Effective prediction of human skin cancer using stacking based ensemble deep learning algorithm

Automated diagnosis of cancer from skin lesion data has been the focus of numerous research. Despite that it can be challenging to interpret these images because of features like colour illumination changes, variation in the sizes and forms of the lesions. To tackle these problems, the proposed mode...

Full description

Saved in:
Bibliographic Details
Published inNetwork (Bristol) Vol. 36; no. 3; p. 855
Main Authors Devadhas, David Neels Ponkumar, Isaac Sugirtharaj, Hephzi Punithavathi, Fernandez, Mary Harin, Periyasamy, Duraipandy
Format Journal Article
LanguageEnglish
Published England 03.07.2025
Subjects
Online AccessGet more information
ISSN1361-6536
DOI10.1080/0954898X.2024.2346608

Cover

Abstract Automated diagnosis of cancer from skin lesion data has been the focus of numerous research. Despite that it can be challenging to interpret these images because of features like colour illumination changes, variation in the sizes and forms of the lesions. To tackle these problems, the proposed model develops an ensemble of deep learning techniques for skin cancer diagnosis. Initially, skin imaging data are collected and preprocessed using resizing and anisotropic diffusion to enhance the quality of the image. Preprocessed images are fed into the Fuzzy-C-Means clustering technique to segment the region of diseases. Stacking-based ensemble deep learning approach is used for classification and the LSTM acts as a meta-classifier. Deep Neural Network (DNN) and Convolutional Neural Network (CNN) are used as input for LSTM. This segmented images are utilized to be input into the CNN, and the local binary pattern (LBP) technique is employed to extract DNN features from the segments of the image. The output from these two classifiers will be fed into the LSTM Meta classifier. This LSTM classifies the input data and predicts the skin cancer disease. The proposed approach had a greater accuracy of 97%. Hence, the developed model accurately predicts skin cancer disease.
AbstractList Automated diagnosis of cancer from skin lesion data has been the focus of numerous research. Despite that it can be challenging to interpret these images because of features like colour illumination changes, variation in the sizes and forms of the lesions. To tackle these problems, the proposed model develops an ensemble of deep learning techniques for skin cancer diagnosis. Initially, skin imaging data are collected and preprocessed using resizing and anisotropic diffusion to enhance the quality of the image. Preprocessed images are fed into the Fuzzy-C-Means clustering technique to segment the region of diseases. Stacking-based ensemble deep learning approach is used for classification and the LSTM acts as a meta-classifier. Deep Neural Network (DNN) and Convolutional Neural Network (CNN) are used as input for LSTM. This segmented images are utilized to be input into the CNN, and the local binary pattern (LBP) technique is employed to extract DNN features from the segments of the image. The output from these two classifiers will be fed into the LSTM Meta classifier. This LSTM classifies the input data and predicts the skin cancer disease. The proposed approach had a greater accuracy of 97%. Hence, the developed model accurately predicts skin cancer disease.
Author Devadhas, David Neels Ponkumar
Isaac Sugirtharaj, Hephzi Punithavathi
Fernandez, Mary Harin
Periyasamy, Duraipandy
Author_xml – sequence: 1
  givenname: David Neels Ponkumar
  surname: Devadhas
  fullname: Devadhas, David Neels Ponkumar
  organization: Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr.Sagunthala R & D Institute of Science and Technology, Chennai, India
– sequence: 2
  givenname: Hephzi Punithavathi
  surname: Isaac Sugirtharaj
  fullname: Isaac Sugirtharaj, Hephzi Punithavathi
  organization: Department of Artificial Intelligence, Vidhya Jyothi Institute of Technology, Hyderabad, India
– sequence: 3
  givenname: Mary Harin
  surname: Fernandez
  fullname: Fernandez, Mary Harin
  organization: Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
– sequence: 4
  givenname: Duraipandy
  surname: Periyasamy
  fullname: Periyasamy, Duraipandy
  organization: Department of Electrical and Electronics Engineering, J. B. Institute of Engineering & Technology, Telangana, Hyderabad, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38804548$$D View this record in MEDLINE/PubMed
BookMark eNo1j11LwzAYhYMo7kN_gpI_0PnmTZuklzLmFAbe7MK7kaRvtro2LU0n-O_dUK_OA4fnwJmx69hFYuxBwEKAgScoi9yU5mOBgPkCZa4UmCs2FVKJTBVSTdgspU8A0KjlLZtIYyA_O1O2W4VAfqy_iPcDVfUZu8i7wA-n1kaejnXk3kZPAz-lOu55Gq0_XsDZRBWnmKh1DfGKqOcN2SFeStvsu6EeD-0duwm2SXT_l3O2fVltl6_Z5n39tnzeZB4LPWYeDELAUNoSJXkTSKFW6EigU1gEp4MRFqQmLyw6mRutQ1UaL6WQOeGcPf7O9ifXUrXrh7q1w_fu_yj-ALaeV3M
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1080/0954898X.2024.2346608
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1361-6536
ExternalDocumentID 38804548
Genre Journal Article
GroupedDBID ---
-~X
.4S
.DC
00X
03L
0R~
123
29N
36B
4.4
5VS
5ZH
5ZI
AAGCF
AAGDL
AAJKZ
AALIY
AALUX
AAMIU
AAORF
AAPUL
AAPXX
AAQRR
ABBKH
ABEIZ
ABIVO
ABJNI
ABLIJ
ABLKL
ABUPF
ABWCV
ABWVI
ABXYU
ABZEW
ACENM
ACGEJ
ACGFS
ACIEZ
ACKZS
ACOPL
ACYZI
ADCVX
ADFOM
ADFZZ
ADRBQ
ADXPE
AECIN
AEFHF
AEIIZ
AEOZL
AETNG
AFKVX
AFLEI
AFRVT
AGDLA
AGFJD
AGRBW
AGYJP
AIJEM
AIRBT
AJVHN
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALYBC
AMDAE
ARCSS
AWYRJ
BABNJ
BLEHA
BOHLJ
BRMBE
CAG
CCCUG
CGR
COF
CS3
CUY
CVF
CYYVM
CZDIS
DKSSO
DRXRE
DWTOO
EBD
EBS
ECM
EDO
EIF
EJD
EMB
EMOBN
F5P
H13
HZ~
I-F
IHE
IOP
IZVLO
JENTW
KOT
KRBQP
KWAYT
KYCEM
LAP
M44
M45
M4Z
NPM
NUSFT
O9-
P2P
QQXMO
RIV
RKQ
RNANH
RO9
ROL
RVRKI
SV3
TASJS
TBQAZ
TDBHL
TERGH
TFDNU
TFL
TFW
TUROJ
TUS
UEQFS
V1S
XPP
ZMT
~1N
ID FETCH-LOGICAL-c257t-c0820f2f9a923ec8fe62762be12b625fb7f81a037ec1a2b34877fd98c33134e2
IngestDate Tue Aug 19 01:31:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep Neural Network (DNN)
ensemble learning
Local Binary Patterns (LBP)
Fuzzy-C-means clustering
Convolutional Neural Network (CNN)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-c0820f2f9a923ec8fe62762be12b625fb7f81a037ec1a2b34877fd98c33134e2
PMID 38804548
ParticipantIDs pubmed_primary_38804548
PublicationCentury 2000
PublicationDate 2025-07-03
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Network (Bristol)
PublicationTitleAlternate Network
PublicationYear 2025
SSID ssj0007273
Score 2.413614
Snippet Automated diagnosis of cancer from skin lesion data has been the focus of numerous research. Despite that it can be challenging to interpret these images...
SourceID pubmed
SourceType Index Database
StartPage 855
SubjectTerms Algorithms
Deep Learning
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Neural Networks, Computer
Skin Neoplasms - diagnosis
Skin Neoplasms - diagnostic imaging
Title Effective prediction of human skin cancer using stacking based ensemble deep learning algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/38804548
Volume 36
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBbpBqN72KW7dFf0sDfjEFuyHD_uShg09CGDvAVZlhKvjWMcp9D-t_23nSPZjuky6PZiYgsc4_Pl3PKdT4R8kIpHGnAA4B0Ln_NRBr-5kPmBiCRXMsWYhGyLqZj84N_n0Xww-NVjLe3qdKhuDs6V_I9V4RrYFadk_8Gy3U3hAnwG-8IRLAzHO9nYSQ8j96es8A-XLvuznfntBXLM0aqVt9s2fQOFrXEPY1fmQQWr125ySpft_hFLT14uN1Ver9b9xHXq6OKYkH6ycgSXvR7CF30ls2Y0zJLkwXdCzPXON8UFUrj3-JNSga9a5lWNQtE_XeArVze5d74D57KSV8iGPNjkPkN-3wRK-2Lvzqv8Wm7l2jEBdpXMwbc1arlNJyOMLOvVeTftvC8TgS8ip4jSuufmLO9X7y5QO33fP2JAQ5pEJbtkPB_CN_FhyLgQVkCi7uGiXFtgoB4Oj_gdVm9Jc7dLR-QojnHfkCm2ipo0ABPDdmQMxdwPPc8xedDe41ZZY9Ob2RPyqKlL6EcHsqdkoIsT8rjd84M2IeCEPOwJWMLZWaf6u31GFh0e6R6PdGOoxSNFPFKHR2rxSFs8UotH2uKRIh5pi0fa4fE5mX37Ovs88ZsNPHwFkaD2FeaXJjSJhDJCq7HRIoTgm-ogTKHuNmlsxoEcsVirQIYpg-I5NlkyVowFjOvwBblXbAp9SmhiRioUaZxkccp1zJIMEl-ZMTEyUSKkeUVeure3KJ1Iy6J9r6__uvKGHO9R-JbcN-AV9DtIMev0vTXlb0q_fcI
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+prediction+of+human+skin+cancer+using+stacking+based+ensemble+deep+learning+algorithm&rft.jtitle=Network+%28Bristol%29&rft.au=Devadhas%2C+David+Neels+Ponkumar&rft.au=Isaac+Sugirtharaj%2C+Hephzi+Punithavathi&rft.au=Fernandez%2C+Mary+Harin&rft.au=Periyasamy%2C+Duraipandy&rft.date=2025-07-03&rft.eissn=1361-6536&rft.volume=36&rft.issue=3&rft.spage=855&rft_id=info:doi/10.1080%2F0954898X.2024.2346608&rft_id=info%3Apmid%2F38804548&rft_id=info%3Apmid%2F38804548&rft.externalDocID=38804548