Machine learning assisted classification between diabetic polyneuropathy and healthy subjects using plantar pressure and temperature data: a feasibility study

Automated and early detection of diabetics with polyneuropathy in an ambulatory health monitoring setup may reduce the major risk factors for diabetic patients. Increased and localized plantar pressure associated with impaired pain and temperature is a combination of developing foot ulcers in subjec...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering pp. 1 - 12
Main Authors Aman, Ayush, Bhunia, Mousam, Mukhopadhyay, Sumitra, Gupta, Rajarshi
Format Journal Article
LanguageEnglish
Published England 03.06.2024
Subjects
Online AccessGet full text
ISSN1025-5842
1476-8259
1476-8259
DOI10.1080/10255842.2024.2359041

Cover

Abstract Automated and early detection of diabetics with polyneuropathy in an ambulatory health monitoring setup may reduce the major risk factors for diabetic patients. Increased and localized plantar pressure associated with impaired pain and temperature is a combination of developing foot ulcers in subjects with polyneuropathy. Although many interesting research works have been reported in this area, most of them emphasize on signal acquisition process and plantar pressure distribution in the foot region. In this work, a machine learning assisted low complexity technique was developed using plantar pressure and temperature signals which will classify between diabetic polyneuropathy and healthy subjects. Principal component analysis (PCA) and maximum relevance minimum redundancy (mRMR) methods were used for feature extraction and selection respectively followed by -NN classifier for binary classification. The proposed technique was evaluated with 100 min of publicly available annotated data from 43 subjects and provides blind test accuracy, sensitivity, precision, F1-score, and area under curve (AUC) of 99.58%, 99.50%, 99.44%, 99.47% and 99.56% respectively. A low resource hardware implementation in ARM v6 controller required an average memory usage of 81.2 kB and latency of 1.31 s to process 9 s pressure and temperature data collected from 16 sensor channels for each of the foot region.
AbstractList Automated and early detection of diabetics with polyneuropathy in an ambulatory health monitoring setup may reduce the major risk factors for diabetic patients. Increased and localized plantar pressure associated with impaired pain and temperature is a combination of developing foot ulcers in subjects with polyneuropathy. Although many interesting research works have been reported in this area, most of them emphasize on signal acquisition process and plantar pressure distribution in the foot region. In this work, a machine learning assisted low complexity technique was developed using plantar pressure and temperature signals which will classify between diabetic polyneuropathy and healthy subjects. Principal component analysis (PCA) and maximum relevance minimum redundancy (mRMR) methods were used for feature extraction and selection respectively followed by k-NN classifier for binary classification. The proposed technique was evaluated with 100 min of publicly available annotated data from 43 subjects and provides blind test accuracy, sensitivity, precision, F1-score, and area under curve (AUC) of 99.58%, 99.50%, 99.44%, 99.47% and 99.56% respectively. A low resource hardware implementation in ARM v6 controller required an average memory usage of 81.2 kB and latency of 1.31 s to process 9 s pressure and temperature data collected from 16 sensor channels for each of the foot region.Automated and early detection of diabetics with polyneuropathy in an ambulatory health monitoring setup may reduce the major risk factors for diabetic patients. Increased and localized plantar pressure associated with impaired pain and temperature is a combination of developing foot ulcers in subjects with polyneuropathy. Although many interesting research works have been reported in this area, most of them emphasize on signal acquisition process and plantar pressure distribution in the foot region. In this work, a machine learning assisted low complexity technique was developed using plantar pressure and temperature signals which will classify between diabetic polyneuropathy and healthy subjects. Principal component analysis (PCA) and maximum relevance minimum redundancy (mRMR) methods were used for feature extraction and selection respectively followed by k-NN classifier for binary classification. The proposed technique was evaluated with 100 min of publicly available annotated data from 43 subjects and provides blind test accuracy, sensitivity, precision, F1-score, and area under curve (AUC) of 99.58%, 99.50%, 99.44%, 99.47% and 99.56% respectively. A low resource hardware implementation in ARM v6 controller required an average memory usage of 81.2 kB and latency of 1.31 s to process 9 s pressure and temperature data collected from 16 sensor channels for each of the foot region.
Automated and early detection of diabetics with polyneuropathy in an ambulatory health monitoring setup may reduce the major risk factors for diabetic patients. Increased and localized plantar pressure associated with impaired pain and temperature is a combination of developing foot ulcers in subjects with polyneuropathy. Although many interesting research works have been reported in this area, most of them emphasize on signal acquisition process and plantar pressure distribution in the foot region. In this work, a machine learning assisted low complexity technique was developed using plantar pressure and temperature signals which will classify between diabetic polyneuropathy and healthy subjects. Principal component analysis (PCA) and maximum relevance minimum redundancy (mRMR) methods were used for feature extraction and selection respectively followed by -NN classifier for binary classification. The proposed technique was evaluated with 100 min of publicly available annotated data from 43 subjects and provides blind test accuracy, sensitivity, precision, F1-score, and area under curve (AUC) of 99.58%, 99.50%, 99.44%, 99.47% and 99.56% respectively. A low resource hardware implementation in ARM v6 controller required an average memory usage of 81.2 kB and latency of 1.31 s to process 9 s pressure and temperature data collected from 16 sensor channels for each of the foot region.
Author Bhunia, Mousam
Gupta, Rajarshi
Aman, Ayush
Mukhopadhyay, Sumitra
Author_xml – sequence: 1
  givenname: Ayush
  surname: Aman
  fullname: Aman, Ayush
  organization: Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
– sequence: 2
  givenname: Mousam
  surname: Bhunia
  fullname: Bhunia, Mousam
  organization: Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
– sequence: 3
  givenname: Sumitra
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Sumitra
  organization: Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
– sequence: 4
  givenname: Rajarshi
  orcidid: 0000-0001-5964-7683
  surname: Gupta
  fullname: Gupta, Rajarshi
  organization: Electrical Engineering, Department of Applied Physics, University of Calcutta, Kolkata, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38826026$$D View this record in MEDLINE/PubMed
BookMark eNo9kctO3TAQhq2Kqtz6CCAv2eTUtyQOuwpBW4mKTVlHY3vcY5TjBNtRdV6GZyUpB1bzj_Tp12i-U3IUx4iEXHC24Uyzb5yJutZKbAQTaiNk3THFP5ETrtqm0qLujpa8MNUKHZPTnJ8YY5pr9YUcS61Fw0RzQl5-g92GiHRASDHEvxRyDrmgo3ZYow8WShgjNVj-IUbqAiwxWDqNwz7inMYJynZPITq6RRjWnGfzhLZkOue1chogFkh0SpjznPA_W3A3YYKy7g4KXFOgHiEHE4ZQlo4yu_05-exhyPj1MM_I493tn5uf1f3Dj1833-8rK-q2VEZrKZk0iJ2sWyG4RO208MpY23nZgPPetwIEdtpwY1VrOyF1jY63mlkhz8jVW--UxucZc-l3IVsclsNxnHMvWaO44kvxgl4e0Nns0PVTCjtI-_79pwtQvwE2jTkn9B8IZ_3qrn9316_u-oM7-QqBG5AT
Cites_doi 10.1109/TBCAS.2020.3043538
10.1145/3459665
10.1016/j.foot.2019.06.001
10.3390/app12157524
10.1109/TPAMI.2005.159
10.1109/JBHI.2018.2868656
10.1080/10255842.2010.493886
10.1088/1361-6501/ac3aae
10.1080/10255842.2015.1069563
10.1155/2019/7395769
10.1016/j.gaitpost.2019.06.021
10.3390/jcm10112260
10.1016/j.jcot.2021.01.017
10.1109/CIBEC.2016.7836116
10.1109/TBCAS.2020.3028935
10.1016/j.ijleo.2019.02.109
10.1016/j.diabres.2021.109119
10.1371/journal.pone.0161326
10.1080/10255842.2021.1921164
10.1016/j.diabres.2022.109976
10.1007/978-3-030-29407-6_2
10.1007/978-3-030-80713-9_35
10.1088/1361-6501/ac2d5b
10.1016/j.gaitpost.2016.11.006
10.1016/j.dsx.2020.06.041
10.1088/2057-1976/ac29f3
10.1080/10255842.2017.1372428
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/10255842.2024.2359041
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-8259
EndPage 12
ExternalDocumentID 38826026
10_1080_10255842_2024_2359041
Genre Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
29F
2DF
30N
36B
4.4
53G
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CITATION
CS3
DGEBU
DKSSO
DU5
EBS
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
ADYSH
NPM
7X8
ID FETCH-LOGICAL-c257t-b883303bee93572213e8d82f4bcc9f36adfff72a2e98b1bc47c92385ed1780c23
ISSN 1025-5842
1476-8259
IngestDate Thu Sep 04 16:03:40 EDT 2025
Mon Jul 21 05:59:17 EDT 2025
Wed Oct 01 04:12:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Diabetic polyneuropathy
low-resource implementation
machine learning
feature extraction
plantar pressure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-b883303bee93572213e8d82f4bcc9f36adfff72a2e98b1bc47c92385ed1780c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5964-7683
PMID 38826026
PQID 3064141213
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3064141213
pubmed_primary_38826026
crossref_primary_10_1080_10255842_2024_2359041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jun-03
PublicationDateYYYYMMDD 2024-06-03
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-Jun-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Computer methods in biomechanics and biomedical engineering
PublicationTitleAlternate Comput Methods Biomech Biomed Engin
PublicationYear 2024
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
McKinley S (e_1_3_2_18_1) 1998; 45
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_30_1
  doi: 10.1109/TBCAS.2020.3043538
– ident: e_1_3_2_8_1
  doi: 10.1145/3459665
– ident: e_1_3_2_16_1
  doi: 10.1016/j.foot.2019.06.001
– volume: 45
  start-page: 1049
  issue: 1
  year: 1998
  ident: e_1_3_2_18_1
  article-title: Cubic spline interpolation
  publication-title: College of the Redwoods
– ident: e_1_3_2_20_1
  doi: 10.3390/app12157524
– ident: e_1_3_2_22_1
  doi: 10.1109/TPAMI.2005.159
– ident: e_1_3_2_12_1
  doi: 10.1109/JBHI.2018.2868656
– ident: e_1_3_2_13_1
  doi: 10.1080/10255842.2010.493886
– ident: e_1_3_2_19_1
  doi: 10.1088/1361-6501/ac3aae
– ident: e_1_3_2_7_1
  doi: 10.1080/10255842.2015.1069563
– ident: e_1_3_2_27_1
  doi: 10.1155/2019/7395769
– ident: e_1_3_2_28_1
  doi: 10.1016/j.gaitpost.2019.06.021
– ident: e_1_3_2_10_1
  doi: 10.3390/jcm10112260
– ident: e_1_3_2_9_1
  doi: 10.1016/j.jcot.2021.01.017
– ident: e_1_3_2_4_1
– ident: e_1_3_2_5_1
  doi: 10.1109/CIBEC.2016.7836116
– ident: e_1_3_2_24_1
  doi: 10.1109/TBCAS.2020.3028935
– ident: e_1_3_2_29_1
  doi: 10.1016/j.ijleo.2019.02.109
– ident: e_1_3_2_26_1
  doi: 10.1016/j.diabres.2021.109119
– ident: e_1_3_2_21_1
  doi: 10.1371/journal.pone.0161326
– ident: e_1_3_2_25_1
  doi: 10.1080/10255842.2021.1921164
– ident: e_1_3_2_11_1
  doi: 10.1016/j.diabres.2022.109976
– ident: e_1_3_2_14_1
  doi: 10.1007/978-3-030-29407-6_2
– ident: e_1_3_2_6_1
  doi: 10.1007/978-3-030-80713-9_35
– ident: e_1_3_2_23_1
  doi: 10.1088/1361-6501/ac2d5b
– ident: e_1_3_2_3_1
  doi: 10.1016/j.gaitpost.2016.11.006
– ident: e_1_3_2_17_1
  doi: 10.1016/j.dsx.2020.06.041
– ident: e_1_3_2_15_1
  doi: 10.1088/2057-1976/ac29f3
– ident: e_1_3_2_2_1
  doi: 10.1080/10255842.2017.1372428
SSID ssj0008184
Score 2.3560176
Snippet Automated and early detection of diabetics with polyneuropathy in an ambulatory health monitoring setup may reduce the major risk factors for diabetic...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 1
Title Machine learning assisted classification between diabetic polyneuropathy and healthy subjects using plantar pressure and temperature data: a feasibility study
URI https://www.ncbi.nlm.nih.gov/pubmed/38826026
https://www.proquest.com/docview/3064141213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1476-8259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008184
  issn: 1025-5842
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1476-8259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008184
  issn: 1025-5842
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1476-8259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008184
  issn: 1025-5842
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLVKR0hsEG_KS0ZCbKqUxnESh12BGUZoOmxaUbGJHMehM0CnzDSL8DH8DD_GvX5kUqlIA5uoipq0zTm177XPPZeQFzxMi1CMK_h_6yzggskgK1MZpGEWl1qIpGRYOzw9Tg7n_MMiXvR6vzuqpXpTjNTPnXUl_4MqnANcsUr2H5Btbwon4DXgC0dAGI5XwnhqlJDat374MoRIGGErhwqDYlQBWXy9GsuutJ4o7M3QGCtL7EhsLZhsRWQzvKiLUyPxqM0ywvobPHv0wzZ5udttQEMr58Y8RI2pLZmutHRi26ZjW-ttEFz7CNez2shwTe0_lh57q2hrBmB4oy-NEltSutXaSVNftKvYb5b1ygp-p2e1bYLjGPR1Cb-uXDbSytnq7yeb83YSel-vXdwsTyVKubvLH4wbmVbUGbF5mgSQ5tpxV-84Z0fmcOd8YQWWISZWgmNdHuMjFsXZ2LpxbftzH3_MD-ZHR_lsfzF7uf4RYOsy3OJ3fVyukT2WJgnrk73J4bvPn9qAAGIiI27w38oXkonxq52fvB0i_SXvMfHP7Ba56RIXOrEsvE16enWHXLetTJu75JfjIvVcpJ6LdJuL1HGRei7SbS5S4AF1XKSei9RwkTouUs9F894OFyly8TWVtMNEaph4j8wP9mdvDwPX-yNQMIlsggKbYI-jQussilPGwkiLUrCKF0plVZTIsqqqlEmmM1GEheKpglRFxLoMUzFWLLpP-quzlX5IaJxwVTAtw3GiuMwSqbSEMD-rRAnXFsmAjPzjztfW4iUPnXOuxydHfHKHz4A896DkMBjjDptcaeB4jul8yNElcUAeWLTaW0aQy2K_t0dXuPoxuXHJ9Sekvzmv9VMIfjfFM0euPzJaupQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+assisted+classification+between+diabetic+polyneuropathy+and+healthy+subjects+using+plantar+pressure+and+temperature+data%3A+a+feasibility+study&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Aman%2C+Ayush&rft.au=Bhunia%2C+Mousam&rft.au=Mukhopadhyay%2C+Sumitra&rft.au=Gupta%2C+Rajarshi&rft.date=2024-06-03&rft.issn=1476-8259&rft.eissn=1476-8259&rft.spage=1&rft_id=info:doi/10.1080%2F10255842.2024.2359041&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon