Multi-scale temporal features extraction based graph convolutional network with attention for multivariate time series prediction
•A novel GCN model is proposed for multivariate time series prediction.•EMD is used to extract multi-scale temporal features of original time series.•Multi-head attention mechanism is utilized to explore the spatial dependencies.•Real datasets from various fields confirms the superiority of the meth...
Saved in:
| Published in | Expert systems with applications Vol. 200; p. 117011 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
15.08.2022
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2022.117011 |
Cover
| Abstract | •A novel GCN model is proposed for multivariate time series prediction.•EMD is used to extract multi-scale temporal features of original time series.•Multi-head attention mechanism is utilized to explore the spatial dependencies.•Real datasets from various fields confirms the superiority of the method.
Modeling for multivariate time series have always been a meaningful subject. Multivariate time series forecasting is a fundamental problem attracting many researchers in various fields. However, most of the existing methods focused on univariate prediction and rarely take into account the potential spatial dependencies between multiple variables. Multivariate time series forecasting can be naturally viewed from graph perspective, where each variable from multivariate time series can be viewed as a node in the graph, and they are interlinked through hidden dependencies. Therefore, a novel graph neural network model based on multi-scale temporal feature extraction and attention mechanism is proposed for multivariate time series prediction. Specifically, empirical modal decomposition is used to extract the time-domain features of multivariate time series at different time scales to form the node features of the graph. Meanwhile, the multi-head attention mechanism is applied to construct potential associations between nodes and enhance the rationality of relationships in the graph. Furthermore, the graph convolutional neural network is used to generate node embeddings that contain rich spatial relationships. Finally, the temporal convolutional network establishes temporal relationships for the node embedding to achieve multivariate time series prediction. The real data from the financial, traffic and medical fields confirm the effectiveness of the proposed model. |
|---|---|
| AbstractList | •A novel GCN model is proposed for multivariate time series prediction.•EMD is used to extract multi-scale temporal features of original time series.•Multi-head attention mechanism is utilized to explore the spatial dependencies.•Real datasets from various fields confirms the superiority of the method.
Modeling for multivariate time series have always been a meaningful subject. Multivariate time series forecasting is a fundamental problem attracting many researchers in various fields. However, most of the existing methods focused on univariate prediction and rarely take into account the potential spatial dependencies between multiple variables. Multivariate time series forecasting can be naturally viewed from graph perspective, where each variable from multivariate time series can be viewed as a node in the graph, and they are interlinked through hidden dependencies. Therefore, a novel graph neural network model based on multi-scale temporal feature extraction and attention mechanism is proposed for multivariate time series prediction. Specifically, empirical modal decomposition is used to extract the time-domain features of multivariate time series at different time scales to form the node features of the graph. Meanwhile, the multi-head attention mechanism is applied to construct potential associations between nodes and enhance the rationality of relationships in the graph. Furthermore, the graph convolutional neural network is used to generate node embeddings that contain rich spatial relationships. Finally, the temporal convolutional network establishes temporal relationships for the node embedding to achieve multivariate time series prediction. The real data from the financial, traffic and medical fields confirm the effectiveness of the proposed model. Modeling for multivariate time series have always been a meaningful subject. Multivariate time series forecasting is a fundamental problem attracting many researchers in various fields. However, most of the existing methods focused on univariate prediction and rarely take into account the potential spatial dependencies between multiple variables. Multivariate time series forecasting can be naturally viewed from graph perspective, where each variable from multivariate time series can be viewed as a node in the graph, and they are interlinked through hidden dependencies. Therefore, a novel graph neural network model based on multi-scale temporal feature extraction and attention mechanism is proposed for multivariate time series prediction. Specifically, empirical modal decomposition is used to extract the time-domain features of multivariate time series at different time scales to form the node features of the graph. Meanwhile, the multi-head attention mechanism is applied to construct potential associations between nodes and enhance the rationality of relationships in the graph. Furthermore, the graph convolutional neural network is used to generate node embeddings that contain rich spatial relationships. Finally, the temporal convolutional network establishes temporal relationships for the node embedding to achieve multivariate time series prediction. The real data from the financial, traffic and medical fields confirm the effectiveness of the proposed model. |
| ArticleNumber | 117011 |
| Author | Chen, Yawen Ding, Fengqian Zhai, Linbo |
| Author_xml | – sequence: 1 givenname: Yawen surname: Chen fullname: Chen, Yawen – sequence: 2 givenname: Fengqian surname: Ding fullname: Ding, Fengqian – sequence: 3 givenname: Linbo surname: Zhai fullname: Zhai, Linbo email: zhai@mail.sdu.edu.cn |
| BookMark | eNp9kE9vFCEYh4mpidvqF_BE0vOs_FkGSHoxTasmbXqpZ_Iu845lnR1GYHbr0W8u0_XkoScS8nuewHNOzsY4IiEfOVtzxttPuzXmI6wFE2LNuWacvyErbrRsWm3lGVkxq3Sz4XrzjpznvGOsjphekT_381BCkz0MSAvup5hgoD1CmRNmis8lgS8hjnQLGTv6I8H0RH0cD3GYl_u6HrEcY_pJj6E8USgFxxegj4nuF_sBUoBS9WGPNGMKVTwl7MKL-D1528OQ8cO_84J8v715vP7a3D18-Xb9-a7xQpnSGGukgt4qybt2q6QQTG0Nh671HaitNVZazntUAr1UohcIDIQx1upNJ5WXF-Ty5J1S_DVjLm4X51Tfn51otZS6rdK6EqeVTzHnhL2bUthD-u04c0tqt3NLarekdqfUFTL_QT4UWD5X64XhdfTqhGL9-iFgctkHHH2tk9AX18XwGv4XGayfEw |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_126302 crossref_primary_10_1016_j_ress_2024_110162 crossref_primary_10_1016_j_energy_2023_130078 crossref_primary_10_1088_1361_6501_ad9105 crossref_primary_10_3934_math_2024459 crossref_primary_10_1007_s11042_024_18787_8 crossref_primary_10_1016_j_eswa_2023_122148 crossref_primary_10_1016_j_jprocont_2025_103401 crossref_primary_10_1016_j_eswa_2023_121313 crossref_primary_10_1016_j_eswa_2023_121355 crossref_primary_10_1016_j_ins_2024_120566 crossref_primary_10_1109_JIOT_2023_3303946 crossref_primary_10_1016_j_eswa_2023_122484 crossref_primary_10_1016_j_eswa_2024_124088 crossref_primary_10_1007_s11269_024_03788_x crossref_primary_10_1016_j_scs_2023_104445 crossref_primary_10_1007_s11869_023_01369_2 crossref_primary_10_1109_JBHI_2024_3468899 crossref_primary_10_3390_electronics13142707 crossref_primary_10_1007_s41060_025_00735_w crossref_primary_10_1007_s00477_022_02352_6 crossref_primary_10_3390_e25010010 crossref_primary_10_1016_j_eswa_2024_124591 crossref_primary_10_3390_math11010224 crossref_primary_10_1016_j_eswa_2024_124155 |
| Cites_doi | 10.1016/j.renene.2019.08.018 10.1109/TFUZZ.2010.2073712 10.1109/TII.2020.2986316 10.1007/s10489-018-1181-7 10.1016/j.asoc.2018.02.007 10.1609/aaai.v34i04.5984 10.1007/BF03404652 10.1016/j.ijar.2019.02.005 10.1109/TSMCA.2012.2190399 10.1080/10962247.2017.1292968 10.1609/aaai.v33i01.3301922 10.1109/IC3.2018.8530608 10.1016/j.ins.2015.08.024 10.1016/j.knosys.2020.106548 10.1016/j.asoc.2017.12.032 10.1016/j.ins.2010.08.026 10.1016/j.neucom.2008.02.022 10.1007/978-3-030-04167-0_33 10.1109/TSG.2017.2753802 10.24963/ijcai.2018/505 10.1016/j.knosys.2014.11.003 10.1016/j.eswa.2017.04.015 10.1007/s10994-019-05815-0 10.1016/j.eswa.2007.05.016 10.1109/TFUZZ.2018.2831640 10.1016/j.knosys.2019.03.011 10.1016/j.enconman.2018.03.098 10.1016/j.eswa.2012.05.040 10.1109/TCYB.2014.2326888 10.1098/rspa.1998.0193 10.1016/j.ins.2020.12.068 10.1016/j.knosys.2020.106359 10.1109/ACCESS.2019.2932999 10.1109/TSMCB.2006.890303 