Computational methods to simultaneously compare the predictive values of two diagnostic tests with missing data: EM-SEM algorithms and multiple imputation

Predictive values are measures of the clinical accuracy of a binary diagnostic test, and depend on the sensitivity and the specificity of the diagnostic test and on the disease prevalence among the population being studied. This article studies hypothesis tests to simultaneously compare the predicti...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical computation and simulation Vol. 91; no. 16; pp. 3358 - 3384
Main Author Roldán-Nofuentes, J. A.
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.11.2021
Subjects
Online AccessGet full text
ISSN0094-9655
1563-5163
DOI10.1080/00949655.2021.1926461

Cover

Abstract Predictive values are measures of the clinical accuracy of a binary diagnostic test, and depend on the sensitivity and the specificity of the diagnostic test and on the disease prevalence among the population being studied. This article studies hypothesis tests to simultaneously compare the predictive values of two binary diagnostic tests in the presence of missing data. The hypothesis tests were solved applying two computational methods: the expectation maximization and the supplemented expectation maximization algorithms, and multiple imputation. Simulation experiments were carried out to study the sizes and the powers of the hypothesis tests, giving some general rules of application. Two R programmes were written to apply each method, and they are available as supplementary material for the manuscript. The results were applied to the diagnosis of Alzheimer's disease.
AbstractList Predictive values are measures of the clinical accuracy of a binary diagnostic test, and depend on the sensitivity and the specificity of the diagnostic test and on the disease prevalence among the population being studied. This article studies hypothesis tests to simultaneously compare the predictive values of two binary diagnostic tests in the presence of missing data. The hypothesis tests were solved applying two computational methods: the expectation maximization and the supplemented expectation maximization algorithms, and multiple imputation. Simulation experiments were carried out to study the sizes and the powers of the hypothesis tests, giving some general rules of application. Two R programmes were written to apply each method, and they are available as supplementary material for the manuscript. The results were applied to the diagnosis of Alzheimer's disease.
Author Roldán-Nofuentes, J. A.
Author_xml – sequence: 1
  givenname: J. A.
  orcidid: 0000-0003-0251-5588
  surname: Roldán-Nofuentes
  fullname: Roldán-Nofuentes, J. A.
  email: jaroldan@ugr.es
  organization: University of Granada
BookMark eNp9kMtu2zAQRYkiBeo8PiHA_IDcISnKVFctDPcBJOii6VqYkJTNgiINko7hX-nX1kLSLLOaxZx7Z3Au2UVM0TF2y3HJUeNHxL7tO6WWAgVf8l50bcffsQVXnWwU7-QFW8xMM0Mf2GUpfxCRcyUW7O86TftDpepTpACTq7tkC9QExU-HUCm6dCjhBObMUXZQdw722Vlvqn9y8ETh4AqkEeoxgfW0jalUb6C6Ugscfd3B5EvxcQuWKn2CzX3za3MPFLYpn7dTAYoW5lt-Hxz413eu2fuRQnE3L_OK_f66eVh_b-5-fvux_nLXGKF0bbTFdhyFXfUtmlYpbQhb8Wj0I3InVK9WVnNsDfVcKquFxF5p3a6klIq0RHnF1HOvyamU7MZhn_1E-TRwHGbBw3_Bwyx4eBF8zn1-zvk4pjzRMeVgh0qnkPKYKRpfBvl2xT-v1IcM
Cites_doi 10.1111/1467-9876.00102
10.1080/01621459.1991.10475152
10.2307/2530820
10.1111/j.2517-6161.1977.tb01600.x
10.1002/9780470906514
10.1002/sim.1066
10.1093/oso/9780198509844.001.0001
10.1201/9781439821862
10.1080/10629360600938102
10.1002/(SICI)1234-988X(199610)6:3<129::AID-MPR164>3.3.CO;2-A
10.1093/biomet/79.1.103
10.1002/9780470316696
10.1002/sim.2332
10.1002/9781119013563
10.1016/j.csda.2011.06.003
10.1177/0962280216634755
10.1016/j.jspi.2007.03.054
10.1002/sim.4067
10.1002/sim.5587
10.1111/j.0006-341X.2000.00345.x
10.1080/01621459.1991.10475130
10.1002/sim.2715
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
DBID AAYXX
CITATION
DOI 10.1080/00949655.2021.1926461
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 3384
ExternalDocumentID 10_1080_00949655_2021_1926461
1926461
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-8d04ff2d7940c4558ca042bc8b01e25957d8104ca9135d82309588473335a8303
ISSN 0094-9655
IngestDate Wed Oct 01 04:58:57 EDT 2025
Mon Oct 20 23:47:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-8d04ff2d7940c4558ca042bc8b01e25957d8104ca9135d82309588473335a8303
ORCID 0000-0003-0251-5588
PageCount 27
ParticipantIDs informaworld_taylorfrancis_310_1080_00949655_2021_1926461
crossref_primary_10_1080_00949655_2021_1926461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-02
PublicationDateYYYYMMDD 2021-11-02
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-02
  day: 02
PublicationDecade 2020
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2021
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0010
CIT0012
Pepe MS. (CIT0001) 2003
CIT0014
CIT0013
R Core Team (CIT0026) 2013
CIT0016
Bonferroni CE. (CIT0017) 1936; 8
CIT0015
Li KH (CIT0024) 1991; 1
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
van Buuren S (CIT0027) 2011; 45
Marín-Jiménez AE (CIT0011) 2014; 38
CIT0003
CIT0025
CIT0002
CIT0005
CIT0004
CIT0007
CIT0006
CIT0028
CIT0009
CIT0008
Holm S. (CIT0018) 1979; 6
References_xml – volume-title: R: A language and environment for statistical computing
  year: 2013
  ident: CIT0026
– ident: CIT0009
  doi: 10.1111/1467-9876.00102
– volume: 38
  start-page: 305
  year: 2014
  ident: CIT0011
  publication-title: SORT – Statis Operat Res Trans
– ident: CIT0023
  doi: 10.1080/01621459.1991.10475152
– ident: CIT0008
  doi: 10.2307/2530820
– ident: CIT0016
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: CIT0002
  doi: 10.1002/9780470906514
– ident: CIT0014
  doi: 10.1002/sim.1066
– volume: 8
  start-page: 3
  year: 1936
  ident: CIT0017
  publication-title: Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze
– volume-title: The statistical evaluation of medical tests for classification and prediction
  year: 2003
  ident: CIT0001
  doi: 10.1093/oso/9780198509844.001.0001
– ident: CIT0020
  doi: 10.1201/9781439821862
– ident: CIT0013
  doi: 10.1080/10629360600938102
– ident: CIT0028
  doi: 10.1002/(SICI)1234-988X(199610)6:3<129::AID-MPR164>3.3.CO;2-A
– ident: CIT0025
  doi: 10.1093/biomet/79.1.103
– ident: CIT0019
  doi: 10.1002/9780470316696
– ident: CIT0004
  doi: 10.1002/sim.2332
– ident: CIT0021
  doi: 10.1002/9781119013563
– ident: CIT0007
  doi: 10.1016/j.csda.2011.06.003
– ident: CIT0006
  doi: 10.1177/0962280216634755
– ident: CIT0010
  doi: 10.1016/j.jspi.2007.03.054
– volume: 1
  start-page: 65
  year: 1991
  ident: CIT0024
  publication-title: Stat Sin
– volume: 6
  start-page: 65
  year: 1979
  ident: CIT0018
  publication-title: Scand J Statis
– ident: CIT0022
  doi: 10.1002/sim.4067
– ident: CIT0005
  doi: 10.1002/sim.5587
– ident: CIT0003
  doi: 10.1111/j.0006-341X.2000.00345.x
– ident: CIT0015
  doi: 10.1080/01621459.1991.10475130
– ident: CIT0012
  doi: 10.1002/sim.2715
– volume: 45
  start-page: 1
  year: 2011
  ident: CIT0027
  publication-title: J Stat Softw
SSID ssj0001152
Score 2.25055
Snippet Predictive values are measures of the clinical accuracy of a binary diagnostic test, and depend on the sensitivity and the specificity of the diagnostic test...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 3358
SubjectTerms 6207
EM and SEM algorithms
missing data
multiple imputation
partial verification
predictive values
Title Computational methods to simultaneously compare the predictive values of two diagnostic tests with missing data: EM-SEM algorithms and multiple imputation
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2021.1926461
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK97Ic-Ckglj_NgVvlyE7iNOFWQVGF1D2wu2LFJUpSB620m6BtKgTPwpvwcszYTpqgsmK5WFGUTB3NV894PPMNY68zUcxEohUP_HzGwzDRPE7yiCeiiHI0F1lsGG9Wx9HyLPxwrs5Ho1-9rKVtk3vFj711Jf-jVbyHeqUq2VtothOKN_Aa9YsjahjHf9KxbcnQhvNsM2jD2LC5oETBrNK4r7_83iaau7IoOpoxCUNE9G05Z5tvNUVhKemOCFzR_WzL3hAGJppAmaQUPVispnx6gmN2-aW-xieuLMlzl5h40U3pL34vlTAZdmjDTNI9baSYeQ9yAz5SV2s6zJcVP67LLVGIWuh507nXj1n40hTv9cOYuKnkSWQJej3tlt4o4Eq65c6tzbaTV4vB_kobBJby3Vlt3GmHey1Cm0KZEDG-8mg2Hnq1UWg54IcM3H9Yxi5fUXZEqlZMSmJSJ-YOO_DRpIgxO5gv333-1DkC0jZ86j62LSAjavd98xm4RgPi3J7Lc_qA3XM6g7kF3kM20tWE3W_7gIAzCxN2d9Vx_24m7PCkVfDmEfs5gCg4iEJTwxCi4CAKKAh2EAULUahLQIjCDqJgIAoEUXAQBYLoG1isgAMCFHYABYQWtACFHUAfs7P3i9O3S-4agvDCV3HD47UIy9Jfow0RRahUXGRoc_IizoXUuI9Xs3UsRVhkiQzUmo6QE6rDngUIlixGZ-0JG1d1pZ8yKGc6L1SG1jX3w1LKXGitRKm1lOtAZuKIea0u0q-W9yW9EQVHLOlrLG1MwK203XHS4MZ3n932x56zw93f6gUbN9db_RKd4yZ_5UD4Gz1Wt3s
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5UA50LKAKLRlDr1msZM4D24ItVpKs6dW6i2yHQdVlE21yQq1P4Vfy0ycrLaV4NKzM5atceblz98AHGthU5E7FUShSYM4zl2Q5SYJcmETQ-5CZz3jTTFPZpfx2ZW62ngLw7BKzqFrTxTR22r-ubkYPULiPjEcLk-UovQulFOKUZKYM6BnioJ97mIQifnaGkvfdYdFApYZX_H8a5oH_ukBe-mG3zndBTuu2MNNfk5XnZna-0dkjk_b0h68HMJS_OLP0SvYcosJ7I4tH3CwABN4UaxpXtsJ7HCo6pmeX8Mf__VQXETfmrrFrsH2mmGLeuGaVXtzhwPsHWkivF3yRRGbXGTacddiU2P3u8HKQwBpaqRguGuRC8ZIh5JrG8i41s94UpA3KFDf_GiWNPqrRdo_jhBJvF4v5w1cnp5cfJ0FQ-eHwIYq64KsEnFdhxUZC2FjpTKrybgYmxkhHSVsKq0yyiOtzmWkKr4rzPnBbRpFkdIZeeW3sL1oFu4dYJ06Y5UmM2rCuJbSCOeUqJ2TsoqkFvswHfVd3nqCj1KueVO9UkpWSjkoZR_yzVNRdn1lpfZtUMrov7LvnyD7EZ7PLorz8vzb_PsH2OGh_k1keADb3XLlDik46sxRf_r_Ai5KA7o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hVkLlQGEB0ZbHHLhmsZM4D25V6ao8dsWBStwi27FR1bJZbbJC5afwa5mJk1WLBJeeHVuOxp6Xv_kG4I0WNhelU1ESmzxK09JFRWmyqBQ2M2QudNEz3swX2dl5-vGbGtGE7QCr5BjaB6KIXlfz5V7VfkTEvWU0XJkpRdFdLKfkomQpB0C7Gb-KcRWHWGyVsQxNd3hKxHPGIp5_LXPLPN0iL71hdmb7YMYNB7TJ5XTTman99ReX453-6BE8HJxSPA6n6DHcc8sJ7I8NH3C4_xN4MN-SvLYT2GNHNfA8P4Hf4eshtYihMXWLXYPtBYMW9dI1m_bqGgfQO9JCuFrzMxErXGTScddi47H72WAdAIC0NJIr3LXI6WKkI8mZDWRU6zs8nZMtmKO--t6safRHi_T7OAIk8WK7nadwPjv9enIWDX0fIhuroouKWqTexzWpCmFTpQqrSbUYWxghHYVrKq8LiiKtLmWian4pLLncNk-SROmCbPIz2Fk2S_cc0OfOWKVJiZo49VIa4ZwS3jkp60RqcQDTUdzVKtB7VHLLmhqEUrFQqkEoB1DePBRV1-dVfGiCUiX_nXt4h7mv4f6X97Pq84fFpyPY45G-IDJ-ATvdeuNekmfUmVf92f8D-CcCXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+methods+to+simultaneously+compare+the+predictive+values+of+two+diagnostic+tests+with+missing+data%3A+EM+-+SEM+algorithms+and+multiple+imputation&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Rold%C3%A1n-Nofuentes%2C+J.+A.&rft.date=2021-11-02&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=91&rft.issue=16&rft.spage=3358&rft.epage=3384&rft_id=info:doi/10.1080%2F00949655.2021.1926461&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00949655_2021_1926461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon