Query-based information retrieval system adopting whale manhattan optimization-based deep belief neural network

The Information Retrieval system aims to discover relevant documents and display them as query responses. However, the ever-changing nature of user queries poses a substantial research problem in defining the necessary data to respond accurately. The Major intention for this study is for enhance the...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 84; no. 12; pp. 10587 - 10607
Main Author Dahiya, Deepak
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-024-18783-y

Cover

Abstract The Information Retrieval system aims to discover relevant documents and display them as query responses. However, the ever-changing nature of user queries poses a substantial research problem in defining the necessary data to respond accurately. The Major intention for this study is for enhance the retrieval of relevant information in response to user queries. The aim to develop an advanced IR system that adapts to changing user requirements. By introducing WMO_DBN, we seek to improve the efficiency and accuracy of information retrieval, catering to both general and specific user searches. The proposed methodology comprises three important steps: pre-processing, feature choice, and categorization. Initially, unstructured data subject to pre-processing to transform it into a structured format. Subsequently, relevant features are selected to optimize the retrieval process. The final step involves the utilization of WMO_DBN, a novel deep learning model designed for information retrieval based on the query data. Additionally, similarity calculation is employed to improve the effectiveness for the network training model. The investigational evaluation for the suggested model was conducted, and its performance is measured regarding the metrics of recall, precision, accuracy, and F1 score, the present discourse concerns their significance within the academic realm. The results prove the superiority of WMO_DBN in retrieving relevant information compared to traditional approaches. This research introduces novel method for addressing the challenges in information retrieval with the integration of WMO_DBN. By applying pre-processing, feature selection, and a deep belief neural network, the proposed system achieves more accurate and efficient retrieval of relevant information. The study contributes to the advancement of information retrieval systems and emphasizes the importance of adapting to users' evolving search queries. The success of WMO_DBN in retrieving relevant information highlights its potential for enhancing information retrieval processes in various applications.
AbstractList The Information Retrieval system aims to discover relevant documents and display them as query responses. However, the ever-changing nature of user queries poses a substantial research problem in defining the necessary data to respond accurately. The Major intention for this study is for enhance the retrieval of relevant information in response to user queries. The aim to develop an advanced IR system that adapts to changing user requirements. By introducing WMO_DBN, we seek to improve the efficiency and accuracy of information retrieval, catering to both general and specific user searches. The proposed methodology comprises three important steps: pre-processing, feature choice, and categorization. Initially, unstructured data subject to pre-processing to transform it into a structured format. Subsequently, relevant features are selected to optimize the retrieval process. The final step involves the utilization of WMO_DBN, a novel deep learning model designed for information retrieval based on the query data. Additionally, similarity calculation is employed to improve the effectiveness for the network training model. The investigational evaluation for the suggested model was conducted, and its performance is measured regarding the metrics of recall, precision, accuracy, and F1 score, the present discourse concerns their significance within the academic realm. The results prove the superiority of WMO_DBN in retrieving relevant information compared to traditional approaches. This research introduces novel method for addressing the challenges in information retrieval with the integration of WMO_DBN. By applying pre-processing, feature selection, and a deep belief neural network, the proposed system achieves more accurate and efficient retrieval of relevant information. The study contributes to the advancement of information retrieval systems and emphasizes the importance of adapting to users' evolving search queries. The success of WMO_DBN in retrieving relevant information highlights its potential for enhancing information retrieval processes in various applications.
Author Dahiya, Deepak
Author_xml – sequence: 1
  givenname: Deepak
  surname: Dahiya
  fullname: Dahiya, Deepak
  email: ded142@pitt.edu
  organization: School of Engineering and Computer Science, University of Pittsburgh Johnstown
BookMark eNp9kNtKxDAQhoOs4O7qC3hV8LqaSdKmXsriCRZE0OuQbSa7Xdu0Jq1LfRqfxSezewC98mqG4f_-gW9CRq52SMg50EugVF4FACpYTJmIIZMZj_sjMoZE8lhKBqM_-wmZhLCmFNKEiTFpnjv0fbzQAU1UOFv7SrdF7SKPrS_wQ5dR6EOLVaRN3bSFW0ablS4xqrRb6bbV7vtre6-Kzx13aDKITbTAskAbOez8UOOw3dT-7ZQcW10GPDvMKXm9u32ZPcTzp_vH2c08zlki-5gvRJpaQTWzuUzThTVZAtqmADlnPNO50RmlRkDGLOR5mlxLJiwIbjgaMCmfkot9b-Pr9w5Dq9Z1593wUnEGnAmQWTKk2D6V-zoEj1Y1vqi07xVQtTWr9mbVYFbtzKp-gPgeCkPYLdH_Vv9D_QDRBoGX
Cites_doi 10.1016/j.aci.2017.07.003
10.1007/s00521-018-3659-y
10.1016/j.ipm.2021.102522
10.1007/s10586-022-03662-8
10.1109/ICATIECE45860.2019.9063827
10.1016/j.jksuci.2020.11.027
10.37398/JSR.2020.640149
10.3390/app10072539
10.1007/s00521-020-04748-3
10.1109/ACCESS.2019.2897849
10.1007/978-3-319-70688-7_1
10.1007/s40747-019-0115-2
10.1007/s10462-022-10385-0
10.1016/j.patcog.2019.106965
10.1093/comjnl/bxab088
10.1016/j.jpdc.2018.01.005
10.1016/j.jnca.2021.103076
10.1155/2022/1189509
10.1109/ICET.2017.8281714
10.1109/ICCS45141.2019.9065562
10.1007/s13369-018-3145-y
10.1109/TIT.2018.2791994
10.1007/s11280-019-00747-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-18783-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 10607
ExternalDocumentID 10_1007_s11042_024_18783_y
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c257y-3b466f40a2fc766bfd851af611c3238acda800d4182f1cc659724f143d3ed1d63
IEDL.DBID AGYKE
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 09:40:41 EDT 2025
Tue Jul 01 05:03:27 EDT 2025
Fri May 02 01:12:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Improved artificial flora
Dimension reduction
Information retrieval
Feature selection
Whale manhattan optimization
Deep belief neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257y-3b466f40a2fc766bfd851af611c3238acda800d4182f1cc659724f143d3ed1d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3213241785
PQPubID 54626
PageCount 21
ParticipantIDs proquest_journals_3213241785
crossref_primary_10_1007_s11042_024_18783_y
springer_journals_10_1007_s11042_024_18783_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250400
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 18783_CR14
18783_CR15
N Rahman (18783_CR9) 2020; 6
G Lokku (18783_CR25) 2022; 65
K Ahmad (18783_CR17) 2020; 12
MN Asim (18783_CR22) 2019; 7
18783_CR3
18783_CR16
18783_CR1
18783_CR2
J Liu (18783_CR8) 2021; 58
X Wang (18783_CR12) 2020; 32
K Munir (18783_CR6) 2018; 14
18783_CR23
K Banawan (18783_CR7) 2018; 64
AK Bhunia (18783_CR18) 2019; 96
18783_CR21
I Priyadarshini (18783_CR13) 2023; 26
S Lim (18783_CR11) 2019; 31
I Moawad (18783_CR20) 2018; 43
X Zhang (18783_CR24) 2021; 30
B Abu-Salih (18783_CR4) 2021; 185
T Nguyen Mau (18783_CR5) 2020; 10
X Jiang (18783_CR10) 2018; 116
K Albishre (18783_CR19) 2020; 23
References_xml – volume: 14
  start-page: 116
  issue: 2
  year: 2018
  ident: 18783_CR6
  publication-title: Appl Comput Inform
  doi: 10.1016/j.aci.2017.07.003
– volume: 31
  start-page: 8101
  issue: 11
  year: 2019
  ident: 18783_CR11
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3659-y
– volume: 58
  start-page: 102522
  issue: 3
  year: 2021
  ident: 18783_CR8
  publication-title: Inf Process Manage
  doi: 10.1016/j.ipm.2021.102522
– volume: 26
  start-page: 2199
  issue: 4
  year: 2023
  ident: 18783_CR13
  publication-title: Clust Comput
  doi: 10.1007/s10586-022-03662-8
– ident: 18783_CR21
  doi: 10.1109/ICATIECE45860.2019.9063827
– ident: 18783_CR3
  doi: 10.1016/j.jksuci.2020.11.027
– ident: 18783_CR2
  doi: 10.37398/JSR.2020.640149
– volume: 10
  start-page: 2539
  issue: 7
  year: 2020
  ident: 18783_CR5
  publication-title: Appl Sci
  doi: 10.3390/app10072539
– volume: 32
  start-page: 15503
  issue: 19
  year: 2020
  ident: 18783_CR12
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04748-3
– volume: 12
  start-page: 103
  issue: 1
  year: 2020
  ident: 18783_CR17
  publication-title: Int J Inf Technol
– volume: 7
  start-page: 21662
  year: 2019
  ident: 18783_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897849
– ident: 18783_CR1
  doi: 10.1007/978-3-319-70688-7_1
– volume: 6
  start-page: 75
  issue: 1
  year: 2020
  ident: 18783_CR9
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-019-0115-2
– ident: 18783_CR23
  doi: 10.1007/s10462-022-10385-0
– volume: 96
  start-page: 106965
  year: 2019
  ident: 18783_CR18
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.106965
– volume: 65
  start-page: 2506
  issue: 9
  year: 2022
  ident: 18783_CR25
  publication-title: Comput J
  doi: 10.1093/comjnl/bxab088
– volume: 116
  start-page: 50
  year: 2018
  ident: 18783_CR10
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2018.01.005
– volume: 185
  start-page: 103076
  year: 2021
  ident: 18783_CR4
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2021.103076
– volume: 30
  start-page: 1
  issue: 7
  year: 2021
  ident: 18783_CR24
  publication-title: J Glob Inf Manag (JGIM)
– ident: 18783_CR14
  doi: 10.1155/2022/1189509
– ident: 18783_CR15
  doi: 10.1109/ICET.2017.8281714
– ident: 18783_CR16
  doi: 10.1109/ICCS45141.2019.9065562
– volume: 43
  start-page: 7705
  issue: 12
  year: 2018
  ident: 18783_CR20
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-018-3145-y
– volume: 64
  start-page: 1945
  issue: 3
  year: 2018
  ident: 18783_CR7
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2018.2791994
– volume: 23
  start-page: 1791
  issue: 3
  year: 2020
  ident: 18783_CR19
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00747-0
SSID ssj0016524
Score 2.3809187
Snippet The Information Retrieval system aims to discover relevant documents and display them as query responses. However, the ever-changing nature of user queries...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 10587
SubjectTerms Accuracy
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Information retrieval
Multimedia Information Systems
Neural networks
Optimization
Queries
Relevance
Special Purpose and Application-Based Systems
Unstructured data
User requirements
Title Query-based information retrieval system adopting whale manhattan optimization-based deep belief neural network
URI https://link.springer.com/article/10.1007/s11042-024-18783-y
https://www.proquest.com/docview/3213241785
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vejBt1gfZQ_edMVkN5v0WKVVFAXBgp7CZh8I0rT0gdRf42_xlzmbbKyKHrwm2WXZmcl8w8x8A3BoGFcJugmqWdSiXGlOs9gYNzXVsFDZ-FS4buSbW3HZ41cP0YNvChtX1e5VSrL4U8-b3QLXSoI-hQZJnDA6W4R65AKUGtTbF4_Xnc_sgYhC7htkfl_53QnNkeWPZGjhY7qr0KtOV5aWPJ9MJ9mJev1B3Pjf46_BigedpF1qyTosmHwDVquBDsTb9wYsf2En3ITh3dSMZtT5OU08waoTIxkVU7hQRUnJA02kHgxd-TR5eUJ_Q_oyf5ITRJ3vb-5537d6-p20MUOSGcS-ljg2TdwmL2vRt6DX7dyfX1I_oIEqtPQZZRkXwvJTGVoVC5FZjfhNWhEEiiEUkEpLxKOaYwxjA6UEBi8ht4jQNDM60IJtQy0f5GYHCI-Mo-WRMkLtsTpsJUmWuCQnbxmtlWjAUSWxdFjycKRzxmV3tSlebVpcbTprwH4l1NTb5DhlIUbePIiTqAHHlYzmr__ebfd_n-_BUuiGBBflPftQm4ym5gCRyyRroqJ2z85um15hm7DYC9sftszsbg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH3-L6zMGbRmyTptmjiLo-QXBBTyXNA0Gsy7qLrL_G3-Ivc9KmrooevLbNEDIznS_MzDcA25ZxLTFMUMOSFuXacJqn1vqpqZbF2qX7wncjX16Jdoef3Sa3oSnsua52r1OS5Z961OwW-VYSjCk0kqlkdDgOEzySkjdg4uDk7vzoM3sgkpiHBpnfV34PQiNk-SMZWsaY41no1LurSkse9gb9fE-__iBu_O_252AmgE5yUFnJPIzZYgFm64EOJPj3Akx_YSdchO71wPaG1Mc5QwLBqlcj6ZVTuNBEScUDTZR56vryafJyj_GGPKriXvURdb6_-eePodUzSDLWdkluEfs64tk0UUxR1aIvQef46OawTcOABqrR04eU5VwIx_dV7HQqRO4M4jflRBRphlBAaaMQjxpUUuwirQVeXmLuEKEZZk1kBFuGRvFU2BUgPLGelkepBK3HmbglZS59kpO3rDFaNGGn1ljWrXg4shHjsj_aDI82K482GzZhvVZqFnzyOWMx3rx5lMqkCbu1jkav_5a2-r_Pt2CyfXN5kV2cXp2vwVTsBwaXpT7r0Oj3BnYDUUw_3wxG-wEF-Oz6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAc2BFl9YEbWG1ix0mPFVCxCyQqcYscL-qlISpFKH_Dt_BljLMQQHDgmmUOM7beG83MG4BDw7iKECaoZkGPcqU5TUJj3NZUw3xlw65w08g3t-J8yC8fg8cvU_xFt3tdkixnGpxKUzrtZNp2msE3z42VIL5QLwojRvNZmOOI1S79Gvr9zzqCCHxejcr8_t93OGo45o-yaIE2gxVYqmgi6ZdxXYUZk67Bcr2CgVQ3cg0Wv-gJrkN2_2ImOXXIpEklieocTybF3iw8VKRUbiZSP2Wu4Zm8jhAhyFimIzlFnvj-5p6Pq-HMypI2JiOJQbZqidO_RDNp2T2-AcPB2cPJOa1WKlCFzskpS7gQlnelb1UoRGI1Mi5phecphuAtlZbIIDXHrMN6SglMN3xukVNpZrSnBduEVvqUmi0gPDBOSEfKAONttd-LoiRyZUneM1or0Yaj2rNxVipnxI1GsotDjHGIizjEeRt2a-fH1S16jpmPuTL3wihow3EdkOb139a2__f5AczfnQ7i64vbqx1Y8N2G36I3Zxda08mL2UPaMU32i5P1AXoU0_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Query-based+information+retrieval+system+adopting+whale+manhattan%C2%A0optimization-based+deep+belief+neural+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Dahiya%2C+Deepak&rft.date=2025-04-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=12&rft.spage=10587&rft.epage=10607&rft_id=info:doi/10.1007%2Fs11042-024-18783-y&rft.externalDocID=10_1007_s11042_024_18783_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon