Constrained coupled CPD of complex-valued multi-slice multi-subject fMRI data
Considering that the four-way complex-valued multi-subject fMRI tensor inevitably contains the large unwanted brain-out voxels, this paper innovatively combines multi-subject brain-in fMRI data with same slices as three-way multi-slice multi-subject fMRI tensors and thus brain-out voxels are discard...
Saved in:
| Published in | Signal processing Vol. 234; p. 110004 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0165-1684 |
| DOI | 10.1016/j.sigpro.2025.110004 |
Cover
| Abstract | Considering that the four-way complex-valued multi-subject fMRI tensor inevitably contains the large unwanted brain-out voxels, this paper innovatively combines multi-subject brain-in fMRI data with same slices as three-way multi-slice multi-subject fMRI tensors and thus brain-out voxels are discarded. Additionally, adjacent-slice fMRI tensors can be further merged, and multi-slice multi-subject fMRI tensors of N groups are formed, and are jointly decomposed by a novel spatiotemporally constrained coupled canonical polyadic decomposition (CCPD) by sharing temporal and subject modes but allowing slice-group differences. The spatial phase sparsity and orthonormality constraints are added on rank-R least-squares fit of N-slice-group shared spatial maps (SMs) to reduce noise effect, cross-talk among components and inter-subject spatial variability which naturally occur in complex-valued fMRI data. To alleviate CCPD model and allow inter-subject temporal variability, the alternating shift-invariant rank-1 least-squares optimization is performed to update shared time courses (TCs), subject-specific time delays and intensities. Results of simulated and experimental fMRI analyses demonstrate that the proposed methods with different N groups outperformed the competing methods by 6.21 %∼23.61 % in terms of shared task-related SMs and TCs. The proposed methods with N=45 and N=3 respectively obtain the best performance in the presence of strong noise levels and slightly strong noise levels cases. |
|---|---|
| AbstractList | Considering that the four-way complex-valued multi-subject fMRI tensor inevitably contains the large unwanted brain-out voxels, this paper innovatively combines multi-subject brain-in fMRI data with same slices as three-way multi-slice multi-subject fMRI tensors and thus brain-out voxels are discarded. Additionally, adjacent-slice fMRI tensors can be further merged, and multi-slice multi-subject fMRI tensors of N groups are formed, and are jointly decomposed by a novel spatiotemporally constrained coupled canonical polyadic decomposition (CCPD) by sharing temporal and subject modes but allowing slice-group differences. The spatial phase sparsity and orthonormality constraints are added on rank-R least-squares fit of N-slice-group shared spatial maps (SMs) to reduce noise effect, cross-talk among components and inter-subject spatial variability which naturally occur in complex-valued fMRI data. To alleviate CCPD model and allow inter-subject temporal variability, the alternating shift-invariant rank-1 least-squares optimization is performed to update shared time courses (TCs), subject-specific time delays and intensities. Results of simulated and experimental fMRI analyses demonstrate that the proposed methods with different N groups outperformed the competing methods by 6.21 %∼23.61 % in terms of shared task-related SMs and TCs. The proposed methods with N=45 and N=3 respectively obtain the best performance in the presence of strong noise levels and slightly strong noise levels cases. |
| ArticleNumber | 110004 |
| Author | Tang, Ting Gui, Yan Zhang, Jin Kuang, Li-Dan Zhu, Hao Long, Lei |
| Author_xml | – sequence: 1 givenname: Li-Dan orcidid: 0000-0002-0704-8950 surname: Kuang fullname: Kuang, Li-Dan email: kuangld@csust.edu.cn – sequence: 2 givenname: Hao surname: Zhu fullname: Zhu, Hao – sequence: 3 givenname: Lei surname: Long fullname: Long, Lei – sequence: 4 givenname: Ting surname: Tang fullname: Tang, Ting – sequence: 5 givenname: Yan surname: Gui fullname: Gui, Yan – sequence: 6 givenname: Jin orcidid: 0000-0002-7464-2247 surname: Zhang fullname: Zhang, Jin |
| BookMark | eNp9UMtOwzAQ9KFItIU_4JAfSFjbsRMuSCi8KrUCod4t1w_kKIkrO6ng73EVuKI9zO6sZrQ7K7QY_GAQusFQYMD8ti2i-zwGXxAgrMAYAMoFWqYVyzGvy0u0irFNLKYclmjX-CGOQbrB6Ez56dglbN4fM2_T2KfxKz_JbkpsP3Wjy2PnlPnrp0Nr1JjZ3ccm03KUV-jCyi6a619co_3z0755zbdvL5vmYZsrwqoxrymASVVKWpKaVJRVdUW1LHGtONeMK2wVcKn1nWW6MhJzSw9AJCMV40DXqJxtVfAxBmPFMbhehm-BQZxTEK2YUxDnFMScQpLdzzKTTjs5E0RUzgzKaBfSG0J797_BD_Diavc |
| Cites_doi | 10.1016/j.sigpro.2022.108716 10.1016/j.neuroimage.2022.119193 10.1016/j.jneumeth.2018.12.007 10.1080/24725579.2022.2141929 10.1016/j.jneumeth.2015.08.023 10.1016/j.sigpro.2019.107263 10.1016/j.jneumeth.2017.01.017 10.1109/TBME.2018.2831186 10.1109/TMI.2019.2893651 10.1016/j.jneumeth.2015.03.036 10.1109/TMI.2019.2936046 10.1109/JSTSP.2020.2992430 10.1016/j.bspc.2022.104232 10.1007/s11045-019-00685-0 10.1109/TMI.2021.3122226 10.1080/10618600.2021.1951741 10.1109/TNNLS.2019.2957527 10.1109/TNSRE.2022.3198679 10.1016/j.neuroimage.2008.10.057 10.1109/LSP.2021.3099074 10.1016/j.bspc.2024.106471 10.1016/j.bspc.2024.106058 10.1016/j.mri.2024.03.029 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.sigpro.2025.110004 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_sigpro_2025_110004 S0165168425001185 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c257t-8300e0e04a342827357873da418c66d56c1fc06add9f5d7ea16f3b02a5275603 |
| IEDL.DBID | .~1 |
| ISSN | 0165-1684 |
| IngestDate | Wed Oct 01 06:34:38 EDT 2025 Sat Apr 26 15:41:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Shift-invariance Spatial phase sparsity Coupled canonical polyadic decomposition (CCPD) Orthonormality Complex-valued fMRI data Multi-slice |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c257t-8300e0e04a342827357873da418c66d56c1fc06add9f5d7ea16f3b02a5275603 |
| ORCID | 0000-0002-0704-8950 0000-0002-7464-2247 |
| ParticipantIDs | crossref_primary_10_1016_j_sigpro_2025_110004 elsevier_sciencedirect_doi_10_1016_j_sigpro_2025_110004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 2025-09-00 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Signal processing |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bhinge, Mowakeaa, Calhoun, Adalı (bib0005) 2019; 38 Han, Lin, Kuang, Zhao, Gong, Cong, Wang, Calhoun (bib0011) 2024; 95 Calhoun, Liu, Adalı (bib0001) 2009; 45 Wang, Rowe, Li, Brown (bib0015) 2024; 109 Kuang, Zhang, Zhu, He, Li, Gui, Zhang (bib0014) 2024; 92 Xu, Wu, Chanussot, Wei (bib0022) 2020; 31 Borsoi, Lehmann, Akhonda, Calhoun, Usevich, Brie, Adali (bib0019) 2023 Kuang, Lin, Gong, Cong, Calhoun (bib0003) 2017; 281 Iqbal, Nait-Meziane, Seghouane, Abed-Meraim (bib0016) 2020; 166 Poythress, Ahn, Park (bib0025) 2022; 31 Kuang, Lin, Gong, Cong, Sui, Calhoun (bib0024) 2015; 256 Jin, Dontaraju, Kim, Akhonda, Adalı (bib0007) 2020; 14 Gong, Xu, Chen, Lin (bib0021) 2022; 201 Hu, Li, Zhao, Hao, Bai, Nickerson, Cong (bib0009) 2022; 255 Zheng, Shi, Zhou, Haardt, Chen (bib0020) 2021; 28 Kuang, He, Zhang, Li (bib0023) 2023; 80 Kuang, Lin, Gong, Cong, Wang, Calhoun (bib0017) 2019; 39 Chatzichristos, Kofidis, Morante, Theodoridis (bib0012) 2019; 315 Zhao, Gahrooei, Gaw (bib0018) 2023; 13 Han, Lin, Kuang, Gong, Cong, Wang, Calhoun (bib0010) 2022; 41 Yu, Lin, Kuang, Gong, Cong, Calhoun (bib0002) 2015; 249 Kuang, Wang, Lin, Zhang, Zhang, Li, Calhoun (bib0013) 2022 Zhang, Lv, Li, Zhu, Jiang, Zhang, Zhao, Guo, Ye, Hu, Liu (bib0006) 2019; 66 Kuang, Lin, Gong, Zhang, Li, Li, Calhoun (bib0008) 2022; 30 Mowakeaa, Boukouvalas, Long, Adalı (bib0004) 2020; 31 Yu (10.1016/j.sigpro.2025.110004_bib0002) 2015; 249 Iqbal (10.1016/j.sigpro.2025.110004_bib0016) 2020; 166 Poythress (10.1016/j.sigpro.2025.110004_bib0025) 2022; 31 Xu (10.1016/j.sigpro.2025.110004_bib0022) 2020; 31 Han (10.1016/j.sigpro.2025.110004_bib0010) 2022; 41 Borsoi (10.1016/j.sigpro.2025.110004_bib0019) 2023 Wang (10.1016/j.sigpro.2025.110004_bib0015) 2024; 109 Kuang (10.1016/j.sigpro.2025.110004_bib0003) 2017; 281 Kuang (10.1016/j.sigpro.2025.110004_bib0008) 2022; 30 Calhoun (10.1016/j.sigpro.2025.110004_bib0001) 2009; 45 Hu (10.1016/j.sigpro.2025.110004_bib0009) 2022; 255 Kuang (10.1016/j.sigpro.2025.110004_bib0023) 2023; 80 Kuang (10.1016/j.sigpro.2025.110004_bib0014) 2024; 92 Zhao (10.1016/j.sigpro.2025.110004_bib0018) 2023; 13 Bhinge (10.1016/j.sigpro.2025.110004_bib0005) 2019; 38 Han (10.1016/j.sigpro.2025.110004_bib0011) 2024; 95 Kuang (10.1016/j.sigpro.2025.110004_bib0017) 2019; 39 Zheng (10.1016/j.sigpro.2025.110004_bib0020) 2021; 28 Zhang (10.1016/j.sigpro.2025.110004_bib0006) 2019; 66 Kuang (10.1016/j.sigpro.2025.110004_bib0013) 2022 Kuang (10.1016/j.sigpro.2025.110004_bib0024) 2015; 256 Chatzichristos (10.1016/j.sigpro.2025.110004_bib0012) 2019; 315 Mowakeaa (10.1016/j.sigpro.2025.110004_bib0004) 2020; 31 Jin (10.1016/j.sigpro.2025.110004_bib0007) 2020; 14 Gong (10.1016/j.sigpro.2025.110004_bib0021) 2022; 201 |
| References_xml | – volume: 281 start-page: 49 year: 2017 end-page: 63 ident: bib0003 article-title: Adaptive independent vector analysis for multi-subject complex-valued fMRI data publication-title: J. Neurosci. Method. – volume: 109 start-page: 271 year: 2024 end-page: 285 ident: bib0015 article-title: A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data publication-title: Magnet. Reson. Imaging – volume: 255 year: 2022 ident: bib0009 article-title: Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data publication-title: NeuroImage – volume: 31 start-page: 725 year: 2020 end-page: 744 ident: bib0004 article-title: IVA using complex multivariate GGD: application to fMRI analysis publication-title: Multidimens. Syst. Signal Process. – volume: 13 start-page: 117 year: 2023 end-page: 131 ident: bib0018 article-title: Robust coupled tensor decomposition and feature extraction for multimodal medical data publication-title: IISE Transact. Healthc. Syst. Eng. – volume: 41 start-page: 667 year: 2022 end-page: 679 ident: bib0010 article-title: Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial sparsity constraint publication-title: IEEE Transact. Med. Imaging – start-page: 3933 year: 2022 end-page: 3937 ident: bib0013 article-title: An accelerated rank-(L, L, 1, 1) block term decomposition of multi-subject fMRI data under spatial orthonormality constraint publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing 2022 – volume: 249 start-page: 75 year: 2015 end-page: 91 ident: bib0002 article-title: ICA of full complex-valued fMRI data using phase information of spatial maps publication-title: J. Neurosci. Method. – volume: 45 start-page: S163 year: 2009 end-page: S172 ident: bib0001 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: NeuroImage – volume: 256 start-page: 127 year: 2015 end-page: 140 ident: bib0024 article-title: Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition publication-title: J. Neurosci. Method. – volume: 39 start-page: 844 year: 2019 end-page: 853 ident: bib0017 article-title: Shift-invariant canonical polyadic decomposition of complex-valued multi-subject fMRI data with a phase sparsity constraint publication-title: IEEE Transact. Med. Imaging – volume: 28 start-page: 1545 year: 2021 end-page: 1549 ident: bib0020 article-title: Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array publication-title: IEEE Signal Process. Lett. – volume: 201 year: 2022 ident: bib0021 article-title: Multistatic MIMO radar target localization via coupled canonical polyadic decomposition publication-title: Signal Process. – volume: 95 year: 2024 ident: bib0011 article-title: A core tensor sparsity enhancement method for solving Tucker-2 model of multi-subject fMRI data publication-title: Biomed. Signal Process. Control – volume: 166 year: 2020 ident: bib0016 article-title: Adaptive complex-valued dictionary learning: Application to fMRI data analysis publication-title: Signal Process. – volume: 31 start-page: 190 year: 2022 end-page: 203 ident: bib0025 article-title: Low-rank, orthogonally decomposable tensor regression with application to visual stimulus decoding of fMRI data publication-title: J. Comput. Graph. Statist. – start-page: 1 year: 2023 end-page: 5 ident: bib0019 article-title: Coupled CP tensor decomposition with shared and distinct components for multi-task fMRI data fusion publication-title: 2023 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 31 start-page: 4747 year: 2020 end-page: 4760 ident: bib0022 article-title: Hyperspectral images super-resolution via learning high-order coupled tensor ring representation publication-title: IEEE Transact. Neur. Netw. Learn. Syst. – volume: 315 start-page: 17 year: 2019 end-page: 47 ident: bib0012 article-title: Blind fMRI source unmixing via higher-order tensor decompositions publication-title: J. Neurosci. Method. – volume: 30 start-page: 2630 year: 2022 end-page: 2640 ident: bib0008 article-title: Constrained CPD of complex-valued multi-subject fMRI data via alternating rank-R and rank-1 least squares publication-title: IEEE Transact. Neur. Syst. Rehabilitat. Eng. – volume: 66 start-page: 289 year: 2019 end-page: 299 ident: bib0006 article-title: Experimental comparisons of sparse dictionary learning and independent component analysis for brain network inference from fMRI data publication-title: IEEE Transact. Biomed. Eng. – volume: 14 start-page: 1265 year: 2020 end-page: 1279 ident: bib0007 article-title: Dictionary learning-based fMRI data analysis for capturing common and individual neural activation maps publication-title: IEEE J. Select. Top. Signal Process. – volume: 92 year: 2024 ident: bib0014 article-title: Shift-invariant rank-(L, L, 1, 1) BTD with 3D spatial pooling and orthonormalization: Application to multi-subject fMRI data publication-title: Biomed. Signal Process. Control – volume: 38 start-page: 1715 year: 2019 end-page: 1725 ident: bib0005 article-title: Extraction of Time-varying spatiotemporal networks using parameter-tuned constrained IVA publication-title: IEEE Transact. Med. Imaging – volume: 80 year: 2023 ident: bib0023 article-title: Coupled canonical polyadic decomposition of multi-group fMRI data with spatial reference and orthonormality constraints publication-title: Biomed. Signal Process. Control – start-page: 1 year: 2023 ident: 10.1016/j.sigpro.2025.110004_bib0019 article-title: Coupled CP tensor decomposition with shared and distinct components for multi-task fMRI data fusion – volume: 201 year: 2022 ident: 10.1016/j.sigpro.2025.110004_bib0021 article-title: Multistatic MIMO radar target localization via coupled canonical polyadic decomposition publication-title: Signal Process. doi: 10.1016/j.sigpro.2022.108716 – volume: 255 year: 2022 ident: 10.1016/j.sigpro.2025.110004_bib0009 article-title: Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119193 – start-page: 3933 year: 2022 ident: 10.1016/j.sigpro.2025.110004_bib0013 article-title: An accelerated rank-(L, L, 1, 1) block term decomposition of multi-subject fMRI data under spatial orthonormality constraint – volume: 315 start-page: 17 year: 2019 ident: 10.1016/j.sigpro.2025.110004_bib0012 article-title: Blind fMRI source unmixing via higher-order tensor decompositions publication-title: J. Neurosci. Method. doi: 10.1016/j.jneumeth.2018.12.007 – volume: 13 start-page: 117 year: 2023 ident: 10.1016/j.sigpro.2025.110004_bib0018 article-title: Robust coupled tensor decomposition and feature extraction for multimodal medical data publication-title: IISE Transact. Healthc. Syst. Eng. doi: 10.1080/24725579.2022.2141929 – volume: 256 start-page: 127 year: 2015 ident: 10.1016/j.sigpro.2025.110004_bib0024 article-title: Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition publication-title: J. Neurosci. Method. doi: 10.1016/j.jneumeth.2015.08.023 – volume: 166 year: 2020 ident: 10.1016/j.sigpro.2025.110004_bib0016 article-title: Adaptive complex-valued dictionary learning: Application to fMRI data analysis publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.107263 – volume: 281 start-page: 49 year: 2017 ident: 10.1016/j.sigpro.2025.110004_bib0003 article-title: Adaptive independent vector analysis for multi-subject complex-valued fMRI data publication-title: J. Neurosci. Method. doi: 10.1016/j.jneumeth.2017.01.017 – volume: 66 start-page: 289 year: 2019 ident: 10.1016/j.sigpro.2025.110004_bib0006 article-title: Experimental comparisons of sparse dictionary learning and independent component analysis for brain network inference from fMRI data publication-title: IEEE Transact. Biomed. Eng. doi: 10.1109/TBME.2018.2831186 – volume: 38 start-page: 1715 year: 2019 ident: 10.1016/j.sigpro.2025.110004_bib0005 article-title: Extraction of Time-varying spatiotemporal networks using parameter-tuned constrained IVA publication-title: IEEE Transact. Med. Imaging doi: 10.1109/TMI.2019.2893651 – volume: 249 start-page: 75 year: 2015 ident: 10.1016/j.sigpro.2025.110004_bib0002 article-title: ICA of full complex-valued fMRI data using phase information of spatial maps publication-title: J. Neurosci. Method. doi: 10.1016/j.jneumeth.2015.03.036 – volume: 39 start-page: 844 year: 2019 ident: 10.1016/j.sigpro.2025.110004_bib0017 article-title: Shift-invariant canonical polyadic decomposition of complex-valued multi-subject fMRI data with a phase sparsity constraint publication-title: IEEE Transact. Med. Imaging doi: 10.1109/TMI.2019.2936046 – volume: 14 start-page: 1265 year: 2020 ident: 10.1016/j.sigpro.2025.110004_bib0007 article-title: Dictionary learning-based fMRI data analysis for capturing common and individual neural activation maps publication-title: IEEE J. Select. Top. Signal Process. doi: 10.1109/JSTSP.2020.2992430 – volume: 80 year: 2023 ident: 10.1016/j.sigpro.2025.110004_bib0023 article-title: Coupled canonical polyadic decomposition of multi-group fMRI data with spatial reference and orthonormality constraints publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104232 – volume: 31 start-page: 725 year: 2020 ident: 10.1016/j.sigpro.2025.110004_bib0004 article-title: IVA using complex multivariate GGD: application to fMRI analysis publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-019-00685-0 – volume: 41 start-page: 667 year: 2022 ident: 10.1016/j.sigpro.2025.110004_bib0010 article-title: Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial sparsity constraint publication-title: IEEE Transact. Med. Imaging doi: 10.1109/TMI.2021.3122226 – volume: 31 start-page: 190 year: 2022 ident: 10.1016/j.sigpro.2025.110004_bib0025 article-title: Low-rank, orthogonally decomposable tensor regression with application to visual stimulus decoding of fMRI data publication-title: J. Comput. Graph. Statist. doi: 10.1080/10618600.2021.1951741 – volume: 31 start-page: 4747 year: 2020 ident: 10.1016/j.sigpro.2025.110004_bib0022 article-title: Hyperspectral images super-resolution via learning high-order coupled tensor ring representation publication-title: IEEE Transact. Neur. Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2957527 – volume: 30 start-page: 2630 year: 2022 ident: 10.1016/j.sigpro.2025.110004_bib0008 article-title: Constrained CPD of complex-valued multi-subject fMRI data via alternating rank-R and rank-1 least squares publication-title: IEEE Transact. Neur. Syst. Rehabilitat. Eng. doi: 10.1109/TNSRE.2022.3198679 – volume: 45 start-page: S163 year: 2009 ident: 10.1016/j.sigpro.2025.110004_bib0001 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.057 – volume: 28 start-page: 1545 year: 2021 ident: 10.1016/j.sigpro.2025.110004_bib0020 article-title: Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2021.3099074 – volume: 95 year: 2024 ident: 10.1016/j.sigpro.2025.110004_bib0011 article-title: A core tensor sparsity enhancement method for solving Tucker-2 model of multi-subject fMRI data publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.106471 – volume: 92 year: 2024 ident: 10.1016/j.sigpro.2025.110004_bib0014 article-title: Shift-invariant rank-(L, L, 1, 1) BTD with 3D spatial pooling and orthonormalization: Application to multi-subject fMRI data publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.106058 – volume: 109 start-page: 271 year: 2024 ident: 10.1016/j.sigpro.2025.110004_bib0015 article-title: A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data publication-title: Magnet. Reson. Imaging doi: 10.1016/j.mri.2024.03.029 |
| SSID | ssj0001360 |
| Score | 2.457801 |
| Snippet | Considering that the four-way complex-valued multi-subject fMRI tensor inevitably contains the large unwanted brain-out voxels, this paper innovatively... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110004 |
| SubjectTerms | Complex-valued fMRI data Coupled canonical polyadic decomposition (CCPD) Multi-slice Orthonormality Shift-invariance Spatial phase sparsity |
| Title | Constrained coupled CPD of complex-valued multi-slice multi-subject fMRI data |
| URI | https://dx.doi.org/10.1016/j.sigpro.2025.110004 |
| Volume | 234 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0165-1684 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001360 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection issn: 0165-1684 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001360 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0165-1684 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001360 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0165-1684 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001360 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0165-1684 databaseCode: AKRWK dateStart: 19930101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GD14jUubNE2PYzo2ZUN0wm6lzYdMZBu6gSf_dt9LW5wIHqTQpiGB8tr88pL-3vsRclmE0hSCGcoMnESqQ5pyl1ChrWJc50b6_Y7RWA6exO00njZIr46FQVplhf0lpnu0rmo6lTU7y9ms84iBOKH_jeQTmWGguRAJqhhcfX7TPELuI4WxMcXWdfic53i9z54Bp2CVGMXIh2eVXNuv6Wljyunvkd3KVwy65ePsk4adH5CdjQyCh2SEgpte5sGaQC_Wy1e49u6vg4ULPFvcflDM5w21njpIwa3Uti6vC9yFCdzoYRggVfSITPo3k96AVgoJVMNQW1HFGbNwiJzDMgI8ERx_3OQiVFpKE0sdOs0kYFjqYpPYPJSOFyzKY8z6zvgxac4Xc3tCAgWOiFNOFVrBilFEOZQ1c6he5aIiZS1Ca7tkyzIPRlYTxF6y0o4Z2jEr7dgiSW287Mf7zACq_-x5-u-eZ2Qb70oG2Dlprt7W9gJchlXR9t9Em2x1h3eD8ReieL9b |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MeVAP4ifOzx68xqVN-nWU6dh0HaITvIU2HzKRbegGnvzbfUlbnAgepJCGNIHy0vzyXvp77wGcF36kCk4VoQoLnkqfpMzEhEudUCZzFbnzjmwY9R75zVP41IBO7QtjaZUV9peY7tC6amlX0mzPxuP2g3XE8d1vJBfILFyBVR4GsbXALj6_eR4-c67Ctjex3Wv_OUfyeh8_I1ChmRiElhBPq3xtv_anpT2nuwWblbLoXZbvsw0NPdmBjaUQgruQ2YybLs-DVp6cLmaveO_cXXlT4zm6uP4gNqA3tjruIEG9Uuq6vijsMYxnsvu-Z7miezDqXo86PVKlSCAS19qcJIxSjRfPGdoRqIrYBchUzv1ERpEKI-kbSSMEsdSEKta5HxlW0CAPbdh3yvahOZlO9AF4CWoiJjFJIRM0GXmQY11SY9NXmaBIaQtILRcxKwNhiJoh9iJKOQorR1HKsQVxLTzxY0IFYvWfIw__PfIM1nqjbCAG_eHtEazbJyUd7Bia87eFPkH9YV6cuu_jC1QhwPA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+coupled+CPD+of+complex-valued+multi-slice+multi-subject+fMRI+data&rft.jtitle=Signal+processing&rft.au=Kuang%2C+Li-Dan&rft.au=Zhu%2C+Hao&rft.au=Long%2C+Lei&rft.au=Tang%2C+Ting&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.volume=234&rft_id=info:doi/10.1016%2Fj.sigpro.2025.110004&rft.externalDocID=S0165168425001185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |