RECURSIVE LEAST SQUARES DICTIONARY LEARNING ALGORITHM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY
Electrical impedance tomography (EIT) is a technique for reconstructing conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Sparse reconstruction can effectively reduce the noise and artifacts of reconstructed images and mainta...
Saved in:
| Published in | Progress in electromagnetics research C Pier C Vol. 97; pp. 151 - 162 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Electromagnetics Academy
01.09.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1937-8718 1937-8718 |
| DOI | 10.2528/PIERC19081001 |
Cover
| Abstract | Electrical impedance tomography (EIT) is a technique for reconstructing conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Sparse reconstruction can effectively reduce the noise and artifacts of reconstructed images and maintain edge information. The effective selection of sparse dictionary is the key to accurate sparse reconstruction. The EIT image can be efficiently reconstructed with adaptive dictionary learning, which is an iterative reconstruction algorithm by alternating the process of image reconstruction and dictionary learning. However, image accuracy and convergence rate depend on the initial dictionary, which was not given full consideration in previous studies. This leads to the low accuracy of image reconstruction model. In this paper, Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA) is used to learn the initial dictionary for dictionary learning of sparse EIT reconstruction. Both simulated and experimental results indicate that the improved dictionary learning method not only improves the quality of reconstruction but also accelerates the convergence. |
|---|---|
| AbstractList | Electrical impedance tomography (EIT) is a technique for reconstructing conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Sparse reconstruction can effectively reduce the noise and artifacts of reconstructed images and maintain edge information. The effective selection of sparse dictionary is the key to accurate sparse reconstruction. The EIT image can be efficiently reconstructed with adaptive dictionary learning, which is an iterative reconstruction algorithm by alternating the process of image reconstruction and dictionary learning. However, image accuracy and convergence rate depend on the initial dictionary, which was not given full consideration in previous studies. This leads to the low accuracy of image reconstruction model. In this paper, Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA) is used to learn the initial dictionary for dictionary learning of sparse EIT reconstruction. Both simulated and experimental results indicate that the improved dictionary learning method not only improves the quality of reconstruction but also accelerates the convergence. |
| Audience | Academic |
| Author | Li, Xiuyan Wang, Qi Zhang, Jingwan Duan, Xiaojie Wang, Jianming |
| Author_xml | – sequence: 1 givenname: Xiuyan surname: Li fullname: Li, Xiuyan – sequence: 2 givenname: Jingwan surname: Zhang fullname: Zhang, Jingwan – sequence: 3 givenname: Jianming surname: Wang fullname: Wang, Jianming – sequence: 4 givenname: Qi surname: Wang fullname: Wang, Qi – sequence: 5 givenname: Xiaojie surname: Duan fullname: Duan, Xiaojie |
| BookMark | eNp1kd1LwzAUxYNMcJs--l7wuTNp-pE-li7rAl07007YU0mzVCJdN9qJ7L-3Y4pOkfuQS3J-515ORmDQ7BoFwD2CE8uxyOOSUR4iHxIEIboCQ-RjzyQeIoMf_Q0Ydd0rhC4mrjsEa07DFc_YMzViGmS5kT2tAk4zY8rCnKVJwNenB56wJDKCOEo5y-cLY5Zyg8Y0zDkLg9hgiyWdBklIjTxdpBEPlvP1LbiuRN2pu89zDFYzmodzM06jE2RKyyHILG0fSumqStkuJKTalFIqi0iJiWP5QiDXQcIuHbTxMFS2cKxKlDbxlSeViyXEYzA5-741e3F8F3Vd7Fu9Fe2xQLA4BVPstWrlVzA98HAGXkStCt1Uu0Mr5FZ3sghcj_RLIex8216o-tqorZZ98JXu7y8A8wzIdtd1rar-rHHxP70e_9JLfRAHvWv6Qbr-h_oAJoOLew |
| CitedBy_id | crossref_primary_10_1109_JSEN_2023_3338246 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Electromagnetics Academy |
| Copyright_xml | – notice: COPYRIGHT 2019 Electromagnetics Academy |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.2528/PIERC19081001 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1937-8718 |
| EndPage | 162 |
| ExternalDocumentID | 10.2528/pierc19081001 A678581135 10_2528_PIERC19081001 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | .4S .DC 123 2WC AAYXX ACGFO ADMLS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION E3Z I-F IAO IEA IGS ITC OK1 OVT PV9 QM1 QO4 RZL TR2 TUS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2581-b490cc6efe46088fdbcce28cc38529aa1651a4b51d730e4a52fab489e7ce63c03 |
| IEDL.DBID | UNPAY |
| ISSN | 1937-8718 |
| IngestDate | Tue Aug 19 22:18:16 EDT 2025 Mon Oct 20 22:18:01 EDT 2025 Mon Oct 20 16:16:50 EDT 2025 Tue Jul 01 00:20:17 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2581-b490cc6efe46088fdbcce28cc38529aa1651a4b51d730e4a52fab489e7ce63c03 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.jpier.org/PIERC/pierc97/12.19081001.pdf |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_2528_pierc19081001 gale_infotracmisc_A678581135 gale_infotracacademiconefile_A678581135 crossref_primary_10_2528_PIERC19081001 crossref_citationtrail_10_2528_PIERC19081001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190901 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 20190901 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Progress in electromagnetics research C Pier C |
| PublicationYear | 2019 |
| Publisher | Electromagnetics Academy |
| Publisher_xml | – name: Electromagnetics Academy |
| SSID | ssj0063866 |
| Score | 2.1606247 |
| Snippet | Electrical impedance tomography (EIT) is a technique for reconstructing conductivity distribution by injecting currents at the boundary of a subject and... |
| SourceID | unpaywall gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 151 |
| SubjectTerms | Algorithms Data mining Image processing Machine learning Methods Tomography |
| Title | RECURSIVE LEAST SQUARES DICTIONARY LEARNING ALGORITHM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY |
| URI | http://www.jpier.org/PIERC/pierc97/12.19081001.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 97 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1937-8718 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063866 issn: 1937-8718 databaseCode: ADMLS dateStart: 20110701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdGKwQXvicK2-QDYhfS1Y7tOceozdqgpK2SFK2nyHbsA1SlYq0Q_PXYSTqtmiaNY-TnxHnv-X3Iz78HwCfDqeCBDDzj-9gjWjIvkJp6vtEISUMkqe9XpFM2WZCv1_T6COwb_7mqyu8b6xDqQ_x5HGXDC_eogssLhPvWe3EHGtTfVOYJ6DJq4-8O6C6m83DZHB9bk2utbQOmiSnmzez9vAPn05rgZ7v1Rvz5LVarO47l6mVz2e-mxiN09SQ_-rut7Ku_99Ea_2PNr8CLNs6EYaMYr8GRXr8BT-t6T3XzFiyzaLjI8vhbBJMozAuYu9A2yuEorqtKwmzpBrJpPB3DMBnPsriYpNCmjDBKomHhOkUmME7n0ch1t4HFLJ2Ns3A-Wb4Di6uoGE68tsuCpzDlyJMkGCjFtNGEWZNjKqmUxlwpn1McCIEYRYJIiiprDDQRFBshCQ_0pdLMVwP_GHTWP9f6PYCKKMzEAFc2SyLIVFwzw5gVfYUI1SLogS979peqhSB3nTBWpU1FnLTKmnt7jvXA51vyTYO98RDhuZNl6fakfZ8S7dUCuyqHblWG1iPbX0U-7YGTA0q7l9TB8PmtNtz75IEmfXg05Ufw3AZZbV3aCehsf-30qQ1ktvIMdMNRmuRnrQb_AyV06L8 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddylhf9j2arRt6GOvLnEaypNqPJlUTj3zhOKN5MpIsPawhDWvCaP_6nWynLJTB9mh0suW7032g0-8Q-uwirqJYx4ELQxowq0UQa8uD0FlCtGOaVfcrRmMxmLNvV_zqAO0a__mqyh9rcAjVIf40lVnvzD-a-PyM0A54r8iDBnXWpXuCDgWH-LuFDufjabKoj4_B5IK1rcE0KadRPXs3b8_5NCb42Xa1Vne_1HL5h2O5fFFf9rut8Ah9Pcl1Z7vRHXP_GK3xP9b8Ej1v4kyc1IrxCh3Y1Wv0tKr3NLdv0CKTvXk2S79LPJTJLMczH9rKGb5Iq6qSJFv4gWycjvs4GfYnWZoPRhhSRiyHspf7TpFDnI6m8sJ3t8H5ZDTpZ8l0sHiL5pcy7w2CpstCYCiPSKBZ3DVGWGeZAJPjSm2MpZExYcRprBQRnCimOSnBGFimOHVKsyi258aK0HTDd6i1ulnZY4QNM1SoLi0hS2LElZEVTggQfUkYtypuo6879hemgSD3nTCWBaQiXlpFxb0dx9roywP5usbe-BvhqZdl4fckvM-o5moBrMqjWxUJeGT4VRLyNjrZo4S9ZPaGTx-04dEn9zTp_T9TfkBHEGQ1dWknqLX5ubUfIZDZ6E-N5v4G50_nKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+Least+Squares+Dictionary+Learning+Algorithm+for+Electrical+Impedance+Tomography&rft.jtitle=Progress+in+electromagnetics+research+C+Pier+C&rft.au=Li%2C+Xiuyan&rft.au=Zhang%2C+Jingwan&rft.au=Wang%2C+Jianming&rft.au=Wang%2C+Qi&rft.date=2019-09-01&rft.pub=Electromagnetics+Academy&rft.issn=1937-8718&rft.eissn=1937-8718&rft.volume=97&rft.spage=151&rft_id=info:doi/10.2528%2FPIERC19081001&rft.externalDocID=A678581135 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-8718&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-8718&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-8718&client=summon |