Designing personalized incentive-based demand response services based on smart meter data and NSGA-III-DE algorithm

During peak demand or urgency periods, power systems may face challenges due to insufficient electricity supply. One practical approach to addressing this issue is incentive-based demand response (IBDR). In this approach, residential customers participate in the IBDR programs by preemptively signing...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 334; p. 137454
Main Authors Qin, Chenxi, Liu, Wenjie, Yan, Yuejun, Guan, Quanxue, Wang, Qin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.10.2025
Subjects
Online AccessGet full text
ISSN0360-5442
DOI10.1016/j.energy.2025.137454

Cover

Abstract During peak demand or urgency periods, power systems may face challenges due to insufficient electricity supply. One practical approach to addressing this issue is incentive-based demand response (IBDR). In this approach, residential customers participate in the IBDR programs by preemptively signing contracts with load aggregators (LAs) and adjusting their electricity consumption during peak periods in exchange for incentive subsidies. This paper proposes a method for designing personalized IBDR services by analyzing electricity consumption data and solving a multi-objective optimization problem. We analyze smart meter data using an adaptive K-means clustering algorithm combined with a fuzzy system to understand customers’ electricity consumption preferences. Additionally, we employ a stacked biGRU-biLSTM model with an attention mechanism for load forecasting to understand electricity usage during responsive periods. Subsequently, we introduce a multi-objective optimization model aimed at maximizing the response quantity while simultaneously mitigating customer discomfort and reducing the operational costs of LAs. Following this, the NSGA-III-DE algorithm is employed to design personalized IBDR services for enhanced participation and implementation effectiveness. In the numerical simulations, we observe that by offering personalized IBDR services, LA’s electricity procurement expenditures were successfully reduced by 50%. Moreover, there was a significant increase in residential customers’ enthusiasm to participate in the demand response program, with a response rate reaching 85% of the total potential. These results clearly demonstrate the effectiveness of the proposed method. •A novel IBDR scheme that addresses inconsistent customer responses is proposed.•A novel deep learning model and adaptive K-means clustering extract usage patterns.•Dissatisfaction functions tailored to observed consumption behaviors are proposed.•A multi-objective optimization model to design personalized IBDR services is created.•The efficiency of personalized IBDR services is analyzed using real-world data.
AbstractList During peak demand or urgency periods, power systems may face challenges due to insufficient electricity supply. One practical approach to addressing this issue is incentive-based demand response (IBDR). In this approach, residential customers participate in the IBDR programs by preemptively signing contracts with load aggregators (LAs) and adjusting their electricity consumption during peak periods in exchange for incentive subsidies. This paper proposes a method for designing personalized IBDR services by analyzing electricity consumption data and solving a multi-objective optimization problem. We analyze smart meter data using an adaptive K-means clustering algorithm combined with a fuzzy system to understand customers’ electricity consumption preferences. Additionally, we employ a stacked biGRU-biLSTM model with an attention mechanism for load forecasting to understand electricity usage during responsive periods. Subsequently, we introduce a multi-objective optimization model aimed at maximizing the response quantity while simultaneously mitigating customer discomfort and reducing the operational costs of LAs. Following this, the NSGA-III-DE algorithm is employed to design personalized IBDR services for enhanced participation and implementation effectiveness. In the numerical simulations, we observe that by offering personalized IBDR services, LA’s electricity procurement expenditures were successfully reduced by 50%. Moreover, there was a significant increase in residential customers’ enthusiasm to participate in the demand response program, with a response rate reaching 85% of the total potential. These results clearly demonstrate the effectiveness of the proposed method. •A novel IBDR scheme that addresses inconsistent customer responses is proposed.•A novel deep learning model and adaptive K-means clustering extract usage patterns.•Dissatisfaction functions tailored to observed consumption behaviors are proposed.•A multi-objective optimization model to design personalized IBDR services is created.•The efficiency of personalized IBDR services is analyzed using real-world data.
ArticleNumber 137454
Author Guan, Quanxue
Liu, Wenjie
Yan, Yuejun
Qin, Chenxi
Wang, Qin
Author_xml – sequence: 1
  givenname: Chenxi
  orcidid: 0009-0004-3379-0261
  surname: Qin
  fullname: Qin, Chenxi
  organization: Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China
– sequence: 2
  givenname: Wenjie
  orcidid: 0000-0003-0300-6558
  surname: Liu
  fullname: Liu, Wenjie
  organization: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, Guangdong, China
– sequence: 3
  givenname: Yuejun
  surname: Yan
  fullname: Yan, Yuejun
  organization: Alibaba Group, Hangzhou, 310000, Zhejiang, China
– sequence: 4
  givenname: Quanxue
  orcidid: 0000-0002-1379-620X
  surname: Guan
  fullname: Guan, Quanxue
  organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
– sequence: 5
  givenname: Qin
  orcidid: 0000-0001-6585-2755
  surname: Wang
  fullname: Wang, Qin
  email: qin-ee.wang@polyu.edu.hk
  organization: Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China
BookMark eNp9kMFqwzAQRHVIoUnaP-hBP2BXlmRZvhRCkiaG0B7anoUsrV2FWA6SCaRfXwf33NOwzM4wvAWa-d4DQk8ZSTOSiedjCh5Ce00poXmasYLnfIbmhAmS5JzTe7SI8UgIyWVZzlHcQHStd77FZwix9_rkfsBi5w34wV0gqXUcbwud9hYHiOfeR8ARwsUZiHiye49jp8OAOxggYKsHjW__bx-7VVJVVbLZYn1q--CG7-4B3TX6FOHxT5fo63X7ud4nh_ddtV4dEkPzYkhKa2wupK01F0xCXjem4IUpGK1BsIJIywSXlpi60LZhljApJSWlppSJuhZsifjUa0IfY4BGnYMbV15VRtQNljqqCZa6wVITrDH2MsVg3HZxEFQ0DkYe1gUwg7K9-7_gF884ehE
Cites_doi 10.1016/j.energy.2022.124978
10.1007/s40565-019-0504-y
10.1016/j.aei.2020.101043
10.1049/enc2.12114
10.1016/j.egyr.2024.06.036
10.1109/TSG.2020.2971427
10.1109/TIA.2020.2966426
10.1016/j.energy.2018.09.156
10.1016/j.apenergy.2022.120317
10.1049/enc2.12051
10.1016/j.rser.2016.11.167
10.1016/j.ijepes.2023.109618
10.1016/j.energy.2024.132980
10.1016/j.buildenv.2024.111584
10.1016/j.energy.2024.132997
10.1109/TIE.2018.2826454
10.1109/TEVC.2013.2281535
10.1109/TPWRS.2023.3274734
10.1109/PESGM.2018.8586275
10.1109/TSG.2018.2818167
10.1038/sdata.2016.122
10.1016/j.energy.2025.135056
10.1016/j.energy.2023.129673
10.1109/BigData47090.2019.9005997
10.1109/TII.2016.2637879
10.1109/TSG.2012.2234487
10.1016/j.apenergy.2022.120240
10.1016/j.apenergy.2016.10.099
10.1007/s10586-021-03362-9
10.1109/IAS44978.2020.9334895
10.1016/j.energy.2024.131814
10.1016/j.egyr.2023.04.317
10.1109/EI252483.2021.9712902
10.1109/TITS.2024.3375890
10.1016/j.energy.2024.131875
10.1016/j.enbuild.2024.114236
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2025.137454
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2025_137454
S0360544225030968
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
~HD
29G
6TJ
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADXHL
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ID FETCH-LOGICAL-c257t-9dcd568dba4638e5bfc747c732be63708d3648d0cb7adf3d03888209a2236bb63
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Wed Oct 01 05:34:07 EDT 2025
Sat Sep 27 17:13:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Customer behavior analysis
Demand response
Smart meter data
Personalized service
NSGA-III-DE
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-9dcd568dba4638e5bfc747c732be63708d3648d0cb7adf3d03888209a2236bb63
ORCID 0000-0003-0300-6558
0000-0001-6585-2755
0000-0002-1379-620X
0009-0004-3379-0261
ParticipantIDs crossref_primary_10_1016_j_energy_2025_137454
elsevier_sciencedirect_doi_10_1016_j_energy_2025_137454
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xu X, Chen C-F, Washizu A, Ishii H, Yashiro H. Willingness to pay for home energy management system: A cross-country comparison. In: Proc. IEEE PES gen. meeting. Portland, OR, USA; 2018.
Xu, Jia, Xu, Xu, Chai, Lai (b38) 2020; 11
Zhang Z, Huang Y, Huang Q, Lee W. A Novel Hierarchical Demand Response Strategy for Residential Microgrid with Time-Varying Price. In: IEEE industry applications society annual meeting. Detroit, MI, USA; 2020.
Deb, Jain (b28) 2014; 18
Aheleroff, Xu, Lu, Aristizabal, Velásquez, Joa, Valencia (b39) 2020; 43
Zhao, Ma, Yang, Guo (b7) 2024; 302
Wang, Zhang, Wen, policies (b22) 2021; 2
Chen, Sun, Yang, Tan, Liu, Gao (b8) 2024; 308
Mota, Faria, Vale (b20) 2022; 260
Fu, Zeng, Feng, Cai (b27) 2018; 165
Han, Bai, Wang, Bu, Zhang (b32) 2023; 9
Wang, Han, Tang, Bai, Wang, Shi (b9) 2024; 155
Li, Wang (b12) 2024; 39
Cheng, Wang, Zhang, Wang, Yan (b26) 2022; 25
OFGEM. Economy 7 tariff guidance, [Online]. Available
Chauhan, Kumar, Eskandarian (b23) 2024; 25
Lin J, Sheng M, Wang L, Li Y, Zeng M, Zhang X. Research on Incentive Subsidy Mechanism of Demand Response Based on System Dynamics. In: IEEE 5th conference on energy internet and energy system integration (EI2). Taiyuan, China; 2021.
California Public Utilities Commission. Emergency Load Reduction Program (ELRP) Attachment 2, [Online]. Available
Yu, Hong, Ding, Ye (b18) 2019; 66
Siami-Namini S, Tavakoli N, Namin AS. The performance of LSTM and BiLSTM in forecasting time series. In: 2019 IEEE international conference on big data (big data). 2019, p. 3285–92.
Stenner, Frederiks, Hobman, Cook (b41) 2017; 189
Wang, Hodge (b1) 2017; 13
Wang (b4) 2020; 56
Paterakis, Erdinç, Catalão (b3) 2017; 69
Pricing Reports of ISO New England, [Online]. Available
Wang, Chen, Hong, Kang (b25) 2019; 10
Miri, McPherson (b5) 2024; 288
Ahmed, Arshad, Rehman, Alqahtani, Mahmoud (b36) 2024; 12
Ming, Meng, Gao, Song, Chen, Choi (b10) 2023; 331
Liu, Qin, Hua, Ding, Cao (b11) 2023; 329
Chen, Lin, Zhang, Liu, Yu (b34) 2024; 302
Thimmapuram, Kim (b15) 2023; 4
Wang, Han, Tang, Bai, Wang, Shi (b16) 2024; 155
Hu, Zhou, Yin (b19) 2024; 308
.
Brucke, Schmitz, Köglmayr, Baur, Räth, Ansari, Klement (b33) 2024; 314
Liu, Ma, Chen, Zhao, Meng, Wu (b37) 2025; 319
Murray D, Stankovic L, Stankovic V. An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study, [Online]. Available: DOI
Liu, Li, Liu, Gu, Li, Ren (b2) 2024; 5
Chai, Xiang, Liu, Gu, Zhang, W. X (b17) 2019; 7
Department of Energy (b6) 2006
Wei, Meng, Zhao, Yu, Zhang, Jiang (b40) 2024; 258
Li (10.1016/j.energy.2025.137454_b12) 2024; 39
Hu (10.1016/j.energy.2025.137454_b19) 2024; 308
10.1016/j.energy.2025.137454_b24
Ahmed (10.1016/j.energy.2025.137454_b36) 2024; 12
10.1016/j.energy.2025.137454_b29
Chen (10.1016/j.energy.2025.137454_b8) 2024; 308
10.1016/j.energy.2025.137454_b21
Ming (10.1016/j.energy.2025.137454_b10) 2023; 331
Wang (10.1016/j.energy.2025.137454_b25) 2019; 10
Wang (10.1016/j.energy.2025.137454_b9) 2024; 155
Aheleroff (10.1016/j.energy.2025.137454_b39) 2020; 43
Chen (10.1016/j.energy.2025.137454_b34) 2024; 302
Stenner (10.1016/j.energy.2025.137454_b41) 2017; 189
Chai (10.1016/j.energy.2025.137454_b17) 2019; 7
Miri (10.1016/j.energy.2025.137454_b5) 2024; 288
Wang (10.1016/j.energy.2025.137454_b22) 2021; 2
10.1016/j.energy.2025.137454_b14
Chauhan (10.1016/j.energy.2025.137454_b23) 2024; 25
10.1016/j.energy.2025.137454_b13
10.1016/j.energy.2025.137454_b35
Department of Energy (10.1016/j.energy.2025.137454_b6) 2006
Wang (10.1016/j.energy.2025.137454_b1) 2017; 13
Han (10.1016/j.energy.2025.137454_b32) 2023; 9
Liu (10.1016/j.energy.2025.137454_b2) 2024; 5
Liu (10.1016/j.energy.2025.137454_b11) 2023; 329
Mota (10.1016/j.energy.2025.137454_b20) 2022; 260
Brucke (10.1016/j.energy.2025.137454_b33) 2024; 314
Zhao (10.1016/j.energy.2025.137454_b7) 2024; 302
Liu (10.1016/j.energy.2025.137454_b37) 2025; 319
10.1016/j.energy.2025.137454_b31
10.1016/j.energy.2025.137454_b30
Yu (10.1016/j.energy.2025.137454_b18) 2019; 66
Wei (10.1016/j.energy.2025.137454_b40) 2024; 258
Xu (10.1016/j.energy.2025.137454_b38) 2020; 11
Cheng (10.1016/j.energy.2025.137454_b26) 2022; 25
Thimmapuram (10.1016/j.energy.2025.137454_b15) 2023; 4
Wang (10.1016/j.energy.2025.137454_b16) 2024; 155
Paterakis (10.1016/j.energy.2025.137454_b3) 2017; 69
Fu (10.1016/j.energy.2025.137454_b27) 2018; 165
Deb (10.1016/j.energy.2025.137454_b28) 2014; 18
Wang (10.1016/j.energy.2025.137454_b4) 2020; 56
References_xml – reference: Pricing Reports of ISO New England, [Online]. Available:
– volume: 4
  start-page: 390
  year: 2023
  end-page: 397
  ident: b15
  article-title: Price elasticity of demand modeling with economic effects on electricity markets using an agent-based model
  publication-title: IEEE Trans Smart Grid
– volume: 331
  year: 2023
  ident: b10
  article-title: Efficiency improvement of decentralized incentive-based demand response: Social welfare analysis and market mechanism design
  publication-title: Appl Energy
– volume: 25
  start-page: 2107
  year: 2022
  end-page: 2123
  ident: b26
  article-title: Short-term fast forecasting based on family behavior pattern recognition for small-scale users load
  publication-title: Clust Comput
– volume: 39
  start-page: 2723
  year: 2024
  end-page: 2734
  ident: b12
  article-title: A linked swing contract market design with high renewable penetration and battery firming
  publication-title: IEEE Trans Power Syst
– volume: 155
  year: 2024
  ident: b16
  article-title: Incentive strategies for small and medium-sized customers to participate in demand response based on customer directrix load
  publication-title: Int J Electr Power Energy Syst
– volume: 7
  start-page: 1644
  year: 2019
  end-page: 1650
  ident: b17
  article-title: Incentive-based demand response model for maximizing benefits of electricity retailers
  publication-title: J Mod Power Syst Clean Energy
– volume: 302
  year: 2024
  ident: b7
  article-title: A multi-time scale demand response scheme based on noncooperative game for economic operation of industrial park
  publication-title: Energy
– reference: California Public Utilities Commission. Emergency Load Reduction Program (ELRP) Attachment 2, [Online]. Available:
– volume: 260
  year: 2022
  ident: b20
  article-title: Residential load shifting in demand response events for bill reduction using a genetic algorithm
  publication-title: Energy
– volume: 11
  start-page: 3201
  year: 2020
  end-page: 3211
  ident: b38
  article-title: A multi-agent reinforcement learning-based data-driven method for home energy management
  publication-title: IEEE Trans Smart Grid
– volume: 308
  year: 2024
  ident: b8
  article-title: Demand response with PCM-based pipe-embedded wall in commercial buildings: Combined passive and active energy storage in envelopes
  publication-title: Energy
– volume: 288
  year: 2024
  ident: b5
  article-title: Demand response programs: Comparing price signals and direct load control
  publication-title: Energy
– volume: 308
  year: 2024
  ident: b19
  article-title: Reinforcement learning model for incentive-based integrated demand response considering demand-side coupling
  publication-title: Energy
– volume: 69
  start-page: 871
  year: 2017
  end-page: 891
  ident: b3
  article-title: An overview of demand response: Key-elements and international experience
  publication-title: Renew Sust Energy Rev
– year: 2006
  ident: b6
  article-title: Benefit of demand response in electricity market and recommendations for achieving them
– volume: 302
  year: 2024
  ident: b34
  article-title: Day-ahead load forecast based on Conv2D-GRU-SC aimed to adapt to steep changes in load
  publication-title: Energy
– volume: 25
  start-page: 9181
  year: 2024
  end-page: 9191
  ident: b23
  article-title: A novel confined attention mechanism driven Bi-GRU model for traffic flow prediction
  publication-title: IEEE Trans Intell Transp Syst
– volume: 314
  year: 2024
  ident: b33
  article-title: Benchmarking reservoir computing for residential energy demand forecasting
  publication-title: Energy Build
– volume: 2
  start-page: 197
  year: 2021
  end-page: 211
  ident: b22
  article-title: Modelling and security of cyber–physical systems in smart grids
  publication-title: Energy Convers Econ
– reference: Zhang Z, Huang Y, Huang Q, Lee W. A Novel Hierarchical Demand Response Strategy for Residential Microgrid with Time-Varying Price. In: IEEE industry applications society annual meeting. Detroit, MI, USA; 2020.
– volume: 9
  start-page: 149
  year: 2023
  end-page: 158
  ident: b32
  article-title: Day-ahead aggregated load forecasting based on household smart meter data
  publication-title: Energy Rep
– volume: 189
  start-page: 76
  year: 2017
  end-page: 88
  ident: b41
  article-title: Willingness to participate in direct load control: The role of consumer distrust
  publication-title: Appl Energy
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b28
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Trans Evol Comput
– reference: .
– reference: OFGEM. Economy 7 tariff guidance, [Online]. Available:
– reference: Lin J, Sheng M, Wang L, Li Y, Zeng M, Zhang X. Research on Incentive Subsidy Mechanism of Demand Response Based on System Dynamics. In: IEEE 5th conference on energy internet and energy system integration (EI2). Taiyuan, China; 2021.
– volume: 10
  start-page: 3125
  year: 2019
  end-page: 3148
  ident: b25
  article-title: Review of smart meter data analytics: Applications, methodologies, and challenges
  publication-title: IEEE Trans Smart Grid
– volume: 12
  start-page: 568
  year: 2024
  end-page: 578
  ident: b36
  article-title: Effective incentive based demand response with voltage support capability via reinforcement learning based multi-agent framework
  publication-title: Energy Rep
– volume: 258
  year: 2024
  ident: b40
  article-title: Direct load control-based optimal scheduling strategy for demand response of air-conditioning systems in rural building complex
  publication-title: Build Environ
– reference: Murray D, Stankovic L, Stankovic V. An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study, [Online]. Available: DOI:
– volume: 329
  year: 2023
  ident: b11
  article-title: Incremental incentive mechanism design for diversified consumers in demand response
  publication-title: Appl Energy
– volume: 13
  start-page: 1652
  year: 2017
  end-page: 1664
  ident: b1
  article-title: Enhancing power system operational flexibility with flexible ramping products: A review
  publication-title: IEEE Trans Ind Inform
– volume: 155
  year: 2024
  ident: b9
  article-title: Incentive strategies for small and medium-sized customers to participate in demand response based on customer directrix load
  publication-title: Int J Electr Power Energy Syst
– reference: Xu X, Chen C-F, Washizu A, Ishii H, Yashiro H. Willingness to pay for home energy management system: A cross-country comparison. In: Proc. IEEE PES gen. meeting. Portland, OR, USA; 2018.
– reference: Siami-Namini S, Tavakoli N, Namin AS. The performance of LSTM and BiLSTM in forecasting time series. In: 2019 IEEE international conference on big data (big data). 2019, p. 3285–92.
– volume: 56
  start-page: 1086
  year: 2020
  end-page: 1097
  ident: b4
  article-title: A smart households’ aggregated capacity forecasting for load aggregators under incentive-based demand response programs
  publication-title: IEEE Trans Ind Appl
– volume: 319
  year: 2025
  ident: b37
  article-title: Multi-agent deep reinforcement learning-based cooperative energy management for regional integrated energy system incorporating active demand-side management
  publication-title: Energy
– volume: 5
  start-page: 93
  year: 2024
  end-page: 109
  ident: b2
  article-title: A closed-loop representative day selection framework for generation and transmission expansion planning with demand response
  publication-title: Energy Convers Econ
– volume: 66
  start-page: 1488
  year: 2019
  end-page: 1498
  ident: b18
  article-title: An incentive-based demand response (DR) model considering composited DR resources
  publication-title: IEEE Trans Ind Electron
– volume: 165
  start-page: 76
  year: 2018
  end-page: 89
  ident: b27
  article-title: Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China
  publication-title: Energy
– volume: 43
  year: 2020
  ident: b39
  article-title: IoT-enabled smart appliances under industry 4.0: A case study
  publication-title: Adv Eng Inform
– volume: 260
  year: 2022
  ident: 10.1016/j.energy.2025.137454_b20
  article-title: Residential load shifting in demand response events for bill reduction using a genetic algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124978
– volume: 7
  start-page: 1644
  issue: 6
  year: 2019
  ident: 10.1016/j.energy.2025.137454_b17
  article-title: Incentive-based demand response model for maximizing benefits of electricity retailers
  publication-title: J Mod Power Syst Clean Energy
  doi: 10.1007/s40565-019-0504-y
– volume: 43
  year: 2020
  ident: 10.1016/j.energy.2025.137454_b39
  article-title: IoT-enabled smart appliances under industry 4.0: A case study
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2020.101043
– volume: 5
  start-page: 93
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b2
  article-title: A closed-loop representative day selection framework for generation and transmission expansion planning with demand response
  publication-title: Energy Convers Econ
  doi: 10.1049/enc2.12114
– volume: 12
  start-page: 568
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b36
  article-title: Effective incentive based demand response with voltage support capability via reinforcement learning based multi-agent framework
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2024.06.036
– volume: 11
  start-page: 3201
  issue: 4
  year: 2020
  ident: 10.1016/j.energy.2025.137454_b38
  article-title: A multi-agent reinforcement learning-based data-driven method for home energy management
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2971427
– volume: 56
  start-page: 1086
  issue: 2
  year: 2020
  ident: 10.1016/j.energy.2025.137454_b4
  article-title: A smart households’ aggregated capacity forecasting for load aggregators under incentive-based demand response programs
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2020.2966426
– volume: 165
  start-page: 76
  year: 2018
  ident: 10.1016/j.energy.2025.137454_b27
  article-title: Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.156
– volume: 331
  year: 2023
  ident: 10.1016/j.energy.2025.137454_b10
  article-title: Efficiency improvement of decentralized incentive-based demand response: Social welfare analysis and market mechanism design
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120317
– volume: 2
  start-page: 197
  year: 2021
  ident: 10.1016/j.energy.2025.137454_b22
  article-title: Modelling and security of cyber–physical systems in smart grids
  publication-title: Energy Convers Econ
  doi: 10.1049/enc2.12051
– year: 2006
  ident: 10.1016/j.energy.2025.137454_b6
– volume: 69
  start-page: 871
  year: 2017
  ident: 10.1016/j.energy.2025.137454_b3
  article-title: An overview of demand response: Key-elements and international experience
  publication-title: Renew Sust Energy Rev
  doi: 10.1016/j.rser.2016.11.167
– volume: 155
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b9
  article-title: Incentive strategies for small and medium-sized customers to participate in demand response based on customer directrix load
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2023.109618
– volume: 308
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b8
  article-title: Demand response with PCM-based pipe-embedded wall in commercial buildings: Combined passive and active energy storage in envelopes
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132980
– volume: 258
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b40
  article-title: Direct load control-based optimal scheduling strategy for demand response of air-conditioning systems in rural building complex
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2024.111584
– volume: 308
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b19
  article-title: Reinforcement learning model for incentive-based integrated demand response considering demand-side coupling
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132997
– volume: 66
  start-page: 1488
  issue: 2
  year: 2019
  ident: 10.1016/j.energy.2025.137454_b18
  article-title: An incentive-based demand response (DR) model considering composited DR resources
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2826454
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.energy.2025.137454_b28
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2281535
– volume: 39
  start-page: 2723
  issue: 2
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b12
  article-title: A linked swing contract market design with high renewable penetration and battery firming
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2023.3274734
– ident: 10.1016/j.energy.2025.137454_b21
  doi: 10.1109/PESGM.2018.8586275
– volume: 10
  start-page: 3125
  issue: 3
  year: 2019
  ident: 10.1016/j.energy.2025.137454_b25
  article-title: Review of smart meter data analytics: Applications, methodologies, and challenges
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2818167
– ident: 10.1016/j.energy.2025.137454_b31
– ident: 10.1016/j.energy.2025.137454_b29
  doi: 10.1038/sdata.2016.122
– ident: 10.1016/j.energy.2025.137454_b35
– volume: 319
  year: 2025
  ident: 10.1016/j.energy.2025.137454_b37
  article-title: Multi-agent deep reinforcement learning-based cooperative energy management for regional integrated energy system incorporating active demand-side management
  publication-title: Energy
  doi: 10.1016/j.energy.2025.135056
– volume: 288
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b5
  article-title: Demand response programs: Comparing price signals and direct load control
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129673
– ident: 10.1016/j.energy.2025.137454_b24
  doi: 10.1109/BigData47090.2019.9005997
– volume: 13
  start-page: 1652
  issue: 4
  year: 2017
  ident: 10.1016/j.energy.2025.137454_b1
  article-title: Enhancing power system operational flexibility with flexible ramping products: A review
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2016.2637879
– volume: 4
  start-page: 390
  issue: 1
  year: 2023
  ident: 10.1016/j.energy.2025.137454_b15
  article-title: Price elasticity of demand modeling with economic effects on electricity markets using an agent-based model
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2012.2234487
– volume: 329
  year: 2023
  ident: 10.1016/j.energy.2025.137454_b11
  article-title: Incremental incentive mechanism design for diversified consumers in demand response
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120240
– volume: 189
  start-page: 76
  year: 2017
  ident: 10.1016/j.energy.2025.137454_b41
  article-title: Willingness to participate in direct load control: The role of consumer distrust
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.10.099
– volume: 25
  start-page: 2107
  issue: 3
  year: 2022
  ident: 10.1016/j.energy.2025.137454_b26
  article-title: Short-term fast forecasting based on family behavior pattern recognition for small-scale users load
  publication-title: Clust Comput
  doi: 10.1007/s10586-021-03362-9
– ident: 10.1016/j.energy.2025.137454_b30
– ident: 10.1016/j.energy.2025.137454_b14
  doi: 10.1109/IAS44978.2020.9334895
– volume: 302
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b34
  article-title: Day-ahead load forecast based on Conv2D-GRU-SC aimed to adapt to steep changes in load
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131814
– volume: 9
  start-page: 149
  year: 2023
  ident: 10.1016/j.energy.2025.137454_b32
  article-title: Day-ahead aggregated load forecasting based on household smart meter data
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2023.04.317
– ident: 10.1016/j.energy.2025.137454_b13
  doi: 10.1109/EI252483.2021.9712902
– volume: 155
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b16
  article-title: Incentive strategies for small and medium-sized customers to participate in demand response based on customer directrix load
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2023.109618
– volume: 25
  start-page: 9181
  issue: 8
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b23
  article-title: A novel confined attention mechanism driven Bi-GRU model for traffic flow prediction
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2024.3375890
– volume: 302
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b7
  article-title: A multi-time scale demand response scheme based on noncooperative game for economic operation of industrial park
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131875
– volume: 314
  year: 2024
  ident: 10.1016/j.energy.2025.137454_b33
  article-title: Benchmarking reservoir computing for residential energy demand forecasting
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2024.114236
SSID ssj0005899
Score 2.4774897
Snippet During peak demand or urgency periods, power systems may face challenges due to insufficient electricity supply. One practical approach to addressing this...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 137454
SubjectTerms Customer behavior analysis
Demand response
NSGA-III-DE
Personalized service
Smart meter data
Title Designing personalized incentive-based demand response services based on smart meter data and NSGA-III-DE algorithm
URI https://dx.doi.org/10.1016/j.energy.2025.137454
Volume 334
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCoFBRHpUHVrdJ4zjJWPVBC6JLqdQtih-BIpJWTVkY-O3c5SGKhBgY45yl6O783Vn5PpuQWyUVdNXKYwbygfEAtjuBCGLm8SCypS8sqVGc_DgTkwW_X7rLGhlUWhikVZbYX2B6jtblSLf0ZnezWnXngL3Qb3BISPxNIFDwy7mHtxh0PvdoHn5-hyQaM7Su5HM5x8vk-jrYJfbcju143OW_l6e9kjM-Icdlr0j7xeeckppJG-SwkhJnDdIcfcvUwLBcp9kZyYY5MQPKEt1U3faH0XSVIhkTAI5h9dJUmyRKNd0WRFlDsxI5aPF6ndIsAW_QBEkzFNmkFO1n87s-m06nbDii0dvzervavSTnZDEePQ0mrLxegSmIy44FWmlX-FpGHBahcWWsYG-hPKcnjXA8y9eO4L62lPQiHTsaz42BfiGIoKMQUgqnSerpOjUXhAod8ziIjO9yyR0tfTyHTNnKNZYRIjYtwiqvhpviFI2wope9hkUUQoxCWEShRbzK9eGPbAgB6P-cefnvmVfkCJ-wLtnuNanvtu_mBhqOnWznGdUmB_3pw2T2BdfU1vA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4VGMqCoFDxxgOr27SxnWSsSqHh0QUqdYviR6CIplVTFgZ-O-c8RJEQA2t8lqK783ffKd85AJdKKmTVyqMG84GyANudQAQJ9VgQd6QvHKntcPLDSAzH7HbCJzXoV7MwVlZZYn-B6Tlal0_apTfbi-m0_YjYi3yDYULazwTC34Atxrue7cBan2s6Dz__iaS1pta8mp_LRV4mH7DDNrHLWx3XY5z9Xp_Was71LuyUZJH0ivfZg5pJG1CvZomzBjQH33NqaFge1GwfsqtcmYF1iSwquv1hNJmmVo2JCEdt-dJEm1mcarIslLKGZCV0kGJ5npJshu4gM6uaIVZOSqz96PGmR8MwpFcDEr89z5fT1cvsAMbXg6f-kJb_V6AKA7OigVaaC1_LmOEpNFwmCpsL5bldaYTrOb52BfO1o6QX68TV9uIYJAxBjJRCSCncJmym89QcAhE6YUkQG58zyVwtfXsRmeoobhwjRGKOgFZejRbFNRpRpS97jYooRDYKURGFI_Aq10c_0iFCpP9z5_G_d15Affj0cB_dh6O7E9i2K7ZIdfgpbK6W7-YM2cdKnufZ9QX1gtiF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+personalized+incentive-based+demand+response+services+based+on+smart+meter+data+and+NSGA-III-DE+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Qin%2C+Chenxi&rft.au=Liu%2C+Wenjie&rft.au=Yan%2C+Yuejun&rft.au=Guan%2C+Quanxue&rft.date=2025-10-15&rft.issn=0360-5442&rft.volume=334&rft.spage=137454&rft_id=info:doi/10.1016%2Fj.energy.2025.137454&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2025_137454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon