Deep Learning-Based Plasma Optical Boundary Recognition and Reconstruction on EAST Tokamak
Accurately and rapidly obtaining the position of the plasma boundary is a necessary condition for the stable operation of tokamaks. In order to address the various shortcomings of the magnetic measurement methods commonly used in modern tokamak devices and to meet the development trend of diagnostic...
Saved in:
| Published in | Fusion science and technology Vol. 81; no. 5; pp. 425 - 436 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Taylor & Francis
04.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1536-1055 1943-7641 |
| DOI | 10.1080/15361055.2024.2431783 |
Cover
| Abstract | Accurately and rapidly obtaining the position of the plasma boundary is a necessary condition for the stable operation of tokamaks. In order to address the various shortcomings of the magnetic measurement methods commonly used in modern tokamak devices and to meet the development trend of diagnostic methods for fusion devices, it is necessary to meet the more stringent operational requirements in the future. Therefore, it is necessary to conduct research on optical diagnostic methods.Traditional optical methods often rely on complex physical models and manual feature extraction. This paper proposes a method based on deep learning algorithms that reconstructs the plasma boundary position solely through image reconstruction. For the plasma image recognition task on the Experimental Advanced Superconducting Tokamak (EAST), we utilized a multiband and high-speed visible endoscope diagnostic system to construct the dataset required for building neural network models. We proposed an improved lightweight U-Net network model to identify optical boundaries. Subsequently, we introduced the convolutional block attention module (CBAM) to further extract image information, and we addressed the overfitting issue of the neural network by employing the Dropkey regularizer. Finally, we utilized the skeleton refinement algorithm to extract boundary coordinates and mapped them to the Equilibrium Fitting code (EFIT) reconstruction results using the CatBoost algorithm. The method proposed in this paper can convert the plasma optical boundary coordinates obtained from visible light cameras into tokamak-level plane coordinates, thereby achieving the reconstruction of plasma shapes on EAST. This approach circumvents the issues encountered by magnetic measurement and traditional optical methods. From the experimental results, it can be observed that compared to the original U-Net model, the optical boundary recognition model proposed in this paper has improved the mean accuracy, recall, F1 score, and mean intersection over union metrics by 3.99%, 8.06%, 2.74%, and 3.73%, respectively, on the test set. Additionally, the average error of the boundary reconstruction algorithm compared to the EFIT data is only 6.45 mm. |
|---|---|
| AbstractList | Accurately and rapidly obtaining the position of the plasma boundary is a necessary condition for the stable operation of tokamaks. In order to address the various shortcomings of the magnetic measurement methods commonly used in modern tokamak devices and to meet the development trend of diagnostic methods for fusion devices, it is necessary to meet the more stringent operational requirements in the future. Therefore, it is necessary to conduct research on optical diagnostic methods.Traditional optical methods often rely on complex physical models and manual feature extraction. This paper proposes a method based on deep learning algorithms that reconstructs the plasma boundary position solely through image reconstruction. For the plasma image recognition task on the Experimental Advanced Superconducting Tokamak (EAST), we utilized a multiband and high-speed visible endoscope diagnostic system to construct the dataset required for building neural network models. We proposed an improved lightweight U-Net network model to identify optical boundaries. Subsequently, we introduced the convolutional block attention module (CBAM) to further extract image information, and we addressed the overfitting issue of the neural network by employing the Dropkey regularizer. Finally, we utilized the skeleton refinement algorithm to extract boundary coordinates and mapped them to the Equilibrium Fitting code (EFIT) reconstruction results using the CatBoost algorithm. The method proposed in this paper can convert the plasma optical boundary coordinates obtained from visible light cameras into tokamak-level plane coordinates, thereby achieving the reconstruction of plasma shapes on EAST. This approach circumvents the issues encountered by magnetic measurement and traditional optical methods. From the experimental results, it can be observed that compared to the original U-Net model, the optical boundary recognition model proposed in this paper has improved the mean accuracy, recall, F1 score, and mean intersection over union metrics by 3.99%, 8.06%, 2.74%, and 3.73%, respectively, on the test set. Additionally, the average error of the boundary reconstruction algorithm compared to the EFIT data is only 6.45 mm. |
| Author | Chen, Jingang Han, Xiaofeng Wang, Teng Yang, Jianhua Hou, Jiancheng Hu, Jiahui Wang, Jichao |
| Author_xml | – sequence: 1 givenname: Jiancheng orcidid: 0009-0005-7124-6651 surname: Hou fullname: Hou, Jiancheng organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and – sequence: 2 givenname: Jiahui orcidid: 0009-0005-9825-3042 surname: Hu fullname: Hu, Jiahui email: jhhu@ipp.ac.cn organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and – sequence: 3 givenname: Xiaofeng orcidid: 0000-0002-6255-3220 surname: Han fullname: Han, Xiaofeng organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and – sequence: 4 givenname: Jianhua surname: Yang fullname: Yang, Jianhua organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and – sequence: 5 givenname: Jichao surname: Wang fullname: Wang, Jichao organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and – sequence: 6 givenname: Teng surname: Wang fullname: Wang, Teng organization: Anhui University – sequence: 7 givenname: Jingang surname: Chen fullname: Chen, Jingang organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and |
| BookMark | eNp9kNtKAzEURYMo2FY_QZgfmJrbJOmbba0XKFS0vvgSTjOZEjuTlGSK9O-dXnwVDpwLe28Oq48uffAWoTuChwQrfE8KJgguiiHFlA8pZ0QqdoF6ZMRZLgUnl93cafKD6Br1U_rGmEohaQ99PVq7zeYWond-nU8g2TJ7qyE1kC22rTNQZ5Ow8yXEffZuTVh717rgM_DlcfepjTtzPHU1G38ss2XYQAObG3RVQZ3s7bkP0OfTbDl9yeeL59fpeJ4bWqg2F4JXhDFOBadYGGILZSTBI2NUIZg0yhIFSpaGiqoqV0paICs7soIJK8mKsQEqTrkmhpSirfQ2uqb7VxOsD4D0HyB9AKTPgDrfw8nnfBViAz8h1qVuYV-HWEXwxiXN_o_4BXdTblU |
| Cites_doi | 10.1016/j.fusengdes.2006.04.049 10.1088/1361-6587/ad6709 10.1109/ICMTMA.2011.499 10.1088/2058-6272/acad50 10.1145/2939672.2939785 10.1063/1.3499219 10.1088/1361-6587/acc689 10.1631/FITEE.1700041 10.1088/0741-3335/55/7/074006 10.1007/978-3-030-01234-2_1 |
| ContentType | Journal Article |
| Copyright | 2025 American Nuclear Society 2025 |
| Copyright_xml | – notice: 2025 American Nuclear Society 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/15361055.2024.2431783 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1943-7641 |
| EndPage | 436 |
| ExternalDocumentID | 10_1080_15361055_2024_2431783 2431783 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: National Magnetic Confinement Fusion Research Program of China grantid: number 2019YFE03020001 – fundername: National Natural Science Foundation of China grantid: number 12075281 |
| GroupedDBID | 0BK 30N 5GY AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABJNI ABLIJ ABPAQ ABXUL ABXYU ACGFO ACGFS ACTIO ADGTB AEISY AENEX AEYOC AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AWYRJ CCCUG DGEBU EBS H13 IPNFZ KYCEM M4Z O9- RBQ RIG RNANH ROSJB RTWRZ TASJS TBQAZ TCY TDBHL TEN TEX TFL TFT TFW TTHFI TUROJ WH7 ZGOLN AAYXX CITATION |
| ID | FETCH-LOGICAL-c258t-664f1334264206c1e58c7109cc85637c8e18a87dc26ffdb87ea1be9e636e71b33 |
| ISSN | 1536-1055 |
| IngestDate | Wed Oct 01 05:54:12 EDT 2025 Mon Oct 20 23:45:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c258t-664f1334264206c1e58c7109cc85637c8e18a87dc26ffdb87ea1be9e636e71b33 |
| ORCID | 0000-0002-6255-3220 0009-0005-7124-6651 0009-0005-9825-3042 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1080_15361055_2024_2431783 informaworld_taylorfrancis_310_1080_15361055_2024_2431783 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-04 |
| PublicationDateYYYYMMDD | 2025-07-04 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | Fusion science and technology |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 HE K. (e_1_3_4_10_1) 2016 HANG Q. (e_1_3_4_15_1) 2024 LI B. (e_1_3_4_13_1) e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_6_1 e_1_3_4_5_1 e_1_3_4_11_1 SRIVASTAVA N. (e_1_3_4_12_1) 2014; 15 e_1_3_4_16_1 e_1_3_4_14_1 RONNEBERGER O. (e_1_3_4_9_1) 2015 ROKHORENKOVA L. (e_1_3_4_17_1) 2018 |
| References_xml | – volume-title: Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition ident: e_1_3_4_13_1 – ident: e_1_3_4_4_1 doi: 10.1016/j.fusengdes.2006.04.049 – ident: e_1_3_4_3_1 doi: 10.1088/1361-6587/ad6709 – ident: e_1_3_4_6_1 doi: 10.1109/ICMTMA.2011.499 – ident: e_1_3_4_14_1 doi: 10.1088/2058-6272/acad50 – ident: e_1_3_4_16_1 doi: 10.1145/2939672.2939785 – volume-title: Deep Residual Learning for Image Recognition,” Proc. IEEE Conf. Computer Vision and Pattern Recognition year: 2016 ident: e_1_3_4_10_1 – start-page: 31 year: 2018 ident: e_1_3_4_17_1 article-title: CatBoost: Unbiased Boosting with Categorical Features publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_4_5_1 doi: 10.1063/1.3499219 – ident: e_1_3_4_8_1 doi: 10.1088/1361-6587/acc689 – ident: e_1_3_4_7_1 doi: 10.1631/FITEE.1700041 – volume-title: IEEE Sensors J. year: 2024 ident: e_1_3_4_15_1 – ident: e_1_3_4_2_1 doi: 10.1088/0741-3335/55/7/074006 – ident: e_1_3_4_11_1 doi: 10.1007/978-3-030-01234-2_1 – volume-title: U-Net: Convolutional Networks for Biomedical Image Segmentation year: 2015 ident: e_1_3_4_9_1 – volume: 15 start-page: 1929 year: 2014 ident: e_1_3_4_12_1 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J. Mach. Learn. Res. |
| SSID | ssj0027672 |
| Score | 2.3801343 |
| Snippet | Accurately and rapidly obtaining the position of the plasma boundary is a necessary condition for the stable operation of tokamaks. In order to address the... |
| SourceID | crossref informaworld |
| SourceType | Index Database Publisher |
| StartPage | 425 |
| SubjectTerms | attention mechanism Deep learning plasma boundary U-Net |
| Title | Deep Learning-Based Plasma Optical Boundary Recognition and Reconstruction on EAST Tokamak |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15361055.2024.2431783 |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1943-7641 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027672 issn: 1536-1055 databaseCode: AHDZW dateStart: 20010701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1943-7641 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027672 issn: 1536-1055 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaWcoFDxVMUWuQDt5WXTfyIc2xpqxUS5UAqLVwi23HYquruqmwuPfLL64mdxmErxEOKosSJ42jm08xkMg-E3jE9ZUrznFSS1YTJWhKpaE4oczOcRpV1DgnOn87E7Jx9nPP5aPQzilpqNnpibu7NK_kXrroxx1fIkv0Lzt491A24Y8dft3ccdvs_4vGxteuuQup3cuQUUgVdiH5cqfHntXdSH7Vtk67B0g6RQiH8GM776rHwz-Dk8EsxLlaX6kpdxjbraQMetXGXANSGXG455GerpgUE-EgWNqjDFi5heNFc9NKuFXXzC7Wqo1u_Btc1PGPRqNgfkfI2drX3RxZbrUEG0lUQ6MjplY8fyxklmfDVrzqR7Lu4BOjxSL6ylEeqmvnaKVtawIdNwmqw2MS9JZukYCn5njm_FNgOVx6gh6nTDND-g07P-o920TYAu3v1LgtMTt_fu8DAvhlUv43sluIJ2g0fHPjQo-cpGtnlM_Q4KkP5HH0DHOEhjrDHEQ44wh2OcIQj7KCAhzjCbgMc4YCjF-j89KT4MCOh5wYxKZcbIgSrE0rBTk6nwiSWSwPhusZILmhmpE2kklllUlHXlZaZVYm2uRVU2CzRlL5EO8vV0r5CmCZWMqZpVinKDFNS2SpjzjxNlOGp1Hto0lGqXPvSKmUSKtZ2pC2BtGUg7R7KY3qWmxZqtUdZSX879_V_zH2DHvVA30c7jqT2wJmiG_22xcot2CKCRA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeHlgdmthxnLGFVgXagqCVKpbIdmyGqmmFwgC_HjsPNUWCpVKWDGc5Zzv33en8fQBcE9EgXPghihnRiDDNEOM4RJgYCxNRmQ7tBef-gHZH5GHsjyt3YWxbpc2hdU4Ukf2r7eG2xeiyJe7GnFJqhR1NeucRx7MxkOF1sOEbsG9VDHBjsEi6aCbgZE2QtSlv8fw1zFJ8WmIvrcSdzi6Q5YzzdpOJ85kKR37_InNc7ZP2wE4BS2Ez30f7YE0lB2C7QlZ4CN7ulJrDgo_1HbVM-IvhswHfUw6f5llJHLYykaaPL_hS9iXNEmgmlb0vuGqhedrN1yEcziZ8yidHYNRpD2-7qFBmQNLzWYooJdoktxZNeQ0qXeUzaZs6pWQ-xYFkymWcBbH0qNaxYIHirlChopiqwBUYH4NaMkvUCYDYVYwQgYOYYyIJZ1zFATEgxuXS95ioA6dcj2ieE3BEbsFrWjotsk6LCqfVQVhdtSjNKh86lymJ8L-2pyvYXoHN7rDfi3r3g8czsOVZnWBbBibnoGbcqy4MeEnFZbY7fwDNyuBj |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ojy9MDq0MSO44wtbVVepYJWQiyR7dgMVdMIwgC_HjsPtUWCpVKWDBc5Zzt353z3fQBcEtEgXPghihnRiDDNEOM4RJgYCxNRmQ5tg_NDn_ZG5PbFr9CEHyWs0tbQuiCKyL_VdnOnsa4QcVdmk1Kr62iqO484ng2BDK-CNWr_itkujkZ_VnPRXL_JmiBrUzXx_PWYhfC0QF46F3a620BUAy7QJmPnMxOO_P7F5bjUG-2ArTIphc1iFe2CFZXsgc05qsJ98NpWKoUlG-sbapngF8OBSb0nHD6m-YE4bOUSTe9f8KlCJU0TaMaU38-YaqG5Os3nIRxOx3zCxwdg1O0Mr3uo1GVA0vNZhigl2pS2NpfyGlS6ymfSQjqlZD7FgWTKZZwFsfSo1rFggeKuUKGimKrAFRgfgloyTdQRgNhVjBCBg5hjIglnXMUBMSmMy6XvMVEHTjUdUVrQb0RuyWpaOS2yTotKp9VBOD9pUZafe-hCpCTC_9oeL2F7AdYH7W50f9O_OwEbnhUJtmfA5BTUjHfVmclcMnGer80fGePfBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Plasma+Optical+Boundary+Recognition+and+Reconstruction+on+EAST+Tokamak&rft.jtitle=Fusion+science+and+technology&rft.au=Hou%2C+Jiancheng&rft.au=Hu%2C+Jiahui&rft.au=Han%2C+Xiaofeng&rft.au=Yang%2C+Jianhua&rft.date=2025-07-04&rft.pub=Taylor+%26+Francis&rft.issn=1536-1055&rft.eissn=1943-7641&rft.volume=81&rft.issue=5&rft.spage=425&rft.epage=436&rft_id=info:doi/10.1080%2F15361055.2024.2431783&rft.externalDocID=2431783 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1055&client=summon |