Deep Learning-Based Plasma Optical Boundary Recognition and Reconstruction on EAST Tokamak

Accurately and rapidly obtaining the position of the plasma boundary is a necessary condition for the stable operation of tokamaks. In order to address the various shortcomings of the magnetic measurement methods commonly used in modern tokamak devices and to meet the development trend of diagnostic...

Full description

Saved in:
Bibliographic Details
Published inFusion science and technology Vol. 81; no. 5; pp. 425 - 436
Main Authors Hou, Jiancheng, Hu, Jiahui, Han, Xiaofeng, Yang, Jianhua, Wang, Jichao, Wang, Teng, Chen, Jingang
Format Journal Article
LanguageEnglish
Published Taylor & Francis 04.07.2025
Subjects
Online AccessGet full text
ISSN1536-1055
1943-7641
DOI10.1080/15361055.2024.2431783

Cover

Abstract Accurately and rapidly obtaining the position of the plasma boundary is a necessary condition for the stable operation of tokamaks. In order to address the various shortcomings of the magnetic measurement methods commonly used in modern tokamak devices and to meet the development trend of diagnostic methods for fusion devices, it is necessary to meet the more stringent operational requirements in the future. Therefore, it is necessary to conduct research on optical diagnostic methods.Traditional optical methods often rely on complex physical models and manual feature extraction. This paper proposes a method based on deep learning algorithms that reconstructs the plasma boundary position solely through image reconstruction. For the plasma image recognition task on the Experimental Advanced Superconducting Tokamak (EAST), we utilized a multiband and high-speed visible endoscope diagnostic system to construct the dataset required for building neural network models. We proposed an improved lightweight U-Net network model to identify optical boundaries. Subsequently, we introduced the convolutional block attention module (CBAM) to further extract image information, and we addressed the overfitting issue of the neural network by employing the Dropkey regularizer. Finally, we utilized the skeleton refinement algorithm to extract boundary coordinates and mapped them to the Equilibrium Fitting code (EFIT) reconstruction results using the CatBoost algorithm. The method proposed in this paper can convert the plasma optical boundary coordinates obtained from visible light cameras into tokamak-level plane coordinates, thereby achieving the reconstruction of plasma shapes on EAST. This approach circumvents the issues encountered by magnetic measurement and traditional optical methods. From the experimental results, it can be observed that compared to the original U-Net model, the optical boundary recognition model proposed in this paper has improved the mean accuracy, recall, F1 score, and mean intersection over union metrics by 3.99%, 8.06%, 2.74%, and 3.73%, respectively, on the test set. Additionally, the average error of the boundary reconstruction algorithm compared to the EFIT data is only 6.45 mm.
AbstractList Accurately and rapidly obtaining the position of the plasma boundary is a necessary condition for the stable operation of tokamaks. In order to address the various shortcomings of the magnetic measurement methods commonly used in modern tokamak devices and to meet the development trend of diagnostic methods for fusion devices, it is necessary to meet the more stringent operational requirements in the future. Therefore, it is necessary to conduct research on optical diagnostic methods.Traditional optical methods often rely on complex physical models and manual feature extraction. This paper proposes a method based on deep learning algorithms that reconstructs the plasma boundary position solely through image reconstruction. For the plasma image recognition task on the Experimental Advanced Superconducting Tokamak (EAST), we utilized a multiband and high-speed visible endoscope diagnostic system to construct the dataset required for building neural network models. We proposed an improved lightweight U-Net network model to identify optical boundaries. Subsequently, we introduced the convolutional block attention module (CBAM) to further extract image information, and we addressed the overfitting issue of the neural network by employing the Dropkey regularizer. Finally, we utilized the skeleton refinement algorithm to extract boundary coordinates and mapped them to the Equilibrium Fitting code (EFIT) reconstruction results using the CatBoost algorithm. The method proposed in this paper can convert the plasma optical boundary coordinates obtained from visible light cameras into tokamak-level plane coordinates, thereby achieving the reconstruction of plasma shapes on EAST. This approach circumvents the issues encountered by magnetic measurement and traditional optical methods. From the experimental results, it can be observed that compared to the original U-Net model, the optical boundary recognition model proposed in this paper has improved the mean accuracy, recall, F1 score, and mean intersection over union metrics by 3.99%, 8.06%, 2.74%, and 3.73%, respectively, on the test set. Additionally, the average error of the boundary reconstruction algorithm compared to the EFIT data is only 6.45 mm.
Author Chen, Jingang
Han, Xiaofeng
Wang, Teng
Yang, Jianhua
Hou, Jiancheng
Hu, Jiahui
Wang, Jichao
Author_xml – sequence: 1
  givenname: Jiancheng
  orcidid: 0009-0005-7124-6651
  surname: Hou
  fullname: Hou, Jiancheng
  organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and
– sequence: 2
  givenname: Jiahui
  orcidid: 0009-0005-9825-3042
  surname: Hu
  fullname: Hu, Jiahui
  email: jhhu@ipp.ac.cn
  organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and
– sequence: 3
  givenname: Xiaofeng
  orcidid: 0000-0002-6255-3220
  surname: Han
  fullname: Han, Xiaofeng
  organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and
– sequence: 4
  givenname: Jianhua
  surname: Yang
  fullname: Yang, Jianhua
  organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and
– sequence: 5
  givenname: Jichao
  surname: Wang
  fullname: Wang, Jichao
  organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and
– sequence: 6
  givenname: Teng
  surname: Wang
  fullname: Wang, Teng
  organization: Anhui University
– sequence: 7
  givenname: Jingang
  surname: Chen
  fullname: Chen, Jingang
  organization: Chinese Academy of Sciences, Hefei Institutes of Physical Science and
BookMark eNp9kNtKAzEURYMo2FY_QZgfmJrbJOmbba0XKFS0vvgSTjOZEjuTlGSK9O-dXnwVDpwLe28Oq48uffAWoTuChwQrfE8KJgguiiHFlA8pZ0QqdoF6ZMRZLgUnl93cafKD6Br1U_rGmEohaQ99PVq7zeYWond-nU8g2TJ7qyE1kC22rTNQZ5Ow8yXEffZuTVh717rgM_DlcfepjTtzPHU1G38ss2XYQAObG3RVQZ3s7bkP0OfTbDl9yeeL59fpeJ4bWqg2F4JXhDFOBadYGGILZSTBI2NUIZg0yhIFSpaGiqoqV0paICs7soIJK8mKsQEqTrkmhpSirfQ2uqb7VxOsD4D0HyB9AKTPgDrfw8nnfBViAz8h1qVuYV-HWEXwxiXN_o_4BXdTblU
Cites_doi 10.1016/j.fusengdes.2006.04.049
10.1088/1361-6587/ad6709
10.1109/ICMTMA.2011.499
10.1088/2058-6272/acad50
10.1145/2939672.2939785
10.1063/1.3499219
10.1088/1361-6587/acc689
10.1631/FITEE.1700041
10.1088/0741-3335/55/7/074006
10.1007/978-3-030-01234-2_1
ContentType Journal Article
Copyright 2025 American Nuclear Society 2025
Copyright_xml – notice: 2025 American Nuclear Society 2025
DBID AAYXX
CITATION
DOI 10.1080/15361055.2024.2431783
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1943-7641
EndPage 436
ExternalDocumentID 10_1080_15361055_2024_2431783
2431783
Genre Research Article
GrantInformation_xml – fundername: National Magnetic Confinement Fusion Research Program of China
  grantid: number 2019YFE03020001
– fundername: National Natural Science Foundation of China
  grantid: number 12075281
GroupedDBID 0BK
30N
5GY
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABJNI
ABLIJ
ABPAQ
ABXUL
ABXYU
ACGFO
ACGFS
ACTIO
ADGTB
AEISY
AENEX
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AWYRJ
CCCUG
DGEBU
EBS
H13
IPNFZ
KYCEM
M4Z
O9-
RBQ
RIG
RNANH
ROSJB
RTWRZ
TASJS
TBQAZ
TCY
TDBHL
TEN
TEX
TFL
TFT
TFW
TTHFI
TUROJ
WH7
ZGOLN
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-664f1334264206c1e58c7109cc85637c8e18a87dc26ffdb87ea1be9e636e71b33
ISSN 1536-1055
IngestDate Wed Oct 01 05:54:12 EDT 2025
Mon Oct 20 23:45:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-664f1334264206c1e58c7109cc85637c8e18a87dc26ffdb87ea1be9e636e71b33
ORCID 0000-0002-6255-3220
0009-0005-7124-6651
0009-0005-9825-3042
PageCount 12
ParticipantIDs crossref_primary_10_1080_15361055_2024_2431783
informaworld_taylorfrancis_310_1080_15361055_2024_2431783
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-04
PublicationDateYYYYMMDD 2025-07-04
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-04
  day: 04
PublicationDecade 2020
PublicationTitle Fusion science and technology
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
HE K. (e_1_3_4_10_1) 2016
HANG Q. (e_1_3_4_15_1) 2024
LI B. (e_1_3_4_13_1)
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_6_1
e_1_3_4_5_1
e_1_3_4_11_1
SRIVASTAVA N. (e_1_3_4_12_1) 2014; 15
e_1_3_4_16_1
e_1_3_4_14_1
RONNEBERGER O. (e_1_3_4_9_1) 2015
ROKHORENKOVA L. (e_1_3_4_17_1) 2018
References_xml – volume-title: Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition
  ident: e_1_3_4_13_1
– ident: e_1_3_4_4_1
  doi: 10.1016/j.fusengdes.2006.04.049
– ident: e_1_3_4_3_1
  doi: 10.1088/1361-6587/ad6709
– ident: e_1_3_4_6_1
  doi: 10.1109/ICMTMA.2011.499
– ident: e_1_3_4_14_1
  doi: 10.1088/2058-6272/acad50
– ident: e_1_3_4_16_1
  doi: 10.1145/2939672.2939785
– volume-title: Deep Residual Learning for Image Recognition,” Proc. IEEE Conf. Computer Vision and Pattern Recognition
  year: 2016
  ident: e_1_3_4_10_1
– start-page: 31
  year: 2018
  ident: e_1_3_4_17_1
  article-title: CatBoost: Unbiased Boosting with Categorical Features
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_4_5_1
  doi: 10.1063/1.3499219
– ident: e_1_3_4_8_1
  doi: 10.1088/1361-6587/acc689
– ident: e_1_3_4_7_1
  doi: 10.1631/FITEE.1700041
– volume-title: IEEE Sensors J.
  year: 2024
  ident: e_1_3_4_15_1
– ident: e_1_3_4_2_1
  doi: 10.1088/0741-3335/55/7/074006
– ident: e_1_3_4_11_1
  doi: 10.1007/978-3-030-01234-2_1
– volume-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  year: 2015
  ident: e_1_3_4_9_1
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_3_4_12_1
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
SSID ssj0027672
Score 2.3801343
Snippet Accurately and rapidly obtaining the position of the plasma boundary is a necessary condition for the stable operation of tokamaks. In order to address the...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 425
SubjectTerms attention mechanism
Deep learning
plasma boundary
U-Net
Title Deep Learning-Based Plasma Optical Boundary Recognition and Reconstruction on EAST Tokamak
URI https://www.tandfonline.com/doi/abs/10.1080/15361055.2024.2431783
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1943-7641
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027672
  issn: 1536-1055
  databaseCode: AHDZW
  dateStart: 20010701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1943-7641
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027672
  issn: 1536-1055
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaWcoFDxVMUWuQDt5WXTfyIc2xpqxUS5UAqLVwi23HYquruqmwuPfLL64mdxmErxEOKosSJ42jm08xkMg-E3jE9ZUrznFSS1YTJWhKpaE4oczOcRpV1DgnOn87E7Jx9nPP5aPQzilpqNnpibu7NK_kXrroxx1fIkv0Lzt491A24Y8dft3ccdvs_4vGxteuuQup3cuQUUgVdiH5cqfHntXdSH7Vtk67B0g6RQiH8GM776rHwz-Dk8EsxLlaX6kpdxjbraQMetXGXANSGXG455GerpgUE-EgWNqjDFi5heNFc9NKuFXXzC7Wqo1u_Btc1PGPRqNgfkfI2drX3RxZbrUEG0lUQ6MjplY8fyxklmfDVrzqR7Lu4BOjxSL6ylEeqmvnaKVtawIdNwmqw2MS9JZukYCn5njm_FNgOVx6gh6nTDND-g07P-o920TYAu3v1LgtMTt_fu8DAvhlUv43sluIJ2g0fHPjQo-cpGtnlM_Q4KkP5HH0DHOEhjrDHEQ44wh2OcIQj7KCAhzjCbgMc4YCjF-j89KT4MCOh5wYxKZcbIgSrE0rBTk6nwiSWSwPhusZILmhmpE2kklllUlHXlZaZVYm2uRVU2CzRlL5EO8vV0r5CmCZWMqZpVinKDFNS2SpjzjxNlOGp1Hto0lGqXPvSKmUSKtZ2pC2BtGUg7R7KY3qWmxZqtUdZSX879_V_zH2DHvVA30c7jqT2wJmiG_22xcot2CKCRA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeHlgdmthxnLGFVgXagqCVKpbIdmyGqmmFwgC_HjsPNUWCpVKWDGc5Zzv33en8fQBcE9EgXPghihnRiDDNEOM4RJgYCxNRmQ7tBef-gHZH5GHsjyt3YWxbpc2hdU4Ukf2r7eG2xeiyJe7GnFJqhR1NeucRx7MxkOF1sOEbsG9VDHBjsEi6aCbgZE2QtSlv8fw1zFJ8WmIvrcSdzi6Q5YzzdpOJ85kKR37_InNc7ZP2wE4BS2Ez30f7YE0lB2C7QlZ4CN7ulJrDgo_1HbVM-IvhswHfUw6f5llJHLYykaaPL_hS9iXNEmgmlb0vuGqhedrN1yEcziZ8yidHYNRpD2-7qFBmQNLzWYooJdoktxZNeQ0qXeUzaZs6pWQ-xYFkymWcBbH0qNaxYIHirlChopiqwBUYH4NaMkvUCYDYVYwQgYOYYyIJZ1zFATEgxuXS95ioA6dcj2ieE3BEbsFrWjotsk6LCqfVQVhdtSjNKh86lymJ8L-2pyvYXoHN7rDfi3r3g8czsOVZnWBbBibnoGbcqy4MeEnFZbY7fwDNyuBj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ojy9MDq0MSO44wtbVVepYJWQiyR7dgMVdMIwgC_HjsPtUWCpVKWDBc5Zzt353z3fQBcEtEgXPghihnRiDDNEOM4RJgYCxNRmQ5tg_NDn_ZG5PbFr9CEHyWs0tbQuiCKyL_VdnOnsa4QcVdmk1Kr62iqO484ng2BDK-CNWr_itkujkZ_VnPRXL_JmiBrUzXx_PWYhfC0QF46F3a620BUAy7QJmPnMxOO_P7F5bjUG-2ArTIphc1iFe2CFZXsgc05qsJ98NpWKoUlG-sbapngF8OBSb0nHD6m-YE4bOUSTe9f8KlCJU0TaMaU38-YaqG5Os3nIRxOx3zCxwdg1O0Mr3uo1GVA0vNZhigl2pS2NpfyGlS6ymfSQjqlZD7FgWTKZZwFsfSo1rFggeKuUKGimKrAFRgfgloyTdQRgNhVjBCBg5hjIglnXMUBMSmMy6XvMVEHTjUdUVrQb0RuyWpaOS2yTotKp9VBOD9pUZafe-hCpCTC_9oeL2F7AdYH7W50f9O_OwEbnhUJtmfA5BTUjHfVmclcMnGer80fGePfBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Plasma+Optical+Boundary+Recognition+and+Reconstruction+on+EAST+Tokamak&rft.jtitle=Fusion+science+and+technology&rft.au=Hou%2C+Jiancheng&rft.au=Hu%2C+Jiahui&rft.au=Han%2C+Xiaofeng&rft.au=Yang%2C+Jianhua&rft.date=2025-07-04&rft.pub=Taylor+%26+Francis&rft.issn=1536-1055&rft.eissn=1943-7641&rft.volume=81&rft.issue=5&rft.spage=425&rft.epage=436&rft_id=info:doi/10.1080%2F15361055.2024.2431783&rft.externalDocID=2431783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1055&client=summon