10.1109/TNNLS.2019.2957109 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Aug 15, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Aug 15, 2022 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2022.117011 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2022_117011 S0957417422004298 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c258t-89835af9531d6b532205b81ad6cda5b9893911fe52ec352f2ea0a2889974d35c3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Mon Jul 14 07:37:41 EDT 2025 Sat Oct 25 06:02:02 EDT 2025 Thu Apr 24 23:08:52 EDT 2025 Fri Feb 23 02:40:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multivariate time series prediction Features extraction Graph neural network Multi-head attention |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c258t-89835af9531d6b532205b81ad6cda5b9893911fe52ec352f2ea0a2889974d35c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2673376532 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2673376532 crossref_primary_10_1016_j_eswa_2022_117011 crossref_citationtrail_10_1016_j_eswa_2022_117011 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117011 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-15 |
| PublicationDateYYYYMMDD | 2022-08-15 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019, July). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 922-929). Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. Liu, Ong, Shen, Cai (b0125) 2020; 31 Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875. Cheng, Chen, Jian (b0055) 2016; 327 Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. Taheri, Berger-Wolf (b0180) 2019 Chen, Chang (b0025) 2010; 180 Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903. Lin, Shao, Djenouri, Yun (b0120) 2021; 212 Chen, Chu, Sheu (b0040) 2012; 42 Rozemberczki, B., Scherer, P., Kiss, O., Sarkar, R., & Ferenci, T. (2021). Chickenpox Cases in Hungary: a Benchmark Dataset for Spatiotemporal Signal Processing with Graph Neural Networks. arXiv preprint arXiv:2102.08100. Graves (b0070) 2012 Shih, Sun, Lee (b0165) 2019; 108 Yang, Liu (b0195) 2018; 26 Yuan, Liu, Yang, Wu, Shen (b0215) 2020; 206 Zhou, Zhou, Mao, Tai, Wan (b0230) 2019; 7 Zivot, Wang (b0235) 2006 Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. Chen, Jiang, Zhang, Chen (b0045) 2021; 556 Y. Seo M. Defferrard P. Vandergheynst X. Bresson December). Structured sequence modeling with graph convolutional recurrent networks 2018 Springer Cham 362 373. Zhang, Wang, Cao, Tang, Guo (b0220) 2018; 48 Madan, R., & Mangipudi, P. S. (2018, August). Predicting computer network traffic: a time series forecasting approach using DWT, ARIMA and RNN. In 2018 Eleventh International Conference on Contemporary Computing (IC3) (pp. 1-5). IEEE. Egrioglu, Aladag, Yolcu (b0065) 2013; 40 Lin, Quan, Wang, Ma, Zeng (b0115) 2020; 380 Lai, Chang, Yang, Liu (b0105) 2018 Soares, Costa, Costa, Leite (b0175) 2018; 64 Wu, Pan, Long, Jiang, Chang, Zhang (b0190) 2020 Domingos, de Oliveira, de Mattos Neto (b0060) 2019; 175 Chen, Chen (b0030) 2010; 19 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995. Cai, Zhang, Zheng, Leung (b0020) 2015; 74 Luo, Tan, Zheng (b0130) 2019; 108 Maia, de Carvalho, Ludermir (b0140) 2008; 71 Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., ... & Leiserson, C. (2020, April). Evolvegcn: Evolving graph convolutional networks for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5363-5370). Cai, Jia, Feng, Li, Hsu, Lee (b0015) 2020; 146 Chen, Zeng, Zhou, Du, Lu (b0050) 2018; 165 Kong, Dong, Jia, Hill, Xu, Zhang (b0100) 2017; 10 Abeysinghe, Balasooriya, Tsui (b0005) 2003; 1 Yu, Huarng (b0210) 2008; 34 Guo, Wang (b0080) 2020; 17 Huarng, Yu, Hsu (b0090) 2007; 37 Chen, Chen (b0035) 2014; 45 Shumway, Stoffer, Stoffer (b0170) 2000; Vol. 3 Schimbinschi, Moreira-Matias, Nguyen, Bailey (b0155) 2017; 82 Yolcu, Alpaslan (b0200) 2018; 66 Zhang, Zhang, Wang, Qin, Wang (b0225) 2017; 67 Lai (10.1016/j.eswa.2022.117011_b0105) 2018 Zhang (10.1016/j.eswa.2022.117011_b0225) 2017; 67 Chen (10.1016/j.eswa.2022.117011_b0050) 2018; 165 Yolcu (10.1016/j.eswa.2022.117011_b0200) 2018; 66 Abeysinghe (10.1016/j.eswa.2022.117011_b0005) 2003; 1 Chen (10.1016/j.eswa.2022.117011_b0045) 2021; 556 Lin (10.1016/j.eswa.2022.117011_b0115) 2020; 380 Cheng (10.1016/j.eswa.2022.117011_b0055) 2016; 327 Liu (10.1016/j.eswa.2022.117011_b0125) 2020; 31 10.1016/j.eswa.2022.117011_b0145 Kong (10.1016/j.eswa.2022.117011_b0100) 2017; 10 Shih (10.1016/j.eswa.2022.117011_b0165) 2019; 108 Domingos (10.1016/j.eswa.2022.117011_b0060) 2019; 175 Guo (10.1016/j.eswa.2022.117011_b0080) 2020; 17 10.1016/j.eswa.2022.117011_b0205 10.1016/j.eswa.2022.117011_b0085 Egrioglu (10.1016/j.eswa.2022.117011_b0065) 2013; 40 Shumway (10.1016/j.eswa.2022.117011_b0170) 2000; Vol. 3 10.1016/j.eswa.2022.117011_b0160 Yu (10.1016/j.eswa.2022.117011_b0210) 2008; 34 Luo (10.1016/j.eswa.2022.117011_b0130) 2019; 108 Schimbinschi (10.1016/j.eswa.2022.117011_b0155) 2017; 82 10.1016/j.eswa.2022.117011_b0185 Lin (10.1016/j.eswa.2022.117011_b0120) 2021; 212 Cai (10.1016/j.eswa.2022.117011_b0015) 2020; 146 Wu (10.1016/j.eswa.2022.117011_b0190) 2020 Cai (10.1016/j.eswa.2022.117011_b0020) 2015; 74 Zhang (10.1016/j.eswa.2022.117011_b0220) 2018; 48 Zivot (10.1016/j.eswa.2022.117011_b0235) 2006 Chen (10.1016/j.eswa.2022.117011_b0030) 2010; 19 Chen (10.1016/j.eswa.2022.117011_b0040) 2012; 42 10.1016/j.eswa.2022.117011_b0135 Chen (10.1016/j.eswa.2022.117011_b0025) 2010; 180 Zhou (10.1016/j.eswa.2022.117011_b0230) 2019; 7 Chen (10.1016/j.eswa.2022.117011_b0035) 2014; 45 Huarng (10.1016/j.eswa.2022.117011_b0090) 2007; 37 10.1016/j.eswa.2022.117011_b0095 10.1016/j.eswa.2022.117011_b0150 Yuan (10.1016/j.eswa.2022.117011_b0215) 2020; 206 Taheri (10.1016/j.eswa.2022.117011_b0180) 2019 Graves (10.1016/j.eswa.2022.117011_b0070) 2012 Yang (10.1016/j.eswa.2022.117011_b0195) 2018; 26 10.1016/j.eswa.2022.117011_b0110 10.1016/j.eswa.2022.117011_b0075 10.1016/j.eswa.2022.117011_b0010 Maia (10.1016/j.eswa.2022.117011_b0140) 2008; 71 Soares (10.1016/j.eswa.2022.117011_b0175) 2018; 64 |
| References_xml | – reference: Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903. – volume: 74 start-page: 61 year: 2015 end-page: 68 ident: b0020 article-title: A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression publication-title: Knowledge-Based Systems – reference: Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., ... & Leiserson, C. (2020, April). Evolvegcn: Evolving graph convolutional networks for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5363-5370). – volume: 212 year: 2021 ident: b0120 article-title: ASRNN: A recurrent neural network with an attention model for sequence labeling publication-title: Knowledge-Based Systems – volume: 37 start-page: 836 year: 2007 end-page: 846 ident: b0090 article-title: A multivariate heuristic model for fuzzy time-series forecasting publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) – reference: Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. – reference: Rozemberczki, B., Scherer, P., Kiss, O., Sarkar, R., & Ferenci, T. (2021). Chickenpox Cases in Hungary: a Benchmark Dataset for Spatiotemporal Signal Processing with Graph Neural Networks. arXiv preprint arXiv:2102.08100. – volume: 82 start-page: 301 year: 2017 end-page: 316 ident: b0155 article-title: Topology-regularized universal vector autoregression for traffic forecasting in large urban areas publication-title: Expert Systems with Applications – volume: 66 start-page: 18 year: 2018 end-page: 33 ident: b0200 article-title: Prediction of TAIEX based on hybrid fuzzy time series model with single optimization process publication-title: Applied Soft Computing – start-page: 37 year: 2012 end-page: 45 ident: b0070 article-title: Long short-term memory publication-title: Supervised Sequence Labelling with Recurrent Neural Networks – start-page: 753 year: 2020 end-page: 763 ident: b0190 article-title: August). Connecting the dots: Multivariate time series forecasting with graph neural networks publication-title: In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – start-page: 385 year: 2006 end-page: 429 ident: b0235 article-title: Vector autoregressive models for multivariate time series publication-title: Modeling Financial Time Series with S-Plus® – volume: 108 start-page: 1421 year: 2019 end-page: 1441 ident: b0165 article-title: Temporal pattern attention for multivariate time series forecasting publication-title: Machine Learning – reference: Y. Seo M. Defferrard P. Vandergheynst X. Bresson December). Structured sequence modeling with graph convolutional recurrent networks 2018 Springer Cham 362 373. – reference: Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. – reference: Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. – volume: 146 start-page: 2112 year: 2020 end-page: 2123 ident: b0015 article-title: Gaussian Process Regression for numerical wind speed prediction enhancement publication-title: Renewable Energy – volume: 327 start-page: 272 year: 2016 end-page: 287 ident: b0055 article-title: Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures publication-title: Information Sciences – volume: Vol. 3 year: 2000 ident: b0170 publication-title: Time series analysis and its applications – volume: 7 start-page: 108161 year: 2019 end-page: 108173 ident: b0230 article-title: An optimized heterogeneous structure LSTM network for electricity price forecasting publication-title: IEEE Access – volume: 10 start-page: 841 year: 2017 end-page: 851 ident: b0100 article-title: Short-term residential load forecasting based on LSTM recurrent neural network publication-title: IEEE Transactions on Smart Grid – reference: Madan, R., & Mangipudi, P. S. (2018, August). Predicting computer network traffic: a time series forecasting approach using DWT, ARIMA and RNN. In 2018 Eleventh International Conference on Contemporary Computing (IC3) (pp. 1-5). IEEE. – volume: 19 start-page: 1 year: 2010 end-page: 12 ident: b0030 article-title: TAIEX forecasting based on fuzzy time series and fuzzy variation groups publication-title: IEEE Transactions on Fuzzy Systems – volume: 556 start-page: 67 year: 2021 end-page: 94 ident: b0045 article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction publication-title: Information Sciences – volume: 71 start-page: 3344 year: 2008 end-page: 3352 ident: b0140 article-title: Forecasting models for interval-valued time series publication-title: Neurocomputing – volume: 17 start-page: 2776 year: 2020 end-page: 2783 ident: b0080 article-title: A deep graph neural network-based mechanism for social recommendations publication-title: IEEE Transactions on Industrial Informatics – reference: Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019, July). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 922-929). – volume: 108 start-page: 38 year: 2019 end-page: 61 ident: b0130 article-title: Long-term prediction of time series based on stepwise linear division algorithm and time-variant zonary fuzzy information granules publication-title: International Journal of Approximate Reasoning – volume: 64 start-page: 445 year: 2018 end-page: 453 ident: b0175 article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction publication-title: Applied Soft Computing – volume: 34 start-page: 2945 year: 2008 end-page: 2952 ident: b0210 article-title: A bivariate fuzzy time series model to forecast the TAIEX publication-title: Expert Systems with Applications – volume: 175 start-page: 72 year: 2019 end-page: 86 ident: b0060 article-title: An intelligent hybridization of ARIMA with machine learning models for time series forecasting publication-title: Knowledge-Based Systems – volume: 42 start-page: 1485 year: 2012 end-page: 1495 ident: b0040 article-title: TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans – volume: 206 year: 2020 ident: b0215 article-title: Time series forecasting based on kernel mapping and high-order fuzzy cognitive maps publication-title: Knowledge-Based Systems – volume: 31 start-page: 4405 year: 2020 end-page: 4423 ident: b0125 article-title: When Gaussian process meets big data: A review of scalable GPs publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 165 start-page: 681 year: 2018 end-page: 695 ident: b0050 article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization publication-title: Energy conversion and management – reference: Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995. – reference: Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875. – volume: 67 start-page: 776 year: 2017 end-page: 788 ident: b0225 article-title: Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China publication-title: Journal of the Air & Waste Management Association – volume: 40 start-page: 854 year: 2013 end-page: 857 ident: b0065 article-title: Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks publication-title: Expert Systems with Applications – volume: 380 start-page: 2739 year: 2020 end-page: 2745 ident: b0115 article-title: KGNN: Knowledge graph neural network for drug-drug interaction prediction publication-title: In IJCAI – volume: 48 start-page: 3827 year: 2018 end-page: 3838 ident: b0220 article-title: A multivariate short-term traffic flow forecasting method based on wavelet analysis and seasonal time series publication-title: Applied Intelligence – volume: 26 start-page: 3391 year: 2018 end-page: 3402 ident: b0195 article-title: Time-series forecasting based on high-order fuzzy cognitive maps and wavelet transform publication-title: IEEE Transactions on Fuzzy Systems – volume: 180 start-page: 4772 year: 2010 end-page: 4783 ident: b0025 article-title: Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques publication-title: Information Sciences – volume: 45 start-page: 391 year: 2014 end-page: 403 ident: b0035 article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships publication-title: IEEE Transactions on Cybernetics – start-page: 95 year: 2018 end-page: 104 ident: b0105 article-title: June). Modeling long-and short-term temporal patterns with deep neural networks publication-title: In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval – volume: 1 start-page: 103 year: 2003 end-page: 113 ident: b0005 article-title: Small-sample forecasting regression or ARIMA models? publication-title: Journal of Quantitative Economics – start-page: 57 year: 2019 end-page: 64 ident: b0180 article-title: Predictive temporal embedding of dynamic graphs publication-title: In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining – start-page: 385 year: 2006 ident: 10.1016/j.eswa.2022.117011_b0235 article-title: Vector autoregressive models for multivariate time series publication-title: Modeling Financial Time Series with S-Plus® – volume: 146 start-page: 2112 year: 2020 ident: 10.1016/j.eswa.2022.117011_b0015 article-title: Gaussian Process Regression for numerical wind speed prediction enhancement publication-title: Renewable Energy doi: 10.1016/j.renene.2019.08.018 – volume: 19 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.eswa.2022.117011_b0030 article-title: TAIEX forecasting based on fuzzy time series and fuzzy variation groups publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2010.2073712 – volume: 17 start-page: 2776 issue: 4 year: 2020 ident: 10.1016/j.eswa.2022.117011_b0080 article-title: A deep graph neural network-based mechanism for social recommendations publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2020.2986316 – ident: 10.1016/j.eswa.2022.117011_b0010 – volume: 48 start-page: 3827 issue: 10 year: 2018 ident: 10.1016/j.eswa.2022.117011_b0220 article-title: A multivariate short-term traffic flow forecasting method based on wavelet analysis and seasonal time series publication-title: Applied Intelligence doi: 10.1007/s10489-018-1181-7 – volume: 66 start-page: 18 year: 2018 ident: 10.1016/j.eswa.2022.117011_b0200 article-title: Prediction of TAIEX based on hybrid fuzzy time series model with single optimization process publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.02.007 – ident: 10.1016/j.eswa.2022.117011_b0145 doi: 10.1609/aaai.v34i04.5984 – volume: 1 start-page: 103 issue: 1 year: 2003 ident: 10.1016/j.eswa.2022.117011_b0005 article-title: Small-sample forecasting regression or ARIMA models? publication-title: Journal of Quantitative Economics doi: 10.1007/BF03404652 – volume: 108 start-page: 38 year: 2019 ident: 10.1016/j.eswa.2022.117011_b0130 article-title: Long-term prediction of time series based on stepwise linear division algorithm and time-variant zonary fuzzy information granules publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2019.02.005 – volume: 42 start-page: 1485 issue: 6 year: 2012 ident: 10.1016/j.eswa.2022.117011_b0040 article-title: TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans doi: 10.1109/TSMCA.2012.2190399 – volume: 67 start-page: 776 issue: 7 year: 2017 ident: 10.1016/j.eswa.2022.117011_b0225 article-title: Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China publication-title: Journal of the Air & Waste Management Association doi: 10.1080/10962247.2017.1292968 – ident: 10.1016/j.eswa.2022.117011_b0075 doi: 10.1609/aaai.v33i01.3301922 – ident: 10.1016/j.eswa.2022.117011_b0135 doi: 10.1109/IC3.2018.8530608 – volume: 327 start-page: 272 year: 2016 ident: 10.1016/j.eswa.2022.117011_b0055 article-title: Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures publication-title: Information Sciences doi: 10.1016/j.ins.2015.08.024 – volume: 212 year: 2021 ident: 10.1016/j.eswa.2022.117011_b0120 article-title: ASRNN: A recurrent neural network with an attention model for sequence labeling publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106548 – volume: 64 start-page: 445 year: 2018 ident: 10.1016/j.eswa.2022.117011_b0175 article-title: Ensemble of evolving data clouds and fuzzy models for weather time series prediction publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.12.032 – volume: 180 start-page: 4772 issue: 24 year: 2010 ident: 10.1016/j.eswa.2022.117011_b0025 article-title: Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques publication-title: Information Sciences doi: 10.1016/j.ins.2010.08.026 – volume: 71 start-page: 3344 issue: 16–18 year: 2008 ident: 10.1016/j.eswa.2022.117011_b0140 article-title: Forecasting models for interval-valued time series publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.02.022 – volume: Vol. 3 year: 2000 ident: 10.1016/j.eswa.2022.117011_b0170 – start-page: 95 year: 2018 ident: 10.1016/j.eswa.2022.117011_b0105 article-title: June). Modeling long-and short-term temporal patterns with deep neural networks – ident: 10.1016/j.eswa.2022.117011_b0160 doi: 10.1007/978-3-030-04167-0_33 – volume: 10 start-page: 841 issue: 1 year: 2017 ident: 10.1016/j.eswa.2022.117011_b0100 article-title: Short-term residential load forecasting based on LSTM recurrent neural network publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2017.2753802 – start-page: 37 year: 2012 ident: 10.1016/j.eswa.2022.117011_b0070 article-title: Long short-term memory – start-page: 57 year: 2019 ident: 10.1016/j.eswa.2022.117011_b0180 article-title: Predictive temporal embedding of dynamic graphs – ident: 10.1016/j.eswa.2022.117011_b0205 doi: 10.24963/ijcai.2018/505 – volume: 380 start-page: 2739 year: 2020 ident: 10.1016/j.eswa.2022.117011_b0115 article-title: KGNN: Knowledge graph neural network for drug-drug interaction prediction publication-title: In IJCAI – volume: 74 start-page: 61 year: 2015 ident: 10.1016/j.eswa.2022.117011_b0020 article-title: A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.11.003 – volume: 82 start-page: 301 year: 2017 ident: 10.1016/j.eswa.2022.117011_b0155 article-title: Topology-regularized universal vector autoregression for traffic forecasting in large urban areas publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.04.015 – volume: 108 start-page: 1421 issue: 8 year: 2019 ident: 10.1016/j.eswa.2022.117011_b0165 article-title: Temporal pattern attention for multivariate time series forecasting publication-title: Machine Learning doi: 10.1007/s10994-019-05815-0 – volume: 34 start-page: 2945 issue: 4 year: 2008 ident: 10.1016/j.eswa.2022.117011_b0210 article-title: A bivariate fuzzy time series model to forecast the TAIEX publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.05.016 – ident: 10.1016/j.eswa.2022.117011_b0185 – volume: 26 start-page: 3391 issue: 6 year: 2018 ident: 10.1016/j.eswa.2022.117011_b0195 article-title: Time-series forecasting based on high-order fuzzy cognitive maps and wavelet transform publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2018.2831640 – volume: 175 start-page: 72 year: 2019 ident: 10.1016/j.eswa.2022.117011_b0060 article-title: An intelligent hybridization of ARIMA with machine learning models for time series forecasting publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.03.011 – volume: 165 start-page: 681 year: 2018 ident: 10.1016/j.eswa.2022.117011_b0050 article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization publication-title: Energy conversion and management doi: 10.1016/j.enconman.2018.03.098 – volume: 40 start-page: 854 issue: 3 year: 2013 ident: 10.1016/j.eswa.2022.117011_b0065 article-title: Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.05.040 – ident: 10.1016/j.eswa.2022.117011_b0150 – volume: 45 start-page: 391 issue: 3 year: 2014 ident: 10.1016/j.eswa.2022.117011_b0035 article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2326888 – ident: 10.1016/j.eswa.2022.117011_b0095 – ident: 10.1016/j.eswa.2022.117011_b0085 doi: 10.1098/rspa.1998.0193 – volume: 556 start-page: 67 year: 2021 ident: 10.1016/j.eswa.2022.117011_b0045 article-title: A novel graph convolutional feature based convolutional neural network for stock trend prediction publication-title: Information Sciences doi: 10.1016/j.ins.2020.12.068 – ident: 10.1016/j.eswa.2022.117011_b0110 – volume: 206 year: 2020 ident: 10.1016/j.eswa.2022.117011_b0215 article-title: Time series forecasting based on kernel mapping and high-order fuzzy cognitive maps publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106359 – volume: 7 start-page: 108161 year: 2019 ident: 10.1016/j.eswa.2022.117011_b0230 article-title: An optimized heterogeneous structure LSTM network for electricity price forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932999 – start-page: 753 year: 2020 ident: 10.1016/j.eswa.2022.117011_b0190 article-title: August). Connecting the dots: Multivariate time series forecasting with graph neural networks – volume: 37 start-page: 836 issue: 4 year: 2007 ident: 10.1016/j.eswa.2022.117011_b0090 article-title: A multivariate heuristic model for fuzzy time-series forecasting publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2006.890303 – volume: 31 start-page: 4405 issue: 11 year: 2020 ident: 10.1016/j.eswa.2022.117011_b0125 article-title: When Gaussian process meets big data: A review of scalable GPs publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2957109 |
| SSID | ssj0017007 |
| Score | 2.5427299 |
| Snippet | •A novel GCN model is proposed for multivariate time series prediction.•EMD is used to extract multi-scale temporal features of original time... Modeling for multivariate time series have always been a meaningful subject. Multivariate time series forecasting is a fundamental problem attracting many... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 117011 |
| SubjectTerms | Artificial neural networks Feature extraction Features extraction Forecasting Graph neural network Mathematical models Multi-head attention Multivariate analysis Multivariate time series prediction Neural networks Nodes Prediction models Spatial dependencies Time series |
| Title | Multi-scale temporal features extraction based graph convolutional network with attention for multivariate time series prediction |
| URI | https://dx.doi.org/10.1016/j.eswa.2022.117011 https://www.proquest.com/docview/2673376532 |
| Volume | 200 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYM3qWvapD-OYzim4i462C00bQKTUcc69Sb4n_temg4U3MFjSxJKXvLel-Z73yPkCg8dmdbc49z4Hk_BFlkcMk8ppbHiUcIsm_BxEo2n_H4mZi0ybHJhkFbpfH_t0623dm_6bjb7y_m8_wTgAMIhHO0C61Ux4ZfzGKsY3HxuaB4oPxfXenuxh61d4kzN8dLVB2oPBQHeXfqM_RWcfrlpG3tGB2TPgUY6qL_rkLR0eUT2m4IM1O3PY_Jl02m9CuZdUyc6taBGW_HOioIfXtV5DBSDV0GtWjVF4rlbgNC6rHnhFH_QUhTftHRICtiWWvLhOxyuAZ9SLEpPcf3CwMsVXvdguxMyHd0-D8eeq7Hg5YFI1l6SAgTLTApbsYiUCDHvViUsK6K8yIRKAc6AOzRaBDoHrGYCnflZkMApLeZFKPLwlLTL11KfEcoKrpUxRok458yYJCx8nWue-DwGkOZ3CGsmV-ZOgBzrYCxkwzR7kWgQiQaRtUE65HrTZ1nLb2xtLRqbyR-LSEJ82Nqv2xhYui1cySCKQ_C-MCXn_xz2guziE_6BZqJL2uvVm74ECLNWPbtGe2RncPcwnnwD1_ryeQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD3rxtxFF7cGbmaxdy8bREAkqcBESbs26tYmGIAHUm4n_ue91HYkmcvC6dcvS1773vfV73yPkCpOO1BgRCGHDQLTAFmkcsUBrbbDjUcIcm7A_aHZH4mEsxxXSLmthkFbpfX_h05239lcafjYbs-fnxhOAAwiHkNpx51WTDbIpJI8xA7v5XPE8UH8uLgT34gCH-8qZguRlFh8oPsQ5Hl6GjP0VnX75aRd8Ontkx6NGelt82D6pmOkB2S07MlC_QQ_Jl6unDRYw8YZ61akJtcapdy4oOOJ5UchAMXrl1MlVU2Se-xUIo6cFMZziH1qK6puOD0kB3FLHPnyH7BoAKsWu9BQXMLx4NsfzHhx3REadu2G7G_gmC0HGZbIMkhZgsNS2YC_mTS0jLLzVCUvzZpanUrcAz4A_tEZykwFYs9ykYcoTSNNikUcyi45Jdfo6NSeEslwYba3VMs4EszaJ8tBkRiShiAGlhTXCyslVmVcgx0YYE1VSzV4UGkShQVRhkBq5Xj0zK_Q31o6Wpc3Uj1WkIECsfa5eGlj5PbxQvBlH4H5hSk7_-dpLstUd9nuqdz94PCPbeAd_RzNZJ9Xl_M2cA55Z6gu3Xr8BdYX0Dg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+temporal+features+extraction+based+graph+convolutional+network+with+attention+for+multivariate+time+series+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Chen%2C+Yawen&rft.au=Ding%2C+Fengqian&rft.au=Zhai%2C+Linbo&rft.date=2022-08-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=200&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2022.117011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |