Multi-scale temporal features extraction based graph convolutional network with attention for multivariate time series prediction

•A novel GCN model is proposed for multivariate time series prediction.•EMD is used to extract multi-scale temporal features of original time series.•Multi-head attention mechanism is utilized to explore the spatial dependencies.•Real datasets from various fields confirms the superiority of the meth...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 200; p. 117011
Main Authors Chen, Yawen, Ding, Fengqian, Zhai, Linbo
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.08.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2022.117011

Cover

Abstract •A novel GCN model is proposed for multivariate time series prediction.•EMD is used to extract multi-scale temporal features of original time series.•Multi-head attention mechanism is utilized to explore the spatial dependencies.•Real datasets from various fields confirms the superiority of the method. Modeling for multivariate time series have always been a meaningful subject. Multivariate time series forecasting is a fundamental problem attracting many researchers in various fields. However, most of the existing methods focused on univariate prediction and rarely take into account the potential spatial dependencies between multiple variables. Multivariate time series forecasting can be naturally viewed from graph perspective, where each variable from multivariate time series can be viewed as a node in the graph, and they are interlinked through hidden dependencies. Therefore, a novel graph neural network model based on multi-scale temporal feature extraction and attention mechanism is proposed for multivariate time series prediction. Specifically, empirical modal decomposition is used to extract the time-domain features of multivariate time series at different time scales to form the node features of the graph. Meanwhile, the multi-head attention mechanism is applied to construct potential associations between nodes and enhance the rationality of relationships in the graph. Furthermore, the graph convolutional neural network is used to generate node embeddings that contain rich spatial relationships. Finally, the temporal convolutional network establishes temporal relationships for the node embedding to achieve multivariate time series prediction. The real data from the financial, traffic and medical fields confirm the effectiveness of the proposed model.
AbstractList •A novel GCN model is proposed for multivariate time series prediction.•EMD is used to extract multi-scale temporal features of original time series.•Multi-head attention mechanism is utilized to explore the spatial dependencies.•Real datasets from various fields confirms the superiority of the method. Modeling for multivariate time series have always been a meaningful subject. Multivariate time series forecasting is a fundamental problem attracting many researchers in various fields. However, most of the existing methods focused on univariate prediction and rarely take into account the potential spatial dependencies between multiple variables. Multivariate time series forecasting can be naturally viewed from graph perspective, where each variable from multivariate time series can be viewed as a node in the graph, and they are interlinked through hidden dependencies. Therefore, a novel graph neural network model based on multi-scale temporal feature extraction and attention mechanism is proposed for multivariate time series prediction. Specifically, empirical modal decomposition is used to extract the time-domain features of multivariate time series at different time scales to form the node features of the graph. Meanwhile, the multi-head attention mechanism is applied to construct potential associations between nodes and enhance the rationality of relationships in the graph. Furthermore, the graph convolutional neural network is used to generate node embeddings that contain rich spatial relationships. Finally, the temporal convolutional network establishes temporal relationships for the node embedding to achieve multivariate time series prediction. The real data from the financial, traffic and medical fields confirm the effectiveness of the proposed model.
Modeling for multivariate time series have always been a meaningful subject. Multivariate time series forecasting is a fundamental problem attracting many researchers in various fields. However, most of the existing methods focused on univariate prediction and rarely take into account the potential spatial dependencies between multiple variables. Multivariate time series forecasting can be naturally viewed from graph perspective, where each variable from multivariate time series can be viewed as a node in the graph, and they are interlinked through hidden dependencies. Therefore, a novel graph neural network model based on multi-scale temporal feature extraction and attention mechanism is proposed for multivariate time series prediction. Specifically, empirical modal decomposition is used to extract the time-domain features of multivariate time series at different time scales to form the node features of the graph. Meanwhile, the multi-head attention mechanism is applied to construct potential associations between nodes and enhance the rationality of relationships in the graph. Furthermore, the graph convolutional neural network is used to generate node embeddings that contain rich spatial relationships. Finally, the temporal convolutional network establishes temporal relationships for the node embedding to achieve multivariate time series prediction. The real data from the financial, traffic and medical fields confirm the effectiveness of the proposed model.
ArticleNumber 117011
Author Chen, Yawen
Ding, Fengqian
Zhai, Linbo
Author_xml – sequence: 1
  givenname: Yawen
  surname: Chen
  fullname: Chen, Yawen
– sequence: 2
  givenname: Fengqian
  surname: Ding
  fullname: Ding, Fengqian
– sequence: 3
  givenname: Linbo
  surname: Zhai
  fullname: Zhai, Linbo
  email: zhai@mail.sdu.edu.cn
BookMark eNp9kE9vFCEYh4mpidvqF_BE0vOs_FkGSHoxTasmbXqpZ_Iu845lnR1GYHbr0W8u0_XkoScS8nuewHNOzsY4IiEfOVtzxttPuzXmI6wFE2LNuWacvyErbrRsWm3lGVkxq3Sz4XrzjpznvGOsjphekT_381BCkz0MSAvup5hgoD1CmRNmis8lgS8hjnQLGTv6I8H0RH0cD3GYl_u6HrEcY_pJj6E8USgFxxegj4nuF_sBUoBS9WGPNGMKVTwl7MKL-D1528OQ8cO_84J8v715vP7a3D18-Xb9-a7xQpnSGGukgt4qybt2q6QQTG0Nh671HaitNVZazntUAr1UohcIDIQx1upNJ5WXF-Ty5J1S_DVjLm4X51Tfn51otZS6rdK6EqeVTzHnhL2bUthD-u04c0tqt3NLarekdqfUFTL_QT4UWD5X64XhdfTqhGL9-iFgctkHHH2tk9AX18XwGv4XGayfEw
CitedBy_id crossref_primary_10_1016_j_eswa_2024_126302
crossref_primary_10_1016_j_ress_2024_110162
crossref_primary_10_1016_j_energy_2023_130078
crossref_primary_10_1088_1361_6501_ad9105
crossref_primary_10_3934_math_2024459
crossref_primary_10_1007_s11042_024_18787_8
crossref_primary_10_1016_j_eswa_2023_122148
crossref_primary_10_1016_j_jprocont_2025_103401
crossref_primary_10_1016_j_eswa_2023_121313
crossref_primary_10_1016_j_eswa_2023_121355
crossref_primary_10_1016_j_ins_2024_120566
crossref_primary_10_1109_JIOT_2023_3303946
crossref_primary_10_1016_j_eswa_2023_122484
crossref_primary_10_1016_j_eswa_2024_124088
crossref_primary_10_1007_s11269_024_03788_x
crossref_primary_10_1016_j_scs_2023_104445
crossref_primary_10_1007_s11869_023_01369_2
crossref_primary_10_1109_JBHI_2024_3468899
crossref_primary_10_3390_electronics13142707
crossref_primary_10_1007_s41060_025_00735_w
crossref_primary_10_1007_s00477_022_02352_6
crossref_primary_10_3390_e25010010
crossref_primary_10_1016_j_eswa_2024_124591
crossref_primary_10_3390_math11010224
crossref_primary_10_1016_j_eswa_2024_124155
Cites_doi 10.1016/j.renene.2019.08.018
10.1109/TFUZZ.2010.2073712
10.1109/TII.2020.2986316
10.1007/s10489-018-1181-7
10.1016/j.asoc.2018.02.007
10.1609/aaai.v34i04.5984
10.1007/BF03404652
10.1016/j.ijar.2019.02.005
10.1109/TSMCA.2012.2190399
10.1080/10962247.2017.1292968
10.1609/aaai.v33i01.3301922
10.1109/IC3.2018.8530608
10.1016/j.ins.2015.08.024
10.1016/j.knosys.2020.106548
10.1016/j.asoc.2017.12.032
10.1016/j.ins.2010.08.026
10.1016/j.neucom.2008.02.022
10.1007/978-3-030-04167-0_33
10.1109/TSG.2017.2753802
10.24963/ijcai.2018/505
10.1016/j.knosys.2014.11.003
10.1016/j.eswa.2017.04.015
10.1007/s10994-019-05815-0
10.1016/j.eswa.2007.05.016
10.1109/TFUZZ.2018.2831640
10.1016/j.knosys.2019.03.011
10.1016/j.enconman.2018.03.098
10.1016/j.eswa.2012.05.040
10.1109/TCYB.2014.2326888
10.1098/rspa.1998.0193
10.1016/j.ins.2020.12.068
10.1016/j.knosys.2020.106359
10.1109/ACCESS.2019.2932999
10.1109/TSMCB.2006.890303
10.1109/TNNLS.2019.2957109
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Aug 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 15, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.117011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_117011
S0957417422004298
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c258t-89835af9531d6b532205b81ad6cda5b9893911fe52ec352f2ea0a2889974d35c3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Mon Jul 14 07:37:41 EDT 2025
Sat Oct 25 06:02:02 EDT 2025
Thu Apr 24 23:08:52 EDT 2025
Fri Feb 23 02:40:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multivariate time series prediction
Features extraction
Graph neural network
Multi-head attention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c258t-89835af9531d6b532205b81ad6cda5b9893911fe52ec352f2ea0a2889974d35c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2673376532
PQPubID 2045477
ParticipantIDs proquest_journals_2673376532
crossref_primary_10_1016_j_eswa_2022_117011
crossref_citationtrail_10_1016_j_eswa_2022_117011
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117011
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019, July). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 922-929).
Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.
Liu, Ong, Shen, Cai (b0125) 2020; 31
Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875.
Cheng, Chen, Jian (b0055) 2016; 327
Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
Taheri, Berger-Wolf (b0180) 2019
Chen, Chang (b0025) 2010; 180
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
Lin, Shao, Djenouri, Yun (b0120) 2021; 212
Chen, Chu, Sheu (b0040) 2012; 42
Rozemberczki, B., Scherer, P., Kiss, O., Sarkar, R., & Ferenci, T. (2021). Chickenpox Cases in Hungary: a Benchmark Dataset for Spatiotemporal Signal Processing with Graph Neural Networks. arXiv preprint arXiv:2102.08100.
Graves (b0070) 2012
Shih, Sun, Lee (b0165) 2019; 108
Yang, Liu (b0195) 2018; 26
Yuan, Liu, Yang, Wu, Shen (b0215) 2020; 206
Zhou, Zhou, Mao, Tai, Wan (b0230) 2019; 7
Zivot, Wang (b0235) 2006
Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.
Chen, Jiang, Zhang, Chen (b0045) 2021; 556
Y. Seo M. Defferrard P. Vandergheynst X. Bresson December). Structured sequence modeling with graph convolutional recurrent networks 2018 Springer Cham 362 373.
Zhang, Wang, Cao, Tang, Guo (b0220) 2018; 48
Madan, R., & Mangipudi, P. S. (2018, August). Predicting computer network traffic: a time series forecasting approach using DWT, ARIMA and RNN. In 2018 Eleventh International Conference on Contemporary Computing (IC3) (pp. 1-5). IEEE.
Egrioglu, Aladag, Yolcu (b0065) 2013; 40
Lin, Quan, Wang, Ma, Zeng (b0115) 2020; 380
Lai, Chang, Yang, Liu (b0105) 2018
Soares, Costa, Costa, Leite (b0175) 2018; 64
Wu, Pan, Long, Jiang, Chang, Zhang (b0190) 2020
Domingos, de Oliveira, de Mattos Neto (b0060) 2019; 175
Chen, Chen (b0030) 2010; 19
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
Cai, Zhang, Zheng, Leung (b0020) 2015; 74
Luo, Tan, Zheng (b0130) 2019; 108
Maia, de Carvalho, Ludermir (b0140) 2008; 71
Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., ... & Leiserson, C. (2020, April). Evolvegcn: Evolving graph convolutional networks for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5363-5370).
Cai, Jia, Feng, Li, Hsu, Lee (b0015) 2020; 146
Chen, Zeng, Zhou, Du, Lu (b0050) 2018; 165
Kong, Dong, Jia, Hill, Xu, Zhang (b0100) 2017; 10
Abeysinghe, Balasooriya, Tsui (b0005) 2003; 1
Yu, Huarng (b0210) 2008; 34
Guo, Wang (b0080) 2020; 17
Huarng, Yu, Hsu (b0090) 2007; 37
Chen, Chen (b0035) 2014; 45
Shumway, Stoffer, Stoffer (b0170) 2000; Vol. 3
Schimbinschi, Moreira-Matias, Nguyen, Bailey (b0155) 2017; 82
Yolcu, Alpaslan (b0200) 2018; 66
Zhang, Zhang, Wang, Qin, Wang (b0225) 2017; 67
Lai (10.1016/j.eswa.2022.117011_b0105) 2018
Zhang (10.1016/j.eswa.2022.117011_b0225) 2017; 67
Chen (10.1016/j.eswa.2022.117011_b0050) 2018; 165
Yolcu (10.1016/j.eswa.2022.117011_b0200) 2018; 66
Abeysinghe (10.1016/j.eswa.2022.117011_b0005) 2003; 1
Chen (10.1016/j.eswa.2022.117011_b0045) 2021; 556
Lin (10.1016/j.eswa.2022.117011_b0115) 2020; 380
Cheng (10.1016/j.eswa.2022.117011_b0055) 2016; 327
Liu (10.1016/j.eswa.2022.117011_b0125) 2020; 31
10.1016/j.eswa.2022.117011_b0145
Kong (10.1016/j.eswa.2022.117011_b0100) 2017; 10
Shih (10.1016/j.eswa.2022.117011_b0165) 2019; 108
Domingos (10.1016/j.eswa.2022.117011_b0060) 2019; 175
Guo (10.1016/j.eswa.2022.117011_b0080) 2020; 17
10.1016/j.eswa.2022.117011_b0205
10.1016/j.eswa.2022.117011_b0085
Egrioglu (10.1016/j.eswa.2022.117011_b0065) 2013; 40
Shumway (10.1016/j.eswa.2022.117011_b0170) 2000; Vol. 3
10.1016/j.eswa.2022.117011_b0160
Yu (10.1016/j.eswa.2022.117011_b0210) 2008; 34
Luo (10.1016/j.eswa.2022.117011_b0130) 2019; 108
Schimbinschi (10.1016/j.eswa.2022.117011_b0155) 2017; 82
10.1016/j.eswa.2022.117011_b0185
Lin (10.1016/j.eswa.2022.117011_b0120) 2021; 212
Cai (10.1016/j.eswa.2022.117011_b0015) 2020; 146
Wu (10.1016/j.eswa.2022.117011_b0190) 2020
Cai (10.1016/j.eswa.2022.117011_b0020) 2015; 74
Zhang (10.1016/j.eswa.2022.117011_b0220) 2018; 48
Zivot (10.1016/j.eswa.2022.117011_b0235) 2006
Chen (10.1016/j.eswa.2022.117011_b0030) 2010; 19
Chen (10.1016/j.eswa.2022.117011_b0040) 2012; 42
10.1016/j.eswa.2022.117011_b0135
Chen (10.1016/j.eswa.2022.117011_b0025) 2010; 180
Zhou (10.1016/j.eswa.2022.117011_b0230) 2019; 7
Chen (10.1016/j.eswa.2022.117011_b0035) 2014; 45
Huarng (10.1016/j.eswa.2022.117011_b0090) 2007; 37
10.1016/j.eswa.2022.117011_b0095
10.1016/j.eswa.2022.117011_b0150
Yuan (10.1016/j.eswa.2022.117011_b0215) 2020; 206
Taheri (10.1016/j.eswa.2022.117011_b0180) 2019
Graves (10.1016/j.eswa.2022.117011_b0070) 2012
Yang (10.1016/j.eswa.2022.117011_b0195) 2018; 26
10.1016/j.eswa.2022.117011_b0110
10.1016/j.eswa.2022.117011_b0075
10.1016/j.eswa.2022.117011_b0010
Maia (10.1016/j.eswa.2022.117011_b0140) 2008; 71
Soares (10.1016/j.eswa.2022.117011_b0175) 2018; 64
References_xml – reference: Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
– volume: 74
  start-page: 61
  year: 2015
  end-page: 68
  ident: b0020
  article-title: A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression
  publication-title: Knowledge-Based Systems
– reference: Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., ... & Leiserson, C. (2020, April). Evolvegcn: Evolving graph convolutional networks for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5363-5370).
– volume: 212
  year: 2021
  ident: b0120
  article-title: ASRNN: A recurrent neural network with an attention model for sequence labeling
  publication-title: Knowledge-Based Systems
– volume: 37
  start-page: 836
  year: 2007
  end-page: 846
  ident: b0090
  article-title: A multivariate heuristic model for fuzzy time-series forecasting
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– reference: Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
– reference: Rozemberczki, B., Scherer, P., Kiss, O., Sarkar, R., & Ferenci, T. (2021). Chickenpox Cases in Hungary: a Benchmark Dataset for Spatiotemporal Signal Processing with Graph Neural Networks. arXiv preprint arXiv:2102.08100.
– volume: 82
  start-page: 301
  year: 2017
  end-page: 316
  ident: b0155
  article-title: Topology-regularized universal vector autoregression for traffic forecasting in large urban areas
  publication-title: Expert Systems with Applications
– volume: 66
  start-page: 18
  year: 2018
  end-page: 33
  ident: b0200
  article-title: Prediction of TAIEX based on hybrid fuzzy time series model with single optimization process
  publication-title: Applied Soft Computing
– start-page: 37
  year: 2012
  end-page: 45
  ident: b0070
  article-title: Long short-term memory
  publication-title: Supervised Sequence Labelling with Recurrent Neural Networks
– start-page: 753
  year: 2020
  end-page: 763
  ident: b0190
  article-title: August). Connecting the dots: Multivariate time series forecasting with graph neural networks
  publication-title: In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– start-page: 385
  year: 2006
  end-page: 429
  ident: b0235
  article-title: Vector autoregressive models for multivariate time series
  publication-title: Modeling Financial Time Series with S-Plus®
– volume: 108
  start-page: 1421
  year: 2019
  end-page: 1441
  ident: b0165
  article-title: Temporal pattern attention for multivariate time series forecasting
  publication-title: Machine Learning
– reference: Y. Seo M. Defferrard P. Vandergheynst X. Bresson December). Structured sequence modeling with graph convolutional recurrent networks 2018 Springer Cham 362 373.
– reference: Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.
– reference: Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926.
– volume: 146
  start-page: 2112
  year: 2020
  end-page: 2123
  ident: b0015
  article-title: Gaussian Process Regression for numerical wind speed prediction enhancement
  publication-title: Renewable Energy
– volume: 327
  start-page: 272
  year: 2016
  end-page: 287
  ident: b0055
  article-title: Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures
  publication-title: Information Sciences
– volume: Vol. 3
  year: 2000
  ident: b0170
  publication-title: Time series analysis and its applications
– volume: 7
  start-page: 108161
  year: 2019
  end-page: 108173
  ident: b0230
  article-title: An optimized heterogeneous structure LSTM network for electricity price forecasting
  publication-title: IEEE Access
– volume: 10
  start-page: 841
  year: 2017
  end-page: 851
  ident: b0100
  article-title: Short-term residential load forecasting based on LSTM recurrent neural network
  publication-title: IEEE Transactions on Smart Grid
– reference: Madan, R., & Mangipudi, P. S. (2018, August). Predicting computer network traffic: a time series forecasting approach using DWT, ARIMA and RNN. In 2018 Eleventh International Conference on Contemporary Computing (IC3) (pp. 1-5). IEEE.
– volume: 19
  start-page: 1
  year: 2010
  end-page: 12
  ident: b0030
  article-title: TAIEX forecasting based on fuzzy time series and fuzzy variation groups
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 556
  start-page: 67
  year: 2021
  end-page: 94
  ident: b0045
  article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction
  publication-title: Information Sciences
– volume: 71
  start-page: 3344
  year: 2008
  end-page: 3352
  ident: b0140
  article-title: Forecasting models for interval-valued time series
  publication-title: Neurocomputing
– volume: 17
  start-page: 2776
  year: 2020
  end-page: 2783
  ident: b0080
  article-title: A deep graph neural network-based mechanism for social recommendations
  publication-title: IEEE Transactions on Industrial Informatics
– reference: Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019, July). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 922-929).
– volume: 108
  start-page: 38
  year: 2019
  end-page: 61
  ident: b0130
  article-title: Long-term prediction of time series based on stepwise linear division algorithm and time-variant zonary fuzzy information granules
  publication-title: International Journal of Approximate Reasoning
– volume: 64
  start-page: 445
  year: 2018
  end-page: 453
  ident: b0175
  article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction
  publication-title: Applied Soft Computing
– volume: 34
  start-page: 2945
  year: 2008
  end-page: 2952
  ident: b0210
  article-title: A bivariate fuzzy time series model to forecast the TAIEX
  publication-title: Expert Systems with Applications
– volume: 175
  start-page: 72
  year: 2019
  end-page: 86
  ident: b0060
  article-title: An intelligent hybridization of ARIMA with machine learning models for time series forecasting
  publication-title: Knowledge-Based Systems
– volume: 42
  start-page: 1485
  year: 2012
  end-page: 1495
  ident: b0040
  article-title: TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
– volume: 206
  year: 2020
  ident: b0215
  article-title: Time series forecasting based on kernel mapping and high-order fuzzy cognitive maps
  publication-title: Knowledge-Based Systems
– volume: 31
  start-page: 4405
  year: 2020
  end-page: 4423
  ident: b0125
  article-title: When Gaussian process meets big data: A review of scalable GPs
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 165
  start-page: 681
  year: 2018
  end-page: 695
  ident: b0050
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy conversion and management
– reference: Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
– reference: Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875.
– volume: 67
  start-page: 776
  year: 2017
  end-page: 788
  ident: b0225
  article-title: Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China
  publication-title: Journal of the Air & Waste Management Association
– volume: 40
  start-page: 854
  year: 2013
  end-page: 857
  ident: b0065
  article-title: Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks
  publication-title: Expert Systems with Applications
– volume: 380
  start-page: 2739
  year: 2020
  end-page: 2745
  ident: b0115
  article-title: KGNN: Knowledge graph neural network for drug-drug interaction prediction
  publication-title: In IJCAI
– volume: 48
  start-page: 3827
  year: 2018
  end-page: 3838
  ident: b0220
  article-title: A multivariate short-term traffic flow forecasting method based on wavelet analysis and seasonal time series
  publication-title: Applied Intelligence
– volume: 26
  start-page: 3391
  year: 2018
  end-page: 3402
  ident: b0195
  article-title: Time-series forecasting based on high-order fuzzy cognitive maps and wavelet transform
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 180
  start-page: 4772
  year: 2010
  end-page: 4783
  ident: b0025
  article-title: Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques
  publication-title: Information Sciences
– volume: 45
  start-page: 391
  year: 2014
  end-page: 403
  ident: b0035
  article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships
  publication-title: IEEE Transactions on Cybernetics
– start-page: 95
  year: 2018
  end-page: 104
  ident: b0105
  article-title: June). Modeling long-and short-term temporal patterns with deep neural networks
  publication-title: In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval
– volume: 1
  start-page: 103
  year: 2003
  end-page: 113
  ident: b0005
  article-title: Small-sample forecasting regression or ARIMA models?
  publication-title: Journal of Quantitative Economics
– start-page: 57
  year: 2019
  end-page: 64
  ident: b0180
  article-title: Predictive temporal embedding of dynamic graphs
  publication-title: In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
– start-page: 385
  year: 2006
  ident: 10.1016/j.eswa.2022.117011_b0235
  article-title: Vector autoregressive models for multivariate time series
  publication-title: Modeling Financial Time Series with S-Plus®
– volume: 146
  start-page: 2112
  year: 2020
  ident: 10.1016/j.eswa.2022.117011_b0015
  article-title: Gaussian Process Regression for numerical wind speed prediction enhancement
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.08.018
– volume: 19
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2022.117011_b0030
  article-title: TAIEX forecasting based on fuzzy time series and fuzzy variation groups
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2010.2073712
– volume: 17
  start-page: 2776
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2022.117011_b0080
  article-title: A deep graph neural network-based mechanism for social recommendations
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2020.2986316
– ident: 10.1016/j.eswa.2022.117011_b0010
– volume: 48
  start-page: 3827
  issue: 10
  year: 2018
  ident: 10.1016/j.eswa.2022.117011_b0220
  article-title: A multivariate short-term traffic flow forecasting method based on wavelet analysis and seasonal time series
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1181-7
– volume: 66
  start-page: 18
  year: 2018
  ident: 10.1016/j.eswa.2022.117011_b0200
  article-title: Prediction of TAIEX based on hybrid fuzzy time series model with single optimization process
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.02.007
– ident: 10.1016/j.eswa.2022.117011_b0145
  doi: 10.1609/aaai.v34i04.5984
– volume: 1
  start-page: 103
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2022.117011_b0005
  article-title: Small-sample forecasting regression or ARIMA models?
  publication-title: Journal of Quantitative Economics
  doi: 10.1007/BF03404652
– volume: 108
  start-page: 38
  year: 2019
  ident: 10.1016/j.eswa.2022.117011_b0130
  article-title: Long-term prediction of time series based on stepwise linear division algorithm and time-variant zonary fuzzy information granules
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2019.02.005
– volume: 42
  start-page: 1485
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2022.117011_b0040
  article-title: TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
  doi: 10.1109/TSMCA.2012.2190399
– volume: 67
  start-page: 776
  issue: 7
  year: 2017
  ident: 10.1016/j.eswa.2022.117011_b0225
  article-title: Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China
  publication-title: Journal of the Air & Waste Management Association
  doi: 10.1080/10962247.2017.1292968
– ident: 10.1016/j.eswa.2022.117011_b0075
  doi: 10.1609/aaai.v33i01.3301922
– ident: 10.1016/j.eswa.2022.117011_b0135
  doi: 10.1109/IC3.2018.8530608
– volume: 327
  start-page: 272
  year: 2016
  ident: 10.1016/j.eswa.2022.117011_b0055
  article-title: Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.08.024
– volume: 212
  year: 2021
  ident: 10.1016/j.eswa.2022.117011_b0120
  article-title: ASRNN: A recurrent neural network with an attention model for sequence labeling
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106548
– volume: 64
  start-page: 445
  year: 2018
  ident: 10.1016/j.eswa.2022.117011_b0175
  article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.12.032
– volume: 180
  start-page: 4772
  issue: 24
  year: 2010
  ident: 10.1016/j.eswa.2022.117011_b0025
  article-title: Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.08.026
– volume: 71
  start-page: 3344
  issue: 16–18
  year: 2008
  ident: 10.1016/j.eswa.2022.117011_b0140
  article-title: Forecasting models for interval-valued time series
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.02.022
– volume: Vol. 3
  year: 2000
  ident: 10.1016/j.eswa.2022.117011_b0170
– start-page: 95
  year: 2018
  ident: 10.1016/j.eswa.2022.117011_b0105
  article-title: June). Modeling long-and short-term temporal patterns with deep neural networks
– ident: 10.1016/j.eswa.2022.117011_b0160
  doi: 10.1007/978-3-030-04167-0_33
– volume: 10
  start-page: 841
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.117011_b0100
  article-title: Short-term residential load forecasting based on LSTM recurrent neural network
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2017.2753802
– start-page: 37
  year: 2012
  ident: 10.1016/j.eswa.2022.117011_b0070
  article-title: Long short-term memory
– start-page: 57
  year: 2019
  ident: 10.1016/j.eswa.2022.117011_b0180
  article-title: Predictive temporal embedding of dynamic graphs
– ident: 10.1016/j.eswa.2022.117011_b0205
  doi: 10.24963/ijcai.2018/505
– volume: 380
  start-page: 2739
  year: 2020
  ident: 10.1016/j.eswa.2022.117011_b0115
  article-title: KGNN: Knowledge graph neural network for drug-drug interaction prediction
  publication-title: In IJCAI
– volume: 74
  start-page: 61
  year: 2015
  ident: 10.1016/j.eswa.2022.117011_b0020
  article-title: A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.11.003
– volume: 82
  start-page: 301
  year: 2017
  ident: 10.1016/j.eswa.2022.117011_b0155
  article-title: Topology-regularized universal vector autoregression for traffic forecasting in large urban areas
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.015
– volume: 108
  start-page: 1421
  issue: 8
  year: 2019
  ident: 10.1016/j.eswa.2022.117011_b0165
  article-title: Temporal pattern attention for multivariate time series forecasting
  publication-title: Machine Learning
  doi: 10.1007/s10994-019-05815-0
– volume: 34
  start-page: 2945
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2022.117011_b0210
  article-title: A bivariate fuzzy time series model to forecast the TAIEX
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.05.016
– ident: 10.1016/j.eswa.2022.117011_b0185
– volume: 26
  start-page: 3391
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2022.117011_b0195
  article-title: Time-series forecasting based on high-order fuzzy cognitive maps and wavelet transform
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2018.2831640
– volume: 175
  start-page: 72
  year: 2019
  ident: 10.1016/j.eswa.2022.117011_b0060
  article-title: An intelligent hybridization of ARIMA with machine learning models for time series forecasting
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.03.011
– volume: 165
  start-page: 681
  year: 2018
  ident: 10.1016/j.eswa.2022.117011_b0050
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy conversion and management
  doi: 10.1016/j.enconman.2018.03.098
– volume: 40
  start-page: 854
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2022.117011_b0065
  article-title: Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.05.040
– ident: 10.1016/j.eswa.2022.117011_b0150
– volume: 45
  start-page: 391
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2022.117011_b0035
  article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2326888
– ident: 10.1016/j.eswa.2022.117011_b0095
– ident: 10.1016/j.eswa.2022.117011_b0085
  doi: 10.1098/rspa.1998.0193
– volume: 556
  start-page: 67
  year: 2021
  ident: 10.1016/j.eswa.2022.117011_b0045
  article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.12.068
– ident: 10.1016/j.eswa.2022.117011_b0110
– volume: 206
  year: 2020
  ident: 10.1016/j.eswa.2022.117011_b0215
  article-title: Time series forecasting based on kernel mapping and high-order fuzzy cognitive maps
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106359
– volume: 7
  start-page: 108161
  year: 2019
  ident: 10.1016/j.eswa.2022.117011_b0230
  article-title: An optimized heterogeneous structure LSTM network for electricity price forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932999
– start-page: 753
  year: 2020
  ident: 10.1016/j.eswa.2022.117011_b0190
  article-title: August). Connecting the dots: Multivariate time series forecasting with graph neural networks
– volume: 37
  start-page: 836
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2022.117011_b0090
  article-title: A multivariate heuristic model for fuzzy time-series forecasting
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2006.890303
– volume: 31
  start-page: 4405
  issue: 11
  year: 2020
  ident: 10.1016/j.eswa.2022.117011_b0125
  article-title: When Gaussian process meets big data: A review of scalable GPs
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2957109
SSID ssj0017007
Score 2.5427299
Snippet •A novel GCN model is proposed for multivariate time series prediction.•EMD is used to extract multi-scale temporal features of original time...
Modeling for multivariate time series have always been a meaningful subject. Multivariate time series forecasting is a fundamental problem attracting many...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117011
SubjectTerms Artificial neural networks
Feature extraction
Features extraction
Forecasting
Graph neural network
Mathematical models
Multi-head attention
Multivariate analysis
Multivariate time series prediction
Neural networks
Nodes
Prediction models
Spatial dependencies
Time series
Title Multi-scale temporal features extraction based graph convolutional network with attention for multivariate time series prediction
URI https://dx.doi.org/10.1016/j.eswa.2022.117011
https://www.proquest.com/docview/2673376532
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYM3qWvapD-OYzim4i462C00bQKTUcc69Sb4n_temg4U3MFjSxJKXvLel-Z73yPkCg8dmdbc49z4Hk_BFlkcMk8ppbHiUcIsm_BxEo2n_H4mZi0ybHJhkFbpfH_t0623dm_6bjb7y_m8_wTgAMIhHO0C61Ux4ZfzGKsY3HxuaB4oPxfXenuxh61d4kzN8dLVB2oPBQHeXfqM_RWcfrlpG3tGB2TPgUY6qL_rkLR0eUT2m4IM1O3PY_Jl02m9CuZdUyc6taBGW_HOioIfXtV5DBSDV0GtWjVF4rlbgNC6rHnhFH_QUhTftHRICtiWWvLhOxyuAZ9SLEpPcf3CwMsVXvdguxMyHd0-D8eeq7Hg5YFI1l6SAgTLTApbsYiUCDHvViUsK6K8yIRKAc6AOzRaBDoHrGYCnflZkMApLeZFKPLwlLTL11KfEcoKrpUxRok458yYJCx8nWue-DwGkOZ3CGsmV-ZOgBzrYCxkwzR7kWgQiQaRtUE65HrTZ1nLb2xtLRqbyR-LSEJ82Nqv2xhYui1cySCKQ_C-MCXn_xz2guziE_6BZqJL2uvVm74ECLNWPbtGe2RncPcwnnwD1_ryeQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD3rxtxFF7cGbmaxdy8bREAkqcBESbs26tYmGIAHUm4n_ue91HYkmcvC6dcvS1773vfV73yPkCpOO1BgRCGHDQLTAFmkcsUBrbbDjUcIcm7A_aHZH4mEsxxXSLmthkFbpfX_h05239lcafjYbs-fnxhOAAwiHkNpx51WTDbIpJI8xA7v5XPE8UH8uLgT34gCH-8qZguRlFh8oPsQ5Hl6GjP0VnX75aRd8Ontkx6NGelt82D6pmOkB2S07MlC_QQ_Jl6unDRYw8YZ61akJtcapdy4oOOJ5UchAMXrl1MlVU2Se-xUIo6cFMZziH1qK6puOD0kB3FLHPnyH7BoAKsWu9BQXMLx4NsfzHhx3REadu2G7G_gmC0HGZbIMkhZgsNS2YC_mTS0jLLzVCUvzZpanUrcAz4A_tEZykwFYs9ykYcoTSNNikUcyi45Jdfo6NSeEslwYba3VMs4EszaJ8tBkRiShiAGlhTXCyslVmVcgx0YYE1VSzV4UGkShQVRhkBq5Xj0zK_Q31o6Wpc3Uj1WkIECsfa5eGlj5PbxQvBlH4H5hSk7_-dpLstUd9nuqdz94PCPbeAd_RzNZJ9Xl_M2cA55Z6gu3Xr8BdYX0Dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+temporal+features+extraction+based+graph+convolutional+network+with+attention+for+multivariate+time+series+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Chen%2C+Yawen&rft.au=Ding%2C+Fengqian&rft.au=Zhai%2C+Linbo&rft.date=2022-08-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=200&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2022.117011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon