RECURSIVE LEAST SQUARES DICTIONARY LEARNING ALGORITHM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY

Electrical impedance tomography (EIT) is a technique for reconstructing conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Sparse reconstruction can effectively reduce the noise and artifacts of reconstructed images and mainta...

Full description

Saved in:
Bibliographic Details
Published inProgress in electromagnetics research C Pier C Vol. 97; pp. 151 - 162
Main Authors Li, Xiuyan, Zhang, Jingwan, Wang, Jianming, Wang, Qi, Duan, Xiaojie
Format Journal Article
LanguageEnglish
Published Electromagnetics Academy 01.09.2019
Subjects
Online AccessGet full text
ISSN1937-8718
1937-8718
DOI10.2528/PIERC19081001

Cover

Abstract Electrical impedance tomography (EIT) is a technique for reconstructing conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Sparse reconstruction can effectively reduce the noise and artifacts of reconstructed images and maintain edge information. The effective selection of sparse dictionary is the key to accurate sparse reconstruction. The EIT image can be efficiently reconstructed with adaptive dictionary learning, which is an iterative reconstruction algorithm by alternating the process of image reconstruction and dictionary learning. However, image accuracy and convergence rate depend on the initial dictionary, which was not given full consideration in previous studies. This leads to the low accuracy of image reconstruction model. In this paper, Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA) is used to learn the initial dictionary for dictionary learning of sparse EIT reconstruction. Both simulated and experimental results indicate that the improved dictionary learning method not only improves the quality of reconstruction but also accelerates the convergence.
AbstractList Electrical impedance tomography (EIT) is a technique for reconstructing conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Sparse reconstruction can effectively reduce the noise and artifacts of reconstructed images and maintain edge information. The effective selection of sparse dictionary is the key to accurate sparse reconstruction. The EIT image can be efficiently reconstructed with adaptive dictionary learning, which is an iterative reconstruction algorithm by alternating the process of image reconstruction and dictionary learning. However, image accuracy and convergence rate depend on the initial dictionary, which was not given full consideration in previous studies. This leads to the low accuracy of image reconstruction model. In this paper, Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA) is used to learn the initial dictionary for dictionary learning of sparse EIT reconstruction. Both simulated and experimental results indicate that the improved dictionary learning method not only improves the quality of reconstruction but also accelerates the convergence.
Audience Academic
Author Li, Xiuyan
Wang, Qi
Zhang, Jingwan
Duan, Xiaojie
Wang, Jianming
Author_xml – sequence: 1
  givenname: Xiuyan
  surname: Li
  fullname: Li, Xiuyan
– sequence: 2
  givenname: Jingwan
  surname: Zhang
  fullname: Zhang, Jingwan
– sequence: 3
  givenname: Jianming
  surname: Wang
  fullname: Wang, Jianming
– sequence: 4
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
– sequence: 5
  givenname: Xiaojie
  surname: Duan
  fullname: Duan, Xiaojie
BookMark eNp1kd1LwzAUxYNMcJs--l7wuTNp-pE-li7rAl07007YU0mzVCJdN9qJ7L-3Y4pOkfuQS3J-515ORmDQ7BoFwD2CE8uxyOOSUR4iHxIEIboCQ-RjzyQeIoMf_Q0Ydd0rhC4mrjsEa07DFc_YMzViGmS5kT2tAk4zY8rCnKVJwNenB56wJDKCOEo5y-cLY5Zyg8Y0zDkLg9hgiyWdBklIjTxdpBEPlvP1LbiuRN2pu89zDFYzmodzM06jE2RKyyHILG0fSumqStkuJKTalFIqi0iJiWP5QiDXQcIuHbTxMFS2cKxKlDbxlSeViyXEYzA5-741e3F8F3Vd7Fu9Fe2xQLA4BVPstWrlVzA98HAGXkStCt1Uu0Mr5FZ3sghcj_RLIex8216o-tqorZZ98JXu7y8A8wzIdtd1rar-rHHxP70e_9JLfRAHvWv6Qbr-h_oAJoOLew
CitedBy_id crossref_primary_10_1109_JSEN_2023_3338246
ContentType Journal Article
Copyright COPYRIGHT 2019 Electromagnetics Academy
Copyright_xml – notice: COPYRIGHT 2019 Electromagnetics Academy
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.2528/PIERC19081001
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1937-8718
EndPage 162
ExternalDocumentID 10.2528/pierc19081001
A678581135
10_2528_PIERC19081001
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
.DC
123
2WC
AAYXX
ACGFO
ADMLS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
E3Z
I-F
IAO
IEA
IGS
ITC
OK1
OVT
PV9
QM1
QO4
RZL
TR2
TUS
ADTOC
UNPAY
ID FETCH-LOGICAL-c2581-b490cc6efe46088fdbcce28cc38529aa1651a4b51d730e4a52fab489e7ce63c03
IEDL.DBID UNPAY
ISSN 1937-8718
IngestDate Tue Aug 19 22:18:16 EDT 2025
Mon Oct 20 22:18:01 EDT 2025
Mon Oct 20 16:16:50 EDT 2025
Tue Jul 01 00:20:17 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2581-b490cc6efe46088fdbcce28cc38529aa1651a4b51d730e4a52fab489e7ce63c03
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.jpier.org/PIERC/pierc97/12.19081001.pdf
PageCount 12
ParticipantIDs unpaywall_primary_10_2528_pierc19081001
gale_infotracmisc_A678581135
gale_infotracacademiconefile_A678581135
crossref_primary_10_2528_PIERC19081001
crossref_citationtrail_10_2528_PIERC19081001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 20190901
  day: 01
PublicationDecade 2010
PublicationTitle Progress in electromagnetics research C Pier C
PublicationYear 2019
Publisher Electromagnetics Academy
Publisher_xml – name: Electromagnetics Academy
SSID ssj0063866
Score 2.1606247
Snippet Electrical impedance tomography (EIT) is a technique for reconstructing conductivity distribution by injecting currents at the boundary of a subject and...
SourceID unpaywall
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 151
SubjectTerms Algorithms
Data mining
Image processing
Machine learning
Methods
Tomography
Title RECURSIVE LEAST SQUARES DICTIONARY LEARNING ALGORITHM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY
URI http://www.jpier.org/PIERC/pierc97/12.19081001.pdf
UnpaywallVersion publishedVersion
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1937-8718
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063866
  issn: 1937-8718
  databaseCode: ADMLS
  dateStart: 20110701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdGKwQXvicK2-QDYhfS1Y7tOceozdqgpK2SFK2nyHbsA1SlYq0Q_PXYSTqtmiaNY-TnxHnv-X3Iz78HwCfDqeCBDDzj-9gjWjIvkJp6vtEISUMkqe9XpFM2WZCv1_T6COwb_7mqyu8b6xDqQ_x5HGXDC_eogssLhPvWe3EHGtTfVOYJ6DJq4-8O6C6m83DZHB9bk2utbQOmiSnmzez9vAPn05rgZ7v1Rvz5LVarO47l6mVz2e-mxiN09SQ_-rut7Ku_99Ea_2PNr8CLNs6EYaMYr8GRXr8BT-t6T3XzFiyzaLjI8vhbBJMozAuYu9A2yuEorqtKwmzpBrJpPB3DMBnPsriYpNCmjDBKomHhOkUmME7n0ch1t4HFLJ2Ns3A-Wb4Di6uoGE68tsuCpzDlyJMkGCjFtNGEWZNjKqmUxlwpn1McCIEYRYJIiiprDDQRFBshCQ_0pdLMVwP_GHTWP9f6PYCKKMzEAFc2SyLIVFwzw5gVfYUI1SLogS979peqhSB3nTBWpU1FnLTKmnt7jvXA51vyTYO98RDhuZNl6fakfZ8S7dUCuyqHblWG1iPbX0U-7YGTA0q7l9TB8PmtNtz75IEmfXg05Ufw3AZZbV3aCehsf-30qQ1ktvIMdMNRmuRnrQb_AyV06L8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddylhf9j2arRt6GOvLnEaypNqPJlUTj3zhOKN5MpIsPawhDWvCaP_6nWynLJTB9mh0suW7032g0-8Q-uwirqJYx4ELQxowq0UQa8uD0FlCtGOaVfcrRmMxmLNvV_zqAO0a__mqyh9rcAjVIf40lVnvzD-a-PyM0A54r8iDBnXWpXuCDgWH-LuFDufjabKoj4_B5IK1rcE0KadRPXs3b8_5NCb42Xa1Vne_1HL5h2O5fFFf9rut8Ah9Pcl1Z7vRHXP_GK3xP9b8Ej1v4kyc1IrxCh3Y1Wv0tKr3NLdv0CKTvXk2S79LPJTJLMczH9rKGb5Iq6qSJFv4gWycjvs4GfYnWZoPRhhSRiyHspf7TpFDnI6m8sJ3t8H5ZDTpZ8l0sHiL5pcy7w2CpstCYCiPSKBZ3DVGWGeZAJPjSm2MpZExYcRprBQRnCimOSnBGFimOHVKsyi258aK0HTDd6i1ulnZY4QNM1SoLi0hS2LElZEVTggQfUkYtypuo6879hemgSD3nTCWBaQiXlpFxb0dx9roywP5usbe-BvhqZdl4fckvM-o5moBrMqjWxUJeGT4VRLyNjrZo4S9ZPaGTx-04dEn9zTp_T9TfkBHEGQ1dWknqLX5ubUfIZDZ6E-N5v4G50_nKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+Least+Squares+Dictionary+Learning+Algorithm+for+Electrical+Impedance+Tomography&rft.jtitle=Progress+in+electromagnetics+research+C+Pier+C&rft.au=Li%2C+Xiuyan&rft.au=Zhang%2C+Jingwan&rft.au=Wang%2C+Jianming&rft.au=Wang%2C+Qi&rft.date=2019-09-01&rft.pub=Electromagnetics+Academy&rft.issn=1937-8718&rft.eissn=1937-8718&rft.volume=97&rft.spage=151&rft_id=info:doi/10.2528%2FPIERC19081001&rft.externalDocID=A678581135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-8718&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-8718&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-8718&client=summon