Study on a General Hopf Hierarchy

By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf heirarchy with infinitely many general symmetries and Lax pairs.For the first order Hopf equation,there exist infinitely many symmetries which can be...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 65; no. 4; pp. 393 - 396
Main Author 崔敏婕 楼森岳
Format Journal Article
LanguageEnglish
Published 01.04.2016
Subjects
Online AccessGet full text
ISSN0253-6102
1572-9494
DOI10.1088/0253-6102/65/4/393

Cover

Abstract By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf heirarchy with infinitely many general symmetries and Lax pairs.For the first order Hopf equation,there exist infinitely many symmetries which can be expressed by means of an arbitrary function in arbitrary dimensions.The general solution of the first order Hopf equation is obtained via hodograph transformation.For the second order Hopf equation,the Hopf-diffusion equation,there are five sets of infinitely many symmetries.Especially,there exist a set of primary branch symmetry with which contains an arbitrary solution of the usual linear diffusion equation.Some special implicit exact group invariant solutions of the Hopf-diffusion equation are also given.
AbstractList By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf heirarchy with infinitely many general symmetries and Lax pairs.For the first order Hopf equation,there exist infinitely many symmetries which can be expressed by means of an arbitrary function in arbitrary dimensions.The general solution of the first order Hopf equation is obtained via hodograph transformation.For the second order Hopf equation,the Hopf-diffusion equation,there are five sets of infinitely many symmetries.Especially,there exist a set of primary branch symmetry with which contains an arbitrary solution of the usual linear diffusion equation.Some special implicit exact group invariant solutions of the Hopf-diffusion equation are also given.
Author 崔敏婕 楼森岳
AuthorAffiliation Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China Ningbo Collabrative Innovation Center of Nonlinear Harzard System of Ocean and Atmosphere and Faculty of Science, Ningbo University, Ningbo 315211, China
Author_xml – sequence: 1
  fullname: 崔敏婕 楼森岳
BookMark eNo9kE9PAjEQxRuDiYB-AU-rJy_rdvp3ezREwYTEg3puSreFNUsLWzjw7e0GwmlmkvebvPcmaBRicAg9An4FXNcVJpyWAjCpBK9YRRW9QWPgkpSKKTZC46vgDk1S-sMYEylgjJ6-D8fmVMRQmGLugutNVyzizheLNu-93Zzu0a03XXIPlzlFvx_vP7NFufyaf87elqUlvD6UElZcMirBels716y4UVxKTzlIghVtKGOGY0-NZ0DyDZYpUYtmpcBlY3SKXs5_d33cH1066G2brOs6E1w8Jg01CMyxwjJLyVlq-5hS77ze9e3W9CcNWA996CGuHuJqwTXTuY8MPV-gTQzrfRvWV0pkH5RxCvQfdh5c3Q
Cites_doi 10.1063/1.523393
10.1016/0167-2789(81)90004-X
10.1016/j.aml.2015.06.011
10.1016/0362-546X(79)90052-X
10.1137/1.9781611970883
10.1063/1.1664701
10.1002/cpa.3160030302
10.1063/1.530509
10.1063/1.530872
10.1143/PTP.70.1508
10.1088/0305-4470/26/17/043
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/0253-6102/65/4/393
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
DocumentTitleAlternate Study on a General Hopf Hierarchy
EISSN 1572-9494
EndPage 396
ExternalDocumentID 10_1088_0253_6102_65_4_393
668634531
GroupedDBID 02O
042
1JI
1WK
2B.
2C.
2RA
4.4
5B3
5GY
5VR
5VS
7.M
92E
92I
92L
92Q
93N
AAGCD
AAJIO
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
CW9
DU5
E3Z
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
FRP
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NS0
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ADEQX
AEINN
AOAED
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c258t-71b574371cfc8eedb5a9577f35172093d344a50f3af41293d1c49686db91e6103
ISSN 0253-6102
IngestDate Thu Sep 04 19:27:59 EDT 2025
Wed Oct 01 02:22:00 EDT 2025
Wed Feb 14 10:20:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-71b574371cfc8eedb5a9577f35172093d344a50f3af41293d1c49686db91e6103
Notes Min-Jie Cui, Sen-Yue Lou (1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China ;2 Ningbo Collabrative Innovation Center of Nonlinear Harzard System of Ocean and Atmosphere and Faculty of Science Ningbo University, Ningbo 315211, China)
Hopf hierarchy symmetries hereditary operator exact solutions nonlinear diffusion equations
11-2592/O3
By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf heirarchy with infinitely many general symmetries and Lax pairs.For the first order Hopf equation,there exist infinitely many symmetries which can be expressed by means of an arbitrary function in arbitrary dimensions.The general solution of the first order Hopf equation is obtained via hodograph transformation.For the second order Hopf equation,the Hopf-diffusion equation,there are five sets of infinitely many symmetries.Especially,there exist a set of primary branch symmetry with which contains an arbitrary solution of the usual linear diffusion equation.Some special implicit exact group invariant solutions of the Hopf-diffusion equation are also given.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816050907
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1816050907
crossref_primary_10_1088_0253_6102_65_4_393
chongqing_primary_668634531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Communications in theoretical physics
PublicationTitleAlternate Communications in Theoretical Physics
PublicationYear 2016
References 12
Polyanin A.D. (15) 2002
Lou S.Y. (5) 1993; 26
14
Lou S.Y. (11)
Li Y.S. (13) 1990; 23
Olver P.J. (7) 1986
1
2
3
4
6
8
9
10
References_xml – ident: 8
  doi: 10.1063/1.523393
– ident: 14
  doi: 10.1016/0167-2789(81)90004-X
– ident: 12
  doi: 10.1016/j.aml.2015.06.011
– ident: 9
  doi: 10.1016/0362-546X(79)90052-X
– ident: 2
  doi: 10.1137/1.9781611970883
– year: 2002
  ident: 15
  publication-title: Handbook of First Order Partial Differential Equations
– start-page: V.107
  year: 1986
  ident: 7
  publication-title: Grad. Texts Math.
– ident: 11
  publication-title: Primary Branch Solutions of First order Autonomous Scalar Partial Differential Equations
– ident: 1
  doi: 10.1063/1.1664701
– ident: 10
  doi: 10.1002/cpa.3160030302
– volume: 23
  start-page: 723
  issn: 0305-4470
  year: 1990
  ident: 13
  publication-title: J. Phys.
– ident: 6
  doi: 10.1063/1.530509
– ident: 3
  doi: 10.1063/1.530872
– ident: 4
  doi: 10.1143/PTP.70.1508
– volume: 26
  start-page: 4387
  issn: 0305-4470
  year: 1993
  ident: 5
  publication-title: J. Phys.
  doi: 10.1088/0305-4470/26/17/043
SSID ssj0002761
Score 2.0436382
Snippet By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf...
By using a general symmetry theory related to invariant functions, strong symmetry operators and hereditary operators, we find a general integrable hopf...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 393
SubjectTerms Diffusion
Hierarchies
Hodographs
Hopf方程
Invariants
Lax对
Mathematical analysis
Operators
Symmetry
Transformations
对称算子
广义对称
扩散方程
无穷多
结构
遗传算子
Title Study on a General Hopf Hierarchy
URI http://lib.cqvip.com/qk/83837X/201604/668634531.html
https://www.proquest.com/docview/1816050907
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: AUTh Library subscriptions: IOP Publishing
  customDbUrl:
  eissn: 1572-9494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002761
  issn: 0253-6102
  databaseCode: IOP
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFLZYhOBCKYuYQlGQuKF0nHhJckSIChC0SAUJTlbi2MDF0zKTC7--z8uYSUulwiFW5Egvir_ovc9-G0IHZUabFlOV4qpuUiqVdRJqneY6k1haTxWxicKX3_jpDT2_Zbcv_Qlddsmk-SKfX80reQ-qMAe42izZNyAbhcIE3AO-MALCMP4Xxj98RWhzWE_LR9uoFxu8YdOK5UPPZdtLBRmH-MaYxOhPOCLBPu4efVC9Sc8fI_YXo86dliqT3nVq9sAg4zNxJl6v5IzAjhH3lKBv2BDApjMajfgGhsE4Et9-9i-9C7rKlagIkuGeu65KcEUBs6Wu_zBBMTDQucTLUlhJwkoSnAkqQMY8WswLzm2TirPvV9HYwpxrijh9c8iLAhnDODfkbEiHxMYWLINNMfe_gBX0eUjfDDtucb2GVsOmIDnyCH9Ec8qsow9hg5AE9TteR0tXHqUNtO-gT0YmqZMAfWKhTyL0m-jm68n18Wkaul2kMmflJC2yhgGdKzKpZQnMpWF1xYpCEwYcE1ekJZTWDGtSa2pJWptJWvGSt02VKfhMsoUWzMiobZQA5StyVcH2umJUFW1Da1XiXGZKc6pxO0A7cR3ET1_VRHCQRSio5AE6nK5MfPhvXAZof7p4AjSTdTfVRo26sQDuyG11IVx8epPEHbTy8tvuooXJU6c-A_ObNHsO-9_eQk2q
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+a+General+Hopf+Hierarchy&rft.jtitle=Communications+in+theoretical+physics&rft.au=Cui%2C+Min-Jie&rft.au=Lou%2C+Sen-Yue&rft.date=2016-04-01&rft.issn=0253-6102&rft.volume=65&rft.issue=4&rft.spage=393&rft.epage=396&rft_id=info:doi/10.1088%2F0253-6102%2F65%2F4%2F393&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0253_6102_65_4_393
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg