A modified Kohonen map algorithm for clustering time series data
Time Series clustering is a domain with several applications spanning various fields. The concept of vector quantization, popularly used in signal processing to approximate a large number of signals, can be used to cluster signals and thereby time series data. Though a popular clustering algorithm s...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 201; p. 117249 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Elsevier Ltd
    
        01.09.2022
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2022.117249 | 
Cover
| Abstract | Time Series clustering is a domain with several applications spanning various fields. The concept of vector quantization, popularly used in signal processing to approximate a large number of signals, can be used to cluster signals and thereby time series data. Though a popular clustering algorithm such as K-Means is capable of performing vector quantization, the averaging technique to compute centroids in the algorithm is not well suited to handle time series data. The ability of Self Organizing Map algorithm, has, therefore, been explored in this work to perform clustering of time series data by adopting several modifications in the original steps of the algorithm. By initializing the prototype vectors using a farthest neighbors’ approach instead of random initialization and using the dynamic time warping distance measure to calculate similarity between signals, a novel procedure has been proposed to apply the Self Organizing Map algorithm to cluster time series data. The proposed algorithm is first tested on 119 data sets and its performance is compared to that of Agglomerative Clustering and k medoids clustering using 3 validation measures. Next, their scalability is compared by looking at their time of computation on the data sets. Performance of the proposed algorithm in terms of the fluctuations involved due to initialization and the parameters of the algorithm are studied next using 3 more validation measures. The results showcase that the modified Self Organizing Map is not only a better algorithm than Agglomerative Clustering in terms of clustering performance, but also more scalable in terms of taking less time to compute clusters as it performs them in lesser time that k medoids while having similar cluster quality. | 
    
|---|---|
| AbstractList | Time Series clustering is a domain with several applications spanning various fields. The concept of vector quantization, popularly used in signal processing to approximate a large number of signals, can be used to cluster signals and thereby time series data. Though a popular clustering algorithm such as K-Means is capable of performing vector quantization, the averaging technique to compute centroids in the algorithm is not well suited to handle time series data. The ability of Self Organizing Map algorithm, has, therefore, been explored in this work to perform clustering of time series data by adopting several modifications in the original steps of the algorithm. By initializing the prototype vectors using a farthest neighbors’ approach instead of random initialization and using the dynamic time warping distance measure to calculate similarity between signals, a novel procedure has been proposed to apply the Self Organizing Map algorithm to cluster time series data. The proposed algorithm is first tested on 119 data sets and its performance is compared to that of Agglomerative Clustering and k medoids clustering using 3 validation measures. Next, their scalability is compared by looking at their time of computation on the data sets. Performance of the proposed algorithm in terms of the fluctuations involved due to initialization and the parameters of the algorithm are studied next using 3 more validation measures. The results showcase that the modified Self Organizing Map is not only a better algorithm than Agglomerative Clustering in terms of clustering performance, but also more scalable in terms of taking less time to compute clusters as it performs them in lesser time that k medoids while having similar cluster quality. | 
    
| ArticleNumber | 117249 | 
    
| Author | Mitra, Kishalay Jayanth Krishnan, Kalpathy  | 
    
| Author_xml | – sequence: 1 givenname: Kalpathy surname: Jayanth Krishnan fullname: Jayanth Krishnan, Kalpathy organization: Global Optimization and Knowledge Unearthing Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telengana 502284, India – sequence: 2 givenname: Kishalay surname: Mitra fullname: Mitra, Kishalay email: kishalay@che.iith.ac.in organization: Global Optimization and Knowledge Unearthing Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telengana 502284, India  | 
    
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxJxiOx-2JQaqii9RiQVmy7UvraMkLrYL4t-TKkwMne6G93lP98zQpPc9IHRNyYISWt02C4jfesEIYwtKOSvkGZpSwfOs4jKfoCmRJc8KyosLNIuxIYRyQvgU3S9x562rHVj86ndDa487vce63frg0q7DtQ_YtIeYILh-i5PrAMdhh4itTvoSnde6jXD1N-fo4_HhffWcrd-eXlbLdWZYKVLGbC1yyywlIK2xZWU3VU0EEGsqLmxJS1YWOpcbaWQujMg3BeOl5MRwKSgU-RzdjL374D8PEJNq_CH0w0nFKl5WkldFPqTYmDLBxxigVvvgOh1-FCXqaEo16mhKHU2p0dQAiX-QcUkn5_sUtGtPo3cjCsPrXw6CisZBb8C6ACYp690p_BdKAYUa | 
    
| CitedBy_id | crossref_primary_10_1007_s40747_022_00826_2 crossref_primary_10_3390_app131810019 crossref_primary_10_1016_j_eswa_2023_120377 crossref_primary_10_1080_10426914_2022_2105872 crossref_primary_10_1016_j_ins_2023_119155 crossref_primary_10_1038_s41598_023_33074_6 crossref_primary_10_1016_j_xcrp_2024_101830  | 
    
| Cites_doi | 10.1016/S0925-2312(98)00039-3 10.1016/j.eswa.2016.06.012 10.1080/01621459.1998.10474114 10.1016/j.eswa.2005.07.036 10.1145/191843.191925 10.1145/775047.775128 10.14778/1454159.1454226 10.1016/j.envsoft.2018.02.013 10.1109/MASSP.1984.1162229 10.1016/j.patcog.2005.01.025 10.1109/ICISE.2009.924 10.1016/0098-3004(84)90020-7 10.1007/BF02289588 10.12688/f1000research.11495.1 10.1002/mrm.1910400211 10.1109/72.846731 10.1007/s10994-008-5093-3 10.1007/s10044-011-0210-5 10.1109/IJCNN.2002.1007810 10.1007/978-3-540-78293-3_17 10.1109/TASSP.1978.1163055 10.1109/ICDE.2002.994784 10.1186/1752-153X-6-S2-S1 10.1109/TKDE.2015.2416723 10.1007/BF02294390 10.1016/j.patcog.2006.06.026 10.1007/BF02295433 10.1016/j.eswa.2013.08.028 10.1016/j.is.2015.04.007 10.1109/WiCom.2008.2534 10.1093/bioinformatics/bti1022 10.1007/3-540-44668-0_65 10.1016/j.eswa.2011.03.081 10.1109/INFVIS.1999.801851 10.1016/0893-6080(93)90011-K 10.1371/journal.pone.0002001 10.1109/MUE.2007.165 10.5120/8282-1278  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Sep 1, 2022  | 
    
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Sep 1, 2022  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.eswa.2022.117249 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-6793 | 
    
| ExternalDocumentID | 10_1016_j_eswa_2022_117249 S095741742200625X  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c258t-2df83d2d10e9dcd56db6f08e0dc678d515254a39b9c938c83b4275970c7981e43 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Fri Jul 25 07:05:00 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Sat Oct 25 05:49:54 EDT 2025 Fri Feb 23 02:39:18 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | K medoids clustering Self organizing map Vector quantization Time series clustering Dynamic time warping Agglomerative clustering  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c258t-2df83d2d10e9dcd56db6f08e0dc678d515254a39b9c938c83b4275970c7981e43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2675697643 | 
    
| PQPubID | 2045477 | 
    
| ParticipantIDs | proquest_journals_2675697643 crossref_primary_10_1016_j_eswa_2022_117249 crossref_citationtrail_10_1016_j_eswa_2022_117249 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117249  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-09-01 2022-09-00 20220901  | 
    
| PublicationDateYYYYMMDD | 2022-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping Chen, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, & Hexagon-ML (2019). Gray (b0085) 1984; 1 R.J. Kuo, Y.L. An, H.S. Wang, W.J. Chung, Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation, Expert Systems with Applications, Volume 30, Issue 2, 2006, Pages 313-324, ISSN 0957-4174. M. Vlachos, G. Kollios and D. Gunopulos, “Discovering similar multidimensional trajectories,” Proceedings 18th International Conference on Data Engineering, San Jose, CA, USA, 2002, pp. 673-684. Kakizawa, Shumway, Taniguchi (b0110) 1998; 93 Kohonen (b0120) 2012; Vol. 8 Bruno Brentan, Gustavo Meirelles, Edevar Luvizotto, Joaquin Izquierdo, Hybrid SOM+k-Means clustering to improve planning, operation and management in water distribution systems, Environmental Modelling & Software, Volume 106, 2018, Pages 77-88, ISSN 1364-8152. Ernst, Nau, Bar-Joseph (b0065) 2005; 21 Aghabozorgi, Seyed Shirkhorshidi, Ying Wah (b0010) 2015; 53 E. Keogh S. Lonardi Bill 'Yuan-chi' Chiu. Finding surprising patterns in a time series database in linear time and space 2002 Association for Computing Machinery New York, NY, USA 550 556 10.1145/775047.775128. Berndt, D. J., & Clifford, J. (1994, July). Using dynamic time warping to find patterns in time series. In Marcel Brun, Chao Sima, Jianping Hua, James Lowey, Brent Carroll, Edward Suh, Edward R. Dougherty, Model-based evaluation of clustering validation measures, Pattern Recognition, Volume 40, Issue 3, 2007, Pages 807-824, ISSN 0031-3203. Xiaohang Zhang, Jiaqi Liu, Yu Du, Tingjie Lv, A novel clustering method on time series data, Expert Systems with Applications, Volume 38, Issue 9, 2011, Pages 11891-11900, ISSN 0957-4174. T.W. Liao, B. Bolt, J. Forester, E. Hailman, C. Hansen, R.C. Kaste, J. O’May, Understanding and projecting the battle state, 23rd Army Science Conference, Orlando, FL, December 2–5, 2002. Yin H. (2008) The Self-Organizing Maps: Background, Theories, Extensions and Applications. In: Fulcher J., Jain L.C. (eds) Computational Intelligence: A Compendium. Studies in Computational Intelligence, vol 115. Springer, Berlin, Heidelberg. PMID: 9702707. Uriarte, Martín (b0210) 2005; 1 Sundar Balakrishnan, Cooper, Jacob (b0195) 1994; 59 Ultsch (b0200) 1993 . Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. 2008. Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1, 2 (August 2008), 1542–1552. Van Laerhoven K. (2001) Combining the Self-Organizing Map and K-Means Clustering for On-Line Classification of Sensor Data. In: Dorffner G., Bischof H., Hornik K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg. (Vol. 57, p. 2). Technical report. A. Bagnall, J. Lines, J. Hills and A. Bostrom, “Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles,” in IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 9, pp. 2522-2535, 1 Sept. 2015. https://doi.org/10.1109/TKDE.2015.2416723. Robert H. Shumway, Time-frequency clustering and discriminant analysis, Samuel Kaski, Timo Honkela, Krista Lagus, Teuvo Kohonen, WEBSOM – Self-organizing maps of document collections. This work was supported by the Academy of Finland, Neurocomputing, Volume 21, Issues 1–3, 1998, Pages 101-117, ISSN 0925-2312. Vlachos, Lin, Keogh, Gunopulos (b0245) 2003 Łuczak (b0150) 2016; 62 Brereton (b0040) 2012; 6 Rani, Sikka (b0165) 2012; 52 Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1994. Fast subsequence matching in time-series databases. SIGMOD Rec. 23, 2 (June 1994), 419–429. Vesanto, Alhoniemi (b0230) 2000; 11 Sakoe, Chiba (b0180) 1978; 26 Golay, Kollias, Stoll, Meier, Valavanis, Boesiger (b0080) 1998; 40 Johnson (b0105) 1967; 32 Mount, Weaver (b0155) 2011; 14 URL Lei Chen, Özsu, Oria (b0135) 2005 Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000). Yi, B. K., & Faloutsos, C. (2000). Fast time sequence indexing for arbitrary Lp norms. Rebbapragada, Protopapas, Brodley (b0170) 2009; 74 (Vol. 10, No. 16, pp. 359-370). Aghabozorgi, Wah (b0015) 2014; 41 V. Niennattrakul and C. A. Ratanamahatana, “On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time Warping,” 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07), Seoul, Korea (South), 2007, pp. 733-738. Waller, Kaiser, Illian (b0250) 1998; 63 T. Warren Liao, Clustering of time series data—a survey, Pattern Recognition, Volume 38, Issue 11, 2005, Pages 1857-1874, ISSN 0031-3203. James C. Bezdek, Robert Ehrlich, William Full, FCM: The fuzzy c-means clustering algorithm, Computers & Geosciences, Volume 10, Issues 2–3, 1984, Pages 191-203, ISSN 0098-3004. C. Guo, H. Jia and N. Zhang, “Time Series Clustering Based on ICA for Stock Data Analysis,” 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 2008, pp. 1–4. Xu, Wunsch (b0260) 2008; Vol. 10 (pp. 5–14). J.J. Van Wijk E.R. Van Selow “Cluster and calendar based visualization of time series data,” Proceedings, IEEE Symposium on Information Visualization (InfoVis'99) San Francisco, CA, USA 1999 1999 4 9 doi: 10.1109/INFVIS.1999.801851. Riekeberg, Powers (b0175) 2017; 6 van den Heuvel, Mandl, Hulshoff Pol (b0215) 2008; 3 R. Freeman, Hujun Yin and N. M. Allinson, “Self-organising maps for tree view based hierarchical document clustering,” Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290), Honolulu, HI, USA, 2002, pp. 1906-1911 vol.2. W. Liu and L. Shao, “Research of SAX in Distance Measuring for Financial Time Series Data,” Geoffrey J. Chappell, John G. Taylor, The temporal Kohønen map, Neural Networks, Volume 6, Issue 3, 1993, Pages 441-445, ISSN 0893-6080. Francesco Gullo, Giovanni Ponti, Andrea Tagarelli, Giuseppe Tradigo, Pierangelo Veltri, Fu, T. C., Chung, F. L., Luk, R., & Ng, C. M. (2004, November). Financial time series indexing based on low resolution clustering. In Kohonen (b0125) 2012; Vol. 30 Haykin (b0100) 2010 Nanjing, China, 2009, pp. 935–937. Vesanto (10.1016/j.eswa.2022.117249_b0230) 2000; 11 10.1016/j.eswa.2022.117249_b0140 10.1016/j.eswa.2022.117249_b0020 Johnson (10.1016/j.eswa.2022.117249_b0105) 1967; 32 10.1016/j.eswa.2022.117249_b0185 Xu (10.1016/j.eswa.2022.117249_b0260) 2008; Vol. 10 Ernst (10.1016/j.eswa.2022.117249_b0065) 2005; 21 10.1016/j.eswa.2022.117249_b0220 Sakoe (10.1016/j.eswa.2022.117249_b0180) 1978; 26 10.1016/j.eswa.2022.117249_b0265 10.1016/j.eswa.2022.117249_b0145 10.1016/j.eswa.2022.117249_b0060 Aghabozorgi (10.1016/j.eswa.2022.117249_b0015) 2014; 41 Rani (10.1016/j.eswa.2022.117249_b0165) 2012; 52 Sundar Balakrishnan (10.1016/j.eswa.2022.117249_b0195) 1994; 59 Kohonen (10.1016/j.eswa.2022.117249_b0125) 2012; Vol. 30 Łuczak (10.1016/j.eswa.2022.117249_b0150) 2016; 62 10.1016/j.eswa.2022.117249_b0050 10.1016/j.eswa.2022.117249_b0095 10.1016/j.eswa.2022.117249_b0130 10.1016/j.eswa.2022.117249_b0055 10.1016/j.eswa.2022.117249_b0255 Kakizawa (10.1016/j.eswa.2022.117249_b0110) 1998; 93 Brereton (10.1016/j.eswa.2022.117249_b0040) 2012; 6 10.1016/j.eswa.2022.117249_b0090 Aghabozorgi (10.1016/j.eswa.2022.117249_b0010) 2015; 53 Vlachos (10.1016/j.eswa.2022.117249_b0245) 2003 Waller (10.1016/j.eswa.2022.117249_b0250) 1998; 63 Rebbapragada (10.1016/j.eswa.2022.117249_b0170) 2009; 74 10.1016/j.eswa.2022.117249_b0235 10.1016/j.eswa.2022.117249_b0115 Golay (10.1016/j.eswa.2022.117249_b0080) 1998; 40 10.1016/j.eswa.2022.117249_b0160 Gray (10.1016/j.eswa.2022.117249_b0085) 1984; 1 10.1016/j.eswa.2022.117249_b0240 10.1016/j.eswa.2022.117249_b0045 Riekeberg (10.1016/j.eswa.2022.117249_b0175) 2017; 6 van den Heuvel (10.1016/j.eswa.2022.117249_b0215) 2008; 3 Uriarte (10.1016/j.eswa.2022.117249_b0210) 2005; 1 Kohonen (10.1016/j.eswa.2022.117249_b0120) 2012; Vol. 8 10.1016/j.eswa.2022.117249_b0025 10.1016/j.eswa.2022.117249_b0225 10.1016/j.eswa.2022.117249_b0270 Mount (10.1016/j.eswa.2022.117249_b0155) 2011; 14 Ultsch (10.1016/j.eswa.2022.117249_b0200) 1993 10.1016/j.eswa.2022.117249_b0030 10.1016/j.eswa.2022.117249_b0075 Haykin (10.1016/j.eswa.2022.117249_b0100) 2010 10.1016/j.eswa.2022.117249_b0275 10.1016/j.eswa.2022.117249_b0035 Lei Chen (10.1016/j.eswa.2022.117249_b0135) 2005 10.1016/j.eswa.2022.117249_b0070  | 
    
| References_xml | – reference: Yin H. (2008) The Self-Organizing Maps: Background, Theories, Extensions and Applications. In: Fulcher J., Jain L.C. (eds) Computational Intelligence: A Compendium. Studies in Computational Intelligence, vol 115. Springer, Berlin, Heidelberg. – volume: 6 start-page: S1 year: 2012 ident: b0040 article-title: Self organising maps for visualising and modelling publication-title: Chemistry Central Journal – reference: Berndt, D. J., & Clifford, J. (1994, July). Using dynamic time warping to find patterns in time series. In – reference: Van Laerhoven K. (2001) Combining the Self-Organizing Map and K-Means Clustering for On-Line Classification of Sensor Data. In: Dorffner G., Bischof H., Hornik K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg. – volume: 14 start-page: 139 year: 2011 end-page: 148 ident: b0155 article-title: Self-organizing maps and boundary effects: Quantifying the benefits of torus wrapping for mapping SOM trajectories publication-title: Pattern Anal Applic – year: 2003 ident: b0245 article-title: A wavelet-based anytime algorithm for k-means clustering of time series publication-title: In proc. workshop on clustering high dimensionality data and its applications – volume: Vol. 8 year: 2012 ident: b0120 publication-title: Self-organization and associative memory – volume: 6 start-page: 1148 year: 2017 ident: b0175 article-title: New frontiers in metabolomics: From measurement to insight publication-title: F1000Research – volume: 11 start-page: 586 year: 2000 end-page: 600 ident: b0230 article-title: Clustering of the self-organizing map publication-title: IEEE Transactions on Neural Networks – volume: 62 start-page: 116 year: 2016 end-page: 130 ident: b0150 article-title: Hierarchical clustering of time series data with parametric derivative dynamic time warping publication-title: Expert Systems with Applications – volume: 52 start-page: 1 year: 2012 end-page: 9 ident: b0165 article-title: Recent techniques of clustering of time series data: A survey publication-title: International Journal of Computer Applications – volume: 63 start-page: 5 year: 1998 end-page: 22 ident: b0250 article-title: A comparison of the classification capabilities of the 1-dimensional kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms publication-title: Psychometrika – volume: 59 start-page: 509 year: 1994 end-page: 525 ident: b0195 article-title: A study of the classification capabilities of neural networks using unsupervised learning: A comparison with publication-title: Psychometrika – year: 1993 ident: b0200 article-title: Self-organizing neural networks for visualisation and classification publication-title: Information and Classification. Studies in Classification, Data Analysis and Knowledge Organization – reference: A. Bagnall, J. Lines, J. Hills and A. Bostrom, “Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles,” in IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 9, pp. 2522-2535, 1 Sept. 2015. https://doi.org/10.1109/TKDE.2015.2416723. – reference: Francesco Gullo, Giovanni Ponti, Andrea Tagarelli, Giuseppe Tradigo, Pierangelo Veltri, Fu, T. C., Chung, F. L., Luk, R., & Ng, C. M. (2004, November). Financial time series indexing based on low resolution clustering. In – volume: 21 start-page: i159 year: 2005 end-page: i168 ident: b0065 article-title: Clustering short time series gene expression data publication-title: Bioinformatics (Oxford, England) – reference: C. Guo, H. Jia and N. Zhang, “Time Series Clustering Based on ICA for Stock Data Analysis,” 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 2008, pp. 1–4. – reference: Geoffrey J. Chappell, John G. Taylor, The temporal Kohønen map, Neural Networks, Volume 6, Issue 3, 1993, Pages 441-445, ISSN 0893-6080. – reference: . PMID: 9702707. – reference: M. Vlachos, G. Kollios and D. Gunopulos, “Discovering similar multidimensional trajectories,” Proceedings 18th International Conference on Data Engineering, San Jose, CA, USA, 2002, pp. 673-684. – volume: 41 start-page: 1301 year: 2014 end-page: 1314 ident: b0015 article-title: Stock market co-movement assessment using a three-phase clustering method publication-title: Expert Systems with Applications: An International Journal. – volume: Vol. 30 year: 2012 ident: b0125 publication-title: Self-organizing maps – volume: 3 year: 2008 ident: b0215 article-title: Normalized cut group clustering of resting-state fMRI Data publication-title: PLoS ONE – reference: T. Warren Liao, Clustering of time series data—a survey, Pattern Recognition, Volume 38, Issue 11, 2005, Pages 1857-1874, ISSN 0031-3203. – reference: Xiaohang Zhang, Jiaqi Liu, Yu Du, Tingjie Lv, A novel clustering method on time series data, Expert Systems with Applications, Volume 38, Issue 9, 2011, Pages 11891-11900, ISSN 0957-4174. – reference: Bruno Brentan, Gustavo Meirelles, Edevar Luvizotto, Joaquin Izquierdo, Hybrid SOM+k-Means clustering to improve planning, operation and management in water distribution systems, Environmental Modelling & Software, Volume 106, 2018, Pages 77-88, ISSN 1364-8152. – reference: Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping Chen, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, & Hexagon-ML (2019). – volume: Vol. 10 year: 2008 ident: b0260 publication-title: Clustering – reference: R.J. Kuo, Y.L. An, H.S. Wang, W.J. Chung, Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation, Expert Systems with Applications, Volume 30, Issue 2, 2006, Pages 313-324, ISSN 0957-4174. – reference: James C. Bezdek, Robert Ehrlich, William Full, FCM: The fuzzy c-means clustering algorithm, Computers & Geosciences, Volume 10, Issues 2–3, 1984, Pages 191-203, ISSN 0098-3004. – volume: 40 start-page: 249 year: 1998 end-page: 260 ident: b0080 article-title: A new correlation-based fuzzy logic clustering algorithm for fMRI publication-title: Magn Reson Med. – volume: 53 start-page: 16 year: 2015 end-page: 38 ident: b0010 article-title: Time-series clustering – A decade review publication-title: Information Systems – reference: Robert H. Shumway, Time-frequency clustering and discriminant analysis, Samuel Kaski, Timo Honkela, Krista Lagus, Teuvo Kohonen, WEBSOM – Self-organizing maps of document collections. This work was supported by the Academy of Finland, Neurocomputing, Volume 21, Issues 1–3, 1998, Pages 101-117, ISSN 0925-2312. – volume: 1 start-page: 19 year: 2005 end-page: 22 ident: b0210 article-title: Topology preservation in SOM publication-title: International Journal of Applied Mathematics and Computer Sciences – volume: 32 start-page: 241 year: 1967 end-page: 254 ident: b0105 article-title: Hierarchical clustering schemes publication-title: Psychometrika – reference: W. Liu and L. Shao, “Research of SAX in Distance Measuring for Financial Time Series Data,” – reference: E. Keogh S. Lonardi Bill 'Yuan-chi' Chiu. Finding surprising patterns in a time series database in linear time and space 2002 Association for Computing Machinery New York, NY, USA 550 556 10.1145/775047.775128. – reference: Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. 2008. Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1, 2 (August 2008), 1542–1552. – reference: T.W. Liao, B. Bolt, J. Forester, E. Hailman, C. Hansen, R.C. Kaste, J. O’May, Understanding and projecting the battle state, 23rd Army Science Conference, Orlando, FL, December 2–5, 2002. – reference: J.J. Van Wijk E.R. Van Selow “Cluster and calendar based visualization of time series data,” Proceedings, IEEE Symposium on Information Visualization (InfoVis'99) San Francisco, CA, USA 1999 1999 4 9 doi: 10.1109/INFVIS.1999.801851. – reference: URL: – reference: (pp. 5–14). – volume: 26 start-page: 43 year: 1978 end-page: 49 ident: b0180 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing – reference: Yi, B. K., & Faloutsos, C. (2000). Fast time sequence indexing for arbitrary Lp norms. – reference: Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1994. Fast subsequence matching in time-series databases. SIGMOD Rec. 23, 2 (June 1994), 419–429. – reference: (Vol. 10, No. 16, pp. 359-370). – volume: 1 start-page: 4 year: 1984 end-page: 29 ident: b0085 article-title: Vector quantization publication-title: IEEE ASSP Magazine – start-page: 491 year: 2005 end-page: 502 ident: b0135 publication-title: Robust and fast similarity search for moving object trajectories – volume: 74 start-page: 281 year: 2009 end-page: 313 ident: b0170 article-title: Finding anomalous periodic time series publication-title: Mach Learn – reference: , Nanjing, China, 2009, pp. 935–937. – reference: Marcel Brun, Chao Sima, Jianping Hua, James Lowey, Brent Carroll, Edward Suh, Edward R. Dougherty, Model-based evaluation of clustering validation measures, Pattern Recognition, Volume 40, Issue 3, 2007, Pages 807-824, ISSN 0031-3203. – reference: . – start-page: 3/E. year: 2010 ident: b0100 article-title: Neural networks and learning machines – reference: R. Freeman, Hujun Yin and N. M. Allinson, “Self-organising maps for tree view based hierarchical document clustering,” Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290), Honolulu, HI, USA, 2002, pp. 1906-1911 vol.2. – reference: Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000). – reference: (Vol. 57, p. 2). Technical report. – volume: 93 start-page: 328 year: 1998 end-page: 340 ident: b0110 article-title: Discrimination and clustering for multivariate time series publication-title: Journal of the American Statistical Association – reference: V. Niennattrakul and C. A. Ratanamahatana, “On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time Warping,” 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07), Seoul, Korea (South), 2007, pp. 733-738. – ident: 10.1016/j.eswa.2022.117249_b0185 doi: 10.1016/S0925-2312(98)00039-3 – volume: 62 start-page: 116 year: 2016 ident: 10.1016/j.eswa.2022.117249_b0150 article-title: Hierarchical clustering of time series data with parametric derivative dynamic time warping publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.06.012 – volume: 93 start-page: 328 issue: 441 year: 1998 ident: 10.1016/j.eswa.2022.117249_b0110 article-title: Discrimination and clustering for multivariate time series publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1998.10474114 – ident: 10.1016/j.eswa.2022.117249_b0130 doi: 10.1016/j.eswa.2005.07.036 – ident: 10.1016/j.eswa.2022.117249_b0070 doi: 10.1145/191843.191925 – start-page: 3/E. year: 2010 ident: 10.1016/j.eswa.2022.117249_b0100 – ident: 10.1016/j.eswa.2022.117249_b0115 doi: 10.1145/775047.775128 – ident: 10.1016/j.eswa.2022.117249_b0060 doi: 10.14778/1454159.1454226 – ident: 10.1016/j.eswa.2022.117249_b0035 doi: 10.1016/j.envsoft.2018.02.013 – start-page: 491 year: 2005 ident: 10.1016/j.eswa.2022.117249_b0135 – volume: 1 start-page: 4 issue: 2 year: 1984 ident: 10.1016/j.eswa.2022.117249_b0085 article-title: Vector quantization publication-title: IEEE ASSP Magazine doi: 10.1109/MASSP.1984.1162229 – ident: 10.1016/j.eswa.2022.117249_b0255 doi: 10.1016/j.patcog.2005.01.025 – ident: 10.1016/j.eswa.2022.117249_b0140 – ident: 10.1016/j.eswa.2022.117249_b0025 – ident: 10.1016/j.eswa.2022.117249_b0145 doi: 10.1109/ICISE.2009.924 – ident: 10.1016/j.eswa.2022.117249_b0030 doi: 10.1016/0098-3004(84)90020-7 – ident: 10.1016/j.eswa.2022.117249_b0090 – volume: 32 start-page: 241 year: 1967 ident: 10.1016/j.eswa.2022.117249_b0105 article-title: Hierarchical clustering schemes publication-title: Psychometrika doi: 10.1007/BF02289588 – volume: 6 start-page: 1148 year: 2017 ident: 10.1016/j.eswa.2022.117249_b0175 article-title: New frontiers in metabolomics: From measurement to insight publication-title: F1000Research doi: 10.12688/f1000research.11495.1 – volume: 40 start-page: 249 issue: 2 year: 1998 ident: 10.1016/j.eswa.2022.117249_b0080 article-title: A new correlation-based fuzzy logic clustering algorithm for fMRI publication-title: Magn Reson Med. doi: 10.1002/mrm.1910400211 – volume: 11 start-page: 586 issue: 3 year: 2000 ident: 10.1016/j.eswa.2022.117249_b0230 article-title: Clustering of the self-organizing map publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.846731 – volume: 74 start-page: 281 year: 2009 ident: 10.1016/j.eswa.2022.117249_b0170 article-title: Finding anomalous periodic time series publication-title: Mach Learn doi: 10.1007/s10994-008-5093-3 – volume: 14 start-page: 139 year: 2011 ident: 10.1016/j.eswa.2022.117249_b0155 article-title: Self-organizing maps and boundary effects: Quantifying the benefits of torus wrapping for mapping SOM trajectories publication-title: Pattern Anal Applic doi: 10.1007/s10044-011-0210-5 – ident: 10.1016/j.eswa.2022.117249_b0075 doi: 10.1109/IJCNN.2002.1007810 – volume: Vol. 8 year: 2012 ident: 10.1016/j.eswa.2022.117249_b0120 – ident: 10.1016/j.eswa.2022.117249_b0270 doi: 10.1007/978-3-540-78293-3_17 – volume: 26 start-page: 43 issue: 1 year: 1978 ident: 10.1016/j.eswa.2022.117249_b0180 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing doi: 10.1109/TASSP.1978.1163055 – ident: 10.1016/j.eswa.2022.117249_b0265 – ident: 10.1016/j.eswa.2022.117249_b0240 doi: 10.1109/ICDE.2002.994784 – volume: 6 start-page: S1 year: 2012 ident: 10.1016/j.eswa.2022.117249_b0040 article-title: Self organising maps for visualising and modelling publication-title: Chemistry Central Journal doi: 10.1186/1752-153X-6-S2-S1 – ident: 10.1016/j.eswa.2022.117249_b0020 doi: 10.1109/TKDE.2015.2416723 – volume: 59 start-page: 509 year: 1994 ident: 10.1016/j.eswa.2022.117249_b0195 article-title: A study of the classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering publication-title: Psychometrika doi: 10.1007/BF02294390 – year: 2003 ident: 10.1016/j.eswa.2022.117249_b0245 article-title: A wavelet-based anytime algorithm for k-means clustering of time series – ident: 10.1016/j.eswa.2022.117249_b0055 doi: 10.1002/mrm.1910400211 – ident: 10.1016/j.eswa.2022.117249_b0045 doi: 10.1016/j.patcog.2006.06.026 – volume: 63 start-page: 5 year: 1998 ident: 10.1016/j.eswa.2022.117249_b0250 article-title: A comparison of the classification capabilities of the 1-dimensional kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms publication-title: Psychometrika doi: 10.1007/BF02295433 – volume: Vol. 30 year: 2012 ident: 10.1016/j.eswa.2022.117249_b0125 – volume: 41 start-page: 1301 year: 2014 ident: 10.1016/j.eswa.2022.117249_b0015 article-title: Stock market co-movement assessment using a three-phase clustering method publication-title: Expert Systems with Applications: An International Journal. doi: 10.1016/j.eswa.2013.08.028 – volume: 53 start-page: 16 year: 2015 ident: 10.1016/j.eswa.2022.117249_b0010 article-title: Time-series clustering – A decade review publication-title: Information Systems doi: 10.1016/j.is.2015.04.007 – ident: 10.1016/j.eswa.2022.117249_b0095 doi: 10.1109/WiCom.2008.2534 – volume: 1 start-page: 19 issue: 1 year: 2005 ident: 10.1016/j.eswa.2022.117249_b0210 article-title: Topology preservation in SOM publication-title: International Journal of Applied Mathematics and Computer Sciences – volume: 21 start-page: i159 issue: Suppl 1 year: 2005 ident: 10.1016/j.eswa.2022.117249_b0065 article-title: Clustering short time series gene expression data publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/bti1022 – volume: Vol. 10 year: 2008 ident: 10.1016/j.eswa.2022.117249_b0260 – ident: 10.1016/j.eswa.2022.117249_b0220 doi: 10.1007/3-540-44668-0_65 – ident: 10.1016/j.eswa.2022.117249_b0235 – ident: 10.1016/j.eswa.2022.117249_b0275 doi: 10.1016/j.eswa.2011.03.081 – ident: 10.1016/j.eswa.2022.117249_b0225 doi: 10.1109/INFVIS.1999.801851 – ident: 10.1016/j.eswa.2022.117249_b0050 doi: 10.1016/0893-6080(93)90011-K – volume: 3 issue: 4 year: 2008 ident: 10.1016/j.eswa.2022.117249_b0215 article-title: Normalized cut group clustering of resting-state fMRI Data publication-title: PLoS ONE doi: 10.1371/journal.pone.0002001 – ident: 10.1016/j.eswa.2022.117249_b0160 doi: 10.1109/MUE.2007.165 – volume: 52 start-page: 1 year: 2012 ident: 10.1016/j.eswa.2022.117249_b0165 article-title: Recent techniques of clustering of time series data: A survey publication-title: International Journal of Computer Applications doi: 10.5120/8282-1278 – year: 1993 ident: 10.1016/j.eswa.2022.117249_b0200 article-title: Self-organizing neural networks for visualisation and classification  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.4578288 | 
    
| Snippet | Time Series clustering is a domain with several applications spanning various fields. The concept of vector quantization, popularly used in signal processing... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 117249 | 
    
| SubjectTerms | Agglomerative clustering Algorithms Centroids Clustering Datasets Dynamic time warping K medoids clustering Self organizing map Self organizing maps Signal processing Time measurement Time series Time series clustering Vector quantization  | 
    
| Title | A modified Kohonen map algorithm for clustering time series data | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2022.117249 https://www.proquest.com/docview/2675697643  | 
    
| Volume | 201 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhQK8sCGQh3HTuyNqqIqVHSBSt2sxHZoUV_qQ2z8dnyNUwmEOjAmsiPri333XXL3HUK3QuYkNyICPe04YBmPg5SYPKA8dx4hliay8L3jpRd3-ux5wAcV1CprYSCt0tv-wqZvrLW_0_BoNuajUePVkQPnDl1oB1Ex5QOoYGcJdDG4_9qmeYD8XFLo7SUBjPaFM0WOl11-gvYQpfDvkoKe5t_O6ZeZ3vie9hE68KQRN4t1HaOKnZ6gw7IhA_bn8xQ9NPFkZka5o5W4OxvOpnaKJ-kcp-P32WK0Gk6wo6hYj9egjuB8FobO8hg2oV1iyBU9Q_3241urE_gWCYGmXKwCanIRGWpCYqXRhsdQVUeEJUY7L2Q4dDdiaSQzqWUktIgyRhMXQxCdSBFaFp2j6tSt5gLhXGtOwtSyTIQsyRJBMptJWZCQOCY1FJbYKO31w6GNxViViWIfCvBUgKcq8Kyhu-2ceaGesXM0LyFXP_aAcuZ957x6-X6UP4FLRV0kFDuuxaLLfz72Cu3DVZFQVkfV1WJtrx0DWWU3my12g_aaT91O7xsLE9ga | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRjwKeGBDoY5jJ_ZGhUCFPhZA6mYltkOD-hJtxcZvx9c4SCDEwJrYkfXlfPddcv4OoQshc5IbEYGedhywjMdBSkweUJ67iBBLE1n43tHtxa1n9tDn_RV0U52FgbJK7_tLn7701v5Kw6PZmBZF49GRAxcOXWoHWTHl_VW0xjhNIAO7-viq8wD9uaQU3EsCGO5PzpRFXnb2DuJDlMLPSwqCmr9Hpx9-ehl87rbRpmeNuFkubAet2PEu2qo6MmC_QffQdROPJqbIHa_E7clgMrZjPEqnOB2-TN6K-WCEHUfFergAeQQXtDC0lsdghXaGoVh0Hz3f3T7dtALfIyHQlIt5QE0uIkNNSKw02vAYjtURYYnRLgwZDu2NWBrJTGoZCS2ijNHEJRFEJ1KElkUHqDZ2qzlEONeakzC1LBMhS7JEkMxmUpYsJI7JEQorbJT2AuLQx2KoqkqxVwV4KsBTlXgeocuvOdNSPuPP0byCXH0zAuX8-5_z6tX7UX4LzhR1qVDsyBaLjv_52HO03nrqdlTnvtc-QRtwp6wuq6Pa_G1hTx0dmWdnS3P7BDEn2a8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+Kohonen+map+algorithm+for+clustering+time+series+data&rft.jtitle=Expert+systems+with+applications&rft.au=Krishnan%2C+Kalpathy+Jayanth&rft.au=Mitra%2C+Kishalay&rft.date=2022-09-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=201&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2022.117249&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |