Intelligent crude oil price probability forecasting: Deep learning models and industry applications
The crude oil price has been subject to periodic fluctuations because of seasonal changes in industrial demand and supply, weather, natural disasters and global political unrest. An accurate forecast of crude oil prices is of utmost importance for decision makers and industry players in the energy s...
        Saved in:
      
    
          | Published in | Computers in industry Vol. 163; p. 104150 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.12.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0166-3615 | 
| DOI | 10.1016/j.compind.2024.104150 | 
Cover
| Abstract | The crude oil price has been subject to periodic fluctuations because of seasonal changes in industrial demand and supply, weather, natural disasters and global political unrest. An accurate forecast of crude oil prices is of utmost importance for decision makers and industry players in the energy sector. Despite this, the volatility of crude oil prices contributes to the uncertainty of the energy industry, which was particularly challenging following the recent global spread of the COVID-19 epidemic and the Russia–Ukraine conflict. This paper proposes a hybrid deep learning (DL) modelling framework to deal with the volatility of crude oil prices, applying ensemble empirical mode decomposition (EEMD), convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) integrated with quantile regression (QR); named EEMD-CNN-BiLSTM-QR. Two real-world datasets on crude oil prices from the West Texas Intermediate and Brent Crude Oil markets were employed to validate the EEMD-CNN-BiLSTM-QR hybrid modelling framework. Given that the probability density forecast can capture uncertainty, an in-depth analysis was carried out and prediction accuracy calculated. The findings of this study demonstrate that the proposed EEMD-CNN-BiLSTM-QR DL modelling framework, which uses the probability density forecast method, is superior to other tested models in terms of its ability to forecast crude oil prices. The novelty of this study stems mainly from its use of QR, which allows for the description of the conditional distribution of predicted variables and the extraction of more uncertain information for probability density forecasts.
•A decomposition ensemble technique can effectively improve forecasting accuracy.•The proposed EEMD-CNN-BiLSTM-QR hybrid model exhibits superior forecasting accuracy.•A CNN-BiLSTM model can extract relevant spatial and temporal features from time series.•Energy companies may improve their safeguarding policies and reduce losses due to price volatility. | 
    
|---|---|
| AbstractList | The crude oil price has been subject to periodic fluctuations because of seasonal changes in industrial demand and supply, weather, natural disasters and global political unrest. An accurate forecast of crude oil prices is of utmost importance for decision makers and industry players in the energy sector. Despite this, the volatility of crude oil prices contributes to the uncertainty of the energy industry, which was particularly challenging following the recent global spread of the COVID-19 epidemic and the Russia–Ukraine conflict. This paper proposes a hybrid deep learning (DL) modelling framework to deal with the volatility of crude oil prices, applying ensemble empirical mode decomposition (EEMD), convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) integrated with quantile regression (QR); named EEMD-CNN-BiLSTM-QR. Two real-world datasets on crude oil prices from the West Texas Intermediate and Brent Crude Oil markets were employed to validate the EEMD-CNN-BiLSTM-QR hybrid modelling framework. Given that the probability density forecast can capture uncertainty, an in-depth analysis was carried out and prediction accuracy calculated. The findings of this study demonstrate that the proposed EEMD-CNN-BiLSTM-QR DL modelling framework, which uses the probability density forecast method, is superior to other tested models in terms of its ability to forecast crude oil prices. The novelty of this study stems mainly from its use of QR, which allows for the description of the conditional distribution of predicted variables and the extraction of more uncertain information for probability density forecasts.
•A decomposition ensemble technique can effectively improve forecasting accuracy.•The proposed EEMD-CNN-BiLSTM-QR hybrid model exhibits superior forecasting accuracy.•A CNN-BiLSTM model can extract relevant spatial and temporal features from time series.•Energy companies may improve their safeguarding policies and reduce losses due to price volatility. | 
    
| ArticleNumber | 104150 | 
    
| Author | Shen, Liang Zhou, Xiaohong Huang, Yanmei Deng, Changrui Bao, Yukun Hasan, Najmul  | 
    
| Author_xml | – sequence: 1 givenname: Liang surname: Shen fullname: Shen, Liang organization: Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Yukun orcidid: 0000-0001-5418-8799 surname: Bao fullname: Bao, Yukun organization: Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Najmul orcidid: 0000-0003-2108-6918 surname: Hasan fullname: Hasan, Najmul organization: BRAC Business School, BRAC University, Dhaka 1212, Bangladesh – sequence: 4 givenname: Yanmei orcidid: 0009-0005-0210-6778 surname: Huang fullname: Huang, Yanmei email: yanmeihuang@hust.edu.cn organization: Center for Modern Information Management, School of Management, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 5 givenname: Xiaohong surname: Zhou fullname: Zhou, Xiaohong organization: Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu 338029, China – sequence: 6 givenname: Changrui surname: Deng fullname: Deng, Changrui organization: Center for Big Data Analytics, Jiangxi University of Engineering, Xinyu 338029, China  | 
    
| BookMark | eNqFUE1rAyEQ9ZBCk7Q_oeAf2FR3V3e3l1LSr0Cgl_Ysro7BYHRRU8i_ryG5dw4zzBveG95boJkPHhB6oGRFCeWP-5UKh8l6vapJ3RaspYzM0LzceNVwym7RIqU9KdV1fI7Uxmdwzu7AZ6ziUQMO1uEpWgWlh1GO1tl8wiZEUDJl63dP-BVgwg5k9GXFh6DBJSy9xuXxMeV4wnKanFUy2-DTHbox0iW4v84l-nl_-15_Vtuvj836ZVupmnW5kloSOhLKtDIDO2OSsrYZGOeq1kY2o-qUMX1ft6rv-NCB7rmsO2p6MkhGmyViF10VQ0oRjCg2DjKeBCXinI7Yi2s64pyOuKRTeM8XXnEBvxaiSMqCV6Bt8ZyFDvYfhT_10Hao | 
    
| Cites_doi | 10.1016/j.asoc.2021.108032 10.1016/j.eneco.2019.07.009 10.1016/j.apenergy.2022.119507 10.1016/j.energy.2021.119887 10.1016/j.apenergy.2019.01.022 10.1016/j.eswa.2022.119326 10.1016/j.knosys.2020.106431 10.1016/j.asoc.2020.106509 10.1214/aoms/1177731944 10.1016/j.resourpol.2022.102737 10.1016/j.egyr.2022.02.206 10.1002/ijfe.2345 10.1016/j.ijepes.2019.05.075 10.1016/j.resourpol.2022.102855 10.1016/j.eneco.2024.107423 10.1016/j.eswa.2022.118658 10.1016/j.eneco.2021.105121 10.1016/j.jmapro.2022.04.010 10.1016/j.procs.2017.11.373 10.1142/S1793536909000047 10.1016/j.resourpol.2021.102075 10.1016/j.apenergy.2022.118756 10.1016/j.resourpol.2021.102244 10.1016/j.energy.2021.119758 10.2307/1913643 10.1016/j.knosys.2020.106669 10.1016/j.energy.2022.124684 10.1016/j.apenergy.2019.114396 10.1016/j.engappai.2015.07.019 10.1016/j.techfore.2017.09.007 10.1016/j.apenergy.2021.117465 10.1016/j.enconman.2021.114451 10.1016/j.epsr.2020.106430 10.1016/0378-3758(95)95021-N 10.1016/j.egypro.2019.01.169 10.13053/rcs-121-1-6 10.1016/j.procs.2012.04.139 10.1016/j.neucom.2022.01.084 10.1016/j.eneco.2022.106014 10.1016/j.energy.2018.07.090 10.1016/j.neucom.2020.10.043 10.1016/j.apenergy.2020.115702 10.1016/j.eswa.2024.124195 10.1016/j.neunet.2005.06.042 10.1016/j.resourpol.2022.102903 10.1016/j.eneco.2021.105239 10.1016/j.eneco.2021.105494 10.1016/j.epsr.2021.107551 10.1109/ACCESS.2019.2938214 10.1016/j.engappai.2022.105150 10.1016/j.jhtm.2021.08.022 10.1016/j.knosys.2021.107621 10.1016/j.engappai.2021.104217 10.1016/j.energy.2021.121034 10.3389/fenrg.2021.707937 10.1080/03610928008827904 10.1016/j.asoc.2021.108084 10.1109/TSE.2008.35 10.1016/j.apenergy.2017.11.035 10.1016/j.eneco.2017.05.023 10.1016/j.energy.2021.120050 10.1016/j.physa.2018.09.120 10.1016/j.energy.2021.122245 10.1016/j.renene.2018.02.006 10.1080/07350015.2014.949342 10.1016/j.eneco.2016.01.006 10.1016/j.cjche.2023.12.007 10.1016/j.techfore.2021.121181 10.1016/j.apenergy.2020.115035 10.1016/j.asoc.2021.107288 10.1016/j.eneco.2013.07.028 10.1016/j.compag.2021.106568 10.1016/j.measurement.2021.109166 10.1016/j.engappai.2024.108111 10.1016/j.renene.2020.08.162  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2024 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.compind.2024.104150 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| ExternalDocumentID | 10_1016_j_compind_2024_104150 S0166361524000782  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSV SSZ T5K TAE TAF TN5 U5U UNMZH VH1 WH7 WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD  | 
    
| ID | FETCH-LOGICAL-c257t-ada01b015dcf95c257a15439566c2dfa3bc7cff8824c87697ed86a271f809a513 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0166-3615 | 
    
| IngestDate | Wed Oct 01 01:33:59 EDT 2025 Sat Sep 14 18:10:53 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Probability density forecast Crude oil price Ensemble empirical mode decomposition Quantile regression Bidirectional long short-term memory Convolutional neural network  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c257t-ada01b015dcf95c257a15439566c2dfa3bc7cff8824c87697ed86a271f809a513 | 
    
| ORCID | 0000-0001-5418-8799 0000-0003-2108-6918 0009-0005-0210-6778  | 
    
| ParticipantIDs | crossref_primary_10_1016_j_compind_2024_104150 elsevier_sciencedirect_doi_10_1016_j_compind_2024_104150  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2024 2024-12-00  | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Computers in industry | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Kakade, Jain, Mishra (bib41) 2022; 78 Li, Zhu, Wu (bib47) 2019; 83 Zhang, Chen, Yao, Ge, Dong (bib79) 2019; 1142 Zhao, Li, Yu (bib80) 2017; 66 Guo, Zhou, Zhang, Yang (bib25) 2018; 160 Guo, Zhao, Sun, Sun (bib24) 2022; 77 Zhang, Di, Farnoosh (bib77) 2021; 223 Baumeister, Kilian (bib5) 2015; 33 He, Qin, Wang, Wang (bib28) 2019; 233 Lai, Shi, Han, Shao, Qi, Li (bib44) 2022; 481 Wang, Niu, Du, Yang (bib64) 2020; 95 Hou, Zhang, Wu, Yu, Wang, Li, Gao, Ye, Yao (bib33) 2022; 235 Zhang, Liu (bib76) 2024; 252 Wu, Huang (bib67) 2009; 1 Sun, Zhao, Xu (bib61) 2021; 98 Zhang, He, Yang (bib78) 2021; 201 Alqahtani, Selmi, Hongbing (bib3) 2021; 72 Hu, Wang, Li, Wang (bib34) 2022; 78 Datta, Londono, Ross (bib12) 2017; 64 Yang, Li, Li, Qu (bib73) 2018; 213 Graves, Schmidhuber (bib22) 2005; 18 Friedman (bib20) 1940; 11 Maulion, Sohal Jr, Irabon, Carpio (bib53) 2022; 34 Monge, Gil-Alana (bib54) 2021; 232 Demšar (bib14) 2006; 7 Deng, Xiao, Zhu, Peng, Li, Liu (bib15) 2023; 215 Huang, Sun, Wang (bib35) 2021; 9 Yao, Li, Liu, Yang, Jia (bib75) 2021; 175 He, Wang (bib29) 2021; 105 Kim, Lee, Lee, Lee, Lee, Kim (bib42) 2020; 278 Nandram (bib55) 1995; 44 Li, Qian, Deng, Zhang, Lu, Wang (bib50) 2021; 113 Taormina, Chau (bib62) 2015; 45 Xu, Wang, Tang (bib70) 2019; 237 Chai, Lu, Hu, Wang, Lai, Liu (bib7) 2018; 126 He, Cao, Wang, Fu (bib32) 2022; 322 Li, Hu, Heng, Chen (bib49) 2021; 173 Ren, Yu, Gao, Yu, Yu (bib59) 2022; 8 Yang, Han, Cai, Wang (bib72) 2012; 9 Ding, Zhao, Wang (bib17) 2022; 312 Ji, Sun, Kong, Miao (bib39) 2019; 7 He, Zhang (bib31) 2020; 209 Bai, Li, Wei, Wei (bib4) 2022; 27 Dong, Jiang, Guo, Wang (bib18) 2024; 133 Ding, Zhao, Han (bib16) 2021; 220 Xiong, Bao, Hu (bib69) 2013; 40 Chen, Wang, Dong, Su, Han, Zhou, Zhao, Bao (bib8) 2021; 244 Peng, Zhang, Zhou, Nazir (bib57) 2021; 221 Ma, Xia, Wang, Niu, Jiang, Liu, Guo (bib52) 2022; 114 Huang, Hasan, Deng, Bao (bib37) 2022; 239 Yang, Guo, Sun, Li (bib74) 2021; 101 Pérez-Espinosa, Avila-George, Rodriguez-Jacobo, Cruz-Mendoza, Martínez-Miranda, Espinosa-Curiel (bib58) 2016; 121 Pedro, Coimbra, David, Lauret (bib56) 2018; 123 Chena, Heb, Tso (bib9) 2017; 122 He, Ji, Wu, Tso (bib27) 2021; 49 Iman, Davenport (bib38) 1980; A9 Bracale, Caramia, Falco, Hong (bib6) 2020; 187 Ali Salamai (bib2) 2023; 211 Xu, Chen, Goude, Yao (bib71) 2021; 301 He, Zhou, Mo, Feng, Liu, He (bib26) 2020; 262 Shang, Ma, Bhatia, Alofaysan, Walsh (bib60) 2024; 132 Jiang, Hu, Xiao, Dong (bib40) 2022; 78 Lessmann, Baesens, Mues, Pietsch (bib45) 2008; 34 Liadze, Macchiarelli, Mortimer-Lee, Juanino (bib51) 2022 Wang, Wang, Wang (bib65) 2019; 158 Dai, Zhao, He, Du, Zhong, Li, Qian (bib11) 2024; 69 Dawar, Dutta, Bouri, Saeed (bib13) 2021; 163 Uniejewski, Weron (bib63) 2021; 95 Xing, Zhang (bib68) 2022; 110 Ghasemlounia, Gharehbaghi, Ahmadi, Saadatnejadgharahassanlou (bib21) 2021; 191 Li, Xu, Geng, Hong (bib48) 2022; 114 He, Yan, Xu (bib30) 2019; 113 Guan, Li, Xue, Xi (bib23) 2021; 426 Li, Yin, Yang (bib46) 2022; 257 Abdollahi (bib1) 2020; 267 Koenker, Gilbert Bassett (bib43) 1978; 46 Huang, Deng (bib36) 2021; 213 Costa, Ferreira, Gaglianone, Guillén, Issler, Lin (bib10) 2021; 102 Drachal (bib19) 2021; 74 Wu, Wu, Zhu (bib66) 2019; 516 Ren (10.1016/j.compind.2024.104150_bib59) 2022; 8 Yang (10.1016/j.compind.2024.104150_bib73) 2018; 213 Dai (10.1016/j.compind.2024.104150_bib11) 2024; 69 Sun (10.1016/j.compind.2024.104150_bib61) 2021; 98 Deng (10.1016/j.compind.2024.104150_bib15) 2023; 215 Huang (10.1016/j.compind.2024.104150_bib36) 2021; 213 Alqahtani (10.1016/j.compind.2024.104150_bib3) 2021; 72 Wang (10.1016/j.compind.2024.104150_bib64) 2020; 95 Xiong (10.1016/j.compind.2024.104150_bib69) 2013; 40 Yang (10.1016/j.compind.2024.104150_bib72) 2012; 9 Demšar (10.1016/j.compind.2024.104150_bib14) 2006; 7 Wu (10.1016/j.compind.2024.104150_bib66) 2019; 516 Ding (10.1016/j.compind.2024.104150_bib17) 2022; 312 Jiang (10.1016/j.compind.2024.104150_bib40) 2022; 78 Dong (10.1016/j.compind.2024.104150_bib18) 2024; 133 Li (10.1016/j.compind.2024.104150_bib50) 2021; 113 Guo (10.1016/j.compind.2024.104150_bib25) 2018; 160 He (10.1016/j.compind.2024.104150_bib32) 2022; 322 Pedro (10.1016/j.compind.2024.104150_bib56) 2018; 123 Zhang (10.1016/j.compind.2024.104150_bib77) 2021; 223 Maulion (10.1016/j.compind.2024.104150_bib53) 2022; 34 Li (10.1016/j.compind.2024.104150_bib46) 2022; 257 Bai (10.1016/j.compind.2024.104150_bib4) 2022; 27 Ma (10.1016/j.compind.2024.104150_bib52) 2022; 114 Peng (10.1016/j.compind.2024.104150_bib57) 2021; 221 He (10.1016/j.compind.2024.104150_bib27) 2021; 49 Lessmann (10.1016/j.compind.2024.104150_bib45) 2008; 34 Hou (10.1016/j.compind.2024.104150_bib33) 2022; 235 Liadze (10.1016/j.compind.2024.104150_bib51) 2022; 32 Uniejewski (10.1016/j.compind.2024.104150_bib63) 2021; 95 Zhang (10.1016/j.compind.2024.104150_bib79) 2019; 1142 Chena (10.1016/j.compind.2024.104150_bib9) 2017; 122 Datta (10.1016/j.compind.2024.104150_bib12) 2017; 64 Guan (10.1016/j.compind.2024.104150_bib23) 2021; 426 Bracale (10.1016/j.compind.2024.104150_bib6) 2020; 187 Koenker (10.1016/j.compind.2024.104150_bib43) 1978; 46 Xu (10.1016/j.compind.2024.104150_bib70) 2019; 237 Guo (10.1016/j.compind.2024.104150_bib24) 2022; 77 Graves (10.1016/j.compind.2024.104150_bib22) 2005; 18 Dawar (10.1016/j.compind.2024.104150_bib13) 2021; 163 Huang (10.1016/j.compind.2024.104150_bib37) 2022; 239 Xu (10.1016/j.compind.2024.104150_bib71) 2021; 301 Lai (10.1016/j.compind.2024.104150_bib44) 2022; 481 Yang (10.1016/j.compind.2024.104150_bib74) 2021; 101 Abdollahi (10.1016/j.compind.2024.104150_bib1) 2020; 267 Li (10.1016/j.compind.2024.104150_bib48) 2022; 114 Chen (10.1016/j.compind.2024.104150_bib8) 2021; 244 Li (10.1016/j.compind.2024.104150_bib47) 2019; 83 He (10.1016/j.compind.2024.104150_bib26) 2020; 262 Li (10.1016/j.compind.2024.104150_bib49) 2021; 173 Zhao (10.1016/j.compind.2024.104150_bib80) 2017; 66 Friedman (10.1016/j.compind.2024.104150_bib20) 1940; 11 Hu (10.1016/j.compind.2024.104150_bib34) 2022; 78 Monge (10.1016/j.compind.2024.104150_bib54) 2021; 232 Baumeister (10.1016/j.compind.2024.104150_bib5) 2015; 33 Costa (10.1016/j.compind.2024.104150_bib10) 2021; 102 Iman (10.1016/j.compind.2024.104150_bib38) 1980; A9 Kim (10.1016/j.compind.2024.104150_bib42) 2020; 278 Xing (10.1016/j.compind.2024.104150_bib68) 2022; 110 Yao (10.1016/j.compind.2024.104150_bib75) 2021; 175 Kakade (10.1016/j.compind.2024.104150_bib41) 2022; 78 Ding (10.1016/j.compind.2024.104150_bib16) 2021; 220 Ghasemlounia (10.1016/j.compind.2024.104150_bib21) 2021; 191 He (10.1016/j.compind.2024.104150_bib31) 2020; 209 Chai (10.1016/j.compind.2024.104150_bib7) 2018; 126 Ji (10.1016/j.compind.2024.104150_bib39) 2019; 7 Drachal (10.1016/j.compind.2024.104150_bib19) 2021; 74 Nandram (10.1016/j.compind.2024.104150_bib55) 1995; 44 Wu (10.1016/j.compind.2024.104150_bib67) 2009; 1 Pérez-Espinosa (10.1016/j.compind.2024.104150_bib58) 2016; 121 Shang (10.1016/j.compind.2024.104150_bib60) 2024; 132 Zhang (10.1016/j.compind.2024.104150_bib78) 2021; 201 He (10.1016/j.compind.2024.104150_bib28) 2019; 233 Wang (10.1016/j.compind.2024.104150_bib65) 2019; 158 Taormina (10.1016/j.compind.2024.104150_bib62) 2015; 45 He (10.1016/j.compind.2024.104150_bib30) 2019; 113 Huang (10.1016/j.compind.2024.104150_bib35) 2021; 9 Zhang (10.1016/j.compind.2024.104150_bib76) 2024; 252 He (10.1016/j.compind.2024.104150_bib29) 2021; 105 Ali Salamai (10.1016/j.compind.2024.104150_bib2) 2023; 211  | 
    
| References_xml | – volume: 244 year: 2021 ident: bib8 article-title: 2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model publication-title: Energy Convers. Manag. – volume: 113 start-page: 515 year: 2019 end-page: 527 ident: bib30 article-title: Wind and solar power probability density prediction via fuzzy information granulation and support vector quantile regression publication-title: Int. J. Electr. Power Energy Syst. – volume: 175 year: 2021 ident: bib75 article-title: Remaining useful life prediction of roller bearings based on improved 1D-CNN and simple recurrent unit publication-title: Measurement – volume: 122 start-page: 300 year: 2017 end-page: 307 ident: bib9 article-title: Forecasting Crude Oil Prices: a Deep Learning based Model publication-title: Procedia Comput. Sci. – volume: 45 start-page: 429 year: 2015 end-page: 440 ident: bib62 article-title: ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS publication-title: Eng. Appl. Artif. Intell. – volume: 209 year: 2020 ident: bib31 article-title: Probability density forecasting of wind power based on multi-core parallel quantile regression neural network publication-title: Knowl. -Based Syst. – volume: 46 start-page: 33 year: 1978 end-page: 50 ident: bib43 article-title: Regression quantiles publication-title: Econometrica – volume: 211 year: 2023 ident: bib2 article-title: Deep learning framework for predictive modeling of crude oil price for sustainable management in oil markets publication-title: Expert Syst. Appl. – volume: 516 start-page: 114 year: 2019 end-page: 124 ident: bib66 article-title: Improved EEMD-based crude oil price forecasting using LSTM networks publication-title: Phys. A: Stat. Mech. Appl. – volume: 83 start-page: 240 year: 2019 end-page: 253 ident: bib47 article-title: Monthly crude oil spot price forecasting using variational mode decomposition publication-title: Energy Econ. – volume: 69 start-page: 152 year: 2024 end-page: 166 ident: bib11 article-title: Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty publication-title: Chin. J. Chem. Eng. – volume: 215 year: 2023 ident: bib15 article-title: High-frequency direction forecasting and simulation trading of the crude oil futures using Ichimoku KinkoHyo and Fuzzy Rough Set publication-title: Expert Syst. Appl. – volume: 123 start-page: 191 year: 2018 end-page: 203 ident: bib56 article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts publication-title: Renew. Energy – volume: 34 start-page: 485 year: 2008 end-page: 496 ident: bib45 article-title: Benchmarking classification models for software defect prediction: a proposed framework and novel findings publication-title: IEEE Trans. Softw. Eng. – volume: 44 start-page: 167 year: 1995 end-page: 180 ident: bib55 article-title: Bayesian cuboid prediction intervals: An application to tensile-strength prediction publication-title: J. Stat. Plan. Inferenc – volume: 95 year: 2021 ident: bib63 article-title: Regularized quantile regression averaging for probabilistic electricity price forecasting publication-title: Energy Econ. – volume: 235 year: 2022 ident: bib33 article-title: Method and dataset entity mining in scientific literature: a CNN + BiLSTM model with self-attention publication-title: Knowl. -Based Syst. – volume: 481 start-page: 249 year: 2022 end-page: 257 ident: bib44 article-title: Exploring uncertainty in regression neural networks for construction of prediction intervals publication-title: Neurocomputing – volume: 78 year: 2022 ident: bib41 article-title: Value-at-Risk forecasting: a hybrid ensemble learning GARCH-LSTM based approach publication-title: Resour. Policy – volume: 110 year: 2022 ident: bib68 article-title: Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help? publication-title: Energy Econ. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib14 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 187 start-page: 106 year: 2020 end-page: 430 ident: bib6 article-title: A multivariate approach to probabilistic industrial load forecasting publication-title: Electr. Power Syst. Res. – volume: 133 year: 2024 ident: bib18 article-title: A novel crude oil price forecasting model using decomposition and deep learning networks publication-title: Eng. Appl. Artif. Intell. – volume: 201 year: 2021 ident: bib78 article-title: Day-ahead load probability density forecasting using monotone composite quantile regression neural network and kernel density estimation publication-title: Electr. Power Syst. Res. – volume: 98 year: 2021 ident: bib61 article-title: Crude oil market autocorrelation: evidence from multiscale quantile regression analysis publication-title: Energy Econ. – volume: 426 start-page: 174 year: 2021 end-page: 184 ident: bib23 article-title: Feature-fusion-kernel-based Gaussian process model for probabilistic long-term load forecasting publication-title: Neurocomputing – volume: 233 year: 2019 ident: bib28 article-title: Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Networ publication-title: Applied Energy – volume: 221 year: 2021 ident: bib57 article-title: An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting publication-title: Energy – volume: 312 year: 2022 ident: bib17 article-title: Probability density forecasts for natural gas demand in China: do mixed-frequency dynamic factors matter? publication-title: Appl. Energy – volume: 213 year: 2021 ident: bib36 article-title: A new crude oil price forecasting model based on variational mode decomposition publication-title: Knowl. -Based Syst. – volume: 78 year: 2022 ident: bib40 article-title: A decomposition ensemble based deep learning approach for crude oil price forecasting publication-title: Resour. Policy – start-page: 1 year: 2022 end-page: 10 ident: bib51 article-title: The economic costs of the Russia-Ukraine conflict publication-title: Natl. Inst. Econ. Soc. Res. Policy Pap. no – volume: 132 year: 2024 ident: bib60 article-title: Unveiling the enigma: Exploring how uncertain crude oil prices shape investment expenditure and efficiency in Chinese enterprises publication-title: Energy Econ. – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: bib20 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. – volume: 1 start-page: 1 year: 2009 end-page: 41 ident: bib67 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 223 year: 2021 ident: bib77 article-title: Study on the impacts of Shanghai crude oil futures on global oil market and oil industry based on VECM and DAG models publication-title: Energy – volume: 257 year: 2022 ident: bib46 article-title: A novel crude oil prices forecasting model based on secondary decomposition publication-title: Energy – volume: 77 year: 2022 ident: bib24 article-title: Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework publication-title: Resour. Policy – volume: 237 start-page: 180 year: 2019 end-page: 195 ident: bib70 article-title: Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load publication-title: Appl. Energy – volume: 9 year: 2021 ident: bib35 article-title: A New Two-Stage Approach with Boosting and Model Averaging for Interval-Valued Crude Oil Prices Forecasting in Uncertainty Environments publication-title: Front. Energy Res. – volume: 163 start-page: 288 year: 2021 end-page: 299 ident: bib13 article-title: Crude oil prices and clean energy stock indices: Lagged and asymmetric effects with quantile regression publication-title: Renew. Energy – volume: 18 start-page: 602 year: 2005 end-page: 610 ident: bib22 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Netw. – volume: 262 year: 2020 ident: bib26 article-title: Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest publication-title: Appl. Energy – volume: A9 start-page: 571 year: 1980 end-page: 595 ident: bib38 article-title: Approximations of the critical region of the Friedman statistic publication-title: Commun. Stat. - Theory Methods – volume: 267 year: 2020 ident: bib1 article-title: A novel hybrid model for forecasting crude oil price based on time series decomposition publication-title: Appl. Energy – volume: 102 year: 2021 ident: bib10 article-title: Machine learning and oil price point and density forecasting publication-title: Energy Econ. – volume: 105 year: 2021 ident: bib29 article-title: Short-term wind power prediction based on EEMD–LASSO–QRNN model publication-title: Appl. Soft Comput. – volume: 173 year: 2021 ident: bib49 article-title: A novel multiscale forecasting model for crude oil price time series publication-title: Technol. Forecast. Soc. Change – volume: 252 year: 2024 ident: bib76 article-title: Interval prediction of crude oil spot price volatility: an improved hybrid model integrating decomposition strategy, IESN and ARIMA publication-title: Expert Syst. Appl. – volume: 33 start-page: 338 year: 2015 end-page: 351 ident: bib5 article-title: Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach publication-title: J. Bus. Econ. Stat. – volume: 66 start-page: 9 year: 2017 end-page: 16 ident: bib80 article-title: A deep learning ensemble approach for crude oil price forecasting publication-title: Energy Econ. – volume: 114 year: 2022 ident: bib52 article-title: A comprehensive comparison among metaheuristics (MHs) for geohazard modeling using machine learning: Insights from a case study of landslide displacement prediction publication-title: Eng. Appl. Artif. Intell. – volume: 49 start-page: 25 year: 2021 end-page: 33 ident: bib27 article-title: Using SARIMA–CNN–LSTM approach to forecast daily tourism demand publication-title: J. Hosp. Tour. Manag. – volume: 213 start-page: 499 year: 2018 end-page: 509 ident: bib73 article-title: Power load probability density forecasting using Gaussian process quantile regression publication-title: Appl. Energy – volume: 34 start-page: 225 year: 2022 end-page: 230 ident: bib53 article-title: Oil crude price volatility: a white noise stochastic analysis publication-title: Sci. Int. – volume: 126 start-page: 271 year: 2018 end-page: 283 ident: bib7 article-title: Analysis and Bayes statistical probability inference of crude oil price change point publication-title: Technol. Forecast. Soc. Change – volume: 64 start-page: 440 year: 2017 end-page: 457 ident: bib12 article-title: Generating options-implied probability densities to understand oil market events publication-title: Energy Econ. – volume: 8 start-page: 437 year: 2022 end-page: 443 ident: bib59 article-title: A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism publication-title: Energy Rep. – volume: 72 year: 2021 ident: bib3 article-title: The financial impacts of jump processes in the crude oil price: evidence from G20 countries in the pre- and post-COVID-19 publication-title: Resour. Policy – volume: 160 start-page: 1186 year: 2018 end-page: 1200 ident: bib25 article-title: A deep learning model for short-term power load and probability density forecasting publication-title: Energy – volume: 101 year: 2021 ident: bib74 article-title: Forecasting crude oil price with a new hybrid approach and multi-source data publication-title: Eng. Appl. Artif. Intell. – volume: 232 year: 2021 ident: bib54 article-title: Spatial crude oil production divergence and crude oil price behaviour in the United States publication-title: Energy – volume: 121 start-page: 69 year: 2016 end-page: 81 ident: bib58 article-title: Tuning the parameters of a convolutional artificial neural network by using covering arrays publication-title: Res. Comput. Sci. – volume: 239 year: 2022 ident: bib37 article-title: Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting publication-title: Energy – volume: 95 year: 2020 ident: bib64 article-title: Ensemble probabilistic prediction approach for modeling uncertainty in crude oil price publication-title: Appl. Soft Comput. – volume: 158 start-page: 6446 year: 2019 end-page: 6451 ident: bib65 article-title: Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation publication-title: Energy Procedia – volume: 322 year: 2022 ident: bib32 article-title: Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems publication-title: Appl. Energy – volume: 191 year: 2021 ident: bib21 article-title: Developing a novel framework for forecasting groundwater level fluctuations using Bi-directional Long Short-Term Memory (BiLSTM) deep neural network publication-title: Comput. Electron. Agric. – volume: 40 start-page: 405 year: 2013 end-page: 415 ident: bib69 article-title: Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Econ. – volume: 1142 start-page: 287 year: 2019 end-page: 295 ident: bib79 article-title: Deep neural network hyperparameter optimization with orthogonal array tuning publication-title: Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science – volume: 74 year: 2021 ident: bib19 article-title: Forecasting crude oil real prices with averaging time-varying VAR models publication-title: Resour. Policy – volume: 78 start-page: 32 year: 2022 end-page: 45 ident: bib34 article-title: CNN-BiLSTM enabled prediction on molten pool width for thin-walled part fabrication using Laser Directed Energy Deposition publication-title: J. Manuf. Process. – volume: 301 year: 2021 ident: bib71 article-title: Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression publication-title: Appl. Energy – volume: 27 start-page: 3694 year: 2022 end-page: 3712 ident: bib4 article-title: Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting publication-title: Int. J. Financ. Econ. – volume: 7 start-page: 124185 year: 2019 end-page: 124195 ident: bib39 article-title: A construction approach to prediction intervals based on bootstrap and deep belief network publication-title: IEEE Access – volume: 220 year: 2021 ident: bib16 article-title: Probability density forecasts for steam coal prices in China: The role of high-frequency factors publication-title: Energy – volume: 114 year: 2022 ident: bib48 article-title: A hybrid approach for forecasting ship motion using CNN–GRU–AM and GCWOA publication-title: Appl. Soft Comput. – volume: 278 year: 2020 ident: bib42 article-title: Robust estimation of outage costs in South Korea using a machine learning technique: Bayesian Tobit quantile regression publication-title: Appl. Energy – volume: 9 start-page: 1273 year: 2012 end-page: 1282 ident: bib72 article-title: ACIX model with interval dummy variables and its application in forecasting interval-valued crude oil prices publication-title: Procedia Comput. Sci. – volume: 113 year: 2021 ident: bib50 article-title: Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning publication-title: Appl. Soft Comput. – volume: 113 year: 2021 ident: 10.1016/j.compind.2024.104150_bib50 article-title: Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108032 – volume: 83 start-page: 240 year: 2019 ident: 10.1016/j.compind.2024.104150_bib47 article-title: Monthly crude oil spot price forecasting using variational mode decomposition publication-title: Energy Econ. doi: 10.1016/j.eneco.2019.07.009 – volume: 233 issue: 234 year: 2019 ident: 10.1016/j.compind.2024.104150_bib28 article-title: Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Networ publication-title: Applied Energy – volume: 322 year: 2022 ident: 10.1016/j.compind.2024.104150_bib32 article-title: Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119507 – volume: 221 year: 2021 ident: 10.1016/j.compind.2024.104150_bib57 article-title: An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting publication-title: Energy doi: 10.1016/j.energy.2021.119887 – volume: 237 start-page: 180 year: 2019 ident: 10.1016/j.compind.2024.104150_bib70 article-title: Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.022 – volume: 215 year: 2023 ident: 10.1016/j.compind.2024.104150_bib15 article-title: High-frequency direction forecasting and simulation trading of the crude oil futures using Ichimoku KinkoHyo and Fuzzy Rough Set publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119326 – volume: 209 year: 2020 ident: 10.1016/j.compind.2024.104150_bib31 article-title: Probability density forecasting of wind power based on multi-core parallel quantile regression neural network publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2020.106431 – volume: 95 year: 2020 ident: 10.1016/j.compind.2024.104150_bib64 article-title: Ensemble probabilistic prediction approach for modeling uncertainty in crude oil price publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106509 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 10.1016/j.compind.2024.104150_bib20 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – volume: 77 year: 2022 ident: 10.1016/j.compind.2024.104150_bib24 article-title: Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework publication-title: Resour. Policy doi: 10.1016/j.resourpol.2022.102737 – volume: 8 start-page: 437 year: 2022 ident: 10.1016/j.compind.2024.104150_bib59 article-title: A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.02.206 – volume: 27 start-page: 3694 issue: 3 year: 2022 ident: 10.1016/j.compind.2024.104150_bib4 article-title: Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting publication-title: Int. J. Financ. Econ. doi: 10.1002/ijfe.2345 – volume: 113 start-page: 515 year: 2019 ident: 10.1016/j.compind.2024.104150_bib30 article-title: Wind and solar power probability density prediction via fuzzy information granulation and support vector quantile regression publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.05.075 – volume: 78 year: 2022 ident: 10.1016/j.compind.2024.104150_bib40 article-title: A decomposition ensemble based deep learning approach for crude oil price forecasting publication-title: Resour. Policy doi: 10.1016/j.resourpol.2022.102855 – volume: 132 year: 2024 ident: 10.1016/j.compind.2024.104150_bib60 article-title: Unveiling the enigma: Exploring how uncertain crude oil prices shape investment expenditure and efficiency in Chinese enterprises publication-title: Energy Econ. doi: 10.1016/j.eneco.2024.107423 – volume: 211 year: 2023 ident: 10.1016/j.compind.2024.104150_bib2 article-title: Deep learning framework for predictive modeling of crude oil price for sustainable management in oil markets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118658 – volume: 95 year: 2021 ident: 10.1016/j.compind.2024.104150_bib63 article-title: Regularized quantile regression averaging for probabilistic electricity price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2021.105121 – volume: 78 start-page: 32 year: 2022 ident: 10.1016/j.compind.2024.104150_bib34 article-title: CNN-BiLSTM enabled prediction on molten pool width for thin-walled part fabrication using Laser Directed Energy Deposition publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.04.010 – volume: 122 start-page: 300 year: 2017 ident: 10.1016/j.compind.2024.104150_bib9 article-title: Forecasting Crude Oil Prices: a Deep Learning based Model publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.11.373 – volume: 1 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.compind.2024.104150_bib67 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 72 year: 2021 ident: 10.1016/j.compind.2024.104150_bib3 article-title: The financial impacts of jump processes in the crude oil price: evidence from G20 countries in the pre- and post-COVID-19 publication-title: Resour. Policy doi: 10.1016/j.resourpol.2021.102075 – volume: 312 year: 2022 ident: 10.1016/j.compind.2024.104150_bib17 article-title: Probability density forecasts for natural gas demand in China: do mixed-frequency dynamic factors matter? publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118756 – volume: 74 year: 2021 ident: 10.1016/j.compind.2024.104150_bib19 article-title: Forecasting crude oil real prices with averaging time-varying VAR models publication-title: Resour. Policy doi: 10.1016/j.resourpol.2021.102244 – volume: 220 year: 2021 ident: 10.1016/j.compind.2024.104150_bib16 article-title: Probability density forecasts for steam coal prices in China: The role of high-frequency factors publication-title: Energy doi: 10.1016/j.energy.2021.119758 – volume: 46 start-page: 33 issue: 1 year: 1978 ident: 10.1016/j.compind.2024.104150_bib43 article-title: Regression quantiles publication-title: Econometrica doi: 10.2307/1913643 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.compind.2024.104150_bib14 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 213 year: 2021 ident: 10.1016/j.compind.2024.104150_bib36 article-title: A new crude oil price forecasting model based on variational mode decomposition publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2020.106669 – volume: 257 year: 2022 ident: 10.1016/j.compind.2024.104150_bib46 article-title: A novel crude oil prices forecasting model based on secondary decomposition publication-title: Energy doi: 10.1016/j.energy.2022.124684 – volume: 262 year: 2020 ident: 10.1016/j.compind.2024.104150_bib26 article-title: Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114396 – volume: 45 start-page: 429 year: 2015 ident: 10.1016/j.compind.2024.104150_bib62 article-title: ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.07.019 – volume: 126 start-page: 271 year: 2018 ident: 10.1016/j.compind.2024.104150_bib7 article-title: Analysis and Bayes statistical probability inference of crude oil price change point publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2017.09.007 – volume: 301 year: 2021 ident: 10.1016/j.compind.2024.104150_bib71 article-title: Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117465 – volume: 244 year: 2021 ident: 10.1016/j.compind.2024.104150_bib8 article-title: 2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114451 – volume: 187 start-page: 106 year: 2020 ident: 10.1016/j.compind.2024.104150_bib6 article-title: A multivariate approach to probabilistic industrial load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106430 – volume: 44 start-page: 167 year: 1995 ident: 10.1016/j.compind.2024.104150_bib55 article-title: Bayesian cuboid prediction intervals: An application to tensile-strength prediction publication-title: J. Stat. Plan. Inferenc doi: 10.1016/0378-3758(95)95021-N – volume: 158 start-page: 6446 year: 2019 ident: 10.1016/j.compind.2024.104150_bib65 article-title: Combined probability density model for medium term load forecasting based on quantile regression and kernel density estimation publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.169 – volume: 121 start-page: 69 issue: 1 year: 2016 ident: 10.1016/j.compind.2024.104150_bib58 article-title: Tuning the parameters of a convolutional artificial neural network by using covering arrays publication-title: Res. Comput. Sci. doi: 10.13053/rcs-121-1-6 – volume: 9 start-page: 1273 year: 2012 ident: 10.1016/j.compind.2024.104150_bib72 article-title: ACIX model with interval dummy variables and its application in forecasting interval-valued crude oil prices publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2012.04.139 – volume: 481 start-page: 249 year: 2022 ident: 10.1016/j.compind.2024.104150_bib44 article-title: Exploring uncertainty in regression neural networks for construction of prediction intervals publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.084 – volume: 110 year: 2022 ident: 10.1016/j.compind.2024.104150_bib68 article-title: Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help? publication-title: Energy Econ. doi: 10.1016/j.eneco.2022.106014 – volume: 160 start-page: 1186 year: 2018 ident: 10.1016/j.compind.2024.104150_bib25 article-title: A deep learning model for short-term power load and probability density forecasting publication-title: Energy doi: 10.1016/j.energy.2018.07.090 – volume: 426 start-page: 174 year: 2021 ident: 10.1016/j.compind.2024.104150_bib23 article-title: Feature-fusion-kernel-based Gaussian process model for probabilistic long-term load forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.043 – volume: 278 year: 2020 ident: 10.1016/j.compind.2024.104150_bib42 article-title: Robust estimation of outage costs in South Korea using a machine learning technique: Bayesian Tobit quantile regression publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115702 – volume: 252 year: 2024 ident: 10.1016/j.compind.2024.104150_bib76 article-title: Interval prediction of crude oil spot price volatility: an improved hybrid model integrating decomposition strategy, IESN and ARIMA publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124195 – volume: 18 start-page: 602 issue: 5-6 year: 2005 ident: 10.1016/j.compind.2024.104150_bib22 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 – volume: 78 year: 2022 ident: 10.1016/j.compind.2024.104150_bib41 article-title: Value-at-Risk forecasting: a hybrid ensemble learning GARCH-LSTM based approach publication-title: Resour. Policy doi: 10.1016/j.resourpol.2022.102903 – volume: 98 year: 2021 ident: 10.1016/j.compind.2024.104150_bib61 article-title: Crude oil market autocorrelation: evidence from multiscale quantile regression analysis publication-title: Energy Econ. doi: 10.1016/j.eneco.2021.105239 – volume: 102 year: 2021 ident: 10.1016/j.compind.2024.104150_bib10 article-title: Machine learning and oil price point and density forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2021.105494 – volume: 201 year: 2021 ident: 10.1016/j.compind.2024.104150_bib78 article-title: Day-ahead load probability density forecasting using monotone composite quantile regression neural network and kernel density estimation publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2021.107551 – volume: 7 start-page: 124185 year: 2019 ident: 10.1016/j.compind.2024.104150_bib39 article-title: A construction approach to prediction intervals based on bootstrap and deep belief network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2938214 – volume: 114 year: 2022 ident: 10.1016/j.compind.2024.104150_bib52 article-title: A comprehensive comparison among metaheuristics (MHs) for geohazard modeling using machine learning: Insights from a case study of landslide displacement prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105150 – volume: 49 start-page: 25 year: 2021 ident: 10.1016/j.compind.2024.104150_bib27 article-title: Using SARIMA–CNN–LSTM approach to forecast daily tourism demand publication-title: J. Hosp. Tour. Manag. doi: 10.1016/j.jhtm.2021.08.022 – volume: 34 start-page: 225 issue: 4 year: 2022 ident: 10.1016/j.compind.2024.104150_bib53 article-title: Oil crude price volatility: a white noise stochastic analysis publication-title: Sci. Int. – volume: 235 year: 2022 ident: 10.1016/j.compind.2024.104150_bib33 article-title: Method and dataset entity mining in scientific literature: a CNN + BiLSTM model with self-attention publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2021.107621 – volume: 101 year: 2021 ident: 10.1016/j.compind.2024.104150_bib74 article-title: Forecasting crude oil price with a new hybrid approach and multi-source data publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104217 – volume: 232 year: 2021 ident: 10.1016/j.compind.2024.104150_bib54 article-title: Spatial crude oil production divergence and crude oil price behaviour in the United States publication-title: Energy doi: 10.1016/j.energy.2021.121034 – volume: 9 year: 2021 ident: 10.1016/j.compind.2024.104150_bib35 article-title: A New Two-Stage Approach with Boosting and Model Averaging for Interval-Valued Crude Oil Prices Forecasting in Uncertainty Environments publication-title: Front. Energy Res. doi: 10.3389/fenrg.2021.707937 – volume: A9 start-page: 571 issue: 6 year: 1980 ident: 10.1016/j.compind.2024.104150_bib38 article-title: Approximations of the critical region of the Friedman statistic publication-title: Commun. Stat. - Theory Methods doi: 10.1080/03610928008827904 – volume: 114 year: 2022 ident: 10.1016/j.compind.2024.104150_bib48 article-title: A hybrid approach for forecasting ship motion using CNN–GRU–AM and GCWOA publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108084 – volume: 34 start-page: 485 issue: 4 year: 2008 ident: 10.1016/j.compind.2024.104150_bib45 article-title: Benchmarking classification models for software defect prediction: a proposed framework and novel findings publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2008.35 – volume: 213 start-page: 499 year: 2018 ident: 10.1016/j.compind.2024.104150_bib73 article-title: Power load probability density forecasting using Gaussian process quantile regression publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.11.035 – volume: 66 start-page: 9 year: 2017 ident: 10.1016/j.compind.2024.104150_bib80 article-title: A deep learning ensemble approach for crude oil price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.05.023 – volume: 223 year: 2021 ident: 10.1016/j.compind.2024.104150_bib77 article-title: Study on the impacts of Shanghai crude oil futures on global oil market and oil industry based on VECM and DAG models publication-title: Energy doi: 10.1016/j.energy.2021.120050 – volume: 32 start-page: 1 year: 2022 ident: 10.1016/j.compind.2024.104150_bib51 article-title: The economic costs of the Russia-Ukraine conflict publication-title: Natl. Inst. Econ. Soc. Res. Policy Pap. no – volume: 516 start-page: 114 year: 2019 ident: 10.1016/j.compind.2024.104150_bib66 article-title: Improved EEMD-based crude oil price forecasting using LSTM networks publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2018.09.120 – volume: 239 year: 2022 ident: 10.1016/j.compind.2024.104150_bib37 article-title: Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting publication-title: Energy doi: 10.1016/j.energy.2021.122245 – volume: 123 start-page: 191 year: 2018 ident: 10.1016/j.compind.2024.104150_bib56 article-title: Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts publication-title: Renew. Energy doi: 10.1016/j.renene.2018.02.006 – volume: 1142 start-page: 287 year: 2019 ident: 10.1016/j.compind.2024.104150_bib79 article-title: Deep neural network hyperparameter optimization with orthogonal array tuning – volume: 33 start-page: 338 issue: 3 year: 2015 ident: 10.1016/j.compind.2024.104150_bib5 article-title: Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.2014.949342 – volume: 64 start-page: 440 year: 2017 ident: 10.1016/j.compind.2024.104150_bib12 article-title: Generating options-implied probability densities to understand oil market events publication-title: Energy Econ. doi: 10.1016/j.eneco.2016.01.006 – volume: 69 start-page: 152 year: 2024 ident: 10.1016/j.compind.2024.104150_bib11 article-title: Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2023.12.007 – volume: 173 year: 2021 ident: 10.1016/j.compind.2024.104150_bib49 article-title: A novel multiscale forecasting model for crude oil price time series publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2021.121181 – volume: 267 year: 2020 ident: 10.1016/j.compind.2024.104150_bib1 article-title: A novel hybrid model for forecasting crude oil price based on time series decomposition publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115035 – volume: 105 year: 2021 ident: 10.1016/j.compind.2024.104150_bib29 article-title: Short-term wind power prediction based on EEMD–LASSO–QRNN model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107288 – volume: 40 start-page: 405 year: 2013 ident: 10.1016/j.compind.2024.104150_bib69 article-title: Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.07.028 – volume: 191 year: 2021 ident: 10.1016/j.compind.2024.104150_bib21 article-title: Developing a novel framework for forecasting groundwater level fluctuations using Bi-directional Long Short-Term Memory (BiLSTM) deep neural network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106568 – volume: 175 year: 2021 ident: 10.1016/j.compind.2024.104150_bib75 article-title: Remaining useful life prediction of roller bearings based on improved 1D-CNN and simple recurrent unit publication-title: Measurement doi: 10.1016/j.measurement.2021.109166 – volume: 133 year: 2024 ident: 10.1016/j.compind.2024.104150_bib18 article-title: A novel crude oil price forecasting model using decomposition and deep learning networks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108111 – volume: 163 start-page: 288 year: 2021 ident: 10.1016/j.compind.2024.104150_bib13 article-title: Crude oil prices and clean energy stock indices: Lagged and asymmetric effects with quantile regression publication-title: Renew. Energy doi: 10.1016/j.renene.2020.08.162  | 
    
| SSID | ssj0000776 | 
    
| Score | 2.462056 | 
    
| Snippet | The crude oil price has been subject to periodic fluctuations because of seasonal changes in industrial demand and supply, weather, natural disasters and... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 104150 | 
    
| SubjectTerms | Bidirectional long short-term memory Convolutional neural network Crude oil price Ensemble empirical mode decomposition Probability density forecast Quantile regression  | 
    
| Title | Intelligent crude oil price probability forecasting: Deep learning models and industry applications | 
    
| URI | https://dx.doi.org/10.1016/j.compind.2024.104150 | 
    
| Volume | 163 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0166-3615 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000776 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0166-3615 databaseCode: ACRLP dateStart: 19950301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000776 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0166-3615 databaseCode: AIKHN dateStart: 19950301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000776 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0166-3615 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000776 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0166-3615 databaseCode: AKRWK dateStart: 19790701 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000776 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TZM0b28lWlofRdRCb2GzD0mRNLTpoRd_uzPdxFYQD55ClmwIs8k332RnviHkGki0HclAGqjuZbiSScBBIYyAq1CpkHmewF8DTyN_MHbvJ96kQeK6FgbTKivs15i-RutqxKysaRZZZr4CWfEdcMiYBYmODivY3QC7GHQ-N2keKFej9b19A6_eVPGYU7x3AaEvhIldF3c7bSy__80_bfmc_gHZr8gi7ennOSQNmR-RvS0JwWPCh9-amiXl86WQdJZ90AK1gih2i9E63CsK5FRytsAs5xt6K2VBq4YR73TdDWdBWS5opjt5rOj2xvYJGffv3uKBUTVOMDh8gaXBBLPsFBy94CrycIwBU3IgFPJ5VyjmpBzWQgG5djmgYRRIEfqsG9gqtCLm2c4paeazXJ4RGkjLU0pYjoJQELXq3VRBkJX6EZOOdJ0W6dTmSgqtj5HUiWPTpLJvgvZNtH1bJKyNmvxY6AQw_O-p5_-fekF28UznoVySZjlfyitgE2XaXr8ubbLTi18en_E4fBiMvgD_bM1F | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQevpS19ezMoAQUuQsJts92HKTGlgXLg4m93hraCifHgddttm9l25pvuN98Qcg8g2o5UoAxU9zJcxRX4QSmNQOhQ65B7nsRfA4Oh3x27LxNvUiPtqhYGaZWl7y98-tpblyNmaU0zSxLzDcCK70BARhYkBrodsuvCDTEDa35ueB6oV1MIfPsGnr4p4zGnePEMcl_IE1subnfaWH__W4DaCjqdI3JYokX6WDzQMamp9IQcbGkInhLR-xbVzKmYL6Wis-SDZigWRLFdTCHEvaKATpXgC6Q5P9AnpTJadox4p-t2OAvKU0mTopXHim7vbJ-Rced51O4aZecEQ8AnmBtccsuOIdJLoSMPxzhAJQdyIV-0pOZOLGAxNKBrV4A7jAIlQ5-3AluHVsQ92zkn9XSWqgtCA2V5WkvL0ZALoli9G2vIsmI_4spRrtMgzcpcLCsEMljFHJuy0r4M7csK-zZIWBmV_VhpBk7876mX_596R_a6o0Gf9XvD1yuyj0cKUso1qefzpboBaJHHt-tX5wuFm81F | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+crude+oil+price+probability+forecasting%3A+Deep+learning+models+and+industry+applications&rft.jtitle=Computers+in+industry&rft.au=Shen%2C+Liang&rft.au=Bao%2C+Yukun&rft.au=Hasan%2C+Najmul&rft.au=Huang%2C+Yanmei&rft.date=2024-12-01&rft.issn=0166-3615&rft.volume=163&rft.spage=104150&rft_id=info:doi/10.1016%2Fj.compind.2024.104150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compind_2024_104150 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3615&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3615&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3615&client=summon |