The effects of alloying and strain on the piezoelectric response of LaN-based material for the application in bulk acoustic wave resonator
The interconversion between mechanical strain and electric polarization in piezoelectric materials has been the subject of extensive research. However, the symmetry breaking accompanied with lattice distortions plays an essential role in the piezoelectric properties, and needs to be further studied....
Saved in:
Published in | Materials today communications Vol. 46; p. 112650 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-4928 2352-4928 |
DOI | 10.1016/j.mtcomm.2025.112650 |
Cover
Abstract | The interconversion between mechanical strain and electric polarization in piezoelectric materials has been the subject of extensive research. However, the symmetry breaking accompanied with lattice distortions plays an essential role in the piezoelectric properties, and needs to be further studied. In this work, utilizing first-principles method, an alloying model is constructed based on wurtzite-LaN (w-LaN) which has a large piezoelectric modulus (d33 = 21.45 pC/N) by incorporating group-Ⅲ elements X (X = B, Al, Ga, In), which has excellent piezoelectric behavior through systematic study of the mechanical properties of the system. The mechanical stability of all X0.5La0.5N alloys is satisfied by Born stability criterion except B-doped specimen. Particularly, in Al0.5La0.5N alloy, a largest piezoelectric modulus (d33 = 23.31 pC/N) is obtained due to the significant lattice distortion induced by the strain response of the internal coordinates with Al-doping. The influence of the relative concentration, occupancy of alloyed metal cations, and uniaxial strain on the piezoelectric response is further investigated. Moreover, a bulk acoustic wave resonator is constructed by using Al0.5La0.5N alloy, and the calculated results suggest that Al0.5La0.5N possesses a high electromechanical coupling coefficient and sound velocity, which is the great potential building block for bulk acoustic wave resonator. Our research provides critical insights for the design of bulk acoustic wave devices and the development of metal nitride piezoelectric materials.
[Display omitted]
•An alloying model is constructed based on wurtzite-LaN which has a large piezoelectric modulus.•In Al0.5La0.5N alloy, a largest piezoelectric modulus (d33 = 23.31 pC/N) is obtained due to the significant lattice distortion.•The influence of the relative concentration, occupancy of alloyed metal cations, and uniaxial strain on the piezoelectric response is further investigated.•A bulk acoustic wave resonator is constructed by using Al0.5La0.5N alloy. |
---|---|
AbstractList | The interconversion between mechanical strain and electric polarization in piezoelectric materials has been the subject of extensive research. However, the symmetry breaking accompanied with lattice distortions plays an essential role in the piezoelectric properties, and needs to be further studied. In this work, utilizing first-principles method, an alloying model is constructed based on wurtzite-LaN (w-LaN) which has a large piezoelectric modulus (d33 = 21.45 pC/N) by incorporating group-Ⅲ elements X (X = B, Al, Ga, In), which has excellent piezoelectric behavior through systematic study of the mechanical properties of the system. The mechanical stability of all X0.5La0.5N alloys is satisfied by Born stability criterion except B-doped specimen. Particularly, in Al0.5La0.5N alloy, a largest piezoelectric modulus (d33 = 23.31 pC/N) is obtained due to the significant lattice distortion induced by the strain response of the internal coordinates with Al-doping. The influence of the relative concentration, occupancy of alloyed metal cations, and uniaxial strain on the piezoelectric response is further investigated. Moreover, a bulk acoustic wave resonator is constructed by using Al0.5La0.5N alloy, and the calculated results suggest that Al0.5La0.5N possesses a high electromechanical coupling coefficient and sound velocity, which is the great potential building block for bulk acoustic wave resonator. Our research provides critical insights for the design of bulk acoustic wave devices and the development of metal nitride piezoelectric materials.
[Display omitted]
•An alloying model is constructed based on wurtzite-LaN which has a large piezoelectric modulus.•In Al0.5La0.5N alloy, a largest piezoelectric modulus (d33 = 23.31 pC/N) is obtained due to the significant lattice distortion.•The influence of the relative concentration, occupancy of alloyed metal cations, and uniaxial strain on the piezoelectric response is further investigated.•A bulk acoustic wave resonator is constructed by using Al0.5La0.5N alloy. |
ArticleNumber | 112650 |
Author | Zhou, Baozeng Qian, Lirong Xu, Chenhao Wang, Zhen |
Author_xml | – sequence: 1 givenname: Chenhao surname: Xu fullname: Xu, Chenhao – sequence: 2 givenname: Zhen surname: Wang fullname: Wang, Zhen – sequence: 3 givenname: Lirong surname: Qian fullname: Qian, Lirong email: lirongqian83@email.tjut.edu.cn – sequence: 4 givenname: Baozeng orcidid: 0000-0003-3568-701X surname: Zhou fullname: Zhou, Baozeng email: baozeng@tju.edu.cn |
BookMark | eNp9kEtOwzAQQC1UJErpDVj4Aim246TJBglV_KQKNmVtTZwxuCR2ZLsgOAKnJqUsWLGaWcx7Gr1TMnHeISHnnC044-XFdtEn7ft-IZgoFpyLsmBHZCryQmSyFtXkz35C5jFuGWO8Kpis5ZR8bV6QojGoU6TeUOg6_2HdMwXX0pgCWEe9o2m8Gix-euzGy2A1DRgH7yLuoTU8ZA1EbGkPCYOFjhoffiAYhs5qSHaUjKpm171S0H4X0-h4hzfci7yD5MMZOTbQRZz_zhl5urnerO6y9ePt_epqnWlRLFNm2gYayAssSwnLlrdM8rpZNoyjqLjgPDcIstJMI5NlWdfMaI2VxLxBIyuZz4g8eHXwMQY0agi2h_ChOFP7pGqrDknVPqk6JB2xywOG429vFoOK2qLT2NowNlGtt_8LvgHHcIZD |
Cites_doi | 10.1109/58.949733 10.1016/j.jcrysgro.2022.126889 10.1063/1.4896262 10.1016/S0022-0248(01)01958-3 10.1103/PhysRev.144.1 10.1103/PhysRevB.48.4442 10.1103/PhysRevB.90.224104 10.1103/PhysRevB.59.1758 10.1103/RevModPhys.66.899 10.1021/acsomega.9b01912 10.1016/j.ceramint.2011.03.052 10.1038/natrevmats.2017.70 10.1016/j.jeurceramsoc.2007.02.218 10.1103/PhysRevB.49.16223 10.1038/nature03028 10.1103/PhysRevB.13.5188 10.1007/s12045-017-0529-3 10.1021/acsaelm.2c00371 10.1103/PhysRevB.50.17953 10.1039/D2TA05346B 10.1002/adma.200802611 10.1103/PhysRevB.47.558 10.1021/acsami.0c14969 10.1103/PhysRevLett.104.137601 10.1016/j.ultras.2021.106470 10.1063/1.124055 10.1016/j.spmi.2009.05.001 10.7567/APEX.11.041201 10.1016/S0022-3697(99)00273-5 10.1002/(SICI)1097-461X(1997)61:2<287::AID-QUA11>3.0.CO;2-9 10.3390/ma13061280 10.3390/coatings14080984 10.1109/58.646930 10.1103/PhysRevApplied.16.044009 10.1016/j.matchemphys.2008.06.031 10.1063/5.0156680 10.1103/PhysRevB.59.7413 10.3390/coatings12010073 10.1103/PhysRevB.47.1651 10.1103/PhysRevB.109.134101 10.1063/1.4953856 10.1088/1361-6463/ac4cf9 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mtcomm.2025.112650 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-4928 |
ExternalDocumentID | 10_1016_j_mtcomm_2025_112650 S2352492825011626 |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABXZ AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AGCQF AGHFR AGUBO AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC EBS EFJIC EFKBS EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSM SSZ T5K ~G- AAYXX ACLOT CITATION |
ID | FETCH-LOGICAL-c257t-fdbaba35e664a7d1d0419b7b01e2812113fea48c0ce0466990fcce84e3bef4843 |
IEDL.DBID | AIKHN |
ISSN | 2352-4928 |
IngestDate | Wed Oct 01 05:35:03 EDT 2025 Sat Sep 13 17:02:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Piezoelectric response LaN-based alloy Uniaxial strain Electromechanical coupling coefficient Acoustic wave resonators |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-fdbaba35e664a7d1d0419b7b01e2812113fea48c0ce0466990fcce84e3bef4843 |
ORCID | 0000-0003-3568-701X |
ParticipantIDs | crossref_primary_10_1016_j_mtcomm_2025_112650 elsevier_sciencedirect_doi_10_1016_j_mtcomm_2025_112650 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Materials today communications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xiao, Yang, Pi, Zhang (bib41) 2022; 12 Yang, Xinyu, Hongze, Hui, Chengwei (bib4) 2025; 109 Guo, Zhao, Ge, Liu, Wan (bib38) 2023; 123 Momida, Teshigahara, Oguchi (bib39) 2016; 6 Pan, Zhang, Hu, Chen, Geng (bib45) 2022; 10 Blöchl, Jepsen, Andersen (bib27) 1994; 49 Q. Zhang, Y. Zou, Q. Fan, Y. Yang, Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations, in: Materials, 2020. Tasnádi, Alling, Höglund, Wingqvist, Birch, Hultman, Abrikosov (bib37) 2010; 104 Vanderbilt (bib34) 2000; 61 Yu-Jen, Jie-Lin, Yi-Bin (bib5) 2021; 150 Jia, Kishi, Bai, Okajima, Lesari, Yanagitani (bib46) 2024; 109 Jianping, Lidong, Junjie, Yili, Jianming, Jijie, Nen (bib2) 2021; 30 Qin, Zhao, Wang, Wang, Qin, Wu, Yang, Yu, Zhang (bib12) 2024; 14 Kresse, Joubert (bib24) 1999; 59 Liu, Li, Zhu, Wang, Qing (bib3) 2021; 115 Blöchl (bib23) 1994; 50 Vanderbilt, King-Smith (bib29) 1993; 48 Hu, Liu, Burton, Ren (bib19) 2020; 12 Jia, Yanagitani (bib16) 2021; 16 King-Smith, Vanderbilt (bib30) 1993; 47 Saito, Takao, Tani, Nonoyama, Takatori, Homma, Nagaya, Nakamura (bib6) 2004; 432 Resta (bib31) 1994; 66 Ashraf, Mesbah, Emad, Mostafa (bib11) 2020; 2020 Mouhat, Coudert (bib40) 2014; 90 Jiajun, Zhengwang, Xinguo, Fengda, Wangyang, Yuehuan, Mei (bib47) 2022; 599 Naik, Lutsky, Reif, Sodini (bib8) 1998; 45 Hammer, Hansen, Nørskov (bib26) 1999; 59 Daoust, Desjardins, Masut, Côté (bib50) 2022; 6 Agnė, Christopher, Justinas, Per, Vanya, Nebiha Ben, Ferenc, Björn, Jens, Lars (bib18) 2012; 45 Ning, Dou, Yang (bib48) 2017; 2 Mohamed, Bouhalouane, Youcef, Nadir (bib32) 2008; 112 Makkonen, Holappa, Ella, Salomea (bib51) 2001; 48 Sang Ho, Jang Heui, Jung Hyun, You Na, Young Jun, Yun Chan (bib43) 2011; 37 Akiyama, Kamohara, Kano, Teshigahara, Takeuchi, Kawahara (bib15) 2009; 21 Tong, Sham (bib20) 1966; 144 Ren-Chuan, Sheng-Yuan, Yi-Fang, Cheng-Shong, Yi-Peng (bib7) 2007; 27 Louhadj, Mohamed, Badi, Noureddine, Youcef, Bouhalouane, Hamza, Nadir (bib33) 2009; 46 Abboud, Ozbey, Kilic, Durgun (bib42) 2022; 55 Liao, Cheng, Ma, Wan, Duan, Cheng, Wang (bib14) 2022; 599 Dubois, Muralt (bib9) 1999; 74 Jia, Iwata, Suzuki, Yanagitani (bib17) 2022; 4 Hirata, Yamada, Uehara, Anggraini, Akiyama (bib35) 2019; 4 Nityananda, Hohenberg, Kohn (bib21) 2017; 22 Christopher, Darren, Tammy, Sukwon, Janet, Alejandro, Christopher, Sean, Molly, Roy (bib1) 2016; 26 Yanagitani, Suzuki (bib49) 2014; 105 Yanagitani, Suzuki (bib13) 2014; 105 Michio, Toshinori, Makoto (bib10) 2002; 237-239 Kresse, Hafner (bib22) 1993; 47 Monkhorst, Pack (bib28) 1976; 13 Momida, Oguchi (bib36) 2018; 11 Burke, Perdew, Ernzerhof (bib25) 1997; 61 Yanagitani (10.1016/j.mtcomm.2025.112650_bib13) 2014; 105 Kresse (10.1016/j.mtcomm.2025.112650_bib22) 1993; 47 Tong (10.1016/j.mtcomm.2025.112650_bib20) 1966; 144 Vanderbilt (10.1016/j.mtcomm.2025.112650_bib29) 1993; 48 Mohamed (10.1016/j.mtcomm.2025.112650_bib32) 2008; 112 Yanagitani (10.1016/j.mtcomm.2025.112650_bib49) 2014; 105 Jianping (10.1016/j.mtcomm.2025.112650_bib2) 2021; 30 Yang (10.1016/j.mtcomm.2025.112650_bib4) 2025; 109 Naik (10.1016/j.mtcomm.2025.112650_bib8) 1998; 45 Hammer (10.1016/j.mtcomm.2025.112650_bib26) 1999; 59 Momida (10.1016/j.mtcomm.2025.112650_bib36) 2018; 11 Abboud (10.1016/j.mtcomm.2025.112650_bib42) 2022; 55 Blöchl (10.1016/j.mtcomm.2025.112650_bib23) 1994; 50 Ning (10.1016/j.mtcomm.2025.112650_bib48) 2017; 2 Saito (10.1016/j.mtcomm.2025.112650_bib6) 2004; 432 Qin (10.1016/j.mtcomm.2025.112650_bib12) 2024; 14 Makkonen (10.1016/j.mtcomm.2025.112650_bib51) 2001; 48 Mouhat (10.1016/j.mtcomm.2025.112650_bib40) 2014; 90 King-Smith (10.1016/j.mtcomm.2025.112650_bib30) 1993; 47 10.1016/j.mtcomm.2025.112650_bib44 Agnė (10.1016/j.mtcomm.2025.112650_bib18) 2012; 45 Christopher (10.1016/j.mtcomm.2025.112650_bib1) 2016; 26 Jiajun (10.1016/j.mtcomm.2025.112650_bib47) 2022; 599 Jia (10.1016/j.mtcomm.2025.112650_bib16) 2021; 16 Pan (10.1016/j.mtcomm.2025.112650_bib45) 2022; 10 Hirata (10.1016/j.mtcomm.2025.112650_bib35) 2019; 4 Burke (10.1016/j.mtcomm.2025.112650_bib25) 1997; 61 Liao (10.1016/j.mtcomm.2025.112650_bib14) 2022; 599 Michio (10.1016/j.mtcomm.2025.112650_bib10) 2002; 237-239 Liu (10.1016/j.mtcomm.2025.112650_bib3) 2021; 115 Sang Ho (10.1016/j.mtcomm.2025.112650_bib43) 2011; 37 Jia (10.1016/j.mtcomm.2025.112650_bib46) 2024; 109 Hu (10.1016/j.mtcomm.2025.112650_bib19) 2020; 12 Nityananda (10.1016/j.mtcomm.2025.112650_bib21) 2017; 22 Yu-Jen (10.1016/j.mtcomm.2025.112650_bib5) 2021; 150 Tasnádi (10.1016/j.mtcomm.2025.112650_bib37) 2010; 104 Akiyama (10.1016/j.mtcomm.2025.112650_bib15) 2009; 21 Daoust (10.1016/j.mtcomm.2025.112650_bib50) 2022; 6 Resta (10.1016/j.mtcomm.2025.112650_bib31) 1994; 66 Blöchl (10.1016/j.mtcomm.2025.112650_bib27) 1994; 49 Ren-Chuan (10.1016/j.mtcomm.2025.112650_bib7) 2007; 27 Dubois (10.1016/j.mtcomm.2025.112650_bib9) 1999; 74 Momida (10.1016/j.mtcomm.2025.112650_bib39) 2016; 6 Louhadj (10.1016/j.mtcomm.2025.112650_bib33) 2009; 46 Xiao (10.1016/j.mtcomm.2025.112650_bib41) 2022; 12 Monkhorst (10.1016/j.mtcomm.2025.112650_bib28) 1976; 13 Jia (10.1016/j.mtcomm.2025.112650_bib17) 2022; 4 Vanderbilt (10.1016/j.mtcomm.2025.112650_bib34) 2000; 61 Guo (10.1016/j.mtcomm.2025.112650_bib38) 2023; 123 Ashraf (10.1016/j.mtcomm.2025.112650_bib11) 2020; 2020 Kresse (10.1016/j.mtcomm.2025.112650_bib24) 1999; 59 |
References_xml | – volume: 150 year: 2021 ident: bib5 article-title: A self-positioning linear actuator based on a piezoelectric slab with multiple pads publication-title: Mech. Syst. Signal Process. – volume: 104 year: 2010 ident: bib37 article-title: Origin of the anomalous piezoelectric response in wurtzite ScxAl1−xN alloys publication-title: Phys. Rev. Lett. – volume: 27 start-page: 4453 year: 2007 end-page: 4460 ident: bib7 article-title: An investigation of (Na0.5K0.5)NbO3–CaTiO3 based lead-free ceramics and surface acoustic wave devices publication-title: J. Eur. Ceram. Soc. – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: bib24 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 14 start-page: 984 year: 2024 ident: bib12 article-title: Investigation of piezoelectric properties of wurtzite AlN films under in-plane strain: a first-principles study publication-title: Coatings – volume: 49 start-page: 16223 year: 1994 end-page: 16233 ident: bib27 article-title: Improved tetrahedron method for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 6 year: 2016 ident: bib39 article-title: Strong enhancement of piezoelectric constants in ScxAl1−xN: First-principles calculations publication-title: AIP Adv. – volume: 112 start-page: 774 year: 2008 end-page: 778 ident: bib32 article-title: Structural and electronic properties of LaN publication-title: Mater. Chem. Phys. – volume: 22 start-page: 809 year: 2017 end-page: 811 ident: bib21 article-title: Inhomogeneous electron gas publication-title: Resonance – volume: 26 year: 2016 ident: bib1 article-title: MEMS switching of contour-mode aluminum nitride resonators for switchable and reconfigurable radio frequency filters publication-title: J. Micromech. Microeng. – volume: 10 start-page: 22676 year: 2022 end-page: 22685 ident: bib45 article-title: Two-dimensional AlXY (X = S, Se, and Y = Cl, Br, I) monolayers: promising photocatalysts for water splitting with high-anisotropic carrier mobilities publication-title: J. Mater. Chem. A – volume: 45 year: 2012 ident: bib18 article-title: YxAl1−xN thin films publication-title: J. Phys. D: Appl. Phys. – volume: 74 start-page: 3032 year: 1999 end-page: 3034 ident: bib9 article-title: Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications publication-title: Appl. Phys. Lett. – volume: 2020 start-page: 1 year: 2020 end-page: 4 ident: bib11 article-title: Enabling the 5G: modelling and design of high Q film bulk acoustic wave resonator (FBAR) for high frequency applications publication-title: IEEE Int. Symp. . Circuits Syst. (ISCAS) – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: bib23 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 115 year: 2021 ident: bib3 article-title: Cure monitoring and damage identification of CFRP using embedded piezoelectric sensors network publication-title: Ultrasonics – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: bib22 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B, Condens. Matter – volume: 109 year: 2025 ident: bib4 article-title: Electric-Mechanical coupling analysis of two-dimensional piezoelectric heterogeneous materials in flexible electric devices with extended multiscale isogeometric analysis publication-title: Eur. J. Mech. - A/Solids – volume: 2 start-page: 17070 year: 2017 ident: bib48 article-title: Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions publication-title: Nat. Rev. Mater. – volume: 11 year: 2018 ident: bib36 article-title: Effects of lattice parameters on piezoelectric constants in wurtzite materials: a theoretical study using first-principles and statistical-learning methods publication-title: Appl. Phys. Express – volume: 55 year: 2022 ident: bib42 article-title: Investigation of anisotropic mechanical, electronic, and charge carrier transport properties of germanium-pnictogen monolayers publication-title: J. Phys. D: Appl. Phys. – volume: 16 year: 2021 ident: bib16 article-title: Origin of enhanced electromechanical coupling in (Yb,Al)N nitride alloys publication-title: Phys. Rev. Appl. – volume: 48 start-page: 1241 year: 2001 end-page: 1258 ident: bib51 article-title: Finite element simulations of thin-film composite BAW resonators publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control – volume: 46 start-page: 435 year: 2009 end-page: 442 ident: bib33 article-title: Electronic structure of ScN, YN, LaN and GdN superlattices publication-title: Superlattices Microstruct. – volume: 90 year: 2014 ident: bib40 article-title: Necessary and sufficient elastic stability conditions in various crystal systems publication-title: Phys. Rev. B – volume: 237-239 start-page: 523 year: 2002 end-page: 527 ident: bib10 article-title: Piezoelectric and optical properties of ZnO films deposited by an electron–cyclotron-resonance sputtering system publication-title: J. Cryst. Growth – reference: Q. Zhang, Y. Zou, Q. Fan, Y. Yang, Physical Properties of XN (X = B, Al, Ga, In) in the Pm−3n phase: First-Principles Calculations, in: Materials, 2020. – volume: 6 year: 2022 ident: bib50 article-title: Longitudinal piezoelectric, elastic, and dielectric properties of rare-earth aluminum nitride alloys determined by density-functional perturbation theory publication-title: Phys. Rev. Mater. – volume: 123 year: 2023 ident: bib38 article-title: Formation of 2D GaXY (X = S, Se; Y = F, Cl, Br, I) with enhanced piezoelectricity via decomposition of Ga-monochalcogenide by halogenation publication-title: Appl. Phys. Lett. – volume: 61 start-page: 147 year: 2000 end-page: 151 ident: bib34 article-title: Berry-phase theory of proper piezoelectric response publication-title: J. Phys. Chem. Solids – volume: 105 year: 2014 ident: bib49 article-title: Electromechanical coupling and gigahertz elastic properties of ScAlN films near phase boundary publication-title: Appl. Phys. Lett. – volume: 12 start-page: 49805 year: 2020 end-page: 49811 ident: bib19 article-title: Huge Piezoelectric response of LaN-Based Superlattices publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 3448 year: 2022 end-page: 3456 ident: bib17 article-title: Enhanced electromechanical coupling in Yb-substituted III–V nitride alloys publication-title: ACS Appl. Electron. Mater. – volume: 144 start-page: 1 year: 1966 end-page: 4 ident: bib20 article-title: Application of a self-consistent scheme including exchange and correlation effects to atoms publication-title: Phys. Rev. – volume: 45 start-page: 257 year: 1998 end-page: 263 ident: bib8 article-title: Electromechanical coupling constant extraction of thin-film piezoelectric materials using a bulk acoustic wave resonator publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control – volume: 48 start-page: 4442 year: 1993 end-page: 4455 ident: bib29 article-title: Electric polarization as a bulk quantity and its relation to surface charge publication-title: Phys. Rev. B – volume: 47 start-page: 1651 year: 1993 end-page: 1654 ident: bib30 article-title: Theory of polarization of crystalline solids publication-title: Phys. Rev. B – volume: 59 start-page: 7413 year: 1999 end-page: 7421 ident: bib26 article-title: Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals publication-title: Phys. Rev. B – volume: 105 year: 2014 ident: bib13 article-title: Electromechanical coupling and gigahertz elastic properties of ScAlN films near phase boundary publication-title: Appl. Phys. Lett. – volume: 109 year: 2024 ident: bib46 article-title: Enhanced electromechanical coupling from cation local structures in (Mg,Zn)O publication-title: Phys. Rev. B – volume: 4 start-page: 15081 year: 2019 end-page: 15086 ident: bib35 article-title: First-principles study of piezoelectric properties and bonding analysis in (Mg, X, Al)N solid solutions (X = Nb, Ti, Zr, Hf) publication-title: ACS Omega – volume: 66 start-page: 899 year: 1994 end-page: 915 ident: bib31 article-title: Macroscopic polarization in crystalline dielectrics: the geometric phase approach publication-title: Rev. Mod. Phys. – volume: 61 start-page: 287 year: 1997 end-page: 293 ident: bib25 article-title: Why the generalized gradient approximation works and how to go beyond it publication-title: Quantum Chem. – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: bib28 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 12 start-page: 73 year: 2022 ident: bib41 article-title: Phase stability and mechanical properties of the monoclinic, monoclinic-prime and tetragonal REMO4 (M = Ta, Nb) from first-principles calculations publication-title: Coatings – volume: 30 year: 2021 ident: bib2 article-title: A walking type piezoelectric actuator based on the parasitic motion of obliquely assembled PZT stacks publication-title: Smart Mater. Struct. – volume: 432 start-page: 84 year: 2004 end-page: 87 ident: bib6 article-title: Lead-free piezoceramics publication-title: Nature – volume: 21 start-page: 593 year: 2009 end-page: 596 ident: bib15 article-title: Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering publication-title: Adv. Mater. – volume: 599 year: 2022 ident: bib14 article-title: Theoretical evidence of piezoelectric constant enhancement of M-doped AlN (M = Sc, Er) publication-title: J. Cryst. Growth – volume: 599 year: 2022 ident: bib47 article-title: Theoretical evidence of piezoelectric constant enhancement of M-doped AlN (M = Sc, Er) publication-title: J. Cryst. Growth – volume: 37 start-page: 1967 year: 2011 end-page: 1971 ident: bib43 article-title: Preparation of nanometer AlN powders by combining spray pyrolysis with carbothermal reduction and nitridation publication-title: Ceram. Int. – volume: 48 start-page: 1241 year: 2001 ident: 10.1016/j.mtcomm.2025.112650_bib51 article-title: Finite element simulations of thin-film composite BAW resonators publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control doi: 10.1109/58.949733 – volume: 599 year: 2022 ident: 10.1016/j.mtcomm.2025.112650_bib14 article-title: Theoretical evidence of piezoelectric constant enhancement of M-doped AlN (M = Sc, Er) publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2022.126889 – volume: 105 year: 2014 ident: 10.1016/j.mtcomm.2025.112650_bib13 article-title: Electromechanical coupling and gigahertz elastic properties of ScAlN films near phase boundary publication-title: Appl. Phys. Lett. doi: 10.1063/1.4896262 – volume: 237-239 start-page: 523 year: 2002 ident: 10.1016/j.mtcomm.2025.112650_bib10 article-title: Piezoelectric and optical properties of ZnO films deposited by an electron–cyclotron-resonance sputtering system publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(01)01958-3 – volume: 144 start-page: 1 year: 1966 ident: 10.1016/j.mtcomm.2025.112650_bib20 article-title: Application of a self-consistent scheme including exchange and correlation effects to atoms publication-title: Phys. Rev. doi: 10.1103/PhysRev.144.1 – volume: 48 start-page: 4442 year: 1993 ident: 10.1016/j.mtcomm.2025.112650_bib29 article-title: Electric polarization as a bulk quantity and its relation to surface charge publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.4442 – volume: 90 year: 2014 ident: 10.1016/j.mtcomm.2025.112650_bib40 article-title: Necessary and sufficient elastic stability conditions in various crystal systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.224104 – volume: 30 year: 2021 ident: 10.1016/j.mtcomm.2025.112650_bib2 article-title: A walking type piezoelectric actuator based on the parasitic motion of obliquely assembled PZT stacks publication-title: Smart Mater. Struct. – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.mtcomm.2025.112650_bib24 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 66 start-page: 899 year: 1994 ident: 10.1016/j.mtcomm.2025.112650_bib31 article-title: Macroscopic polarization in crystalline dielectrics: the geometric phase approach publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.66.899 – volume: 26 year: 2016 ident: 10.1016/j.mtcomm.2025.112650_bib1 article-title: MEMS switching of contour-mode aluminum nitride resonators for switchable and reconfigurable radio frequency filters publication-title: J. Micromech. Microeng. – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.mtcomm.2025.112650_bib11 article-title: Enabling the 5G: modelling and design of high Q film bulk acoustic wave resonator (FBAR) for high frequency applications publication-title: IEEE Int. Symp. . Circuits Syst. (ISCAS) – volume: 4 start-page: 15081 year: 2019 ident: 10.1016/j.mtcomm.2025.112650_bib35 article-title: First-principles study of piezoelectric properties and bonding analysis in (Mg, X, Al)N solid solutions (X = Nb, Ti, Zr, Hf) publication-title: ACS Omega doi: 10.1021/acsomega.9b01912 – volume: 37 start-page: 1967 year: 2011 ident: 10.1016/j.mtcomm.2025.112650_bib43 article-title: Preparation of nanometer AlN powders by combining spray pyrolysis with carbothermal reduction and nitridation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2011.03.052 – volume: 2 start-page: 17070 year: 2017 ident: 10.1016/j.mtcomm.2025.112650_bib48 article-title: Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.70 – volume: 6 year: 2022 ident: 10.1016/j.mtcomm.2025.112650_bib50 article-title: Longitudinal piezoelectric, elastic, and dielectric properties of rare-earth aluminum nitride alloys determined by density-functional perturbation theory publication-title: Phys. Rev. Mater. – volume: 27 start-page: 4453 year: 2007 ident: 10.1016/j.mtcomm.2025.112650_bib7 article-title: An investigation of (Na0.5K0.5)NbO3–CaTiO3 based lead-free ceramics and surface acoustic wave devices publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2007.02.218 – volume: 49 start-page: 16223 year: 1994 ident: 10.1016/j.mtcomm.2025.112650_bib27 article-title: Improved tetrahedron method for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.16223 – volume: 432 start-page: 84 year: 2004 ident: 10.1016/j.mtcomm.2025.112650_bib6 article-title: Lead-free piezoceramics publication-title: Nature doi: 10.1038/nature03028 – volume: 109 year: 2025 ident: 10.1016/j.mtcomm.2025.112650_bib4 article-title: Electric-Mechanical coupling analysis of two-dimensional piezoelectric heterogeneous materials in flexible electric devices with extended multiscale isogeometric analysis publication-title: Eur. J. Mech. - A/Solids – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.mtcomm.2025.112650_bib28 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 105 year: 2014 ident: 10.1016/j.mtcomm.2025.112650_bib49 article-title: Electromechanical coupling and gigahertz elastic properties of ScAlN films near phase boundary publication-title: Appl. Phys. Lett. doi: 10.1063/1.4896262 – volume: 22 start-page: 809 year: 2017 ident: 10.1016/j.mtcomm.2025.112650_bib21 article-title: Inhomogeneous electron gas publication-title: Resonance doi: 10.1007/s12045-017-0529-3 – volume: 4 start-page: 3448 year: 2022 ident: 10.1016/j.mtcomm.2025.112650_bib17 article-title: Enhanced electromechanical coupling in Yb-substituted III–V nitride alloys publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c00371 – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.mtcomm.2025.112650_bib23 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 10 start-page: 22676 year: 2022 ident: 10.1016/j.mtcomm.2025.112650_bib45 article-title: Two-dimensional AlXY (X = S, Se, and Y = Cl, Br, I) monolayers: promising photocatalysts for water splitting with high-anisotropic carrier mobilities publication-title: J. Mater. Chem. A doi: 10.1039/D2TA05346B – volume: 599 year: 2022 ident: 10.1016/j.mtcomm.2025.112650_bib47 article-title: Theoretical evidence of piezoelectric constant enhancement of M-doped AlN (M = Sc, Er) publication-title: J. Cryst. Growth – volume: 21 start-page: 593 year: 2009 ident: 10.1016/j.mtcomm.2025.112650_bib15 article-title: Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering publication-title: Adv. Mater. doi: 10.1002/adma.200802611 – volume: 47 start-page: 558 year: 1993 ident: 10.1016/j.mtcomm.2025.112650_bib22 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B, Condens. Matter doi: 10.1103/PhysRevB.47.558 – volume: 12 start-page: 49805 year: 2020 ident: 10.1016/j.mtcomm.2025.112650_bib19 article-title: Huge Piezoelectric response of LaN-Based Superlattices publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c14969 – volume: 104 year: 2010 ident: 10.1016/j.mtcomm.2025.112650_bib37 article-title: Origin of the anomalous piezoelectric response in wurtzite ScxAl1−xN alloys publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.137601 – volume: 115 year: 2021 ident: 10.1016/j.mtcomm.2025.112650_bib3 article-title: Cure monitoring and damage identification of CFRP using embedded piezoelectric sensors network publication-title: Ultrasonics doi: 10.1016/j.ultras.2021.106470 – volume: 74 start-page: 3032 year: 1999 ident: 10.1016/j.mtcomm.2025.112650_bib9 article-title: Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.124055 – volume: 46 start-page: 435 year: 2009 ident: 10.1016/j.mtcomm.2025.112650_bib33 article-title: Electronic structure of ScN, YN, LaN and GdN superlattices publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2009.05.001 – volume: 150 year: 2021 ident: 10.1016/j.mtcomm.2025.112650_bib5 article-title: A self-positioning linear actuator based on a piezoelectric slab with multiple pads publication-title: Mech. Syst. Signal Process. – volume: 11 year: 2018 ident: 10.1016/j.mtcomm.2025.112650_bib36 article-title: Effects of lattice parameters on piezoelectric constants in wurtzite materials: a theoretical study using first-principles and statistical-learning methods publication-title: Appl. Phys. Express doi: 10.7567/APEX.11.041201 – volume: 61 start-page: 147 year: 2000 ident: 10.1016/j.mtcomm.2025.112650_bib34 article-title: Berry-phase theory of proper piezoelectric response publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(99)00273-5 – volume: 61 start-page: 287 year: 1997 ident: 10.1016/j.mtcomm.2025.112650_bib25 article-title: Why the generalized gradient approximation works and how to go beyond it publication-title: Quantum Chem. doi: 10.1002/(SICI)1097-461X(1997)61:2<287::AID-QUA11>3.0.CO;2-9 – ident: 10.1016/j.mtcomm.2025.112650_bib44 doi: 10.3390/ma13061280 – volume: 14 start-page: 984 year: 2024 ident: 10.1016/j.mtcomm.2025.112650_bib12 article-title: Investigation of piezoelectric properties of wurtzite AlN films under in-plane strain: a first-principles study publication-title: Coatings doi: 10.3390/coatings14080984 – volume: 45 start-page: 257 year: 1998 ident: 10.1016/j.mtcomm.2025.112650_bib8 article-title: Electromechanical coupling constant extraction of thin-film piezoelectric materials using a bulk acoustic wave resonator publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control doi: 10.1109/58.646930 – volume: 16 year: 2021 ident: 10.1016/j.mtcomm.2025.112650_bib16 article-title: Origin of enhanced electromechanical coupling in (Yb,Al)N nitride alloys publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.044009 – volume: 112 start-page: 774 year: 2008 ident: 10.1016/j.mtcomm.2025.112650_bib32 article-title: Structural and electronic properties of LaN publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.06.031 – volume: 45 year: 2012 ident: 10.1016/j.mtcomm.2025.112650_bib18 article-title: YxAl1−xN thin films publication-title: J. Phys. D: Appl. Phys. – volume: 123 year: 2023 ident: 10.1016/j.mtcomm.2025.112650_bib38 article-title: Formation of 2D GaXY (X = S, Se; Y = F, Cl, Br, I) with enhanced piezoelectricity via decomposition of Ga-monochalcogenide by halogenation publication-title: Appl. Phys. Lett. doi: 10.1063/5.0156680 – volume: 59 start-page: 7413 year: 1999 ident: 10.1016/j.mtcomm.2025.112650_bib26 article-title: Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.7413 – volume: 12 start-page: 73 year: 2022 ident: 10.1016/j.mtcomm.2025.112650_bib41 article-title: Phase stability and mechanical properties of the monoclinic, monoclinic-prime and tetragonal REMO4 (M = Ta, Nb) from first-principles calculations publication-title: Coatings doi: 10.3390/coatings12010073 – volume: 47 start-page: 1651 year: 1993 ident: 10.1016/j.mtcomm.2025.112650_bib30 article-title: Theory of polarization of crystalline solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 109 year: 2024 ident: 10.1016/j.mtcomm.2025.112650_bib46 article-title: Enhanced electromechanical coupling from cation local structures in (Mg,Zn)O publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.109.134101 – volume: 6 year: 2016 ident: 10.1016/j.mtcomm.2025.112650_bib39 article-title: Strong enhancement of piezoelectric constants in ScxAl1−xN: First-principles calculations publication-title: AIP Adv. doi: 10.1063/1.4953856 – volume: 55 year: 2022 ident: 10.1016/j.mtcomm.2025.112650_bib42 article-title: Investigation of anisotropic mechanical, electronic, and charge carrier transport properties of germanium-pnictogen monolayers publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ac4cf9 |
SSID | ssj0001850494 |
Score | 2.3104014 |
Snippet | The interconversion between mechanical strain and electric polarization in piezoelectric materials has been the subject of extensive research. However, the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 112650 |
SubjectTerms | Acoustic wave resonators Electromechanical coupling coefficient LaN-based alloy Piezoelectric response Uniaxial strain |
Title | The effects of alloying and strain on the piezoelectric response of LaN-based material for the application in bulk acoustic wave resonator |
URI | https://dx.doi.org/10.1016/j.mtcomm.2025.112650 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 2352-4928 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001850494 issn: 2352-4928 databaseCode: ACRLP dateStart: 20140901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 2352-4928 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001850494 issn: 2352-4928 databaseCode: AIKHN dateStart: 20140901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-4928 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001850494 issn: 2352-4928 databaseCode: AKRWK dateStart: 20140901 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GduGCQIB4Kweu0do07bLjNDENBjsAE7tVaeNI49FOYwOJn8Cvxu5DDAlx4FS1ktPKSeyvsT-bsXMCFZBKX2gLVijjUoFezgknvSBwXW0NEDn5ZhwNJ-pqGk4brF9zYSitsrL9pU0vrHX1pF1psz2fzdp3ErGD6hL3koIJMtpgLRl0fdlkrd7laDj-PmrRIVVBKdrMhVKQTE2iKzK9Xpb4DmKly7Bg1BAH_zcnteZ4Bttsq0KMvFd-1A5rQLbLPnF6eZWLwXPHKXxOhCVuMstfi74PPM84ojs-n8FHXna7maV8UebEAgldm7EgL2Y5wtZiJXKEsIXQWlyb41DJ6vmJo-0sWn_xd_MGNBAdvOeLPTYZXNz3h6JqqyBS3J9L4WxiEhOEEEXKdKxvPeV3k07i-SA1VXwLHBilUy8F_HmO0F25NAWtIEjAKa2CfdbM8gwOGPcCZ7VvEHIg7gJQ2hmceh058C3VAD1kotZjPC-rZ8R1WtljXOo9Jr3Hpd4PWadWdvxjFcRo4P-UPPq35DHbpLsy_euENZeLFZwi0FgmZ9VCouvo9mH0BTAp1j4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdoALAgFiPHPgGq2PtMuO08Q02OPCJu1WpY0jjUc7jQ0kfgK_GrsPMSTEgWsrp5Xj2l9jfzZjNwQqIPFcoQwYIbVNBEY5K6zn-L7tKKOByMnjSTiYyft5MK-xXsWFobLK0vcXPj331uWVVqnN1nKxaD14iB1kh7iXlEzwwh3WkIHfUXXW6N4NB5PvoxYVUBeUfMxc4AmSqUh0eaXXyxqfQax0L8gZNcTB_y1IbQWe_gHbLxEj7xYvdchqkB6xT9xeXtZi8MxySp8TYYnr1PDXfO4Dz1KO6I4vF_CRFdNuFglfFTWxQEIjPREUxQxH2JpbIkcImwtt5bU5LhVvnp84-s589Bd_129AC9HBe7Y6ZrP-7bQ3EOVYBZHg97kW1sQ61n4AYSh127jGkW4nbseOC56ijm--BS1V4iSAP88hhiubJKAk-DFYqaR_wupplsIp445vjXI1Qg7EXQBSWY1br0ILrqEeoE0mKj1Gy6J7RlSVlT1Ghd4j0ntU6L3J2pWyox9WEKGD_1Py7N-S12x3MB2PotHdZHjO9uhOUQp2werr1QYuEXSs46vSqL4AuaDXkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+alloying+and+strain+on+the+piezoelectric+response+of+LaN-based+material+for+the+application+in+bulk+acoustic+wave+resonator&rft.jtitle=Materials+today+communications&rft.au=Xu%2C+Chenhao&rft.au=Wang%2C+Zhen&rft.au=Qian%2C+Lirong&rft.au=Zhou%2C+Baozeng&rft.date=2025-06-01&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=46&rft.spage=112650&rft_id=info:doi/10.1016%2Fj.mtcomm.2025.112650&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtcomm_2025_112650 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon |