647
  year: 2019
  end-page: 660
  ident: b0205
  article-title: Using PSO-GA algorithm for training artificial neural network to forecast solar space heating system parameters
  publication-title: Appl Therm Eng
– volume: 212
  year: 2020
  ident: b0040
  article-title: Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods
  publication-title: Energy Convers Magane
– volume: 64
  year: 2010
  ident: b0290
  article-title: Kinetic study of wood chips decomposition by TGA
  publication-title: Chem Pap
– volume: 28
  start-page: 6130
  year: 2014
  ident: 10.1016/j.fuel.2022.124344_b0175
  article-title: Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger's method
  publication-title: Energy Fuel
  doi: 10.1021/ef501380c
– volume: 64
  issue: 2
  year: 2010
  ident: 10.1016/j.fuel.2022.124344_b0290
  article-title: Kinetic study of wood chips decomposition by TGA
  publication-title: Chem Pap
  doi: 10.2478/s11696-009-0109-4
– volume: 20
  start-page: 388
  year: 2006
  ident: 10.1016/j.fuel.2022.124344_b0260
  article-title: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin
  publication-title: Energ Fuel
  doi: 10.1021/ef0580117
– volume: 37
  start-page: 347
  issue: 2
  year: 1991
  ident: 10.1016/j.fuel.2022.124344_b0305
  article-title: A kinetic compensation effect established for the thermal decomposition of a solid
  publication-title: J Therm Anal
  doi: 10.1007/BF02055937
– volume: 123
  start-page: 230
  year: 2014
  ident: 10.1016/j.fuel.2022.124344_b0295
  article-title: How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.01.014
– volume: 41
  start-page: 204
  year: 2006
  ident: 10.1016/j.fuel.2022.124344_b0240
  article-title: The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data
  publication-title: Fire Safety J
  doi: 10.1016/j.firesaf.2005.12.004
– volume: 125
  start-page: 290
  year: 2016
  ident: 10.1016/j.fuel.2022.124344_b0110
  article-title: A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues
  publication-title: Energ Convers Magane
  doi: 10.1016/j.enconman.2016.04.104
– volume: 146
  start-page: 95
  issue: 1-2
  year: 2006
  ident: 10.1016/j.fuel.2022.124344_b0230
  article-title: Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2006.04.013
– volume: 216
  start-page: 280
  year: 2016
  ident: 10.1016/j.fuel.2022.124344_b0250
  article-title: Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation
  publication-title: Bioresource Technol
  doi: 10.1016/j.biortech.2016.05.091
– volume: 22
  start-page: 9
  year: 2008
  ident: 10.1016/j.fuel.2022.124344_b0010
  article-title: Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options
  publication-title: Energ Fuel
  doi: 10.1021/ef700267m
– volume: 176
  start-page: 582
  year: 2019
  ident: 10.1016/j.fuel.2022.124344_b0170
  article-title: The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.030
– volume: 520
  start-page: 1
  issue: 1-2
  year: 2011
  ident: 10.1016/j.fuel.2022.124344_b0045
  article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2011.03.034
– volume: 194
  year: 2020
  ident: 10.1016/j.fuel.2022.124344_b0105
  article-title: Development of a pyrolysis model for an intumescent flame retardant system: Poly (lactic acid) blended with melamine and ammonium polyphosphate
  publication-title: Compos Part B-Eng
  doi: 10.1016/j.compositesb.2020.108055
– volume: 91
  start-page: 191
  year: 2017
  ident: 10.1016/j.fuel.2022.124344_b0150
  article-title: Pyrolysis kinetics and multi-objective inverse modelling of cellulose at the microscale
  publication-title: Fire Safety J
  doi: 10.1016/j.firesaf.2017.03.082
– volume: 590
  start-page: 1
  year: 2014
  ident: 10.1016/j.fuel.2022.124344_b0050
  article-title: ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2014.05.036
– volume: 42
  start-page: 219
  year: 1992
  ident: 10.1016/j.fuel.2022.124344_b0015
  article-title: Pyrolysis, a promising route for biomass utilization
  publication-title: Bioresource Technol
  doi: 10.1016/0960-8524(92)90025-S
– volume: 129
  start-page: 1201
  issue: 2
  year: 2017
  ident: 10.1016/j.fuel.2022.124344_b0115
  article-title: Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-017-6212-9
– volume: 160
  start-page: 2595
  issue: 11
  year: 2013
  ident: 10.1016/j.fuel.2022.124344_b0060
  article-title: Development of a pyrolysis model for corrugated cardboard
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2013.06.001
– volume: 39
  start-page: 190
  year: 2021
  ident: 10.1016/j.fuel.2022.124344_b0145
  article-title: Development of a pyrolysis model for oriented strand board. Part I: Kinetics and thermodynamics of the thermal decomposition
  publication-title: J Fire Sci
  doi: 10.1177/0734904120982887
– volume: 87
  start-page: 31
  year: 2015
  ident: 10.1016/j.fuel.2022.124344_b0005
  article-title: Non-isothermal pyrolysis characteristics of giant reed (Arundo donax L.) using thermogravimetric analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.089
– volume: 34
  start-page: 47
  year: 2008
  ident: 10.1016/j.fuel.2022.124344_b0020
  article-title: Modeling chemical and physical processes of wood and biomass pyrolysis
  publication-title: Prog Energ Combust
  doi: 10.1016/j.pecs.2006.12.001
– volume: 90
  start-page: 504
  year: 2009
  ident: 10.1016/j.fuel.2022.124344_b0030
  article-title: Application of CFD to model fast pyrolysis of biomass
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2009.01.010
– volume: 200
  start-page: 658
  year: 2016
  ident: 10.1016/j.fuel.2022.124344_b0135
  article-title: Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution
  publication-title: Bioresource Technol
  doi: 10.1016/j.biortech.2015.10.082
– volume: 39
  start-page: 287
  issue: 3
  year: 2007
  ident: 10.1016/j.fuel.2022.124344_b0245
  article-title: Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization
  publication-title: Eng Optimiz
  doi: 10.1080/03052150601131000
– volume: 38
  start-page: 464
  issue: 7
  year: 2006
  ident: 10.1016/j.fuel.2022.124344_b0315
  article-title: Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions
  publication-title: Int J Chem Kinet
  doi: 10.1002/kin.20176
– volume: 274
  start-page: 292
  year: 2016
  ident: 10.1016/j.fuel.2022.124344_b0215
  article-title: A hybrid PSO-GA algorithm for constrained optimization problems
  publication-title: Appl Math Comput
– volume: 212
  year: 2020
  ident: 10.1016/j.fuel.2022.124344_b0040
  article-title: Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods
  publication-title: Energy Convers Magane
– volume: 193
  start-page: 81
  year: 2012
  ident: 10.1016/j.fuel.2022.124344_b0190
  article-title: Convergence analysis and improvements of quantum-behaved particle swarm optimization
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2012.01.005
– volume: 52
  start-page: 331
  issue: 4
  year: 2006
  ident: 10.1016/j.fuel.2022.124344_b0275
  article-title: Pyrolysis of medium density fiberboard impregnated with phenol-formaldehyde resin
  publication-title: J Wood Sci
  doi: 10.1007/s10086-005-0763-2
– volume: 101
  start-page: 9294
  year: 2010
  ident: 10.1016/j.fuel.2022.124344_b0265
  article-title: Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds
  publication-title: Bioresource Technol
  doi: 10.1016/j.biortech.2010.06.110
– start-page: 1076
  year: 2001
  ident: 10.1016/j.fuel.2022.124344_b0300
  article-title: The potential of multivariate regression in determining formal kinetics of biomass pyrolysis
– volume: 202
  start-page: 43
  year: 2019
  ident: 10.1016/j.fuel.2022.124344_b0070
  article-title: Pyrolysis model development for a polymeric material containing multiple flame retardants: Relationship between heat release rate and material composition
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.01.003
– volume: 192
  start-page: 441
  year: 2015
  ident: 10.1016/j.fuel.2022.124344_b0280
  article-title: Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis
  publication-title: Bioresource Technol
  doi: 10.1016/j.biortech.2015.05.062
– volume: 132
  start-page: 102
  year: 2017
  ident: 10.1016/j.fuel.2022.124344_b0285
  article-title: Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood
  publication-title: Energ Convers Magane
  doi: 10.1016/j.enconman.2016.11.016
– volume: 160
  start-page: 668
  year: 2018
  ident: 10.1016/j.fuel.2022.124344_b0035
  article-title: Experimental and numerical study of the thermomechanical behaviour of wood-based panels exposed to fire
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.11.096
– volume: 138
  start-page: 48
  year: 2015
  ident: 10.1016/j.fuel.2022.124344_b0235
  article-title: Application of genetic algorithm to pyrolysis of typical polymers
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2015.05.001
– volume: 147
  start-page: 647
  year: 2019
  ident: 10.1016/j.fuel.2022.124344_b0205
  article-title: Using PSO-GA algorithm for training artificial neural network to forecast solar space heating system parameters
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.10.070
– volume: 689
  year: 2020
  ident: 10.1016/j.fuel.2022.124344_b0055
  article-title: ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2020.178597
– volume: 24
  start-page: 2841
  issue: 5
  year: 2010
  ident: 10.1016/j.fuel.2022.124344_b0200
  article-title: Improved method for the determination of kinetic parameters from non-isothermal thermogravimetric analysis (TGA) data
  publication-title: Energ Fuel
  doi: 10.1021/ef1001265
– start-page: 2354
  year: 2011
  ident: 10.1016/j.fuel.2022.124344_b0155
  article-title: Parameter estimation of the pyrolysis model for fir based on particle swarm algorithm
– volume: 146
  start-page: 124
  year: 2017
  ident: 10.1016/j.fuel.2022.124344_b0160
  article-title: Thermal decomposition of rape straw: Pyrolysis modeling and kinetic study via particle swarm optimization
  publication-title: Energy Convers Magane
  doi: 10.1016/j.enconman.2017.05.020
– volume: 184
  start-page: 391
  year: 2019
  ident: 10.1016/j.fuel.2022.124344_b0220
  article-title: Optimization study of thermal-storage PV-CSP integrated system based on GA-PSO algorithm
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.04.017
– volume: 219
  year: 2020
  ident: 10.1016/j.fuel.2022.124344_b0210
  article-title: Optimization of five-parameter BRDF model based on hybrid GA-PSO algorithm
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164978
– volume: 195
  year: 2020
  ident: 10.1016/j.fuel.2022.124344_b0125
  article-title: Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117010
– volume: 265
  start-page: 139
  year: 2018
  ident: 10.1016/j.fuel.2022.124344_b0320
  article-title: Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis
  publication-title: Biorecour Technol
  doi: 10.1016/j.biortech.2018.05.092
– volume: 56
  start-page: 1099
  issue: 3
  year: 2020
  ident: 10.1016/j.fuel.2022.124344_b0100
  article-title: Thermal analysis and cone calorimeter study of engineered wood with an emphasis on fire modelling
  publication-title: Fire Technol
  doi: 10.1007/s10694-019-00922-9
– volume: 98
  start-page: 500
  year: 2015
  ident: 10.1016/j.fuel.2022.124344_b0095
  article-title: Modeling the pyrolysis of wet wood using FireFOAM
  publication-title: Energy Convers Magane
  doi: 10.1016/j.enconman.2015.03.106
– volume: 293
  year: 2019
  ident: 10.1016/j.fuel.2022.124344_b0120
  article-title: Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with Particle Swarm Optimization and global sensitivity analysis
  publication-title: Bioresource Technol
  doi: 10.1016/j.biortech.2019.122079
– volume: 156
  start-page: 182
  year: 2014
  ident: 10.1016/j.fuel.2022.124344_b0025
  article-title: Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis
  publication-title: Bioresource Technol
  doi: 10.1016/j.biortech.2014.01.040
– volume: 129
  start-page: 347
  year: 2016
  ident: 10.1016/j.fuel.2022.124344_b0075
  article-title: Determination of kinetics and thermodynamics of thermal decomposition for polymers containing reactive flame retardants: Application to poly(lactic acid) blended with melamine and ammonium polyphosphate
  publication-title: Polym Degrad Stabil
  doi: 10.1016/j.polymdegradstab.2016.05.014
– volume: 120
  year: 2021
  ident: 10.1016/j.fuel.2022.124344_b0140
  article-title: Comparison of pyrolysis properties of extruded and cast Poly (methyl methacrylate)
  publication-title: Fire Safety J
  doi: 10.1016/j.firesaf.2020.103083
– volume: 191
  year: 2020
  ident: 10.1016/j.fuel.2022.124344_b0195
  article-title: A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116414
– start-page: 167
  year: 2016
  ident: 10.1016/j.fuel.2022.124344_b0255
  article-title: Thermal decomposition of polymeric materials
– volume: 690
  year: 2020
  ident: 10.1016/j.fuel.2022.124344_b0185
  article-title: A hybrid pyrolysis mechanism of phenol formaldehyde and kinetics evaluation using isoconversional methods and genetic algorithm
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2020.178708
– volume: 232
  start-page: 147
  year: 2018
  ident: 10.1016/j.fuel.2022.124344_b0090
  article-title: The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.05.140
– volume: 253
  start-page: 189
  year: 2019
  ident: 10.1016/j.fuel.2022.124344_b0165
  article-title: Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.04.169
– volume: 44
  start-page: 819
  issue: 6
  year: 2009
  ident: 10.1016/j.fuel.2022.124344_b0080
  article-title: Generalized pyrolysis model for combustible solids
  publication-title: Fire Safety J
  doi: 10.1016/j.firesaf.2009.03.011
– volume: 37
  start-page: 4053
  issue: 3
  year: 2019
  ident: 10.1016/j.fuel.2022.124344_b0085
  article-title: The effect of chemical composition on the charring of wood across scales
  publication-title: P Combust Inst
  doi: 10.1016/j.proci.2018.06.080
– volume: 37
  start-page: 4247
  issue: 3
  year: 2019
  ident: 10.1016/j.fuel.2022.124344_b0065
  article-title: Development of a semi-global reaction mechanism for thermal decomposition of a polymer containing reactive flame retardant
  publication-title: P Combust Inst
  doi: 10.1016/j.proci.2018.05.073
– volume: 182
  start-page: 201
  issue: 2
  year: 1991
  ident: 10.1016/j.fuel.2022.124344_b0310
  article-title: Kinetic compensation effect as a mathematical consequence of the exponential rate constant
  publication-title: Thermochim Acta
  doi: 10.1016/0040-6031(91)80005-4
– volume: 41
  start-page: 4201
  issue: 17
  year: 2002
  ident: 10.1016/j.fuel.2022.124344_b0270
  article-title: Thermogravimetric analysis and devolatilization kinetics of wood
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie0201157
– volume: 179
  start-page: 784
  year: 2019
  ident: 10.1016/j.fuel.2022.124344_b0130
  article-title: The application and validity of various reaction kinetic models on woody biomass pyrolysis
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.021
– volume: 136
  start-page: 484
  year: 2018
  ident: 10.1016/j.fuel.2022.124344_b0180
  article-title: Kinetic study on pyrolysis of waste phenolic fibre-reinforced plastic
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.03.045
– volume: 85
  year: 2019
  ident: 10.1016/j.fuel.2022.124344_b0225
  article-title: A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frames
  publication-title: Appl Soft Comput
SSID ssj0007854
Score 2.5473423
Snippet •A new hybrid PSO-GA algorithm is proposed to gain advantages of PSO and GA.•Genetic evolution is incorporated into PSO to increase its population...
A hybrid optimization algorithm, combining both Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), is proposed to gain the favorable features of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124344
SubjectTerms Algorithms
Beech
Beech wood
Biomass
Convergence
Genetic algorithm (GA)
Genetic algorithms
Hemicellulose
Kinetics
Optimization algorithms
Particle swarm optimization
Particle Swarm Optimization (PSO)
Population number
PSO-GA
Pyrolysis
Thermogravimetric analysis
Wood
Title Application of a hybrid PSO-GA optimization algorithm in determining pyrolysis kinetics of biomass
URI https://dx.doi.org/10.1016/j.fuel.2022.124344
https://www.proquest.com/docview/2689210168
Volume 323
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BSFUnlgQ2mbxHaSsaooBaSCBEhslu04tHw0VWmHLvx27hqHAhIMjIl8p-hsv7vI954JOUkTkUIdojyVCvhB8XXbU22deVwbzdoKEkbRIDsQ_Xt2-cAfKqRbcmGwrdJhf4HpS7R2b1oumq3JaIQcX1-gdEiAOQyqdmSwswhvMWi-r9o8opgXSsy-8HC0I84UPV7Z3OLxQxA0Ic2FjP2WnH7A9DL39LbIpisaaaf4rm1SseMdsvFFSnCX6M7qJJrmGVV0uEAyFr25vfbOOzQHaHh1nEuqXh7z6Wg2fKWjMU1dQwy4oZPFNF9qlNBncI0KzugLKfpQY--R-97ZXbfvufsTPBPweOYlWTs0NrRMCG4jlOZLokwZpWCXZimUSoGIkiQ13Bo_1lxrKM6iiFstNGBPpsJ9Uh3nY3tAaGRNauI4YbCFWZwYrfyQMxX6qckALU2N-GXgpHHi4njHxYssu8ieJAZbYrBlEewaOf20mRTSGn-O5uV8yG8LRAL2_2lXLydPuu35JgMRJwEaxIf_dHtE1vGp6Dark-psOrfHUJ7MdGO5_hpkrXNx1R98ABND5Cc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIo3HthQ2iaxnWSsEFBeBYkisVm249DwaKpSBhZ-O3eNQwGJDqyxfYrO9nef5bvPhBykiUiBhyhPpQIOKL5ueKqhM49ro1lDQcAoE2TbonXHzu_5_RQ5qmphMK3SYX-J6SO0dl_qzpv1fp5jja8vUDokwBgGrH2azDIeRHgCq32M8zyimJdSzL7wsLurnCmTvLI3i_cPQVCDOBcy9ld0-oXTo-BzskQWHWukzfLHlsmU7a2QhW9agqtEN8dX0bTIqKLdd6zGoje3195pkxaADS-u6JKq54dikA-7LzTv0dRlxIAZ2n8fFCOREvoEplHCGW1hjT6Q7DVyd3LcOWp57gEFzwQ8HnpJ1giNDS0TgtsItfmSKFNGKdimWQpcKRBRkqSGW-PHmmsN7CyKuNVCA_hkKlwnM72iZzcIjaxJTRwnDPYwixOjlR9ypkI_NRnApdkkfuU4aZy6OD5y8SyrNLJHic6W6GxZOnuTHH6N6ZfaGhN782o-5I8VIgH8J47bqSZPuv35KgMRJwEOiLf-aXafzLU6V5fy8qx9sU3msaVMPdshM8PBm90FrjLUe6O1-AlwNuW8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+hybrid+PSO-GA+optimization+algorithm+in+determining+pyrolysis+kinetics+of+biomass&rft.jtitle=Fuel+%28Guildford%29&rft.au=Shi%2C+Leilei&rft.au=Gong%2C+Junhui&rft.au=Zhai%2C+Chunjie&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.volume=323&rft_id=info:doi/10.1016%2Fj.fuel.2022.124344&rft.externalDocID=S0016236122011966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon