A modified Kohonen map algorithm for clustering time series data

Time Series clustering is a domain with several applications spanning various fields. The concept of vector quantization, popularly used in signal processing to approximate a large number of signals, can be used to cluster signals and thereby time series data. Though a popular clustering algorithm s...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 201; p. 117249
Main Authors Jayanth Krishnan, Kalpathy, Mitra, Kishalay
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.09.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2022.117249

Cover

Abstract Time Series clustering is a domain with several applications spanning various fields. The concept of vector quantization, popularly used in signal processing to approximate a large number of signals, can be used to cluster signals and thereby time series data. Though a popular clustering algorithm such as K-Means is capable of performing vector quantization, the averaging technique to compute centroids in the algorithm is not well suited to handle time series data. The ability of Self Organizing Map algorithm, has, therefore, been explored in this work to perform clustering of time series data by adopting several modifications in the original steps of the algorithm. By initializing the prototype vectors using a farthest neighbors’ approach instead of random initialization and using the dynamic time warping distance measure to calculate similarity between signals, a novel procedure has been proposed to apply the Self Organizing Map algorithm to cluster time series data. The proposed algorithm is first tested on 119 data sets and its performance is compared to that of Agglomerative Clustering and k medoids clustering using 3 validation measures. Next, their scalability is compared by looking at their time of computation on the data sets. Performance of the proposed algorithm in terms of the fluctuations involved due to initialization and the parameters of the algorithm are studied next using 3 more validation measures. The results showcase that the modified Self Organizing Map is not only a better algorithm than Agglomerative Clustering in terms of clustering performance, but also more scalable in terms of taking less time to compute clusters as it performs them in lesser time that k medoids while having similar cluster quality.
AbstractList Time Series clustering is a domain with several applications spanning various fields. The concept of vector quantization, popularly used in signal processing to approximate a large number of signals, can be used to cluster signals and thereby time series data. Though a popular clustering algorithm such as K-Means is capable of performing vector quantization, the averaging technique to compute centroids in the algorithm is not well suited to handle time series data. The ability of Self Organizing Map algorithm, has, therefore, been explored in this work to perform clustering of time series data by adopting several modifications in the original steps of the algorithm. By initializing the prototype vectors using a farthest neighbors’ approach instead of random initialization and using the dynamic time warping distance measure to calculate similarity between signals, a novel procedure has been proposed to apply the Self Organizing Map algorithm to cluster time series data. The proposed algorithm is first tested on 119 data sets and its performance is compared to that of Agglomerative Clustering and k medoids clustering using 3 validation measures. Next, their scalability is compared by looking at their time of computation on the data sets. Performance of the proposed algorithm in terms of the fluctuations involved due to initialization and the parameters of the algorithm are studied next using 3 more validation measures. The results showcase that the modified Self Organizing Map is not only a better algorithm than Agglomerative Clustering in terms of clustering performance, but also more scalable in terms of taking less time to compute clusters as it performs them in lesser time that k medoids while having similar cluster quality.
ArticleNumber 117249
Author Mitra, Kishalay
Jayanth Krishnan, Kalpathy
Author_xml – sequence: 1
  givenname: Kalpathy
  surname: Jayanth Krishnan
  fullname: Jayanth Krishnan, Kalpathy
  organization: Global Optimization and Knowledge Unearthing Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telengana 502284, India
– sequence: 2
  givenname: Kishalay
  surname: Mitra
  fullname: Mitra, Kishalay
  email: kishalay@che.iith.ac.in
  organization: Global Optimization and Knowledge Unearthing Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telengana 502284, India
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxJxiOx-2JQaqii9RiQVmy7UvraMkLrYL4t-TKkwMne6G93lP98zQpPc9IHRNyYISWt02C4jfesEIYwtKOSvkGZpSwfOs4jKfoCmRJc8KyosLNIuxIYRyQvgU3S9x562rHVj86ndDa487vce63frg0q7DtQ_YtIeYILh-i5PrAMdhh4itTvoSnde6jXD1N-fo4_HhffWcrd-eXlbLdWZYKVLGbC1yyywlIK2xZWU3VU0EEGsqLmxJS1YWOpcbaWQujMg3BeOl5MRwKSgU-RzdjL374D8PEJNq_CH0w0nFKl5WkldFPqTYmDLBxxigVvvgOh1-FCXqaEo16mhKHU2p0dQAiX-QcUkn5_sUtGtPo3cjCsPrXw6CisZBb8C6ACYp690p_BdKAYUa
CitedBy_id crossref_primary_10_1007_s40747_022_00826_2
crossref_primary_10_3390_app131810019
crossref_primary_10_1016_j_eswa_2023_120377
crossref_primary_10_1080_10426914_2022_2105872
crossref_primary_10_1016_j_ins_2023_119155
crossref_primary_10_1038_s41598_023_33074_6
crossref_primary_10_1016_j_xcrp_2024_101830
Cites_doi 10.1016/S0925-2312(98)00039-3
10.1016/j.eswa.2016.06.012
10.1080/01621459.1998.10474114
10.1016/j.eswa.2005.07.036
10.1145/191843.191925
10.1145/775047.775128
10.14778/1454159.1454226
10.1016/j.envsoft.2018.02.013
10.1109/MASSP.1984.1162229
10.1016/j.patcog.2005.01.025
10.1109/ICISE.2009.924
10.1016/0098-3004(84)90020-7
10.1007/BF02289588
10.12688/f1000research.11495.1
10.1002/mrm.1910400211
10.1109/72.846731
10.1007/s10994-008-5093-3
10.1007/s10044-011-0210-5
10.1109/IJCNN.2002.1007810
10.1007/978-3-540-78293-3_17
10.1109/TASSP.1978.1163055
10.1109/ICDE.2002.994784
10.1186/1752-153X-6-S2-S1
10.1109/TKDE.2015.2416723
10.1007/BF02294390
10.1016/j.patcog.2006.06.026
10.1007/BF02295433
10.1016/j.eswa.2013.08.028
10.1016/j.is.2015.04.007
10.1109/WiCom.2008.2534
10.1093/bioinformatics/bti1022
10.1007/3-540-44668-0_65
10.1016/j.eswa.2011.03.081
10.1109/INFVIS.1999.801851
10.1016/0893-6080(93)90011-K
10.1371/journal.pone.0002001
10.1109/MUE.2007.165
10.5120/8282-1278
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Sep 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 1, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.117249
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_117249
S095741742200625X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c258t-2df83d2d10e9dcd56db6f08e0dc678d515254a39b9c938c83b4275970c7981e43
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 07:05:00 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Sat Oct 25 05:49:54 EDT 2025
Fri Feb 23 02:39:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords K medoids clustering
Self organizing map
Vector quantization
Time series clustering
Dynamic time warping
Agglomerative clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c258t-2df83d2d10e9dcd56db6f08e0dc678d515254a39b9c938c83b4275970c7981e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2675697643
PQPubID 2045477
ParticipantIDs proquest_journals_2675697643
crossref_primary_10_1016_j_eswa_2022_117249
crossref_citationtrail_10_1016_j_eswa_2022_117249
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117249
PublicationCentury 2000
PublicationDate 2022-09-01
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping Chen, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, & Hexagon-ML (2019).
Gray (b0085) 1984; 1
R.J. Kuo, Y.L. An, H.S. Wang, W.J. Chung, Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation, Expert Systems with Applications, Volume 30, Issue 2, 2006, Pages 313-324, ISSN 0957-4174.
M. Vlachos, G. Kollios and D. Gunopulos, “Discovering similar multidimensional trajectories,” Proceedings 18th International Conference on Data Engineering, San Jose, CA, USA, 2002, pp. 673-684.
Kakizawa, Shumway, Taniguchi (b0110) 1998; 93
Kohonen (b0120) 2012; Vol. 8
Bruno Brentan, Gustavo Meirelles, Edevar Luvizotto, Joaquin Izquierdo, Hybrid SOM+k-Means clustering to improve planning, operation and management in water distribution systems, Environmental Modelling & Software, Volume 106, 2018, Pages 77-88, ISSN 1364-8152.
Ernst, Nau, Bar-Joseph (b0065) 2005; 21
Aghabozorgi, Seyed Shirkhorshidi, Ying Wah (b0010) 2015; 53
E. Keogh S. Lonardi Bill 'Yuan-chi' Chiu. Finding surprising patterns in a time series database in linear time and space 2002 Association for Computing Machinery New York, NY, USA 550 556 10.1145/775047.775128.
Berndt, D. J., & Clifford, J. (1994, July). Using dynamic time warping to find patterns in time series. In
Marcel Brun, Chao Sima, Jianping Hua, James Lowey, Brent Carroll, Edward Suh, Edward R. Dougherty, Model-based evaluation of clustering validation measures, Pattern Recognition, Volume 40, Issue 3, 2007, Pages 807-824, ISSN 0031-3203.
Xiaohang Zhang, Jiaqi Liu, Yu Du, Tingjie Lv, A novel clustering method on time series data, Expert Systems with Applications, Volume 38, Issue 9, 2011, Pages 11891-11900, ISSN 0957-4174.
T.W. Liao, B. Bolt, J. Forester, E. Hailman, C. Hansen, R.C. Kaste, J. O’May, Understanding and projecting the battle state, 23rd Army Science Conference, Orlando, FL, December 2–5, 2002.
Yin H. (2008) The Self-Organizing Maps: Background, Theories, Extensions and Applications. In: Fulcher J., Jain L.C. (eds) Computational Intelligence: A Compendium. Studies in Computational Intelligence, vol 115. Springer, Berlin, Heidelberg.
PMID: 9702707.
Uriarte, Martín (b0210) 2005; 1
Sundar Balakrishnan, Cooper, Jacob (b0195) 1994; 59
Ultsch (b0200) 1993
.
Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. 2008. Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1, 2 (August 2008), 1542–1552.
Van Laerhoven K. (2001) Combining the Self-Organizing Map and K-Means Clustering for On-Line Classification of Sensor Data. In: Dorffner G., Bischof H., Hornik K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg.
(Vol. 57, p. 2). Technical report.
A. Bagnall, J. Lines, J. Hills and A. Bostrom, “Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles,” in IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 9, pp. 2522-2535, 1 Sept. 2015. https://doi.org/10.1109/TKDE.2015.2416723.
Robert H. Shumway, Time-frequency clustering and discriminant analysis, Samuel Kaski, Timo Honkela, Krista Lagus, Teuvo Kohonen, WEBSOM – Self-organizing maps of document collections. This work was supported by the Academy of Finland, Neurocomputing, Volume 21, Issues 1–3, 1998, Pages 101-117, ISSN 0925-2312.
Vlachos, Lin, Keogh, Gunopulos (b0245) 2003
Łuczak (b0150) 2016; 62
Brereton (b0040) 2012; 6
Rani, Sikka (b0165) 2012; 52
Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1994. Fast subsequence matching in time-series databases. SIGMOD Rec. 23, 2 (June 1994), 419–429.
Vesanto, Alhoniemi (b0230) 2000; 11
Sakoe, Chiba (b0180) 1978; 26
Golay, Kollias, Stoll, Meier, Valavanis, Boesiger (b0080) 1998; 40
Johnson (b0105) 1967; 32
Mount, Weaver (b0155) 2011; 14
URL
Lei Chen, Özsu, Oria (b0135) 2005
Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000).
Yi, B. K., & Faloutsos, C. (2000). Fast time sequence indexing for arbitrary Lp norms.
Rebbapragada, Protopapas, Brodley (b0170) 2009; 74
(Vol. 10, No. 16, pp. 359-370).
Aghabozorgi, Wah (b0015) 2014; 41
V. Niennattrakul and C. A. Ratanamahatana, “On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time Warping,” 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07), Seoul, Korea (South), 2007, pp. 733-738.
Waller, Kaiser, Illian (b0250) 1998; 63
T. Warren Liao, Clustering of time series data—a survey, Pattern Recognition, Volume 38, Issue 11, 2005, Pages 1857-1874, ISSN 0031-3203.
James C. Bezdek, Robert Ehrlich, William Full, FCM: The fuzzy c-means clustering algorithm, Computers & Geosciences, Volume 10, Issues 2–3, 1984, Pages 191-203, ISSN 0098-3004.
C. Guo, H. Jia and N. Zhang, “Time Series Clustering Based on ICA for Stock Data Analysis,” 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 2008, pp. 1–4.
Xu, Wunsch (b0260) 2008; Vol. 10
(pp. 5–14).
J.J. Van Wijk E.R. Van Selow “Cluster and calendar based visualization of time series data,” Proceedings, IEEE Symposium on Information Visualization (InfoVis'99) San Francisco, CA, USA 1999 1999 4 9 doi: 10.1109/INFVIS.1999.801851.
Riekeberg, Powers (b0175) 2017; 6
van den Heuvel, Mandl, Hulshoff Pol (b0215) 2008; 3
R. Freeman, Hujun Yin and N. M. Allinson, “Self-organising maps for tree view based hierarchical document clustering,” Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290), Honolulu, HI, USA, 2002, pp. 1906-1911 vol.2.
W. Liu and L. Shao, “Research of SAX in Distance Measuring for Financial Time Series Data,”
Geoffrey J. Chappell, John G. Taylor, The temporal Kohønen map, Neural Networks, Volume 6, Issue 3, 1993, Pages 441-445, ISSN 0893-6080.
Francesco Gullo, Giovanni Ponti, Andrea Tagarelli, Giuseppe Tradigo, Pierangelo Veltri, Fu, T. C., Chung, F. L., Luk, R., & Ng, C. M. (2004, November). Financial time series indexing based on low resolution clustering. In
Kohonen (b0125) 2012; Vol. 30
Haykin (b0100) 2010
Nanjing, China, 2009, pp. 935–937.
Vesanto (10.1016/j.eswa.2022.117249_b0230) 2000; 11
10.1016/j.eswa.2022.117249_b0140
10.1016/j.eswa.2022.117249_b0020
Johnson (10.1016/j.eswa.2022.117249_b0105) 1967; 32
10.1016/j.eswa.2022.117249_b0185
Xu (10.1016/j.eswa.2022.117249_b0260) 2008; Vol. 10
Ernst (10.1016/j.eswa.2022.117249_b0065) 2005; 21
10.1016/j.eswa.2022.117249_b0220
Sakoe (10.1016/j.eswa.2022.117249_b0180) 1978; 26
10.1016/j.eswa.2022.117249_b0265
10.1016/j.eswa.2022.117249_b0145
10.1016/j.eswa.2022.117249_b0060
Aghabozorgi (10.1016/j.eswa.2022.117249_b0015) 2014; 41
Rani (10.1016/j.eswa.2022.117249_b0165) 2012; 52
Sundar Balakrishnan (10.1016/j.eswa.2022.117249_b0195) 1994; 59
Kohonen (10.1016/j.eswa.2022.117249_b0125) 2012; Vol. 30
Łuczak (10.1016/j.eswa.2022.117249_b0150) 2016; 62
10.1016/j.eswa.2022.117249_b0050
10.1016/j.eswa.2022.117249_b0095
10.1016/j.eswa.2022.117249_b0130
10.1016/j.eswa.2022.117249_b0055
10.1016/j.eswa.2022.117249_b0255
Kakizawa (10.1016/j.eswa.2022.117249_b0110) 1998; 93
Brereton (10.1016/j.eswa.2022.117249_b0040) 2012; 6
10.1016/j.eswa.2022.117249_b0090
Aghabozorgi (10.1016/j.eswa.2022.117249_b0010) 2015; 53
Vlachos (10.1016/j.eswa.2022.117249_b0245) 2003
Waller (10.1016/j.eswa.2022.117249_b0250) 1998; 63
Rebbapragada (10.1016/j.eswa.2022.117249_b0170) 2009; 74
10.1016/j.eswa.2022.117249_b0235
10.1016/j.eswa.2022.117249_b0115
Golay (10.1016/j.eswa.2022.117249_b0080) 1998; 40
10.1016/j.eswa.2022.117249_b0160
Gray (10.1016/j.eswa.2022.117249_b0085) 1984; 1
10.1016/j.eswa.2022.117249_b0240
10.1016/j.eswa.2022.117249_b0045
Riekeberg (10.1016/j.eswa.2022.117249_b0175) 2017; 6
van den Heuvel (10.1016/j.eswa.2022.117249_b0215) 2008; 3
Uriarte (10.1016/j.eswa.2022.117249_b0210) 2005; 1
Kohonen (10.1016/j.eswa.2022.117249_b0120) 2012; Vol. 8
10.1016/j.eswa.2022.117249_b0025
10.1016/j.eswa.2022.117249_b0225
10.1016/j.eswa.2022.117249_b0270
Mount (10.1016/j.eswa.2022.117249_b0155) 2011; 14
Ultsch (10.1016/j.eswa.2022.117249_b0200) 1993
10.1016/j.eswa.2022.117249_b0030
10.1016/j.eswa.2022.117249_b0075
Haykin (10.1016/j.eswa.2022.117249_b0100) 2010
10.1016/j.eswa.2022.117249_b0275
10.1016/j.eswa.2022.117249_b0035
Lei Chen (10.1016/j.eswa.2022.117249_b0135) 2005
10.1016/j.eswa.2022.117249_b0070
References_xml – reference: Yin H. (2008) The Self-Organizing Maps: Background, Theories, Extensions and Applications. In: Fulcher J., Jain L.C. (eds) Computational Intelligence: A Compendium. Studies in Computational Intelligence, vol 115. Springer, Berlin, Heidelberg.
– volume: 6
  start-page: S1
  year: 2012
  ident: b0040
  article-title: Self organising maps for visualising and modelling
  publication-title: Chemistry Central Journal
– reference: Berndt, D. J., & Clifford, J. (1994, July). Using dynamic time warping to find patterns in time series. In
– reference: Van Laerhoven K. (2001) Combining the Self-Organizing Map and K-Means Clustering for On-Line Classification of Sensor Data. In: Dorffner G., Bischof H., Hornik K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg.
– volume: 14
  start-page: 139
  year: 2011
  end-page: 148
  ident: b0155
  article-title: Self-organizing maps and boundary effects: Quantifying the benefits of torus wrapping for mapping SOM trajectories
  publication-title: Pattern Anal Applic
– year: 2003
  ident: b0245
  article-title: A wavelet-based anytime algorithm for k-means clustering of time series
  publication-title: In proc. workshop on clustering high dimensionality data and its applications
– volume: Vol. 8
  year: 2012
  ident: b0120
  publication-title: Self-organization and associative memory
– volume: 6
  start-page: 1148
  year: 2017
  ident: b0175
  article-title: New frontiers in metabolomics: From measurement to insight
  publication-title: F1000Research
– volume: 11
  start-page: 586
  year: 2000
  end-page: 600
  ident: b0230
  article-title: Clustering of the self-organizing map
  publication-title: IEEE Transactions on Neural Networks
– volume: 62
  start-page: 116
  year: 2016
  end-page: 130
  ident: b0150
  article-title: Hierarchical clustering of time series data with parametric derivative dynamic time warping
  publication-title: Expert Systems with Applications
– volume: 52
  start-page: 1
  year: 2012
  end-page: 9
  ident: b0165
  article-title: Recent techniques of clustering of time series data: A survey
  publication-title: International Journal of Computer Applications
– volume: 63
  start-page: 5
  year: 1998
  end-page: 22
  ident: b0250
  article-title: A comparison of the classification capabilities of the 1-dimensional kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms
  publication-title: Psychometrika
– volume: 59
  start-page: 509
  year: 1994
  end-page: 525
  ident: b0195
  article-title: A study of the classification capabilities of neural networks using unsupervised learning: A comparison with
  publication-title: Psychometrika
– year: 1993
  ident: b0200
  article-title: Self-organizing neural networks for visualisation and classification
  publication-title: Information and Classification. Studies in Classification, Data Analysis and Knowledge Organization
– reference: A. Bagnall, J. Lines, J. Hills and A. Bostrom, “Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles,” in IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 9, pp. 2522-2535, 1 Sept. 2015. https://doi.org/10.1109/TKDE.2015.2416723.
– reference: Francesco Gullo, Giovanni Ponti, Andrea Tagarelli, Giuseppe Tradigo, Pierangelo Veltri, Fu, T. C., Chung, F. L., Luk, R., & Ng, C. M. (2004, November). Financial time series indexing based on low resolution clustering. In
– volume: 21
  start-page: i159
  year: 2005
  end-page: i168
  ident: b0065
  article-title: Clustering short time series gene expression data
  publication-title: Bioinformatics (Oxford, England)
– reference: C. Guo, H. Jia and N. Zhang, “Time Series Clustering Based on ICA for Stock Data Analysis,” 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 2008, pp. 1–4.
– reference: Geoffrey J. Chappell, John G. Taylor, The temporal Kohønen map, Neural Networks, Volume 6, Issue 3, 1993, Pages 441-445, ISSN 0893-6080.
– reference: . PMID: 9702707.
– reference: M. Vlachos, G. Kollios and D. Gunopulos, “Discovering similar multidimensional trajectories,” Proceedings 18th International Conference on Data Engineering, San Jose, CA, USA, 2002, pp. 673-684.
– volume: 41
  start-page: 1301
  year: 2014
  end-page: 1314
  ident: b0015
  article-title: Stock market co-movement assessment using a three-phase clustering method
  publication-title: Expert Systems with Applications: An International Journal.
– volume: Vol. 30
  year: 2012
  ident: b0125
  publication-title: Self-organizing maps
– volume: 3
  year: 2008
  ident: b0215
  article-title: Normalized cut group clustering of resting-state fMRI Data
  publication-title: PLoS ONE
– reference: T. Warren Liao, Clustering of time series data—a survey, Pattern Recognition, Volume 38, Issue 11, 2005, Pages 1857-1874, ISSN 0031-3203.
– reference: Xiaohang Zhang, Jiaqi Liu, Yu Du, Tingjie Lv, A novel clustering method on time series data, Expert Systems with Applications, Volume 38, Issue 9, 2011, Pages 11891-11900, ISSN 0957-4174.
– reference: Bruno Brentan, Gustavo Meirelles, Edevar Luvizotto, Joaquin Izquierdo, Hybrid SOM+k-Means clustering to improve planning, operation and management in water distribution systems, Environmental Modelling & Software, Volume 106, 2018, Pages 77-88, ISSN 1364-8152.
– reference: Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping Chen, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, & Hexagon-ML (2019).
– volume: Vol. 10
  year: 2008
  ident: b0260
  publication-title: Clustering
– reference: R.J. Kuo, Y.L. An, H.S. Wang, W.J. Chung, Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation, Expert Systems with Applications, Volume 30, Issue 2, 2006, Pages 313-324, ISSN 0957-4174.
– reference: James C. Bezdek, Robert Ehrlich, William Full, FCM: The fuzzy c-means clustering algorithm, Computers & Geosciences, Volume 10, Issues 2–3, 1984, Pages 191-203, ISSN 0098-3004.
– volume: 40
  start-page: 249
  year: 1998
  end-page: 260
  ident: b0080
  article-title: A new correlation-based fuzzy logic clustering algorithm for fMRI
  publication-title: Magn Reson Med.
– volume: 53
  start-page: 16
  year: 2015
  end-page: 38
  ident: b0010
  article-title: Time-series clustering – A decade review
  publication-title: Information Systems
– reference: Robert H. Shumway, Time-frequency clustering and discriminant analysis, Samuel Kaski, Timo Honkela, Krista Lagus, Teuvo Kohonen, WEBSOM – Self-organizing maps of document collections. This work was supported by the Academy of Finland, Neurocomputing, Volume 21, Issues 1–3, 1998, Pages 101-117, ISSN 0925-2312.
– volume: 1
  start-page: 19
  year: 2005
  end-page: 22
  ident: b0210
  article-title: Topology preservation in SOM
  publication-title: International Journal of Applied Mathematics and Computer Sciences
– volume: 32
  start-page: 241
  year: 1967
  end-page: 254
  ident: b0105
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
– reference: W. Liu and L. Shao, “Research of SAX in Distance Measuring for Financial Time Series Data,”
– reference: E. Keogh S. Lonardi Bill 'Yuan-chi' Chiu. Finding surprising patterns in a time series database in linear time and space 2002 Association for Computing Machinery New York, NY, USA 550 556 10.1145/775047.775128.
– reference: Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. 2008. Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1, 2 (August 2008), 1542–1552.
– reference: T.W. Liao, B. Bolt, J. Forester, E. Hailman, C. Hansen, R.C. Kaste, J. O’May, Understanding and projecting the battle state, 23rd Army Science Conference, Orlando, FL, December 2–5, 2002.
– reference: J.J. Van Wijk E.R. Van Selow “Cluster and calendar based visualization of time series data,” Proceedings, IEEE Symposium on Information Visualization (InfoVis'99) San Francisco, CA, USA 1999 1999 4 9 doi: 10.1109/INFVIS.1999.801851.
– reference: URL:
– reference: (pp. 5–14).
– volume: 26
  start-page: 43
  year: 1978
  end-page: 49
  ident: b0180
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
– reference: Yi, B. K., & Faloutsos, C. (2000). Fast time sequence indexing for arbitrary Lp norms.
– reference: Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1994. Fast subsequence matching in time-series databases. SIGMOD Rec. 23, 2 (June 1994), 419–429.
– reference: (Vol. 10, No. 16, pp. 359-370).
– volume: 1
  start-page: 4
  year: 1984
  end-page: 29
  ident: b0085
  article-title: Vector quantization
  publication-title: IEEE ASSP Magazine
– start-page: 491
  year: 2005
  end-page: 502
  ident: b0135
  publication-title: Robust and fast similarity search for moving object trajectories
– volume: 74
  start-page: 281
  year: 2009
  end-page: 313
  ident: b0170
  article-title: Finding anomalous periodic time series
  publication-title: Mach Learn
– reference: , Nanjing, China, 2009, pp. 935–937.
– reference: Marcel Brun, Chao Sima, Jianping Hua, James Lowey, Brent Carroll, Edward Suh, Edward R. Dougherty, Model-based evaluation of clustering validation measures, Pattern Recognition, Volume 40, Issue 3, 2007, Pages 807-824, ISSN 0031-3203.
– reference: .
– start-page: 3/E.
  year: 2010
  ident: b0100
  article-title: Neural networks and learning machines
– reference: R. Freeman, Hujun Yin and N. M. Allinson, “Self-organising maps for tree view based hierarchical document clustering,” Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290), Honolulu, HI, USA, 2002, pp. 1906-1911 vol.2.
– reference: Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000).
– reference: (Vol. 57, p. 2). Technical report.
– volume: 93
  start-page: 328
  year: 1998
  end-page: 340
  ident: b0110
  article-title: Discrimination and clustering for multivariate time series
  publication-title: Journal of the American Statistical Association
– reference: V. Niennattrakul and C. A. Ratanamahatana, “On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time Warping,” 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07), Seoul, Korea (South), 2007, pp. 733-738.
– ident: 10.1016/j.eswa.2022.117249_b0185
  doi: 10.1016/S0925-2312(98)00039-3
– volume: 62
  start-page: 116
  year: 2016
  ident: 10.1016/j.eswa.2022.117249_b0150
  article-title: Hierarchical clustering of time series data with parametric derivative dynamic time warping
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.06.012
– volume: 93
  start-page: 328
  issue: 441
  year: 1998
  ident: 10.1016/j.eswa.2022.117249_b0110
  article-title: Discrimination and clustering for multivariate time series
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1998.10474114
– ident: 10.1016/j.eswa.2022.117249_b0130
  doi: 10.1016/j.eswa.2005.07.036
– ident: 10.1016/j.eswa.2022.117249_b0070
  doi: 10.1145/191843.191925
– start-page: 3/E.
  year: 2010
  ident: 10.1016/j.eswa.2022.117249_b0100
– ident: 10.1016/j.eswa.2022.117249_b0115
  doi: 10.1145/775047.775128
– ident: 10.1016/j.eswa.2022.117249_b0060
  doi: 10.14778/1454159.1454226
– ident: 10.1016/j.eswa.2022.117249_b0035
  doi: 10.1016/j.envsoft.2018.02.013
– start-page: 491
  year: 2005
  ident: 10.1016/j.eswa.2022.117249_b0135
– volume: 1
  start-page: 4
  issue: 2
  year: 1984
  ident: 10.1016/j.eswa.2022.117249_b0085
  article-title: Vector quantization
  publication-title: IEEE ASSP Magazine
  doi: 10.1109/MASSP.1984.1162229
– ident: 10.1016/j.eswa.2022.117249_b0255
  doi: 10.1016/j.patcog.2005.01.025
– ident: 10.1016/j.eswa.2022.117249_b0140
– ident: 10.1016/j.eswa.2022.117249_b0025
– ident: 10.1016/j.eswa.2022.117249_b0145
  doi: 10.1109/ICISE.2009.924
– ident: 10.1016/j.eswa.2022.117249_b0030
  doi: 10.1016/0098-3004(84)90020-7
– ident: 10.1016/j.eswa.2022.117249_b0090
– volume: 32
  start-page: 241
  year: 1967
  ident: 10.1016/j.eswa.2022.117249_b0105
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
  doi: 10.1007/BF02289588
– volume: 6
  start-page: 1148
  year: 2017
  ident: 10.1016/j.eswa.2022.117249_b0175
  article-title: New frontiers in metabolomics: From measurement to insight
  publication-title: F1000Research
  doi: 10.12688/f1000research.11495.1
– volume: 40
  start-page: 249
  issue: 2
  year: 1998
  ident: 10.1016/j.eswa.2022.117249_b0080
  article-title: A new correlation-based fuzzy logic clustering algorithm for fMRI
  publication-title: Magn Reson Med.
  doi: 10.1002/mrm.1910400211
– volume: 11
  start-page: 586
  issue: 3
  year: 2000
  ident: 10.1016/j.eswa.2022.117249_b0230
  article-title: Clustering of the self-organizing map
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.846731
– volume: 74
  start-page: 281
  year: 2009
  ident: 10.1016/j.eswa.2022.117249_b0170
  article-title: Finding anomalous periodic time series
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5093-3
– volume: 14
  start-page: 139
  year: 2011
  ident: 10.1016/j.eswa.2022.117249_b0155
  article-title: Self-organizing maps and boundary effects: Quantifying the benefits of torus wrapping for mapping SOM trajectories
  publication-title: Pattern Anal Applic
  doi: 10.1007/s10044-011-0210-5
– ident: 10.1016/j.eswa.2022.117249_b0075
  doi: 10.1109/IJCNN.2002.1007810
– volume: Vol. 8
  year: 2012
  ident: 10.1016/j.eswa.2022.117249_b0120
– ident: 10.1016/j.eswa.2022.117249_b0270
  doi: 10.1007/978-3-540-78293-3_17
– volume: 26
  start-page: 43
  issue: 1
  year: 1978
  ident: 10.1016/j.eswa.2022.117249_b0180
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
  doi: 10.1109/TASSP.1978.1163055
– ident: 10.1016/j.eswa.2022.117249_b0265
– ident: 10.1016/j.eswa.2022.117249_b0240
  doi: 10.1109/ICDE.2002.994784
– volume: 6
  start-page: S1
  year: 2012
  ident: 10.1016/j.eswa.2022.117249_b0040
  article-title: Self organising maps for visualising and modelling
  publication-title: Chemistry Central Journal
  doi: 10.1186/1752-153X-6-S2-S1
– ident: 10.1016/j.eswa.2022.117249_b0020
  doi: 10.1109/TKDE.2015.2416723
– volume: 59
  start-page: 509
  year: 1994
  ident: 10.1016/j.eswa.2022.117249_b0195
  article-title: A study of the classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering
  publication-title: Psychometrika
  doi: 10.1007/BF02294390
– year: 2003
  ident: 10.1016/j.eswa.2022.117249_b0245
  article-title: A wavelet-based anytime algorithm for k-means clustering of time series
– ident: 10.1016/j.eswa.2022.117249_b0055
  doi: 10.1002/mrm.1910400211
– ident: 10.1016/j.eswa.2022.117249_b0045
  doi: 10.1016/j.patcog.2006.06.026
– volume: 63
  start-page: 5
  year: 1998
  ident: 10.1016/j.eswa.2022.117249_b0250
  article-title: A comparison of the classification capabilities of the 1-dimensional kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms
  publication-title: Psychometrika
  doi: 10.1007/BF02295433
– volume: Vol. 30
  year: 2012
  ident: 10.1016/j.eswa.2022.117249_b0125
– volume: 41
  start-page: 1301
  year: 2014
  ident: 10.1016/j.eswa.2022.117249_b0015
  article-title: Stock market co-movement assessment using a three-phase clustering method
  publication-title: Expert Systems with Applications: An International Journal.
  doi: 10.1016/j.eswa.2013.08.028
– volume: 53
  start-page: 16
  year: 2015
  ident: 10.1016/j.eswa.2022.117249_b0010
  article-title: Time-series clustering – A decade review
  publication-title: Information Systems
  doi: 10.1016/j.is.2015.04.007
– ident: 10.1016/j.eswa.2022.117249_b0095
  doi: 10.1109/WiCom.2008.2534
– volume: 1
  start-page: 19
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2022.117249_b0210
  article-title: Topology preservation in SOM
  publication-title: International Journal of Applied Mathematics and Computer Sciences
– volume: 21
  start-page: i159
  issue: Suppl 1
  year: 2005
  ident: 10.1016/j.eswa.2022.117249_b0065
  article-title: Clustering short time series gene expression data
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/bti1022
– volume: Vol. 10
  year: 2008
  ident: 10.1016/j.eswa.2022.117249_b0260
– ident: 10.1016/j.eswa.2022.117249_b0220
  doi: 10.1007/3-540-44668-0_65
– ident: 10.1016/j.eswa.2022.117249_b0235
– ident: 10.1016/j.eswa.2022.117249_b0275
  doi: 10.1016/j.eswa.2011.03.081
– ident: 10.1016/j.eswa.2022.117249_b0225
  doi: 10.1109/INFVIS.1999.801851
– ident: 10.1016/j.eswa.2022.117249_b0050
  doi: 10.1016/0893-6080(93)90011-K
– volume: 3
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2022.117249_b0215
  article-title: Normalized cut group clustering of resting-state fMRI Data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002001
– ident: 10.1016/j.eswa.2022.117249_b0160
  doi: 10.1109/MUE.2007.165
– volume: 52
  start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2022.117249_b0165
  article-title: Recent techniques of clustering of time series data: A survey
  publication-title: International Journal of Computer Applications
  doi: 10.5120/8282-1278
– year: 1993
  ident: 10.1016/j.eswa.2022.117249_b0200
  article-title: Self-organizing neural networks for visualisation and classification
SSID ssj0017007
Score 2.4578288
Snippet Time Series clustering is a domain with several applications spanning various fields. The concept of vector quantization, popularly used in signal processing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117249
SubjectTerms Agglomerative clustering
Algorithms
Centroids
Clustering
Datasets
Dynamic time warping
K medoids clustering
Self organizing map
Self organizing maps
Signal processing
Time measurement
Time series
Time series clustering
Vector quantization
Title A modified Kohonen map algorithm for clustering time series data
URI https://dx.doi.org/10.1016/j.eswa.2022.117249
https://www.proquest.com/docview/2675697643
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhQK8sCGQh3HTuyNqqIqVHSBSt2sxHZoUV_qQ2z8dnyNUwmEOjAmsiPri333XXL3HUK3QuYkNyICPe04YBmPg5SYPKA8dx4hliay8L3jpRd3-ux5wAcV1CprYSCt0tv-wqZvrLW_0_BoNuajUePVkQPnDl1oB1Ex5QOoYGcJdDG4_9qmeYD8XFLo7SUBjPaFM0WOl11-gvYQpfDvkoKe5t_O6ZeZ3vie9hE68KQRN4t1HaOKnZ6gw7IhA_bn8xQ9NPFkZka5o5W4OxvOpnaKJ-kcp-P32WK0Gk6wo6hYj9egjuB8FobO8hg2oV1iyBU9Q_3241urE_gWCYGmXKwCanIRGWpCYqXRhsdQVUeEJUY7L2Q4dDdiaSQzqWUktIgyRhMXQxCdSBFaFp2j6tSt5gLhXGtOwtSyTIQsyRJBMptJWZCQOCY1FJbYKO31w6GNxViViWIfCvBUgKcq8Kyhu-2ceaGesXM0LyFXP_aAcuZ957x6-X6UP4FLRV0kFDuuxaLLfz72Cu3DVZFQVkfV1WJtrx0DWWU3my12g_aaT91O7xsLE9ga
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRjwKeGBDoY5jJ_ZGhUCFPhZA6mYltkOD-hJtxcZvx9c4SCDEwJrYkfXlfPddcv4OoQshc5IbEYGedhywjMdBSkweUJ67iBBLE1n43tHtxa1n9tDn_RV0U52FgbJK7_tLn7701v5Kw6PZmBZF49GRAxcOXWoHWTHl_VW0xjhNIAO7-viq8wD9uaQU3EsCGO5PzpRFXnb2DuJDlMLPSwqCmr9Hpx9-ehl87rbRpmeNuFkubAet2PEu2qo6MmC_QffQdROPJqbIHa_E7clgMrZjPEqnOB2-TN6K-WCEHUfFergAeQQXtDC0lsdghXaGoVh0Hz3f3T7dtALfIyHQlIt5QE0uIkNNSKw02vAYjtURYYnRLgwZDu2NWBrJTGoZCS2ijNHEJRFEJ1KElkUHqDZ2qzlEONeakzC1LBMhS7JEkMxmUpYsJI7JEQorbJT2AuLQx2KoqkqxVwV4KsBTlXgeocuvOdNSPuPP0byCXH0zAuX8-5_z6tX7UX4LzhR1qVDsyBaLjv_52HO03nrqdlTnvtc-QRtwp6wuq6Pa_G1hTx0dmWdnS3P7BDEn2a8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+Kohonen+map+algorithm+for+clustering+time+series+data&rft.jtitle=Expert+systems+with+applications&rft.au=Krishnan%2C+Kalpathy+Jayanth&rft.au=Mitra%2C+Kishalay&rft.date=2022-09-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=201&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2022.117249&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon