Ultra-efficient 3D shape reconstruction: Line-coded absolute phase unwrapping algorithm
•An ultra-efficient line-coded absolute phase unwrapping (LCAPU) algorithm is proposed for dynamic 3D shape reconstruction of the complex scene.•All line-coded phase-shifting patterns can compensate for each other and accurately participate in the extraction of wrapped phase.•No extra coded patterns...
        Saved in:
      
    
          | Published in | Pattern recognition Vol. 172; p. 112366 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.04.2026
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0031-3203 | 
| DOI | 10.1016/j.patcog.2025.112366 | 
Cover
| Abstract | •An ultra-efficient line-coded absolute phase unwrapping (LCAPU) algorithm is proposed for dynamic 3D shape reconstruction of the complex scene.•All line-coded phase-shifting patterns can compensate for each other and accurately participate in the extraction of wrapped phase.•No extra coded patterns are embedded into the projection sequence of the dynamic scene to destroy the dynamic coherence of adjacent phase-shifting patterns, thus suppressing the motion errors.•Multi-layer decoding (MLD) does not require the intricate error identification and artificial judgment conditions to perform fringe order correction.•Extensive experiments validate that this work has considerable performance in ultra-efficient and high-precision 3D reconstruction of the high-dynamic scene.
Absolute phase unwrapping-based fringe projection profilometry (APU-FPP) has the advantages of pixel-wise calculation, high precision, and full-field sensing of 3D shape information. To the best of our knowledge, existing APU-FPP methods have a general contradiction between accuracy and efficiency because of projecting extra auxiliary coded fringes (ACFs). In this paper, a line-coded absolute phase unwrapping (LCAPU) algorithm is presented for absolute 3D shape reconstruction of the scene with non-uniform reflectivity and complex surfaces. Firstly, a sequence of single-pixel lines is successively embedded into two sets of 3-step phase-shifting patterns to mark fringe periods, which can thoroughly avoid extra ACFs to disrupt the coherence of adjacent morphological information. Secondly, two line-coded phase-shifting patterns with the same phase shift are used to recognize the corresponding coded lines containing the fringe order cue, which can be simultaneously used to guide fringe mutual compensation, thereby extracting a high-quality phase. Finally, according to the pixel positions and the fringe indices of the decoded lines, a multi-layer decoding (MLD) algorithm is developed to iteratively generate a fringe order map, which can adapt to the randomness of morphological changes. Compared to other methods, the proposed LCAPU can not only perform a one-shot 3D shape reconstruction with a single image acquisition, but also automatically correct phase errors, balancing ultra-efficiency and high accuracy. Experimental results demonstrate the superior performance and the practical application potential in dynamic complex scenes. | 
    
|---|---|
| AbstractList | •An ultra-efficient line-coded absolute phase unwrapping (LCAPU) algorithm is proposed for dynamic 3D shape reconstruction of the complex scene.•All line-coded phase-shifting patterns can compensate for each other and accurately participate in the extraction of wrapped phase.•No extra coded patterns are embedded into the projection sequence of the dynamic scene to destroy the dynamic coherence of adjacent phase-shifting patterns, thus suppressing the motion errors.•Multi-layer decoding (MLD) does not require the intricate error identification and artificial judgment conditions to perform fringe order correction.•Extensive experiments validate that this work has considerable performance in ultra-efficient and high-precision 3D reconstruction of the high-dynamic scene.
Absolute phase unwrapping-based fringe projection profilometry (APU-FPP) has the advantages of pixel-wise calculation, high precision, and full-field sensing of 3D shape information. To the best of our knowledge, existing APU-FPP methods have a general contradiction between accuracy and efficiency because of projecting extra auxiliary coded fringes (ACFs). In this paper, a line-coded absolute phase unwrapping (LCAPU) algorithm is presented for absolute 3D shape reconstruction of the scene with non-uniform reflectivity and complex surfaces. Firstly, a sequence of single-pixel lines is successively embedded into two sets of 3-step phase-shifting patterns to mark fringe periods, which can thoroughly avoid extra ACFs to disrupt the coherence of adjacent morphological information. Secondly, two line-coded phase-shifting patterns with the same phase shift are used to recognize the corresponding coded lines containing the fringe order cue, which can be simultaneously used to guide fringe mutual compensation, thereby extracting a high-quality phase. Finally, according to the pixel positions and the fringe indices of the decoded lines, a multi-layer decoding (MLD) algorithm is developed to iteratively generate a fringe order map, which can adapt to the randomness of morphological changes. Compared to other methods, the proposed LCAPU can not only perform a one-shot 3D shape reconstruction with a single image acquisition, but also automatically correct phase errors, balancing ultra-efficiency and high accuracy. Experimental results demonstrate the superior performance and the practical application potential in dynamic complex scenes. | 
    
| ArticleNumber | 112366 | 
    
| Author | An, Haihua Cao, Yiping Zhang, Hechen  | 
    
| Author_xml | – sequence: 1 givenname: Haihua orcidid: 0000-0001-6883-1837 surname: An fullname: An, Haihua email: haihuaan@gzu.edu.cn organization: College of Physics, Guizhou University, Guiyang 550025, China – sequence: 2 givenname: Yiping surname: Cao fullname: Cao, Yiping email: ypaco@scu.edu.cn organization: College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China – sequence: 3 givenname: Hechen orcidid: 0000-0002-9012-6445 surname: Zhang fullname: Zhang, Hechen organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China  | 
    
| BookMark | eNp9kLlOAzEYhF0EiSTwBhR-gV18rPegQELhlCLREFFaPv5NHG3sle2AeHsSLTXVVN9o5lugmQ8eELqhpKSE1rf7clTZhG3JCBMlpYzX9QzNCeG04IzwS7RIaU8IbWjF5uhzM-SoCuh7Zxz4jPkjTjs1Ao5ggk85Hk12wd_htfNQmGDBYqVTGI4Z8LhTCfDRf0c1js5vsRq2Ibq8O1yhi14NCa7_cok2z08fq9di_f7ytnpYF4aJJhcdUAKCEA2aCUNtzyiDlrFKE2hE31XUalCi6qAjvNZtUyvBadf2yvKWcc2XqJp6TQwpRejlGN1BxR9JiTwLkXs5CZFnIXIScsLuJwxO274cRJnO9w1Yd_qdpQ3u_4JfVbpwLQ | 
    
| Cites_doi | 10.1016/j.measurement.2024.115437 10.1016/j.patcog.2014.06.001 10.1016/j.patcog.2010.03.004 10.29026/oea.2022.210021 10.1364/AO.32.003047 10.1109/TIM.2025.3581633 10.1109/TIP.2023.3244650 10.1364/OE.459087 10.1016/j.optlaseng.2003.11.002 10.1016/j.optlastec.2018.06.049 10.1016/j.patcog.2024.110937 10.1364/AO.54.009390 10.1016/j.measurement.2024.115852 10.1364/AO.22.003977 10.1364/OE.437772 10.1109/TIM.2023.3252627 10.1364/OL.485969 10.1109/TIM.2024.3450114 10.1109/TIP.2011.2155072 10.1109/TIP.2016.2551370 10.1016/j.optlaseng.2024.108781 10.1364/PRJ.420944 10.1364/OE.430305 10.1364/OL.37.002067 10.1016/j.patcog.2024.110647 10.1016/j.optlastec.2023.109767 10.1016/j.optlaseng.2020.106046 10.1016/j.patcog.2016.02.008 10.1016/j.sna.2024.115847 10.1016/j.measurement.2025.117969 10.1109/JSEN.2023.3271324 10.1364/OPTICA.531601 10.1364/OE.20.019493 10.1109/TIM.2022.3189639 10.1364/OE.546563 10.1109/TIP.2006.888351 10.1016/j.optlaseng.2022.107004 10.1364/OE.24.018445 10.1016/S0031-3203(97)00074-5  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2025 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.patcog.2025.112366 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| ExternalDocumentID | 10_1016_j_patcog_2025_112366 S0031320325010271  | 
    
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABWVN ABXDB ACBEA ACDAQ ACGFO ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADMXK ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- ~HD AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c257t-9e10e500beb25c1df212e8224b0e75f941dbea549e9036b876a53198fad3823b3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0031-3203 | 
    
| IngestDate | Wed Oct 01 05:19:55 EDT 2025 Sat Oct 04 17:01:34 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Fringe mutual compensation Multi-layer decoding Dynamic 3D shape reconstruction Fringe projection profilometry Line-coded absolute phase unwrapping  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c257t-9e10e500beb25c1df212e8224b0e75f941dbea549e9036b876a53198fad3823b3 | 
    
| ORCID | 0000-0002-9012-6445 0000-0001-6883-1837  | 
    
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2025_112366 elsevier_sciencedirect_doi_10_1016_j_patcog_2025_112366  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2026 2026-04-00  | 
    
| PublicationDateYYYYMMDD | 2026-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2026 text: April 2026  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Pattern recognition | 
    
| PublicationYear | 2026 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Zuo, Chen, Gu, Feng, Feng (bib0024) 2012; 20 An, Hyun, Zhang (bib0032) 2016; 24 Tian, Zhang, Ma, Ge (bib0001) 2016; 55 An, Cao, Wu, Yang, Xu, Li (bib0017) 2021; 29 Du, Li, Zhao, Zhao, Fan, Zhou, Yang, Zhao (bib0026) 2023; 48 Boisvert, Drouin, Jodoin (bib0003) 2015; 48 Wu, Yang, Liu, Qian (bib0040) 2022; 30 Feng, Zuo, Zhang, Yin, Chen (bib0035) 2021; 9 Li, Fan, Wu, Wu, Yang, Huang, Yang, Yang, Liu (bib0031) 2021; 29 Batlle, Mouaddib, Salvi (bib0019) 1998; 31 Han, Yang, Zhang, Liu (bib0018) 2023; 23 Wei, Cao, Li, Xu, Li, Luo, Chen, An (bib0020) 2025; 33 Y. Li, J. Qian, S. Feng, Q. Chen, C. Zuo, Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement, Opto-Electron. Adv. 5(5) (2022) 210021. Wu, Guo, Lu, Zhang (bib0038) 2021; 29 Cai, Zi, Tong, Wu, Zhao, Chen (bib0021) 2025; 239 Wu, Cao (bib0015) 2025; 157 Yin, Yin, Yang, Feng, Zhang, Wang, Chen, Zhou (bib0005) 2025; 186 Zhang, Zhao, Zhang (bib0037) 2015; 54 Zhang, Li, Qu, Zhu (bib0033) 2024; 11 Wang, Liu, Hao, Lau, Hassebrook (bib0011) 2011; 20 Ma, Cao, Chen, Wan, Fu, Wang (bib0036) 2018; 108 Ye, Zhou, Gao, Hu, Chen, Song (bib0004) 2025; 256 Han, Jiang, Lei, Xing, Wang, Li (bib0006) 2025; 242 Su, Chen (bib0012) 2004; 42 An, Cao, Li, Zhang (bib0025) 2023; 32 Takeda, Mutoh (bib0009) 1983; 22 Wu, Mu, Wu, Yang, Yang, Liu (bib0016) 2023; 167 . Ye, Deng, Liu, Chen (bib0039) 2025; 74 Arevalillo-Herráez, Villatoro, Gdeisat (bib0013) 2016; 25 He, Kemao (bib0023) 2020; 128 Li, Zhou, Wu, Li, Zhang (bib0002) 2024; 155 An, Cao, Zhang, Li (bib0007) 2023; 72 Salvi, Fernandez, Pribanic, Llado (bib0008) 2010; 43 Wu, Cao, An, Li, Li, Xu, Yang (bib0029) 2022; 153 Zeng, Li, Xu, Li, Tan (bib0030) 2024; 73 Bioucas-Dias, Valadao (bib0010) 2007; 16 Wu, Cao, An, Wei (bib0027) 2024; 379 Huntley, Saldner (bib0014) 1993; 32 Wang, Zhang (bib0022) 2012; 37 An, Cao, Wang, Qin (bib0028) 2022; 71 Wu (10.1016/j.patcog.2025.112366_bib0015) 2025; 157 An (10.1016/j.patcog.2025.112366_bib0007) 2023; 72 Han (10.1016/j.patcog.2025.112366_bib0006) 2025; 242 Li (10.1016/j.patcog.2025.112366_bib0002) 2024; 155 Han (10.1016/j.patcog.2025.112366_bib0018) 2023; 23 Wu (10.1016/j.patcog.2025.112366_bib0038) 2021; 29 Wei (10.1016/j.patcog.2025.112366_bib0020) 2025; 33 He (10.1016/j.patcog.2025.112366_bib0023) 2020; 128 Takeda (10.1016/j.patcog.2025.112366_bib0009) 1983; 22 Feng (10.1016/j.patcog.2025.112366_bib0035) 2021; 9 Du (10.1016/j.patcog.2025.112366_bib0026) 2023; 48 Cai (10.1016/j.patcog.2025.112366_bib0021) 2025; 239 An (10.1016/j.patcog.2025.112366_bib0017) 2021; 29 An (10.1016/j.patcog.2025.112366_bib0025) 2023; 32 10.1016/j.patcog.2025.112366_bib0034 Ye (10.1016/j.patcog.2025.112366_bib0039) 2025; 74 Wang (10.1016/j.patcog.2025.112366_bib0011) 2011; 20 Arevalillo-Herráez (10.1016/j.patcog.2025.112366_bib0013) 2016; 25 Ma (10.1016/j.patcog.2025.112366_bib0036) 2018; 108 Bioucas-Dias (10.1016/j.patcog.2025.112366_bib0010) 2007; 16 Zhang (10.1016/j.patcog.2025.112366_bib0033) 2024; 11 Huntley (10.1016/j.patcog.2025.112366_bib0014) 1993; 32 Salvi (10.1016/j.patcog.2025.112366_bib0008) 2010; 43 Tian (10.1016/j.patcog.2025.112366_bib0001) 2016; 55 Ye (10.1016/j.patcog.2025.112366_bib0004) 2025; 256 Zeng (10.1016/j.patcog.2025.112366_bib0030) 2024; 73 Li (10.1016/j.patcog.2025.112366_bib0031) 2021; 29 Zhang (10.1016/j.patcog.2025.112366_bib0037) 2015; 54 Su (10.1016/j.patcog.2025.112366_bib0012) 2004; 42 Wu (10.1016/j.patcog.2025.112366_bib0029) 2022; 153 Wang (10.1016/j.patcog.2025.112366_bib0022) 2012; 37 Wu (10.1016/j.patcog.2025.112366_bib0027) 2024; 379 Boisvert (10.1016/j.patcog.2025.112366_bib0003) 2015; 48 Zuo (10.1016/j.patcog.2025.112366_bib0024) 2012; 20 Batlle (10.1016/j.patcog.2025.112366_bib0019) 1998; 31 Wu (10.1016/j.patcog.2025.112366_bib0016) 2023; 167 Yin (10.1016/j.patcog.2025.112366_bib0005) 2025; 186 An (10.1016/j.patcog.2025.112366_bib0028) 2022; 71 An (10.1016/j.patcog.2025.112366_bib0032) 2016; 24 Wu (10.1016/j.patcog.2025.112366_bib0040) 2022; 30  | 
    
| References_xml | – volume: 42 start-page: 245 year: 2004 end-page: 261 ident: bib0012 article-title: Reliability-guided phase unwrapping algorithm: a review publication-title: Opt. Lasers. Eng. – volume: 20 start-page: 3001 year: 2011 end-page: 3013 ident: bib0011 article-title: Period coded phase shifting strategy for real–time 3-D structured light illumination publication-title: IEEe Trans. Image Process. – volume: 25 start-page: 2601 year: 2016 end-page: 2609 ident: bib0013 article-title: A robust and simple measure for quality-guided 2D phase unwrapping algorithms publication-title: IEEe Trans. Image Process. – volume: 74 year: 2025 ident: bib0039 article-title: Parallelization strategy of laser stripe center extraction for structured light measurement publication-title: IEEe Trans. Instrum. Meas. – volume: 55 start-page: 100 year: 2016 end-page: 113 ident: bib0001 article-title: Utilizing polygon segmentation technique to extract and optimize light stripe centerline in line-structured laser 3D scanner publication-title: Pattern. Recognit. – volume: 256 year: 2025 ident: bib0004 article-title: A novel calibration method for uniaxial MEMS-based structured light system publication-title: Measurement – volume: 33 start-page: 12489 year: 2025 end-page: 12508 ident: bib0020 article-title: Universal N-step phase-differencing profilometry with robustness optimal design based on dual-frequency phase unwrapping publication-title: Opt. Express. – volume: 379 year: 2024 ident: bib0027 article-title: Dynamic three-dimensional reconstruction with phase shift coding division multiplexing publication-title: Sens. Actuators A-Phys. – volume: 37 start-page: 2067 year: 2012 end-page: 2069 ident: bib0022 article-title: Novel phase-coding method for absolute phase retrieval publication-title: Opt. Lett. – volume: 72 year: 2023 ident: bib0007 article-title: Phase-shifting temporal phase unwrapping algorithm for high-speed fringe projection profilometry publication-title: IEEe Trans. Instrum. Meas. – volume: 20 start-page: 19493 year: 2012 end-page: 19510 ident: bib0024 article-title: High-speed three-dimensional profilometry for multiple objects with complex shapes publication-title: Opt. Express. – volume: 186 year: 2025 ident: bib0005 article-title: Fast and long-range 3D shape measurement using reference-phase-based number-theoretical temporal phase unwrapping with a MEMS projector publication-title: Opt. Lasers. Eng. – volume: 128 year: 2020 ident: bib0023 article-title: A comparison of n-ary simple code and n-ary gray code phase unwrapping in high-speed fringe projection profilometry publication-title: Opt. Lasers. Eng. – volume: 48 start-page: 720 year: 2015 end-page: 731 ident: bib0003 article-title: High-speed transition patterns for video projection, 3D reconstruction, and copyright protection publication-title: Pattern. Recognit. – volume: 29 start-page: 20657 year: 2021 end-page: 20672 ident: bib0017 article-title: Spatial-temporal phase unwrapping algorithm for fringe projection profilometry publication-title: Opt. Express. – volume: 24 start-page: 18445 year: 2016 end-page: 18459 ident: bib0032 article-title: Pixel-wise absolute phase unwrapping using geometric constraints of structured light system publication-title: Opt. Express. – volume: 11 start-page: 1482 year: 2024 end-page: 1485 ident: bib0033 article-title: Fringe photometric stereo publication-title: Optica – volume: 32 start-page: 1432 year: 2023 end-page: 1441 ident: bib0025 article-title: Temporal phase unwrapping based on unequal phase-shifting code publication-title: IEEe Trans. Image Process. – volume: 167 year: 2023 ident: bib0016 article-title: Two-neighbor-wavelength phase-shifting approach for high-accuracy rapid 3D measurement publication-title: Opt. Laser. Technol. – volume: 239 year: 2025 ident: bib0021 article-title: Spatial coding strategy for dual-frequency phase-shifting profilometry publication-title: Measurement – volume: 43 start-page: 2666 year: 2010 end-page: 2680 ident: bib0008 article-title: A state of the art in structured light patterns for surface profilometry publication-title: Pattern. Recognit. – volume: 29 start-page: 33210 year: 2021 end-page: 33224 ident: bib0031 article-title: Fringe-width encoded patterns for 3D surface profilometry publication-title: Opt. Express. – volume: 32 start-page: 3047 year: 1993 end-page: 3052 ident: bib0014 article-title: Temporal phase-unwrapping algorithm for automated interferogram analysis publication-title: Appl. Opt. – volume: 108 start-page: 46 year: 2018 end-page: 52 ident: bib0036 article-title: Intrinsic feature revelation of phase-to-height mapping in phase measuring profilometry publication-title: Opt. Laser. Technol. – volume: 54 start-page: 9390 year: 2015 end-page: 9399 ident: bib0037 article-title: Fringe order error in multifrequency fringe projection phase unwrapping: reason and correction publication-title: Appl. Opt. – volume: 23 start-page: 13272 year: 2023 end-page: 13279 ident: bib0018 article-title: Complementary gray code fourfold-N step phase shift grating fringe projection profilometry publication-title: IEEe Sens. J. – reference: . – volume: 29 year: 2021 ident: bib0038 article-title: Generalized phase unwrapping method that avoids jump errors for fringe projection profilometry publication-title: Opt. Express. – volume: 9 start-page: 1084 year: 2021 end-page: 1098 ident: bib0035 article-title: Generalized framework for non-sinusoidal fringe analysis using deep learning publication-title: Photonics. Res. – volume: 31 start-page: 963 year: 1998 end-page: 982 ident: bib0019 article-title: Recent progress in coded structured light as a technique to solve the correspondence problem: a survey publication-title: Pattern. Recognit. – volume: 22 start-page: 3977 year: 1983 end-page: 3982 ident: bib0009 article-title: Fourier transform profilometry for the automatic measurement of 3-D object shapes publication-title: Appl. Opt. – volume: 16 start-page: 698 year: 2007 end-page: 709 ident: bib0010 article-title: Phase unwrapping via graph cuts publication-title: IEEe Trans. Image Process. – volume: 73 year: 2024 ident: bib0030 article-title: Variable-frequency phase unwrapping for high-speed 3-D shape measurement publication-title: IEEe Trans. Instrum. Meas. – reference: Y. Li, J. Qian, S. Feng, Q. Chen, C. Zuo, Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement, Opto-Electron. Adv. 5(5) (2022) 210021. – volume: 71 year: 2022 ident: bib0028 article-title: The absolute phase retrieval based on the rotation of phase-shifting sequence publication-title: IEEe Trans. Instrum. Meas. – volume: 153 year: 2022 ident: bib0029 article-title: A novel phase-shifting profilometry to realize temporal phase unwrapping simultaneously with the least fringe patterns publication-title: Opt. Lasers. Eng. – volume: 155 year: 2024 ident: bib0002 article-title: Multi-granularity relationship reasoning network for high-fidelity 3D shape reconstruction publication-title: Pattern. Recognit. – volume: 30 start-page: 17980 year: 2022 end-page: 17998 ident: bib0040 article-title: Suppressing motion-induced phase error by using equal-step phase-shifting algorithms in fringe projection profilometry publication-title: Opt. Express. – volume: 48 start-page: 2329 year: 2023 end-page: 2332 ident: bib0026 article-title: Accurate dynamic 3D deformation measurement based on the synchronous multiplexing of polarization and speckle metrology publication-title: Opt. Lett. – volume: 242 year: 2025 ident: bib0006 article-title: Modeling window smoothing effect hidden in fringe projection profilometry publication-title: Measurement – volume: 157 year: 2025 ident: bib0015 article-title: Complementary phase interleaving-based fringe order recognition for temporal phase unwrapping publication-title: Pattern. Recognit. – volume: 239 year: 2025 ident: 10.1016/j.patcog.2025.112366_bib0021 article-title: Spatial coding strategy for dual-frequency phase-shifting profilometry publication-title: Measurement doi: 10.1016/j.measurement.2024.115437 – volume: 48 start-page: 720 issue: 3 year: 2015 ident: 10.1016/j.patcog.2025.112366_bib0003 article-title: High-speed transition patterns for video projection, 3D reconstruction, and copyright protection publication-title: Pattern. Recognit. doi: 10.1016/j.patcog.2014.06.001 – volume: 43 start-page: 2666 issue: 8 year: 2010 ident: 10.1016/j.patcog.2025.112366_bib0008 article-title: A state of the art in structured light patterns for surface profilometry publication-title: Pattern. Recognit. doi: 10.1016/j.patcog.2010.03.004 – ident: 10.1016/j.patcog.2025.112366_bib0034 doi: 10.29026/oea.2022.210021 – volume: 32 start-page: 3047 issue: 17 year: 1993 ident: 10.1016/j.patcog.2025.112366_bib0014 article-title: Temporal phase-unwrapping algorithm for automated interferogram analysis publication-title: Appl. Opt. doi: 10.1364/AO.32.003047 – volume: 74 year: 2025 ident: 10.1016/j.patcog.2025.112366_bib0039 article-title: Parallelization strategy of laser stripe center extraction for structured light measurement publication-title: IEEe Trans. Instrum. Meas. doi: 10.1109/TIM.2025.3581633 – volume: 32 start-page: 1432 year: 2023 ident: 10.1016/j.patcog.2025.112366_bib0025 article-title: Temporal phase unwrapping based on unequal phase-shifting code publication-title: IEEe Trans. Image Process. doi: 10.1109/TIP.2023.3244650 – volume: 30 start-page: 17980 issue: 11 year: 2022 ident: 10.1016/j.patcog.2025.112366_bib0040 article-title: Suppressing motion-induced phase error by using equal-step phase-shifting algorithms in fringe projection profilometry publication-title: Opt. Express. doi: 10.1364/OE.459087 – volume: 42 start-page: 245 issue: 3 year: 2004 ident: 10.1016/j.patcog.2025.112366_bib0012 article-title: Reliability-guided phase unwrapping algorithm: a review publication-title: Opt. Lasers. Eng. doi: 10.1016/j.optlaseng.2003.11.002 – volume: 108 start-page: 46 year: 2018 ident: 10.1016/j.patcog.2025.112366_bib0036 article-title: Intrinsic feature revelation of phase-to-height mapping in phase measuring profilometry publication-title: Opt. Laser. Technol. doi: 10.1016/j.optlastec.2018.06.049 – volume: 157 year: 2025 ident: 10.1016/j.patcog.2025.112366_bib0015 article-title: Complementary phase interleaving-based fringe order recognition for temporal phase unwrapping publication-title: Pattern. Recognit. doi: 10.1016/j.patcog.2024.110937 – volume: 54 start-page: 9390 year: 2015 ident: 10.1016/j.patcog.2025.112366_bib0037 article-title: Fringe order error in multifrequency fringe projection phase unwrapping: reason and correction publication-title: Appl. Opt. doi: 10.1364/AO.54.009390 – volume: 242 year: 2025 ident: 10.1016/j.patcog.2025.112366_bib0006 article-title: Modeling window smoothing effect hidden in fringe projection profilometry publication-title: Measurement doi: 10.1016/j.measurement.2024.115852 – volume: 22 start-page: 3977 year: 1983 ident: 10.1016/j.patcog.2025.112366_bib0009 article-title: Fourier transform profilometry for the automatic measurement of 3-D object shapes publication-title: Appl. Opt. doi: 10.1364/AO.22.003977 – volume: 29 start-page: 33210 year: 2021 ident: 10.1016/j.patcog.2025.112366_bib0031 article-title: Fringe-width encoded patterns for 3D surface profilometry publication-title: Opt. Express. doi: 10.1364/OE.437772 – volume: 72 year: 2023 ident: 10.1016/j.patcog.2025.112366_bib0007 article-title: Phase-shifting temporal phase unwrapping algorithm for high-speed fringe projection profilometry publication-title: IEEe Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3252627 – volume: 48 start-page: 2329 year: 2023 ident: 10.1016/j.patcog.2025.112366_bib0026 article-title: Accurate dynamic 3D deformation measurement based on the synchronous multiplexing of polarization and speckle metrology publication-title: Opt. Lett. doi: 10.1364/OL.485969 – volume: 73 year: 2024 ident: 10.1016/j.patcog.2025.112366_bib0030 article-title: Variable-frequency phase unwrapping for high-speed 3-D shape measurement publication-title: IEEe Trans. Instrum. Meas. doi: 10.1109/TIM.2024.3450114 – volume: 20 start-page: 3001 issue: 11 year: 2011 ident: 10.1016/j.patcog.2025.112366_bib0011 article-title: Period coded phase shifting strategy for real–time 3-D structured light illumination publication-title: IEEe Trans. Image Process. doi: 10.1109/TIP.2011.2155072 – volume: 25 start-page: 2601 issue: 6 year: 2016 ident: 10.1016/j.patcog.2025.112366_bib0013 article-title: A robust and simple measure for quality-guided 2D phase unwrapping algorithms publication-title: IEEe Trans. Image Process. doi: 10.1109/TIP.2016.2551370 – volume: 186 year: 2025 ident: 10.1016/j.patcog.2025.112366_bib0005 article-title: Fast and long-range 3D shape measurement using reference-phase-based number-theoretical temporal phase unwrapping with a MEMS projector publication-title: Opt. Lasers. Eng. doi: 10.1016/j.optlaseng.2024.108781 – volume: 9 start-page: 1084 issue: 6 year: 2021 ident: 10.1016/j.patcog.2025.112366_bib0035 article-title: Generalized framework for non-sinusoidal fringe analysis using deep learning publication-title: Photonics. Res. doi: 10.1364/PRJ.420944 – volume: 29 start-page: 20657 year: 2021 ident: 10.1016/j.patcog.2025.112366_bib0017 article-title: Spatial-temporal phase unwrapping algorithm for fringe projection profilometry publication-title: Opt. Express. doi: 10.1364/OE.430305 – volume: 37 start-page: 2067 issue: 11 year: 2012 ident: 10.1016/j.patcog.2025.112366_bib0022 article-title: Novel phase-coding method for absolute phase retrieval publication-title: Opt. Lett. doi: 10.1364/OL.37.002067 – volume: 155 year: 2024 ident: 10.1016/j.patcog.2025.112366_bib0002 article-title: Multi-granularity relationship reasoning network for high-fidelity 3D shape reconstruction publication-title: Pattern. Recognit. doi: 10.1016/j.patcog.2024.110647 – volume: 29 year: 2021 ident: 10.1016/j.patcog.2025.112366_bib0038 article-title: Generalized phase unwrapping method that avoids jump errors for fringe projection profilometry publication-title: Opt. Express. – volume: 167 year: 2023 ident: 10.1016/j.patcog.2025.112366_bib0016 article-title: Two-neighbor-wavelength phase-shifting approach for high-accuracy rapid 3D measurement publication-title: Opt. Laser. Technol. doi: 10.1016/j.optlastec.2023.109767 – volume: 128 year: 2020 ident: 10.1016/j.patcog.2025.112366_bib0023 article-title: A comparison of n-ary simple code and n-ary gray code phase unwrapping in high-speed fringe projection profilometry publication-title: Opt. Lasers. Eng. doi: 10.1016/j.optlaseng.2020.106046 – volume: 55 start-page: 100 year: 2016 ident: 10.1016/j.patcog.2025.112366_bib0001 article-title: Utilizing polygon segmentation technique to extract and optimize light stripe centerline in line-structured laser 3D scanner publication-title: Pattern. Recognit. doi: 10.1016/j.patcog.2016.02.008 – volume: 379 year: 2024 ident: 10.1016/j.patcog.2025.112366_bib0027 article-title: Dynamic three-dimensional reconstruction with phase shift coding division multiplexing publication-title: Sens. Actuators A-Phys. doi: 10.1016/j.sna.2024.115847 – volume: 256 year: 2025 ident: 10.1016/j.patcog.2025.112366_bib0004 article-title: A novel calibration method for uniaxial MEMS-based structured light system publication-title: Measurement doi: 10.1016/j.measurement.2025.117969 – volume: 23 start-page: 13272 issue: 12 year: 2023 ident: 10.1016/j.patcog.2025.112366_bib0018 article-title: Complementary gray code fourfold-N step phase shift grating fringe projection profilometry publication-title: IEEe Sens. J. doi: 10.1109/JSEN.2023.3271324 – volume: 11 start-page: 1482 issue: 11 year: 2024 ident: 10.1016/j.patcog.2025.112366_bib0033 article-title: Fringe photometric stereo publication-title: Optica doi: 10.1364/OPTICA.531601 – volume: 20 start-page: 19493 year: 2012 ident: 10.1016/j.patcog.2025.112366_bib0024 article-title: High-speed three-dimensional profilometry for multiple objects with complex shapes publication-title: Opt. Express. doi: 10.1364/OE.20.019493 – volume: 71 year: 2022 ident: 10.1016/j.patcog.2025.112366_bib0028 article-title: The absolute phase retrieval based on the rotation of phase-shifting sequence publication-title: IEEe Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3189639 – volume: 33 start-page: 12489 year: 2025 ident: 10.1016/j.patcog.2025.112366_bib0020 article-title: Universal N-step phase-differencing profilometry with robustness optimal design based on dual-frequency phase unwrapping publication-title: Opt. Express. doi: 10.1364/OE.546563 – volume: 16 start-page: 698 issue: 3 year: 2007 ident: 10.1016/j.patcog.2025.112366_bib0010 article-title: Phase unwrapping via graph cuts publication-title: IEEe Trans. Image Process. doi: 10.1109/TIP.2006.888351 – volume: 153 year: 2022 ident: 10.1016/j.patcog.2025.112366_bib0029 article-title: A novel phase-shifting profilometry to realize temporal phase unwrapping simultaneously with the least fringe patterns publication-title: Opt. Lasers. Eng. doi: 10.1016/j.optlaseng.2022.107004 – volume: 24 start-page: 18445 year: 2016 ident: 10.1016/j.patcog.2025.112366_bib0032 article-title: Pixel-wise absolute phase unwrapping using geometric constraints of structured light system publication-title: Opt. Express. doi: 10.1364/OE.24.018445 – volume: 31 start-page: 963 year: 1998 ident: 10.1016/j.patcog.2025.112366_bib0019 article-title: Recent progress in coded structured light as a technique to solve the correspondence problem: a survey publication-title: Pattern. Recognit. doi: 10.1016/S0031-3203(97)00074-5  | 
    
| SSID | ssj0017142 | 
    
| Score | 2.4969869 | 
    
| Snippet | •An ultra-efficient line-coded absolute phase unwrapping (LCAPU) algorithm is proposed for dynamic 3D shape reconstruction of the complex scene.•All line-coded... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 112366 | 
    
| SubjectTerms | Dynamic 3D shape reconstruction Fringe mutual compensation Fringe projection profilometry Line-coded absolute phase unwrapping Multi-layer decoding  | 
    
| Title | Ultra-efficient 3D shape reconstruction: Line-coded absolute phase unwrapping algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.patcog.2025.112366 | 
    
| Volume | 172 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0031-3203 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals issn: 0031-3203 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0031-3203 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0031-3203 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0031-3203 databaseCode: AKRWK dateStart: 19680101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjSgflQdW0wTno2GrClUB0YmKbpEdX9qiNo1KEBu_nTsnqUBCDIyJYil6tu_55HvvGLtMQtk1ZHRrjIoE5V9ChY4WOgWQfuJCpOhG92kUDMfew8SfNFi_1sJQWWUV-8uYbqN19aZTodnJ53PS-JLtoCORxJElrY7c80LqYnD1uSnzoP7epWO4dAV9XcvnbI1XjuFuNcUs8donLY20Xom_0NM3yhnssZ3qrMh75e_sswZkB2y37sPAq215yF7Gi2KtBFg3CCQRLm_520zlwG26u7GIveGYeYIgFbvhSttVBzyfIZHx9-xjrcirYcrVYrpaz4vZ8oiNB3fP_aGoGiaIBHdeISJwHfAdR2O6jDibFHkJqExUOxD6aeS5RoPCjBAinB6NgVDRFuymytB1oJbHrJmtMjhhXKXShIlxjNJkXxMoabwkAE8mvhukKbSYqHGK89IXI64Lxl7jEteYcI1LXFssrMGMf8xvjKH7z5Gn_x55xrbxKSjrbM5ZE9GGCzxCFLpt10ibbfXuH4ejLzTpx3s | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeHlhNkzqPhg0VqgJtp1Z0i-z40haVNCpBbPx27vKoQEIMrEksRZ999_mT7z4zdhX5sm3I6NYYFQjSX0L5lhY6BpBuZEOg6ER3MPR6Y-dx4k5qrFP1wlBZZZn7i5yeZ-vySbNEs5nO59TjS7aDlkQSR5akPvINx235pMCuP9d1HnTBd2EZLm1Bn1f9c3mRV4r5bjlFmdhyqZlG5maJv_DTN87p7rLtcrPIb4v_2WM1SPbZTnURAy_j8oA9jxfZSgnI7SCQRbi8428zlQLP9e7aI_aGo_QEQW3shiudLzvg6QyZjL8nHytFZg1TrhbT5WqezV4P2bh7P-r0RHljgogw9DIRgG2Ba1ka9TICbWIkJqA6UW2B78aBYxsNCiUhBDg_GjOhohhsx8rQeaCWR6yeLBM4ZlzF0viRsYzS5F_jKWmcyANHRq7txTE0mKhwCtPCGCOsKsZewgLXkHANC1wbzK_ADH9McIi5-8-RJ_8eeck2e6NBP-w_DJ9O2Ra-8YqimzNWR-ThHPcTmb7I18sXCvzJEA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-efficient+3D+shape+reconstruction%3A+Line-coded+absolute+phase+unwrapping+algorithm&rft.jtitle=Pattern+recognition&rft.au=An%2C+Haihua&rft.au=Cao%2C+Yiping&rft.au=Zhang%2C+Hechen&rft.date=2026-04-01&rft.issn=0031-3203&rft.volume=172&rft.spage=112366&rft_id=info:doi/10.1016%2Fj.patcog.2025.112366&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2025_112366 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |