Query-based information retrieval system adopting whale manhattan optimization-based deep belief neural network
The Information Retrieval system aims to discover relevant documents and display them as query responses. However, the ever-changing nature of user queries poses a substantial research problem in defining the necessary data to respond accurately. The Major intention for this study is for enhance the...
Saved in:
Published in | Multimedia tools and applications Vol. 84; no. 12; pp. 10587 - 10607 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1573-7721 1380-7501 1573-7721 |
DOI | 10.1007/s11042-024-18783-y |
Cover
Abstract | The Information Retrieval system aims to discover relevant documents and display them as query responses. However, the ever-changing nature of user queries poses a substantial research problem in defining the necessary data to respond accurately. The Major intention for this study is for enhance the retrieval of relevant information in response to user queries. The aim to develop an advanced IR system that adapts to changing user requirements. By introducing WMO_DBN, we seek to improve the efficiency and accuracy of information retrieval, catering to both general and specific user searches. The proposed methodology comprises three important steps: pre-processing, feature choice, and categorization. Initially, unstructured data subject to pre-processing to transform it into a structured format. Subsequently, relevant features are selected to optimize the retrieval process. The final step involves the utilization of WMO_DBN, a novel deep learning model designed for information retrieval based on the query data. Additionally, similarity calculation is employed to improve the effectiveness for the network training model. The investigational evaluation for the suggested model was conducted, and its performance is measured regarding the metrics of recall, precision, accuracy, and F1 score, the present discourse concerns their significance within the academic realm. The results prove the superiority of WMO_DBN in retrieving relevant information compared to traditional approaches. This research introduces novel method for addressing the challenges in information retrieval with the integration of WMO_DBN. By applying pre-processing, feature selection, and a deep belief neural network, the proposed system achieves more accurate and efficient retrieval of relevant information. The study contributes to the advancement of information retrieval systems and emphasizes the importance of adapting to users' evolving search queries. The success of WMO_DBN in retrieving relevant information highlights its potential for enhancing information retrieval processes in various applications. |
---|---|
AbstractList | The Information Retrieval system aims to discover relevant documents and display them as query responses. However, the ever-changing nature of user queries poses a substantial research problem in defining the necessary data to respond accurately. The Major intention for this study is for enhance the retrieval of relevant information in response to user queries. The aim to develop an advanced IR system that adapts to changing user requirements. By introducing WMO_DBN, we seek to improve the efficiency and accuracy of information retrieval, catering to both general and specific user searches. The proposed methodology comprises three important steps: pre-processing, feature choice, and categorization. Initially, unstructured data subject to pre-processing to transform it into a structured format. Subsequently, relevant features are selected to optimize the retrieval process. The final step involves the utilization of WMO_DBN, a novel deep learning model designed for information retrieval based on the query data. Additionally, similarity calculation is employed to improve the effectiveness for the network training model. The investigational evaluation for the suggested model was conducted, and its performance is measured regarding the metrics of recall, precision, accuracy, and F1 score, the present discourse concerns their significance within the academic realm. The results prove the superiority of WMO_DBN in retrieving relevant information compared to traditional approaches. This research introduces novel method for addressing the challenges in information retrieval with the integration of WMO_DBN. By applying pre-processing, feature selection, and a deep belief neural network, the proposed system achieves more accurate and efficient retrieval of relevant information. The study contributes to the advancement of information retrieval systems and emphasizes the importance of adapting to users' evolving search queries. The success of WMO_DBN in retrieving relevant information highlights its potential for enhancing information retrieval processes in various applications. |
Author | Dahiya, Deepak |
Author_xml | – sequence: 1 givenname: Deepak surname: Dahiya fullname: Dahiya, Deepak email: ded142@pitt.edu organization: School of Engineering and Computer Science, University of Pittsburgh Johnstown |
BookMark | eNp9kNtKxDAQhoOs4O7qC3hV8LqaSdKmXsriCRZE0OuQbSa7Xdu0Jq1LfRqfxSezewC98mqG4f_-gW9CRq52SMg50EugVF4FACpYTJmIIZMZj_sjMoZE8lhKBqM_-wmZhLCmFNKEiTFpnjv0fbzQAU1UOFv7SrdF7SKPrS_wQ5dR6EOLVaRN3bSFW0ablS4xqrRb6bbV7vtre6-Kzx13aDKITbTAskAbOez8UOOw3dT-7ZQcW10GPDvMKXm9u32ZPcTzp_vH2c08zlki-5gvRJpaQTWzuUzThTVZAtqmADlnPNO50RmlRkDGLOR5mlxLJiwIbjgaMCmfkot9b-Pr9w5Dq9Z1593wUnEGnAmQWTKk2D6V-zoEj1Y1vqi07xVQtTWr9mbVYFbtzKp-gPgeCkPYLdH_Vv9D_QDRBoGX |
Cites_doi | 10.1016/j.aci.2017.07.003 10.1007/s00521-018-3659-y 10.1016/j.ipm.2021.102522 10.1007/s10586-022-03662-8 10.1109/ICATIECE45860.2019.9063827 10.1016/j.jksuci.2020.11.027 10.37398/JSR.2020.640149 10.3390/app10072539 10.1007/s00521-020-04748-3 10.1109/ACCESS.2019.2897849 10.1007/978-3-319-70688-7_1 10.1007/s40747-019-0115-2 10.1007/s10462-022-10385-0 10.1016/j.patcog.2019.106965 10.1093/comjnl/bxab088 10.1016/j.jpdc.2018.01.005 10.1016/j.jnca.2021.103076 10.1155/2022/1189509 10.1109/ICET.2017.8281714 10.1109/ICCS45141.2019.9065562 10.1007/s13369-018-3145-y 10.1109/TIT.2018.2791994 10.1007/s11280-019-00747-0 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s11042-024-18783-y |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 10607 |
ExternalDocumentID | 10_1007_s11042_024_18783_y |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION PHGZM 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c257y-3b466f40a2fc766bfd851af611c3238acda800d4182f1cc659724f143d3ed1d63 |
IEDL.DBID | AGYKE |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 09:40:41 EDT 2025 Tue Jul 01 05:03:27 EDT 2025 Fri May 02 01:12:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Improved artificial flora Dimension reduction Information retrieval Feature selection Whale manhattan optimization Deep belief neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257y-3b466f40a2fc766bfd851af611c3238acda800d4182f1cc659724f143d3ed1d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3213241785 |
PQPubID | 54626 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3213241785 crossref_primary_10_1007_s11042_024_18783_y springer_journals_10_1007_s11042_024_18783_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250400 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 18783_CR14 18783_CR15 N Rahman (18783_CR9) 2020; 6 G Lokku (18783_CR25) 2022; 65 K Ahmad (18783_CR17) 2020; 12 MN Asim (18783_CR22) 2019; 7 18783_CR3 18783_CR16 18783_CR1 18783_CR2 J Liu (18783_CR8) 2021; 58 X Wang (18783_CR12) 2020; 32 K Munir (18783_CR6) 2018; 14 18783_CR23 K Banawan (18783_CR7) 2018; 64 AK Bhunia (18783_CR18) 2019; 96 18783_CR21 I Priyadarshini (18783_CR13) 2023; 26 S Lim (18783_CR11) 2019; 31 I Moawad (18783_CR20) 2018; 43 X Zhang (18783_CR24) 2021; 30 B Abu-Salih (18783_CR4) 2021; 185 T Nguyen Mau (18783_CR5) 2020; 10 X Jiang (18783_CR10) 2018; 116 K Albishre (18783_CR19) 2020; 23 |
References_xml | – volume: 14 start-page: 116 issue: 2 year: 2018 ident: 18783_CR6 publication-title: Appl Comput Inform doi: 10.1016/j.aci.2017.07.003 – volume: 31 start-page: 8101 issue: 11 year: 2019 ident: 18783_CR11 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3659-y – volume: 58 start-page: 102522 issue: 3 year: 2021 ident: 18783_CR8 publication-title: Inf Process Manage doi: 10.1016/j.ipm.2021.102522 – volume: 26 start-page: 2199 issue: 4 year: 2023 ident: 18783_CR13 publication-title: Clust Comput doi: 10.1007/s10586-022-03662-8 – ident: 18783_CR21 doi: 10.1109/ICATIECE45860.2019.9063827 – ident: 18783_CR3 doi: 10.1016/j.jksuci.2020.11.027 – ident: 18783_CR2 doi: 10.37398/JSR.2020.640149 – volume: 10 start-page: 2539 issue: 7 year: 2020 ident: 18783_CR5 publication-title: Appl Sci doi: 10.3390/app10072539 – volume: 32 start-page: 15503 issue: 19 year: 2020 ident: 18783_CR12 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04748-3 – volume: 12 start-page: 103 issue: 1 year: 2020 ident: 18783_CR17 publication-title: Int J Inf Technol – volume: 7 start-page: 21662 year: 2019 ident: 18783_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897849 – ident: 18783_CR1 doi: 10.1007/978-3-319-70688-7_1 – volume: 6 start-page: 75 issue: 1 year: 2020 ident: 18783_CR9 publication-title: Complex Intell Syst doi: 10.1007/s40747-019-0115-2 – ident: 18783_CR23 doi: 10.1007/s10462-022-10385-0 – volume: 96 start-page: 106965 year: 2019 ident: 18783_CR18 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.106965 – volume: 65 start-page: 2506 issue: 9 year: 2022 ident: 18783_CR25 publication-title: Comput J doi: 10.1093/comjnl/bxab088 – volume: 116 start-page: 50 year: 2018 ident: 18783_CR10 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2018.01.005 – volume: 185 start-page: 103076 year: 2021 ident: 18783_CR4 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2021.103076 – volume: 30 start-page: 1 issue: 7 year: 2021 ident: 18783_CR24 publication-title: J Glob Inf Manag (JGIM) – ident: 18783_CR14 doi: 10.1155/2022/1189509 – ident: 18783_CR15 doi: 10.1109/ICET.2017.8281714 – ident: 18783_CR16 doi: 10.1109/ICCS45141.2019.9065562 – volume: 43 start-page: 7705 issue: 12 year: 2018 ident: 18783_CR20 publication-title: Arab J Sci Eng doi: 10.1007/s13369-018-3145-y – volume: 64 start-page: 1945 issue: 3 year: 2018 ident: 18783_CR7 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2018.2791994 – volume: 23 start-page: 1791 issue: 3 year: 2020 ident: 18783_CR19 publication-title: World Wide Web doi: 10.1007/s11280-019-00747-0 |
SSID | ssj0016524 |
Score | 2.3809187 |
Snippet | The Information Retrieval system aims to discover relevant documents and display them as query responses. However, the ever-changing nature of user queries... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 10587 |
SubjectTerms | Accuracy Computer Communication Networks Computer Science Data Structures and Information Theory Information retrieval Multimedia Information Systems Neural networks Optimization Queries Relevance Special Purpose and Application-Based Systems Unstructured data User requirements |
Title | Query-based information retrieval system adopting whale manhattan optimization-based deep belief neural network |
URI | https://link.springer.com/article/10.1007/s11042-024-18783-y https://www.proquest.com/docview/3213241785 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vejBt1gfZQ_edMVkN5v0WKVVFAXBgp7CZh8I0rT0gdRf42_xlzmbbKyKHrwm2WXZmcl8w8x8A3BoGFcJugmqWdSiXGlOs9gYNzXVsFDZ-FS4buSbW3HZ41cP0YNvChtX1e5VSrL4U8-b3QLXSoI-hQZJnDA6W4R65AKUGtTbF4_Xnc_sgYhC7htkfl_53QnNkeWPZGjhY7qr0KtOV5aWPJ9MJ9mJev1B3Pjf46_BigedpF1qyTosmHwDVquBDsTb9wYsf2En3ITh3dSMZtT5OU08waoTIxkVU7hQRUnJA02kHgxd-TR5eUJ_Q_oyf5ITRJ3vb-5537d6-p20MUOSGcS-ljg2TdwmL2vRt6DX7dyfX1I_oIEqtPQZZRkXwvJTGVoVC5FZjfhNWhEEiiEUkEpLxKOaYwxjA6UEBi8ht4jQNDM60IJtQy0f5GYHCI-Mo-WRMkLtsTpsJUmWuCQnbxmtlWjAUSWxdFjycKRzxmV3tSlebVpcbTprwH4l1NTb5DhlIUbePIiTqAHHlYzmr__ebfd_n-_BUuiGBBflPftQm4ym5gCRyyRroqJ2z85um15hm7DYC9sftszsbg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH3-L6zMGbRmyTptmjiLo-QXBBTyXNA0Gsy7qLrL_G3-Ivc9KmrooevLbNEDIznS_MzDcA25ZxLTFMUMOSFuXacJqn1vqpqZbF2qX7wncjX16Jdoef3Sa3oSnsua52r1OS5Z961OwW-VYSjCk0kqlkdDgOEzySkjdg4uDk7vzoM3sgkpiHBpnfV34PQiNk-SMZWsaY41no1LurSkse9gb9fE-__iBu_O_252AmgE5yUFnJPIzZYgFm64EOJPj3Akx_YSdchO71wPaG1Mc5QwLBqlcj6ZVTuNBEScUDTZR56vryafJyj_GGPKriXvURdb6_-eePodUzSDLWdkluEfs64tk0UUxR1aIvQef46OawTcOABqrR04eU5VwIx_dV7HQqRO4M4jflRBRphlBAaaMQjxpUUuwirQVeXmLuEKEZZk1kBFuGRvFU2BUgPLGelkepBK3HmbglZS59kpO3rDFaNGGn1ljWrXg4shHjsj_aDI82K482GzZhvVZqFnzyOWMx3rx5lMqkCbu1jkav_5a2-r_Pt2CyfXN5kV2cXp2vwVTsBwaXpT7r0Oj3BnYDUUw_3wxG-wEF-Oz6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAc2BFl9YEbWG1ix0mPFVCxCyQqcYscL-qlISpFKH_Dt_BljLMQQHDgmmUOM7beG83MG4BDw7iKECaoZkGPcqU5TUJj3NZUw3xlw65w08g3t-J8yC8fg8cvU_xFt3tdkixnGpxKUzrtZNp2msE3z42VIL5QLwojRvNZmOOI1S79Gvr9zzqCCHxejcr8_t93OGo45o-yaIE2gxVYqmgi6ZdxXYUZk67Bcr2CgVQ3cg0Wv-gJrkN2_2ImOXXIpEklieocTybF3iw8VKRUbiZSP2Wu4Zm8jhAhyFimIzlFnvj-5p6Pq-HMypI2JiOJQbZqidO_RDNp2T2-AcPB2cPJOa1WKlCFzskpS7gQlnelb1UoRGI1Mi5phecphuAtlZbIIDXHrMN6SglMN3xukVNpZrSnBduEVvqUmi0gPDBOSEfKAONttd-LoiRyZUneM1or0Yaj2rNxVipnxI1GsotDjHGIizjEeRt2a-fH1S16jpmPuTL3wihow3EdkOb139a2__f5AczfnQ7i64vbqx1Y8N2G36I3Zxda08mL2UPaMU32i5P1AXoU0_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Query-based+information+retrieval+system+adopting+whale+manhattan%C2%A0optimization-based+deep+belief+neural+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Dahiya%2C+Deepak&rft.date=2025-04-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=12&rft.spage=10587&rft.epage=10607&rft_id=info:doi/10.1007%2Fs11042-024-18783-y&rft.externalDocID=10_1007_s11042_024_18783_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |