Intelligent crude oil price probability forecasting: Deep learning models and industry applications

The crude oil price has been subject to periodic fluctuations because of seasonal changes in industrial demand and supply, weather, natural disasters and global political unrest. An accurate forecast of crude oil prices is of utmost importance for decision makers and industry players in the energy s...

Full description

Saved in:
Bibliographic Details
Published inComputers in industry Vol. 163; p. 104150
Main Authors Shen, Liang, Bao, Yukun, Hasan, Najmul, Huang, Yanmei, Zhou, Xiaohong, Deng, Changrui
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2024
Subjects
Online AccessGet full text
ISSN0166-3615
DOI10.1016/j.compind.2024.104150

Cover

Abstract The crude oil price has been subject to periodic fluctuations because of seasonal changes in industrial demand and supply, weather, natural disasters and global political unrest. An accurate forecast of crude oil prices is of utmost importance for decision makers and industry players in the energy sector. Despite this, the volatility of crude oil prices contributes to the uncertainty of the energy industry, which was particularly challenging following the recent global spread of the COVID-19 epidemic and the Russia–Ukraine conflict. This paper proposes a hybrid deep learning (DL) modelling framework to deal with the volatility of crude oil prices, applying ensemble empirical mode decomposition (EEMD), convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) integrated with quantile regression (QR); named EEMD-CNN-BiLSTM-QR. Two real-world datasets on crude oil prices from the West Texas Intermediate and Brent Crude Oil markets were employed to validate the EEMD-CNN-BiLSTM-QR hybrid modelling framework. Given that the probability density forecast can capture uncertainty, an in-depth analysis was carried out and prediction accuracy calculated. The findings of this study demonstrate that the proposed EEMD-CNN-BiLSTM-QR DL modelling framework, which uses the probability density forecast method, is superior to other tested models in terms of its ability to forecast crude oil prices. The novelty of this study stems mainly from its use of QR, which allows for the description of the conditional distribution of predicted variables and the extraction of more uncertain information for probability density forecasts. •A decomposition ensemble technique can effectively improve forecasting accuracy.•The proposed EEMD-CNN-BiLSTM-QR hybrid model exhibits superior forecasting accuracy.•A CNN-BiLSTM model can extract relevant spatial and temporal features from time series.•Energy companies may improve their safeguarding policies and reduce losses due to price volatility.
AbstractList The crude oil price has been subject to periodic fluctuations because of seasonal changes in industrial demand and supply, weather, natural disasters and global political unrest. An accurate forecast of crude oil prices is of utmost importance for decision makers and industry players in the energy sector. Despite this, the volatility of crude oil prices contributes to the uncertainty of the energy industry, which was particularly challenging following the recent global spread of the COVID-19 epidemic and the Russia–Ukraine conflict. This paper proposes a hybrid deep learning (DL) modelling framework to deal with the volatility of crude oil prices, applying ensemble empirical mode decomposition (EEMD), convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) integrated with quantile regression (QR); named EEMD-CNN-BiLSTM-QR. Two real-world datasets on crude oil prices from the West Texas Intermediate and Brent Crude Oil markets were employed to validate the EEMD-CNN-BiLSTM-QR hybrid modelling framework. Given that the probability density forecast can capture uncertainty, an in-depth analysis was carried out and prediction accuracy calculated. The findings of this study demonstrate that the proposed EEMD-CNN-BiLSTM-QR DL modelling framework, which uses the probability density forecast method, is superior to other tested models in terms of its ability to forecast crude oil prices. The novelty of this study stems mainly from its use of QR, which allows for the description of the conditional distribution of predicted variables and the extraction of more uncertain information for probability density forecasts. •A decomposition ensemble technique can effectively improve forecasting accuracy.•The proposed EEMD-CNN-BiLSTM-QR hybrid model exhibits superior forecasting accuracy.•A CNN-BiLSTM model can extract relevant spatial and temporal features from time series.•Energy companies may improve their safeguarding policies and reduce losses due to price volatility.
ArticleNumber 104150
Author Shen, Liang
Zhou, Xiaohong
Huang, Yanmei
Deng, Changrui
Bao, Yukun
Hasan, Najmul
Author_xml – sequence: 1
  givenname: Liang
  surname: Shen
  fullname: Shen, Liang
  organization: Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Yukun
  orcidid: 0000-0001-5418-8799
  surname: Bao
  fullname: Bao, Yukun
  organization: Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Najmul
  orcidid: 0000-0003-2108-6918
  surname: Hasan
  fullname: Hasan, Najmul
  organization: BRAC Business School, BRAC University, Dhaka 1212, Bangladesh
– sequence: 4
  givenname: Yanmei
  orcidid: 0009-0005-0210-6778
  surname: Huang
  fullname: Huang, Yanmei
  email: yanmeihuang@hust.edu.cn
  organization: Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 5
  givenname: Xiaohong
  surname: Zhou
  fullname: Zhou, Xiaohong
  organization: Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu 338029, China
– sequence: 6
  givenname: Changrui
  surname: Deng
  fullname: Deng, Changrui
  organization: Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu 338029, China
BookMark eNqFUE1rAyEQ9ZBCk7Q_oeAf2FR3V3e3l1LSr0Cgl_Ysro7BYHRRU8i_ryG5dw4zzBveG95boJkPHhB6oGRFCeWP-5UKh8l6vapJ3RaspYzM0LzceNVwym7RIqU9KdV1fI7Uxmdwzu7AZ6ziUQMO1uEpWgWlh1GO1tl8wiZEUDJl63dP-BVgwg5k9GXFh6DBJSy9xuXxMeV4wnKanFUy2-DTHbox0iW4v84l-nl_-15_Vtuvj836ZVupmnW5kloSOhLKtDIDO2OSsrYZGOeq1kY2o-qUMX1ft6rv-NCB7rmsO2p6MkhGmyViF10VQ0oRjCg2DjKeBCXinI7Yi2s64pyOuKRTeM8XXnEBvxaiSMqCV6Bt8ZyFDvYfhT_10Hao
Cites_doi 10.1016/j.asoc.2021.108032
10.1016/j.eneco.2019.07.009
10.1016/j.apenergy.2022.119507
10.1016/j.energy.2021.119887
10.1016/j.apenergy.2019.01.022
10.1016/j.eswa.2022.119326
10.1016/j.knosys.2020.106431
10.1016/j.asoc.2020.106509
10.1214/aoms/1177731944
10.1016/j.resourpol.2022.102737
10.1016/j.egyr.2022.02.206
10.1002/ijfe.2345
10.1016/j.ijepes.2019.05.075
10.1016/j.resourpol.2022.102855
10.1016/j.eneco.2024.107423
10.1016/j.eswa.2022.118658
10.1016/j.eneco.2021.105121
10.1016/j.jmapro.2022.04.010
10.1016/j.procs.2017.11.373
10.1142/S1793536909000047
10.1016/j.resourpol.2021.102075
10.1016/j.apenergy.2022.118756
10.1016/j.resourpol.2021.102244
10.1016/j.energy.2021.119758
10.2307/1913643
10.1016/j.knosys.2020.106669
10.1016/j.energy.2022.124684
10.1016/j.apenergy.2019.114396
10.1016/j.engappai.2015.07.019
10.1016/j.techfore.2017.09.007
10.1016/j.apenergy.2021.117465
10.1016/j.enconman.2021.114451
10.1016/j.epsr.2020.106430
10.1016/0378-3758(95)95021-N
10.1016/j.egypro.2019.01.169
10.13053/rcs-121-1-6
10.1016/j.procs.2012.04.139
10.1016/j.neucom.2022.01.084
10.1016/j.eneco.2022.106014
10.1016/j.energy.2018.07.090
10.1016/j.neucom.2020.10.043
10.1016/j.apenergy.2020.115702
10.1016/j.eswa.2024.124195
10.1016/j.neunet.2005.06.042
10.1016/j.resourpol.2022.102903
10.1016/j.eneco.2021.105239
10.1016/j.eneco.2021.105494
10.1016/j.epsr.2021.107551
10.1109/ACCESS.2019.2938214
10.1016/j.engappai.2022.105150
10.1016/j.jhtm.2021.08.022
10.1016/j.knosys.2021.107621
10.1016/j.engappai.2021.104217
10.1016/j.energy.2021.121034
10.3389/fenrg.2021.707937
10.1080/03610928008827904
10.1016/j.asoc.2021.108084
10.1109/TSE.2008.35
10.1016/j.apenergy.2017.11.035
10.1016/j.eneco.2017.05.023
10.1016/j.energy.2021.120050
10.1016/j.physa.2018.09.120
10.1016/j.energy.2021.122245
10.1016/j.renene.2018.02.006
10.1080/07350015.2014.949342
10.1016/j.eneco.2016.01.006
10.1016/j.cjche.2023.12.007
10.1016/j.techfore.2021.121181
10.1016/j.apenergy.2020.115035
10.1016/j.asoc.2021.107288
10.1016/j.eneco.2013.07.028
10.1016/j.compag.2021.106568
10.1016/j.measurement.2021.109166
10.1016/j.engappai.2024.108111
10.1016/j.renene.2020.08.162
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compind.2024.104150
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compind_2024_104150
S0166361524000782
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
TAE
TAF
TN5
U5U
UNMZH
VH1
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c257t-ada01b015dcf95c257a15439566c2dfa3bc7cff8824c87697ed86a271f809a513
IEDL.DBID .~1
ISSN 0166-3615
IngestDate Wed Oct 01 01:33:59 EDT 2025
Sat Sep 14 18:10:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Probability density forecast
Crude oil price
Ensemble empirical mode decomposition
Quantile regression
Bidirectional long short-term memory
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-ada01b015dcf95c257a15439566c2dfa3bc7cff8824c87697ed86a271f809a513
ORCID 0000-0001-5418-8799
0000-0003-2108-6918
0009-0005-0210-6778
ParticipantIDs crossref_primary_10_1016_j_compind_2024_104150
elsevier_sciencedirect_doi_10_1016_j_compind_2024_104150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Computers in industry
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kakade, Jain, Mishra (bib41) 2022; 78
Li, Zhu, Wu (bib47) 2019; 83
Zhang, Chen, Yao, Ge, Dong (bib79) 2019; 1142
Zhao, Li, Yu (bib80) 2017; 66
Guo, Zhou, Zhang, Yang (bib25) 2018; 160
Guo, Zhao, Sun, Sun (bib24) 2022; 77
Zhang, Di, Farnoosh (bib77) 2021; 223
Baumeister, Kilian (bib5) 2015; 33
He, Qin, Wang, Wang (bib28) 2019; 233
Lai, Shi, Han, Shao, Qi, Li (bib44) 2022; 481
Wang, Niu, Du, Yang (bib64) 2020; 95
Hou, Zhang, Wu, Yu, Wang, Li, Gao, Ye, Yao (bib33) 2022; 235
Zhang, Liu (bib76) 2024; 252
Wu, Huang (bib67) 2009; 1
Sun, Zhao, Xu (bib61) 2021; 98
Zhang, He, Yang (bib78) 2021; 201
Alqahtani, Selmi, Hongbing (bib3) 2021; 72
Hu, Wang, Li, Wang (bib34) 2022; 78
Datta, Londono, Ross (bib12) 2017; 64
Yang, Li, Li, Qu (bib73) 2018; 213
Graves, Schmidhuber (bib22) 2005; 18
Friedman (bib20) 1940; 11
Maulion, Sohal Jr, Irabon, Carpio (bib53) 2022; 34
Monge, Gil-Alana (bib54) 2021; 232
Demšar (bib14) 2006; 7
Deng, Xiao, Zhu, Peng, Li, Liu (bib15) 2023; 215
Huang, Sun, Wang (bib35) 2021; 9
Yao, Li, Liu, Yang, Jia (bib75) 2021; 175
He, Wang (bib29) 2021; 105
Kim, Lee, Lee, Lee, Lee, Kim (bib42) 2020; 278
Nandram (bib55) 1995; 44
Li, Qian, Deng, Zhang, Lu, Wang (bib50) 2021; 113
Taormina, Chau (bib62) 2015; 45
Xu, Wang, Tang (bib70) 2019; 237
Chai, Lu, Hu, Wang, Lai, Liu (bib7) 2018; 126
He, Cao, Wang, Fu (bib32) 2022; 322
Li, Hu, Heng, Chen (bib49) 2021; 173
Ren, Yu, Gao, Yu, Yu (bib59) 2022; 8
Yang, Han, Cai, Wang (bib72) 2012; 9
Ding, Zhao, Wang (bib17) 2022; 312
Ji, Sun, Kong, Miao (bib39) 2019; 7
He, Zhang (bib31) 2020; 209
Bai, Li, Wei, Wei (bib4) 2022; 27
Dong, Jiang, Guo, Wang (bib18) 2024; 133
Ding, Zhao, Han (bib16) 2021; 220
Xiong, Bao, Hu (bib69) 2013; 40
Chen, Wang, Dong, Su, Han, Zhou, Zhao, Bao (bib8) 2021; 244
Peng, Zhang, Zhou, Nazir (bib57) 2021; 221
Ma, Xia, Wang, Niu, Jiang, Liu, Guo (bib52) 2022; 114
Huang, Hasan, Deng, Bao (bib37) 2022; 239
Yang, Guo, Sun, Li (bib74) 2021; 101
Pérez-Espinosa, Avila-George, Rodriguez-Jacobo, Cruz-Mendoza, Martínez-Miranda, Espinosa-Curiel (bib58) 2016; 121
Pedro, Coimbra, David, Lauret (bib56) 2018; 123
Chena, Heb, Tso (bib9) 2017; 122
He, Ji, Wu, Tso (bib27) 2021; 49
Iman, Davenport (bib38) 1980; A9
Bracale, Caramia, Falco, Hong (bib6) 2020; 187
Ali Salamai (bib2) 2023; 211
Xu, Chen, Goude, Yao (bib71) 2021; 301
He, Zhou, Mo, Feng, Liu, He (bib26) 2020; 262
Shang, Ma, Bhatia, Alofaysan, Walsh (bib60) 2024; 132
Jiang, Hu, Xiao, Dong (bib40) 2022; 78
Lessmann, Baesens, Mues, Pietsch (bib45) 2008; 34
Liadze, Macchiarelli, Mortimer-Lee, Juanino (bib51) 2022
Wang, Wang, Wang (bib65) 2019; 158
Dai, Zhao, He, Du, Zhong, Li, Qian (bib11) 2024; 69
Dawar, Dutta, Bouri, Saeed (bib13) 2021; 163
Uniejewski, Weron (bib63) 2021; 95
Xing, Zhang (bib68) 2022; 110
Ghasemlounia, Gharehbaghi, Ahmadi, Saadatnejadgharahassanlou (bib21) 2021; 191
Li, Xu, Geng, Hong (bib48) 2022; 114
He, Yan, Xu (bib30) 2019; 113
Guan, Li, Xue, Xi (bib23) 2021; 426
Li, Yin, Yang (bib46) 2022; 257
Abdollahi (bib1) 2020; 267
Koenker, Gilbert Bassett (bib43) 1978; 46
Huang, Deng (bib36) 2021; 213
Costa, Ferreira, Gaglianone, Guillén, Issler, Lin (bib10) 2021; 102
Drachal (bib19) 2021; 74
Wu, Wu, Zhu (bib66) 2019; 516
Ren (10.1016/j.compind.2024.104150_bib59) 2022; 8
Yang (10.1016/j.compind.2024.104150_bib73) 2018; 213
Dai (10.1016/j.compind.2024.104150_bib11) 2024; 69
Sun (10.1016/j.compind.2024.104150_bib61) 2021; 98
Deng (10.1016/j.compind.2024.104150_bib15) 2023; 215
Huang (10.1016/j.compind.2024.104150_bib36) 2021; 213
Alqahtani (10.1016/j.compind.2024.104150_bib3) 2021; 72
Wang (10.1016/j.compind.2024.104150_bib64) 2020; 95
Xiong (10.1016/j.compind.2024.104150_bib69) 2013; 40
Yang (10.1016/j.compind.2024.104150_bib72) 2012; 9
Demšar (10.1016/j.compind.2024.104150_bib14) 2006; 7
Wu (10.1016/j.compind.2024.104150_bib66) 2019; 516
Ding (10.1016/j.compind.2024.104150_bib17) 2022; 312
Jiang (10.1016/j.compind.2024.104150_bib40) 2022; 78
Dong (10.1016/j.compind.2024.104150_bib18) 2024; 133
Li (10.1016/j.compind.2024.104150_bib50) 2021; 113
Guo (10.1016/j.compind.2024.104150_bib25) 2018; 160
He (10.1016/j.compind.2024.104150_bib32) 2022; 322
Pedro (10.1016/j.compind.2024.104150_bib56) 2018; 123
Zhang (10.1016/j.compind.2024.104150_bib77) 2021; 223
Maulion (10.1016/j.compind.2024.104150_bib53) 2022; 34
Li (10.1016/j.compind.2024.104150_bib46) 2022; 257
Bai (10.1016/j.compind.2024.104150_bib4) 2022; 27
Ma (10.1016/j.compind.2024.104150_bib52) 2022; 114
Peng (10.1016/j.compind.2024.104150_bib57) 2021; 221
He (10.1016/j.compind.2024.104150_bib27) 2021; 49
Lessmann (10.1016/j.compind.2024.104150_bib45) 2008; 34
Hou (10.1016/j.compind.2024.104150_bib33) 2022; 235
Liadze (10.1016/j.compind.2024.104150_bib51) 2022; 32
Uniejewski (10.1016/j.compind.2024.104150_bib63) 2021; 95
Zhang (10.1016/j.compind.2024.104150_bib79) 2019; 1142
Chena (10.1016/j.compind.2024.104150_bib9) 2017; 122
Datta (10.1016/j.compind.2024.104150_bib12) 2017; 64
Guan (10.1016/j.compind.2024.104150_bib23) 2021; 426
Bracale (10.1016/j.compind.2024.104150_bib6) 2020; 187
Koenker (10.1016/j.compind.2024.104150_bib43) 1978; 46
Xu (10.1016/j.compind.2024.104150_bib70) 2019; 237
Guo (10.1016/j.compind.2024.104150_bib24) 2022; 77
Graves (10.1016/j.compind.2024.104150_bib22) 2005; 18
Dawar (10.1016/j.compind.2024.104150_bib13) 2021; 163
Huang (10.1016/j.compind.2024.104150_bib37) 2022; 239
Xu (10.1016/j.compind.2024.104150_bib71) 2021; 301
Lai (10.1016/j.compind.2024.104150_bib44) 2022; 481
Yang (10.1016/j.compind.2024.104150_bib74) 2021; 101
Abdollahi (10.1016/j.compind.2024.104150_bib1) 2020; 267
Li (10.1016/j.compind.2024.104150_bib48) 2022; 114
Chen (10.1016/j.compind.2024.104150_bib8) 2021; 244
Li (10.1016/j.compind.2024.104150_bib47) 2019; 83
He (10.1016/j.compind.2024.104150_bib26) 2020; 262
Li (10.1016/j.compind.2024.104150_bib49) 2021; 173
Zhao (10.1016/j.compind.2024.104150_bib80) 2017; 66
Friedman (10.1016/j.compind.2024.104150_bib20) 1940; 11
Hu (10.1016/j.compind.2024.104150_bib34) 2022; 78
Monge (10.1016/j.compind.2024.104150_bib54) 2021; 232
Baumeister (10.1016/j.compind.2024.104150_bib5) 2015; 33
Costa (10.1016/j.compind.2024.104150_bib10) 2021; 102
Iman (10.1016/j.compind.2024.104150_bib38) 1980; A9
Kim (10.1016/j.compind.2024.104150_bib42) 2020; 278
Xing (10.1016/j.compind.2024.104150_bib68) 2022; 110
Yao (10.1016/j.compind.2024.104150_bib75) 2021; 175
Kakade (10.1016/j.compind.2024.104150_bib41) 2022; 78
Ding (10.1016/j.compind.2024.104150_bib16) 2021; 220
Ghasemlounia (10.1016/j.compind.2024.104150_bib21) 2021; 191
He (10.1016/j.compind.2024.104150_bib31) 2020; 209
Chai (10.1016/j.compind.2024.104150_bib7) 2018; 126
Ji (10.1016/j.compind.2024.104150_bib39) 2019; 7
Drachal (10.1016/j.compind.2024.104150_bib19) 2021; 74
Nandram (10.1016/j.compind.2024.104150_bib55) 1995; 44
Wu (10.1016/j.compind.2024.104150_bib67) 2009; 1
Pérez-Espinosa (10.1016/j.compind.2024.104150_bib58) 2016; 121
Shang (10.1016/j.compind.2024.104150_bib60) 2024; 132
Zhang (10.1016/j.compind.2024.104150_bib78) 2021; 201
He (10.1016/j.compind.2024.104150_bib28) 2019; 233
Wang (10.1016/j.compind.2024.104150_bib65) 2019; 158
Taormina (10.1016/j.compind.2024.104150_bib62) 2015; 45
He (10.1016/j.compind.2024.104150_bib30) 2019; 113
Huang (10.1016/j.compind.2024.104150_bib35) 2021; 9
Zhang (10.1016/j.compind.2024.104150_bib76) 2024; 252
He (10.1016/j.compind.2024.104150_bib29) 2021; 105
Ali Salamai (10.1016/j.compind.2024.104150_bib2) 2023; 211
References_xml – volume: 244
  year: 2021
  ident: bib8
  article-title: 2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model
  publication-title: Energy Convers. Manag.
– volume: 113
  start-page: 515
  year: 2019
  end-page: 527
  ident: bib30
  article-title: Wind and solar power probability density prediction via fuzzy information granulation and support vector quantile regression
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 175
  year: 2021
  ident: bib75
  article-title: Remaining useful life prediction of roller bearings based on improved 1D-CNN and simple recurrent unit
  publication-title: Measurement
– volume: 122
  start-page: 300
  year: 2017
  end-page: 307
  ident: bib9
  article-title: Forecasting Crude Oil Prices: a Deep Learning based Model
  publication-title: Procedia Comput. Sci.
– volume: 45
  start-page: 429
  year: 2015
  end-page: 440
  ident: bib62
  article-title: ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS
  publication-title: Eng. Appl. Artif. Intell.
– volume: 209
  year: 2020
  ident: bib31
  article-title: Probability density forecasting of wind power based on multi-core parallel quantile regression neural network
  publication-title: Knowl. -Based Syst.
– volume: 46
  start-page: 33
  year: 1978
  end-page: 50
  ident: bib43
  article-title: Regression quantiles
  publication-title: Econometrica
– volume: 211
  year: 2023
  ident: bib2
  article-title: Deep learning framework for predictive modeling of crude oil price for sustainable management in oil markets
  publication-title: Expert Syst. Appl.
– volume: 516
  start-page: 114
  year: 2019
  end-page: 124
  ident: bib66
  article-title: Improved EEMD-based crude oil price forecasting using LSTM networks
  publication-title: Phys. A: Stat. Mech. Appl.
– volume: 83
  start-page: 240
  year: 2019
  end-page: 253
  ident: bib47
  article-title: Monthly crude oil spot price forecasting using variational mode decomposition
  publication-title: Energy Econ.
– volume: 69
  start-page: 152
  year: 2024
  end-page: 166
  ident: bib11
  article-title: Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
  publication-title: Chin. J. Chem. Eng.
– volume: 215
  year: 2023
  ident: bib15
  article-title: High-frequency direction forecasting and simulation trading of the crude oil futures using Ichimoku KinkoHyo and Fuzzy Rough Set
  publication-title: Expert Syst. Appl.
– volume: 123
  start-page: 191
  year: 2018
  end-page: 203
  ident: bib56
  article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts
  publication-title: Renew. Energy
– volume: 34
  start-page: 485
  year: 2008
  end-page: 496
  ident: bib45
  article-title: Benchmarking classification models for software defect prediction: a proposed framework and novel findings
  publication-title: IEEE Trans. Softw. Eng.
– volume: 44
  start-page: 167
  year: 1995
  end-page: 180
  ident: bib55
  article-title: Bayesian cuboid prediction intervals: An application to tensile-strength prediction
  publication-title: J. Stat. Plan. Inferenc
– volume: 95
  year: 2021
  ident: bib63
  article-title: Regularized quantile regression averaging for probabilistic electricity price forecasting
  publication-title: Energy Econ.
– volume: 235
  year: 2022
  ident: bib33
  article-title: Method and dataset entity mining in scientific literature: a CNN + BiLSTM model with self-attention
  publication-title: Knowl. -Based Syst.
– volume: 481
  start-page: 249
  year: 2022
  end-page: 257
  ident: bib44
  article-title: Exploring uncertainty in regression neural networks for construction of prediction intervals
  publication-title: Neurocomputing
– volume: 78
  year: 2022
  ident: bib41
  article-title: Value-at-Risk forecasting: a hybrid ensemble learning GARCH-LSTM based approach
  publication-title: Resour. Policy
– volume: 110
  year: 2022
  ident: bib68
  article-title: Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?
  publication-title: Energy Econ.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib14
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 187
  start-page: 106
  year: 2020
  end-page: 430
  ident: bib6
  article-title: A multivariate approach to probabilistic industrial load forecasting
  publication-title: Electr. Power Syst. Res.
– volume: 133
  year: 2024
  ident: bib18
  article-title: A novel crude oil price forecasting model using decomposition and deep learning networks
  publication-title: Eng. Appl. Artif. Intell.
– volume: 201
  year: 2021
  ident: bib78
  article-title: Day-ahead load probability density forecasting using monotone composite quantile regression neural network and kernel density estimation
  publication-title: Electr. Power Syst. Res.
– volume: 98
  year: 2021
  ident: bib61
  article-title: Crude oil market autocorrelation: evidence from multiscale quantile regression analysis
  publication-title: Energy Econ.
– volume: 426
  start-page: 174
  year: 2021
  end-page: 184
  ident: bib23
  article-title: Feature-fusion-kernel-based Gaussian process model for probabilistic long-term load forecasting
  publication-title: Neurocomputing
– volume: 233
  year: 2019
  ident: bib28
  article-title: Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Networ
  publication-title: Applied Energy
– volume: 221
  year: 2021
  ident: bib57
  article-title: An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting
  publication-title: Energy
– volume: 312
  year: 2022
  ident: bib17
  article-title: Probability density forecasts for natural gas demand in China: do mixed-frequency dynamic factors matter?
  publication-title: Appl. Energy
– volume: 213
  year: 2021
  ident: bib36
  article-title: A new crude oil price forecasting model based on variational mode decomposition
  publication-title: Knowl. -Based Syst.
– volume: 78
  year: 2022
  ident: bib40
  article-title: A decomposition ensemble based deep learning approach for crude oil price forecasting
  publication-title: Resour. Policy
– start-page: 1
  year: 2022
  end-page: 10
  ident: bib51
  article-title: The economic costs of the Russia-Ukraine conflict
  publication-title: Natl. Inst. Econ. Soc. Res. Policy Pap. no
– volume: 132
  year: 2024
  ident: bib60
  article-title: Unveiling the enigma: Exploring how uncertain crude oil prices shape investment expenditure and efficiency in Chinese enterprises
  publication-title: Energy Econ.
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: bib20
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: bib67
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 223
  year: 2021
  ident: bib77
  article-title: Study on the impacts of Shanghai crude oil futures on global oil market and oil industry based on VECM and DAG models
  publication-title: Energy
– volume: 257
  year: 2022
  ident: bib46
  article-title: A novel crude oil prices forecasting model based on secondary decomposition
  publication-title: Energy
– volume: 77
  year: 2022
  ident: bib24
  article-title: Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework
  publication-title: Resour. Policy
– volume: 237
  start-page: 180
  year: 2019
  end-page: 195
  ident: bib70
  article-title: Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load
  publication-title: Appl. Energy
– volume: 9
  year: 2021
  ident: bib35
  article-title: A New Two-Stage Approach with Boosting and Model Averaging for Interval-Valued Crude Oil Prices Forecasting in Uncertainty Environments
  publication-title: Front. Energy Res.
– volume: 163
  start-page: 288
  year: 2021
  end-page: 299
  ident: bib13
  article-title: Crude oil prices and clean energy stock indices: Lagged and asymmetric effects with quantile regression
  publication-title: Renew. Energy
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: bib22
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw.
– volume: 262
  year: 2020
  ident: bib26
  article-title: Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest
  publication-title: Appl. Energy
– volume: A9
  start-page: 571
  year: 1980
  end-page: 595
  ident: bib38
  article-title: Approximations of the critical region of the Friedman statistic
  publication-title: Commun. Stat. - Theory Methods
– volume: 267
  year: 2020
  ident: bib1
  article-title: A novel hybrid model for forecasting crude oil price based on time series decomposition
  publication-title: Appl. Energy
– volume: 102
  year: 2021
  ident: bib10
  article-title: Machine learning and oil price point and density forecasting
  publication-title: Energy Econ.
– volume: 105
  year: 2021
  ident: bib29
  article-title: Short-term wind power prediction based on EEMD–LASSO–QRNN model
  publication-title: Appl. Soft Comput.
– volume: 173
  year: 2021
  ident: bib49
  article-title: A novel multiscale forecasting model for crude oil price time series
  publication-title: Technol. Forecast. Soc. Change
– volume: 252
  year: 2024
  ident: bib76
  article-title: Interval prediction of crude oil spot price volatility: an improved hybrid model integrating decomposition strategy, IESN and ARIMA
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 338
  year: 2015
  end-page: 351
  ident: bib5
  article-title: Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach
  publication-title: J. Bus. Econ. Stat.
– volume: 66
  start-page: 9
  year: 2017
  end-page: 16
  ident: bib80
  article-title: A deep learning ensemble approach for crude oil price forecasting
  publication-title: Energy Econ.
– volume: 114
  year: 2022
  ident: bib52
  article-title: A comprehensive comparison among metaheuristics (MHs) for geohazard modeling using machine learning: Insights from a case study of landslide displacement prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: 49
  start-page: 25
  year: 2021
  end-page: 33
  ident: bib27
  article-title: Using SARIMA–CNN–LSTM approach to forecast daily tourism demand
  publication-title: J. Hosp. Tour. Manag.
– volume: 213
  start-page: 499
  year: 2018
  end-page: 509
  ident: bib73
  article-title: Power load probability density forecasting using Gaussian process quantile regression
  publication-title: Appl. Energy
– volume: 34
  start-page: 225
  year: 2022
  end-page: 230
  ident: bib53
  article-title: Oil crude price volatility: a white noise stochastic analysis
  publication-title: Sci. Int.
– volume: 126
  start-page: 271
  year: 2018
  end-page: 283
  ident: bib7
  article-title: Analysis and Bayes statistical probability inference of crude oil price change point
  publication-title: Technol. Forecast. Soc. Change
– volume: 64
  start-page: 440
  year: 2017
  end-page: 457
  ident: bib12
  article-title: Generating options-implied probability densities to understand oil market events
  publication-title: Energy Econ.
– volume: 8
  start-page: 437
  year: 2022
  end-page: 443
  ident: bib59
  article-title: A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism
  publication-title: Energy Rep.
– volume: 72
  year: 2021
  ident: bib3
  article-title: The financial impacts of jump processes in the crude oil price: evidence from G20 countries in the pre- and post-COVID-19
  publication-title: Resour. Policy
– volume: 160
  start-page: 1186
  year: 2018
  end-page: 1200
  ident: bib25
  article-title: A deep learning model for short-term power load and probability density forecasting
  publication-title: Energy
– volume: 101
  year: 2021
  ident: bib74
  article-title: Forecasting crude oil price with a new hybrid approach and multi-source data
  publication-title: Eng. Appl. Artif. Intell.
– volume: 232
  year: 2021
  ident: bib54
  article-title: Spatial crude oil production divergence and crude oil price behaviour in the United States
  publication-title: Energy
– volume: 121
  start-page: 69
  year: 2016
  end-page: 81
  ident: bib58
  article-title: Tuning the parameters of a convolutional artificial neural network by using covering arrays
  publication-title: Res. Comput. Sci.
– volume: 239
  year: 2022
  ident: bib37
  article-title: Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting
  publication-title: Energy
– volume: 95
  year: 2020
  ident: bib64
  article-title: Ensemble probabilistic prediction approach for modeling uncertainty in crude oil price
  publication-title: Appl. Soft Comput.
– volume: 158
  start-page: 6446
  year: 2019
  end-page: 6451
  ident: bib65
  article-title: Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation
  publication-title: Energy Procedia
– volume: 322
  year: 2022
  ident: bib32
  article-title: Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems
  publication-title: Appl. Energy
– volume: 191
  year: 2021
  ident: bib21
  article-title: Developing a novel framework for forecasting groundwater level fluctuations using Bi-directional Long Short-Term Memory (BiLSTM) deep neural network
  publication-title: Comput. Electron. Agric.
– volume: 40
  start-page: 405
  year: 2013
  end-page: 415
  ident: bib69
  article-title: Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices
  publication-title: Energy Econ.
– volume: 1142
  start-page: 287
  year: 2019
  end-page: 295
  ident: bib79
  article-title: Deep neural network hyperparameter optimization with orthogonal array tuning
  publication-title: Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science
– volume: 74
  year: 2021
  ident: bib19
  article-title: Forecasting crude oil real prices with averaging time-varying VAR models
  publication-title: Resour. Policy
– volume: 78
  start-page: 32
  year: 2022
  end-page: 45
  ident: bib34
  article-title: CNN-BiLSTM enabled prediction on molten pool width for thin-walled part fabrication using Laser Directed Energy Deposition
  publication-title: J. Manuf. Process.
– volume: 301
  year: 2021
  ident: bib71
  article-title: Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression
  publication-title: Appl. Energy
– volume: 27
  start-page: 3694
  year: 2022
  end-page: 3712
  ident: bib4
  article-title: Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting
  publication-title: Int. J. Financ. Econ.
– volume: 7
  start-page: 124185
  year: 2019
  end-page: 124195
  ident: bib39
  article-title: A construction approach to prediction intervals based on bootstrap and deep belief network
  publication-title: IEEE Access
– volume: 220
  year: 2021
  ident: bib16
  article-title: Probability density forecasts for steam coal prices in China: The role of high-frequency factors
  publication-title: Energy
– volume: 114
  year: 2022
  ident: bib48
  article-title: A hybrid approach for forecasting ship motion using CNN–GRU–AM and GCWOA
  publication-title: Appl. Soft Comput.
– volume: 278
  year: 2020
  ident: bib42
  article-title: Robust estimation of outage costs in South Korea using a machine learning technique: Bayesian Tobit quantile regression
  publication-title: Appl. Energy
– volume: 9
  start-page: 1273
  year: 2012
  end-page: 1282
  ident: bib72
  article-title: ACIX model with interval dummy variables and its application in forecasting interval-valued crude oil prices
  publication-title: Procedia Comput. Sci.
– volume: 113
  year: 2021
  ident: bib50
  article-title: Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning
  publication-title: Appl. Soft Comput.
– volume: 113
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib50
  article-title: Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108032
– volume: 83
  start-page: 240
  year: 2019
  ident: 10.1016/j.compind.2024.104150_bib47
  article-title: Monthly crude oil spot price forecasting using variational mode decomposition
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2019.07.009
– volume: 233
  issue: 234
  year: 2019
  ident: 10.1016/j.compind.2024.104150_bib28
  article-title: Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Networ
  publication-title: Applied Energy
– volume: 322
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib32
  article-title: Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119507
– volume: 221
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib57
  article-title: An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119887
– volume: 237
  start-page: 180
  year: 2019
  ident: 10.1016/j.compind.2024.104150_bib70
  article-title: Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.022
– volume: 215
  year: 2023
  ident: 10.1016/j.compind.2024.104150_bib15
  article-title: High-frequency direction forecasting and simulation trading of the crude oil futures using Ichimoku KinkoHyo and Fuzzy Rough Set
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119326
– volume: 209
  year: 2020
  ident: 10.1016/j.compind.2024.104150_bib31
  article-title: Probability density forecasting of wind power based on multi-core parallel quantile regression neural network
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2020.106431
– volume: 95
  year: 2020
  ident: 10.1016/j.compind.2024.104150_bib64
  article-title: Ensemble probabilistic prediction approach for modeling uncertainty in crude oil price
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106509
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.compind.2024.104150_bib20
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– volume: 77
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib24
  article-title: Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2022.102737
– volume: 8
  start-page: 437
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib59
  article-title: A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.02.206
– volume: 27
  start-page: 3694
  issue: 3
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib4
  article-title: Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting
  publication-title: Int. J. Financ. Econ.
  doi: 10.1002/ijfe.2345
– volume: 113
  start-page: 515
  year: 2019
  ident: 10.1016/j.compind.2024.104150_bib30
  article-title: Wind and solar power probability density prediction via fuzzy information granulation and support vector quantile regression
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.05.075
– volume: 78
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib40
  article-title: A decomposition ensemble based deep learning approach for crude oil price forecasting
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2022.102855
– volume: 132
  year: 2024
  ident: 10.1016/j.compind.2024.104150_bib60
  article-title: Unveiling the enigma: Exploring how uncertain crude oil prices shape investment expenditure and efficiency in Chinese enterprises
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2024.107423
– volume: 211
  year: 2023
  ident: 10.1016/j.compind.2024.104150_bib2
  article-title: Deep learning framework for predictive modeling of crude oil price for sustainable management in oil markets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118658
– volume: 95
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib63
  article-title: Regularized quantile regression averaging for probabilistic electricity price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2021.105121
– volume: 78
  start-page: 32
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib34
  article-title: CNN-BiLSTM enabled prediction on molten pool width for thin-walled part fabrication using Laser Directed Energy Deposition
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2022.04.010
– volume: 122
  start-page: 300
  year: 2017
  ident: 10.1016/j.compind.2024.104150_bib9
  article-title: Forecasting Crude Oil Prices: a Deep Learning based Model
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.373
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.compind.2024.104150_bib67
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 72
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib3
  article-title: The financial impacts of jump processes in the crude oil price: evidence from G20 countries in the pre- and post-COVID-19
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2021.102075
– volume: 312
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib17
  article-title: Probability density forecasts for natural gas demand in China: do mixed-frequency dynamic factors matter?
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118756
– volume: 74
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib19
  article-title: Forecasting crude oil real prices with averaging time-varying VAR models
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2021.102244
– volume: 220
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib16
  article-title: Probability density forecasts for steam coal prices in China: The role of high-frequency factors
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119758
– volume: 46
  start-page: 33
  issue: 1
  year: 1978
  ident: 10.1016/j.compind.2024.104150_bib43
  article-title: Regression quantiles
  publication-title: Econometrica
  doi: 10.2307/1913643
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.compind.2024.104150_bib14
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 213
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib36
  article-title: A new crude oil price forecasting model based on variational mode decomposition
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2020.106669
– volume: 257
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib46
  article-title: A novel crude oil prices forecasting model based on secondary decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124684
– volume: 262
  year: 2020
  ident: 10.1016/j.compind.2024.104150_bib26
  article-title: Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114396
– volume: 45
  start-page: 429
  year: 2015
  ident: 10.1016/j.compind.2024.104150_bib62
  article-title: ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.07.019
– volume: 126
  start-page: 271
  year: 2018
  ident: 10.1016/j.compind.2024.104150_bib7
  article-title: Analysis and Bayes statistical probability inference of crude oil price change point
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2017.09.007
– volume: 301
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib71
  article-title: Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117465
– volume: 244
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib8
  article-title: 2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114451
– volume: 187
  start-page: 106
  year: 2020
  ident: 10.1016/j.compind.2024.104150_bib6
  article-title: A multivariate approach to probabilistic industrial load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106430
– volume: 44
  start-page: 167
  year: 1995
  ident: 10.1016/j.compind.2024.104150_bib55
  article-title: Bayesian cuboid prediction intervals: An application to tensile-strength prediction
  publication-title: J. Stat. Plan. Inferenc
  doi: 10.1016/0378-3758(95)95021-N
– volume: 158
  start-page: 6446
  year: 2019
  ident: 10.1016/j.compind.2024.104150_bib65
  article-title: Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.169
– volume: 121
  start-page: 69
  issue: 1
  year: 2016
  ident: 10.1016/j.compind.2024.104150_bib58
  article-title: Tuning the parameters of a convolutional artificial neural network by using covering arrays
  publication-title: Res. Comput. Sci.
  doi: 10.13053/rcs-121-1-6
– volume: 9
  start-page: 1273
  year: 2012
  ident: 10.1016/j.compind.2024.104150_bib72
  article-title: ACIX model with interval dummy variables and its application in forecasting interval-valued crude oil prices
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2012.04.139
– volume: 481
  start-page: 249
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib44
  article-title: Exploring uncertainty in regression neural networks for construction of prediction intervals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.084
– volume: 110
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib68
  article-title: Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2022.106014
– volume: 160
  start-page: 1186
  year: 2018
  ident: 10.1016/j.compind.2024.104150_bib25
  article-title: A deep learning model for short-term power load and probability density forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2018.07.090
– volume: 426
  start-page: 174
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib23
  article-title: Feature-fusion-kernel-based Gaussian process model for probabilistic long-term load forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.043
– volume: 278
  year: 2020
  ident: 10.1016/j.compind.2024.104150_bib42
  article-title: Robust estimation of outage costs in South Korea using a machine learning technique: Bayesian Tobit quantile regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115702
– volume: 252
  year: 2024
  ident: 10.1016/j.compind.2024.104150_bib76
  article-title: Interval prediction of crude oil spot price volatility: an improved hybrid model integrating decomposition strategy, IESN and ARIMA
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124195
– volume: 18
  start-page: 602
  issue: 5-6
  year: 2005
  ident: 10.1016/j.compind.2024.104150_bib22
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
– volume: 78
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib41
  article-title: Value-at-Risk forecasting: a hybrid ensemble learning GARCH-LSTM based approach
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2022.102903
– volume: 98
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib61
  article-title: Crude oil market autocorrelation: evidence from multiscale quantile regression analysis
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2021.105239
– volume: 102
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib10
  article-title: Machine learning and oil price point and density forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2021.105494
– volume: 201
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib78
  article-title: Day-ahead load probability density forecasting using monotone composite quantile regression neural network and kernel density estimation
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107551
– volume: 7
  start-page: 124185
  year: 2019
  ident: 10.1016/j.compind.2024.104150_bib39
  article-title: A construction approach to prediction intervals based on bootstrap and deep belief network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938214
– volume: 114
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib52
  article-title: A comprehensive comparison among metaheuristics (MHs) for geohazard modeling using machine learning: Insights from a case study of landslide displacement prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105150
– volume: 49
  start-page: 25
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib27
  article-title: Using SARIMA–CNN–LSTM approach to forecast daily tourism demand
  publication-title: J. Hosp. Tour. Manag.
  doi: 10.1016/j.jhtm.2021.08.022
– volume: 34
  start-page: 225
  issue: 4
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib53
  article-title: Oil crude price volatility: a white noise stochastic analysis
  publication-title: Sci. Int.
– volume: 235
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib33
  article-title: Method and dataset entity mining in scientific literature: a CNN + BiLSTM model with self-attention
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2021.107621
– volume: 101
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib74
  article-title: Forecasting crude oil price with a new hybrid approach and multi-source data
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104217
– volume: 232
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib54
  article-title: Spatial crude oil production divergence and crude oil price behaviour in the United States
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121034
– volume: 9
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib35
  article-title: A New Two-Stage Approach with Boosting and Model Averaging for Interval-Valued Crude Oil Prices Forecasting in Uncertainty Environments
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2021.707937
– volume: A9
  start-page: 571
  issue: 6
  year: 1980
  ident: 10.1016/j.compind.2024.104150_bib38
  article-title: Approximations of the critical region of the Friedman statistic
  publication-title: Commun. Stat. - Theory Methods
  doi: 10.1080/03610928008827904
– volume: 114
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib48
  article-title: A hybrid approach for forecasting ship motion using CNN–GRU–AM and GCWOA
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108084
– volume: 34
  start-page: 485
  issue: 4
  year: 2008
  ident: 10.1016/j.compind.2024.104150_bib45
  article-title: Benchmarking classification models for software defect prediction: a proposed framework and novel findings
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2008.35
– volume: 213
  start-page: 499
  year: 2018
  ident: 10.1016/j.compind.2024.104150_bib73
  article-title: Power load probability density forecasting using Gaussian process quantile regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.11.035
– volume: 66
  start-page: 9
  year: 2017
  ident: 10.1016/j.compind.2024.104150_bib80
  article-title: A deep learning ensemble approach for crude oil price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2017.05.023
– volume: 223
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib77
  article-title: Study on the impacts of Shanghai crude oil futures on global oil market and oil industry based on VECM and DAG models
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120050
– volume: 32
  start-page: 1
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib51
  article-title: The economic costs of the Russia-Ukraine conflict
  publication-title: Natl. Inst. Econ. Soc. Res. Policy Pap. no
– volume: 516
  start-page: 114
  year: 2019
  ident: 10.1016/j.compind.2024.104150_bib66
  article-title: Improved EEMD-based crude oil price forecasting using LSTM networks
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.09.120
– volume: 239
  year: 2022
  ident: 10.1016/j.compind.2024.104150_bib37
  article-title: Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122245
– volume: 123
  start-page: 191
  year: 2018
  ident: 10.1016/j.compind.2024.104150_bib56
  article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.02.006
– volume: 1142
  start-page: 287
  year: 2019
  ident: 10.1016/j.compind.2024.104150_bib79
  article-title: Deep neural network hyperparameter optimization with orthogonal array tuning
– volume: 33
  start-page: 338
  issue: 3
  year: 2015
  ident: 10.1016/j.compind.2024.104150_bib5
  article-title: Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.2014.949342
– volume: 64
  start-page: 440
  year: 2017
  ident: 10.1016/j.compind.2024.104150_bib12
  article-title: Generating options-implied probability densities to understand oil market events
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2016.01.006
– volume: 69
  start-page: 152
  year: 2024
  ident: 10.1016/j.compind.2024.104150_bib11
  article-title: Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2023.12.007
– volume: 173
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib49
  article-title: A novel multiscale forecasting model for crude oil price time series
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2021.121181
– volume: 267
  year: 2020
  ident: 10.1016/j.compind.2024.104150_bib1
  article-title: A novel hybrid model for forecasting crude oil price based on time series decomposition
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115035
– volume: 105
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib29
  article-title: Short-term wind power prediction based on EEMD–LASSO–QRNN model
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107288
– volume: 40
  start-page: 405
  year: 2013
  ident: 10.1016/j.compind.2024.104150_bib69
  article-title: Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2013.07.028
– volume: 191
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib21
  article-title: Developing a novel framework for forecasting groundwater level fluctuations using Bi-directional Long Short-Term Memory (BiLSTM) deep neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106568
– volume: 175
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib75
  article-title: Remaining useful life prediction of roller bearings based on improved 1D-CNN and simple recurrent unit
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109166
– volume: 133
  year: 2024
  ident: 10.1016/j.compind.2024.104150_bib18
  article-title: A novel crude oil price forecasting model using decomposition and deep learning networks
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108111
– volume: 163
  start-page: 288
  year: 2021
  ident: 10.1016/j.compind.2024.104150_bib13
  article-title: Crude oil prices and clean energy stock indices: Lagged and asymmetric effects with quantile regression
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.08.162
SSID ssj0000776
Score 2.462056
Snippet The crude oil price has been subject to periodic fluctuations because of seasonal changes in industrial demand and supply, weather, natural disasters and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104150
SubjectTerms Bidirectional long short-term memory
Convolutional neural network
Crude oil price
Ensemble empirical mode decomposition
Probability density forecast
Quantile regression
Title Intelligent crude oil price probability forecasting: Deep learning models and industry applications
URI https://dx.doi.org/10.1016/j.compind.2024.104150
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0166-3615
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000776
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0166-3615
  databaseCode: ACRLP
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000776
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0166-3615
  databaseCode: AIKHN
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000776
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0166-3615
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000776
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0166-3615
  databaseCode: AKRWK
  dateStart: 19790701
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000776
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TZM0b28lWlofRdRCb2GzD0mRNLTpoRd_uzPdxFYQD55ClmwIs8k332RnviHkGki0HclAGqjuZbiSScBBIYyAq1CpkHmewF8DTyN_MHbvJ96kQeK6FgbTKivs15i-RutqxKysaRZZZr4CWfEdcMiYBYmODivY3QC7GHQ-N2keKFej9b19A6_eVPGYU7x3AaEvhIldF3c7bSy__80_bfmc_gHZr8gi7ennOSQNmR-RvS0JwWPCh9-amiXl86WQdJZ90AK1gih2i9E63CsK5FRytsAs5xt6K2VBq4YR73TdDWdBWS5opjt5rOj2xvYJGffv3uKBUTVOMDh8gaXBBLPsFBy94CrycIwBU3IgFPJ5VyjmpBzWQgG5djmgYRRIEfqsG9gqtCLm2c4paeazXJ4RGkjLU0pYjoJQELXq3VRBkJX6EZOOdJ0W6dTmSgqtj5HUiWPTpLJvgvZNtH1bJKyNmvxY6AQw_O-p5_-fekF28UznoVySZjlfyitgE2XaXr8ubbLTi18en_E4fBiMvgD_bM1F
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQevpS19ezMoAQUuQsJts92HKTGlgXLg4m93hraCifHgddttm9l25pvuN98Qcg8g2o5UoAxU9zJcxRX4QSmNQOhQ65B7nsRfA4Oh3x27LxNvUiPtqhYGaZWl7y98-tpblyNmaU0zSxLzDcCK70BARhYkBrodsuvCDTEDa35ueB6oV1MIfPsGnr4p4zGnePEMcl_IE1subnfaWH__W4DaCjqdI3JYokX6WDzQMamp9IQcbGkInhLR-xbVzKmYL6Wis-SDZigWRLFdTCHEvaKATpXgC6Q5P9AnpTJadox4p-t2OAvKU0mTopXHim7vbJ-Rced51O4aZecEQ8AnmBtccsuOIdJLoSMPxzhAJQdyIV-0pOZOLGAxNKBrV4A7jAIlQ5-3AluHVsQ92zkn9XSWqgtCA2V5WkvL0ZALoli9G2vIsmI_4spRrtMgzcpcLCsEMljFHJuy0r4M7csK-zZIWBmV_VhpBk7876mX_596R_a6o0Gf9XvD1yuyj0cKUso1qefzpboBaJHHt-tX5wuFm81F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+crude+oil+price+probability+forecasting%3A+Deep+learning+models+and+industry+applications&rft.jtitle=Computers+in+industry&rft.au=Shen%2C+Liang&rft.au=Bao%2C+Yukun&rft.au=Hasan%2C+Najmul&rft.au=Huang%2C+Yanmei&rft.date=2024-12-01&rft.issn=0166-3615&rft.volume=163&rft.spage=104150&rft_id=info:doi/10.1016%2Fj.compind.2024.104150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compind_2024_104150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3615&client=summon