Constrained coupled CPD of complex-valued multi-slice multi-subject fMRI data

Considering that the four-way complex-valued multi-subject fMRI tensor inevitably contains the large unwanted brain-out voxels, this paper innovatively combines multi-subject brain-in fMRI data with same slices as three-way multi-slice multi-subject fMRI tensors and thus brain-out voxels are discard...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 234; p. 110004
Main Authors Kuang, Li-Dan, Zhu, Hao, Long, Lei, Tang, Ting, Gui, Yan, Zhang, Jin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2025
Subjects
Online AccessGet full text
ISSN0165-1684
DOI10.1016/j.sigpro.2025.110004

Cover

Abstract Considering that the four-way complex-valued multi-subject fMRI tensor inevitably contains the large unwanted brain-out voxels, this paper innovatively combines multi-subject brain-in fMRI data with same slices as three-way multi-slice multi-subject fMRI tensors and thus brain-out voxels are discarded. Additionally, adjacent-slice fMRI tensors can be further merged, and multi-slice multi-subject fMRI tensors of N groups are formed, and are jointly decomposed by a novel spatiotemporally constrained coupled canonical polyadic decomposition (CCPD) by sharing temporal and subject modes but allowing slice-group differences. The spatial phase sparsity and orthonormality constraints are added on rank-R least-squares fit of N-slice-group shared spatial maps (SMs) to reduce noise effect, cross-talk among components and inter-subject spatial variability which naturally occur in complex-valued fMRI data. To alleviate CCPD model and allow inter-subject temporal variability, the alternating shift-invariant rank-1 least-squares optimization is performed to update shared time courses (TCs), subject-specific time delays and intensities. Results of simulated and experimental fMRI analyses demonstrate that the proposed methods with different N groups outperformed the competing methods by 6.21 %∼23.61 % in terms of shared task-related SMs and TCs. The proposed methods with N=45 and N=3 respectively obtain the best performance in the presence of strong noise levels and slightly strong noise levels cases.
AbstractList Considering that the four-way complex-valued multi-subject fMRI tensor inevitably contains the large unwanted brain-out voxels, this paper innovatively combines multi-subject brain-in fMRI data with same slices as three-way multi-slice multi-subject fMRI tensors and thus brain-out voxels are discarded. Additionally, adjacent-slice fMRI tensors can be further merged, and multi-slice multi-subject fMRI tensors of N groups are formed, and are jointly decomposed by a novel spatiotemporally constrained coupled canonical polyadic decomposition (CCPD) by sharing temporal and subject modes but allowing slice-group differences. The spatial phase sparsity and orthonormality constraints are added on rank-R least-squares fit of N-slice-group shared spatial maps (SMs) to reduce noise effect, cross-talk among components and inter-subject spatial variability which naturally occur in complex-valued fMRI data. To alleviate CCPD model and allow inter-subject temporal variability, the alternating shift-invariant rank-1 least-squares optimization is performed to update shared time courses (TCs), subject-specific time delays and intensities. Results of simulated and experimental fMRI analyses demonstrate that the proposed methods with different N groups outperformed the competing methods by 6.21 %∼23.61 % in terms of shared task-related SMs and TCs. The proposed methods with N=45 and N=3 respectively obtain the best performance in the presence of strong noise levels and slightly strong noise levels cases.
ArticleNumber 110004
Author Tang, Ting
Gui, Yan
Zhang, Jin
Kuang, Li-Dan
Zhu, Hao
Long, Lei
Author_xml – sequence: 1
  givenname: Li-Dan
  orcidid: 0000-0002-0704-8950
  surname: Kuang
  fullname: Kuang, Li-Dan
  email: kuangld@csust.edu.cn
– sequence: 2
  givenname: Hao
  surname: Zhu
  fullname: Zhu, Hao
– sequence: 3
  givenname: Lei
  surname: Long
  fullname: Long, Lei
– sequence: 4
  givenname: Ting
  surname: Tang
  fullname: Tang, Ting
– sequence: 5
  givenname: Yan
  surname: Gui
  fullname: Gui, Yan
– sequence: 6
  givenname: Jin
  orcidid: 0000-0002-7464-2247
  surname: Zhang
  fullname: Zhang, Jin
BookMark eNp9UMtOwzAQ9KFItIU_4JAfSFjbsRMuSCi8KrUCod4t1w_kKIkrO6ng73EVuKI9zO6sZrQ7K7QY_GAQusFQYMD8ti2i-zwGXxAgrMAYAMoFWqYVyzGvy0u0irFNLKYclmjX-CGOQbrB6Ez56dglbN4fM2_T2KfxKz_JbkpsP3Wjy2PnlPnrp0Nr1JjZ3ccm03KUV-jCyi6a619co_3z0755zbdvL5vmYZsrwqoxrymASVVKWpKaVJRVdUW1LHGtONeMK2wVcKn1nWW6MhJzSw9AJCMV40DXqJxtVfAxBmPFMbhehm-BQZxTEK2YUxDnFMScQpLdzzKTTjs5E0RUzgzKaBfSG0J797_BD_Diavc
Cites_doi 10.1016/j.sigpro.2022.108716
10.1016/j.neuroimage.2022.119193
10.1016/j.jneumeth.2018.12.007
10.1080/24725579.2022.2141929
10.1016/j.jneumeth.2015.08.023
10.1016/j.sigpro.2019.107263
10.1016/j.jneumeth.2017.01.017
10.1109/TBME.2018.2831186
10.1109/TMI.2019.2893651
10.1016/j.jneumeth.2015.03.036
10.1109/TMI.2019.2936046
10.1109/JSTSP.2020.2992430
10.1016/j.bspc.2022.104232
10.1007/s11045-019-00685-0
10.1109/TMI.2021.3122226
10.1080/10618600.2021.1951741
10.1109/TNNLS.2019.2957527
10.1109/TNSRE.2022.3198679
10.1016/j.neuroimage.2008.10.057
10.1109/LSP.2021.3099074
10.1016/j.bspc.2024.106471
10.1016/j.bspc.2024.106058
10.1016/j.mri.2024.03.029
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2025.110004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sigpro_2025_110004
S0165168425001185
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c257t-8300e0e04a342827357873da418c66d56c1fc06add9f5d7ea16f3b02a5275603
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Wed Oct 01 06:34:38 EDT 2025
Sat Apr 26 15:41:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Shift-invariance
Spatial phase sparsity
Coupled canonical polyadic decomposition (CCPD)
Orthonormality
Complex-valued fMRI data
Multi-slice
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-8300e0e04a342827357873da418c66d56c1fc06add9f5d7ea16f3b02a5275603
ORCID 0000-0002-0704-8950
0000-0002-7464-2247
ParticipantIDs crossref_primary_10_1016_j_sigpro_2025_110004
elsevier_sciencedirect_doi_10_1016_j_sigpro_2025_110004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bhinge, Mowakeaa, Calhoun, Adalı (bib0005) 2019; 38
Han, Lin, Kuang, Zhao, Gong, Cong, Wang, Calhoun (bib0011) 2024; 95
Calhoun, Liu, Adalı (bib0001) 2009; 45
Wang, Rowe, Li, Brown (bib0015) 2024; 109
Kuang, Zhang, Zhu, He, Li, Gui, Zhang (bib0014) 2024; 92
Xu, Wu, Chanussot, Wei (bib0022) 2020; 31
Borsoi, Lehmann, Akhonda, Calhoun, Usevich, Brie, Adali (bib0019) 2023
Kuang, Lin, Gong, Cong, Calhoun (bib0003) 2017; 281
Iqbal, Nait-Meziane, Seghouane, Abed-Meraim (bib0016) 2020; 166
Poythress, Ahn, Park (bib0025) 2022; 31
Kuang, Lin, Gong, Cong, Sui, Calhoun (bib0024) 2015; 256
Jin, Dontaraju, Kim, Akhonda, Adalı (bib0007) 2020; 14
Gong, Xu, Chen, Lin (bib0021) 2022; 201
Hu, Li, Zhao, Hao, Bai, Nickerson, Cong (bib0009) 2022; 255
Zheng, Shi, Zhou, Haardt, Chen (bib0020) 2021; 28
Kuang, He, Zhang, Li (bib0023) 2023; 80
Kuang, Lin, Gong, Cong, Wang, Calhoun (bib0017) 2019; 39
Chatzichristos, Kofidis, Morante, Theodoridis (bib0012) 2019; 315
Zhao, Gahrooei, Gaw (bib0018) 2023; 13
Han, Lin, Kuang, Gong, Cong, Wang, Calhoun (bib0010) 2022; 41
Yu, Lin, Kuang, Gong, Cong, Calhoun (bib0002) 2015; 249
Kuang, Wang, Lin, Zhang, Zhang, Li, Calhoun (bib0013) 2022
Zhang, Lv, Li, Zhu, Jiang, Zhang, Zhao, Guo, Ye, Hu, Liu (bib0006) 2019; 66
Kuang, Lin, Gong, Zhang, Li, Li, Calhoun (bib0008) 2022; 30
Mowakeaa, Boukouvalas, Long, Adalı (bib0004) 2020; 31
Yu (10.1016/j.sigpro.2025.110004_bib0002) 2015; 249
Iqbal (10.1016/j.sigpro.2025.110004_bib0016) 2020; 166
Poythress (10.1016/j.sigpro.2025.110004_bib0025) 2022; 31
Xu (10.1016/j.sigpro.2025.110004_bib0022) 2020; 31
Han (10.1016/j.sigpro.2025.110004_bib0010) 2022; 41
Borsoi (10.1016/j.sigpro.2025.110004_bib0019) 2023
Wang (10.1016/j.sigpro.2025.110004_bib0015) 2024; 109
Kuang (10.1016/j.sigpro.2025.110004_bib0003) 2017; 281
Kuang (10.1016/j.sigpro.2025.110004_bib0008) 2022; 30
Calhoun (10.1016/j.sigpro.2025.110004_bib0001) 2009; 45
Hu (10.1016/j.sigpro.2025.110004_bib0009) 2022; 255
Kuang (10.1016/j.sigpro.2025.110004_bib0023) 2023; 80
Kuang (10.1016/j.sigpro.2025.110004_bib0014) 2024; 92
Zhao (10.1016/j.sigpro.2025.110004_bib0018) 2023; 13
Bhinge (10.1016/j.sigpro.2025.110004_bib0005) 2019; 38
Han (10.1016/j.sigpro.2025.110004_bib0011) 2024; 95
Kuang (10.1016/j.sigpro.2025.110004_bib0017) 2019; 39
Zheng (10.1016/j.sigpro.2025.110004_bib0020) 2021; 28
Zhang (10.1016/j.sigpro.2025.110004_bib0006) 2019; 66
Kuang (10.1016/j.sigpro.2025.110004_bib0013) 2022
Kuang (10.1016/j.sigpro.2025.110004_bib0024) 2015; 256
Chatzichristos (10.1016/j.sigpro.2025.110004_bib0012) 2019; 315
Mowakeaa (10.1016/j.sigpro.2025.110004_bib0004) 2020; 31
Jin (10.1016/j.sigpro.2025.110004_bib0007) 2020; 14
Gong (10.1016/j.sigpro.2025.110004_bib0021) 2022; 201
References_xml – volume: 281
  start-page: 49
  year: 2017
  end-page: 63
  ident: bib0003
  article-title: Adaptive independent vector analysis for multi-subject complex-valued fMRI data
  publication-title: J. Neurosci. Method.
– volume: 109
  start-page: 271
  year: 2024
  end-page: 285
  ident: bib0015
  article-title: A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data
  publication-title: Magnet. Reson. Imaging
– volume: 255
  year: 2022
  ident: bib0009
  article-title: Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data
  publication-title: NeuroImage
– volume: 31
  start-page: 725
  year: 2020
  end-page: 744
  ident: bib0004
  article-title: IVA using complex multivariate GGD: application to fMRI analysis
  publication-title: Multidimens. Syst. Signal Process.
– volume: 13
  start-page: 117
  year: 2023
  end-page: 131
  ident: bib0018
  article-title: Robust coupled tensor decomposition and feature extraction for multimodal medical data
  publication-title: IISE Transact. Healthc. Syst. Eng.
– volume: 41
  start-page: 667
  year: 2022
  end-page: 679
  ident: bib0010
  article-title: Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial sparsity constraint
  publication-title: IEEE Transact. Med. Imaging
– start-page: 3933
  year: 2022
  end-page: 3937
  ident: bib0013
  article-title: An accelerated rank-(L, L, 1, 1) block term decomposition of multi-subject fMRI data under spatial orthonormality constraint
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing 2022
– volume: 249
  start-page: 75
  year: 2015
  end-page: 91
  ident: bib0002
  article-title: ICA of full complex-valued fMRI data using phase information of spatial maps
  publication-title: J. Neurosci. Method.
– volume: 45
  start-page: S163
  year: 2009
  end-page: S172
  ident: bib0001
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: NeuroImage
– volume: 256
  start-page: 127
  year: 2015
  end-page: 140
  ident: bib0024
  article-title: Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition
  publication-title: J. Neurosci. Method.
– volume: 39
  start-page: 844
  year: 2019
  end-page: 853
  ident: bib0017
  article-title: Shift-invariant canonical polyadic decomposition of complex-valued multi-subject fMRI data with a phase sparsity constraint
  publication-title: IEEE Transact. Med. Imaging
– volume: 28
  start-page: 1545
  year: 2021
  end-page: 1549
  ident: bib0020
  article-title: Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array
  publication-title: IEEE Signal Process. Lett.
– volume: 201
  year: 2022
  ident: bib0021
  article-title: Multistatic MIMO radar target localization via coupled canonical polyadic decomposition
  publication-title: Signal Process.
– volume: 95
  year: 2024
  ident: bib0011
  article-title: A core tensor sparsity enhancement method for solving Tucker-2 model of multi-subject fMRI data
  publication-title: Biomed. Signal Process. Control
– volume: 166
  year: 2020
  ident: bib0016
  article-title: Adaptive complex-valued dictionary learning: Application to fMRI data analysis
  publication-title: Signal Process.
– volume: 31
  start-page: 190
  year: 2022
  end-page: 203
  ident: bib0025
  article-title: Low-rank, orthogonally decomposable tensor regression with application to visual stimulus decoding of fMRI data
  publication-title: J. Comput. Graph. Statist.
– start-page: 1
  year: 2023
  end-page: 5
  ident: bib0019
  article-title: Coupled CP tensor decomposition with shared and distinct components for multi-task fMRI data fusion
  publication-title: 2023 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 31
  start-page: 4747
  year: 2020
  end-page: 4760
  ident: bib0022
  article-title: Hyperspectral images super-resolution via learning high-order coupled tensor ring representation
  publication-title: IEEE Transact. Neur. Netw. Learn. Syst.
– volume: 315
  start-page: 17
  year: 2019
  end-page: 47
  ident: bib0012
  article-title: Blind fMRI source unmixing via higher-order tensor decompositions
  publication-title: J. Neurosci. Method.
– volume: 30
  start-page: 2630
  year: 2022
  end-page: 2640
  ident: bib0008
  article-title: Constrained CPD of complex-valued multi-subject fMRI data via alternating rank-R and rank-1 least squares
  publication-title: IEEE Transact. Neur. Syst. Rehabilitat. Eng.
– volume: 66
  start-page: 289
  year: 2019
  end-page: 299
  ident: bib0006
  article-title: Experimental comparisons of sparse dictionary learning and independent component analysis for brain network inference from fMRI data
  publication-title: IEEE Transact. Biomed. Eng.
– volume: 14
  start-page: 1265
  year: 2020
  end-page: 1279
  ident: bib0007
  article-title: Dictionary learning-based fMRI data analysis for capturing common and individual neural activation maps
  publication-title: IEEE J. Select. Top. Signal Process.
– volume: 92
  year: 2024
  ident: bib0014
  article-title: Shift-invariant rank-(L, L, 1, 1) BTD with 3D spatial pooling and orthonormalization: Application to multi-subject fMRI data
  publication-title: Biomed. Signal Process. Control
– volume: 38
  start-page: 1715
  year: 2019
  end-page: 1725
  ident: bib0005
  article-title: Extraction of Time-varying spatiotemporal networks using parameter-tuned constrained IVA
  publication-title: IEEE Transact. Med. Imaging
– volume: 80
  year: 2023
  ident: bib0023
  article-title: Coupled canonical polyadic decomposition of multi-group fMRI data with spatial reference and orthonormality constraints
  publication-title: Biomed. Signal Process. Control
– start-page: 1
  year: 2023
  ident: 10.1016/j.sigpro.2025.110004_bib0019
  article-title: Coupled CP tensor decomposition with shared and distinct components for multi-task fMRI data fusion
– volume: 201
  year: 2022
  ident: 10.1016/j.sigpro.2025.110004_bib0021
  article-title: Multistatic MIMO radar target localization via coupled canonical polyadic decomposition
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2022.108716
– volume: 255
  year: 2022
  ident: 10.1016/j.sigpro.2025.110004_bib0009
  article-title: Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119193
– start-page: 3933
  year: 2022
  ident: 10.1016/j.sigpro.2025.110004_bib0013
  article-title: An accelerated rank-(L, L, 1, 1) block term decomposition of multi-subject fMRI data under spatial orthonormality constraint
– volume: 315
  start-page: 17
  year: 2019
  ident: 10.1016/j.sigpro.2025.110004_bib0012
  article-title: Blind fMRI source unmixing via higher-order tensor decompositions
  publication-title: J. Neurosci. Method.
  doi: 10.1016/j.jneumeth.2018.12.007
– volume: 13
  start-page: 117
  year: 2023
  ident: 10.1016/j.sigpro.2025.110004_bib0018
  article-title: Robust coupled tensor decomposition and feature extraction for multimodal medical data
  publication-title: IISE Transact. Healthc. Syst. Eng.
  doi: 10.1080/24725579.2022.2141929
– volume: 256
  start-page: 127
  year: 2015
  ident: 10.1016/j.sigpro.2025.110004_bib0024
  article-title: Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition
  publication-title: J. Neurosci. Method.
  doi: 10.1016/j.jneumeth.2015.08.023
– volume: 166
  year: 2020
  ident: 10.1016/j.sigpro.2025.110004_bib0016
  article-title: Adaptive complex-valued dictionary learning: Application to fMRI data analysis
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.107263
– volume: 281
  start-page: 49
  year: 2017
  ident: 10.1016/j.sigpro.2025.110004_bib0003
  article-title: Adaptive independent vector analysis for multi-subject complex-valued fMRI data
  publication-title: J. Neurosci. Method.
  doi: 10.1016/j.jneumeth.2017.01.017
– volume: 66
  start-page: 289
  year: 2019
  ident: 10.1016/j.sigpro.2025.110004_bib0006
  article-title: Experimental comparisons of sparse dictionary learning and independent component analysis for brain network inference from fMRI data
  publication-title: IEEE Transact. Biomed. Eng.
  doi: 10.1109/TBME.2018.2831186
– volume: 38
  start-page: 1715
  year: 2019
  ident: 10.1016/j.sigpro.2025.110004_bib0005
  article-title: Extraction of Time-varying spatiotemporal networks using parameter-tuned constrained IVA
  publication-title: IEEE Transact. Med. Imaging
  doi: 10.1109/TMI.2019.2893651
– volume: 249
  start-page: 75
  year: 2015
  ident: 10.1016/j.sigpro.2025.110004_bib0002
  article-title: ICA of full complex-valued fMRI data using phase information of spatial maps
  publication-title: J. Neurosci. Method.
  doi: 10.1016/j.jneumeth.2015.03.036
– volume: 39
  start-page: 844
  year: 2019
  ident: 10.1016/j.sigpro.2025.110004_bib0017
  article-title: Shift-invariant canonical polyadic decomposition of complex-valued multi-subject fMRI data with a phase sparsity constraint
  publication-title: IEEE Transact. Med. Imaging
  doi: 10.1109/TMI.2019.2936046
– volume: 14
  start-page: 1265
  year: 2020
  ident: 10.1016/j.sigpro.2025.110004_bib0007
  article-title: Dictionary learning-based fMRI data analysis for capturing common and individual neural activation maps
  publication-title: IEEE J. Select. Top. Signal Process.
  doi: 10.1109/JSTSP.2020.2992430
– volume: 80
  year: 2023
  ident: 10.1016/j.sigpro.2025.110004_bib0023
  article-title: Coupled canonical polyadic decomposition of multi-group fMRI data with spatial reference and orthonormality constraints
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104232
– volume: 31
  start-page: 725
  year: 2020
  ident: 10.1016/j.sigpro.2025.110004_bib0004
  article-title: IVA using complex multivariate GGD: application to fMRI analysis
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-019-00685-0
– volume: 41
  start-page: 667
  year: 2022
  ident: 10.1016/j.sigpro.2025.110004_bib0010
  article-title: Low-rank Tucker-2 model for multi-subject fMRI data decomposition with spatial sparsity constraint
  publication-title: IEEE Transact. Med. Imaging
  doi: 10.1109/TMI.2021.3122226
– volume: 31
  start-page: 190
  year: 2022
  ident: 10.1016/j.sigpro.2025.110004_bib0025
  article-title: Low-rank, orthogonally decomposable tensor regression with application to visual stimulus decoding of fMRI data
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1080/10618600.2021.1951741
– volume: 31
  start-page: 4747
  year: 2020
  ident: 10.1016/j.sigpro.2025.110004_bib0022
  article-title: Hyperspectral images super-resolution via learning high-order coupled tensor ring representation
  publication-title: IEEE Transact. Neur. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2957527
– volume: 30
  start-page: 2630
  year: 2022
  ident: 10.1016/j.sigpro.2025.110004_bib0008
  article-title: Constrained CPD of complex-valued multi-subject fMRI data via alternating rank-R and rank-1 least squares
  publication-title: IEEE Transact. Neur. Syst. Rehabilitat. Eng.
  doi: 10.1109/TNSRE.2022.3198679
– volume: 45
  start-page: S163
  year: 2009
  ident: 10.1016/j.sigpro.2025.110004_bib0001
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.057
– volume: 28
  start-page: 1545
  year: 2021
  ident: 10.1016/j.sigpro.2025.110004_bib0020
  article-title: Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2021.3099074
– volume: 95
  year: 2024
  ident: 10.1016/j.sigpro.2025.110004_bib0011
  article-title: A core tensor sparsity enhancement method for solving Tucker-2 model of multi-subject fMRI data
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106471
– volume: 92
  year: 2024
  ident: 10.1016/j.sigpro.2025.110004_bib0014
  article-title: Shift-invariant rank-(L, L, 1, 1) BTD with 3D spatial pooling and orthonormalization: Application to multi-subject fMRI data
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106058
– volume: 109
  start-page: 271
  year: 2024
  ident: 10.1016/j.sigpro.2025.110004_bib0015
  article-title: A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data
  publication-title: Magnet. Reson. Imaging
  doi: 10.1016/j.mri.2024.03.029
SSID ssj0001360
Score 2.457801
Snippet Considering that the four-way complex-valued multi-subject fMRI tensor inevitably contains the large unwanted brain-out voxels, this paper innovatively...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110004
SubjectTerms Complex-valued fMRI data
Coupled canonical polyadic decomposition (CCPD)
Multi-slice
Orthonormality
Shift-invariance
Spatial phase sparsity
Title Constrained coupled CPD of complex-valued multi-slice multi-subject fMRI data
URI https://dx.doi.org/10.1016/j.sigpro.2025.110004
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0165-1684
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001360
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  issn: 0165-1684
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001360
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0165-1684
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001360
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0165-1684
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001360
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0165-1684
  databaseCode: AKRWK
  dateStart: 19930101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GD14jUubNE2PYzo2ZUN0wm6lzYdMZBu6gSf_dt9LW5wIHqTQpiGB8tr88pL-3vsRclmE0hSCGcoMnESqQ5pyl1ChrWJc50b6_Y7RWA6exO00njZIr46FQVplhf0lpnu0rmo6lTU7y9ms84iBOKH_jeQTmWGguRAJqhhcfX7TPELuI4WxMcXWdfic53i9z54Bp2CVGMXIh2eVXNuv6Wljyunvkd3KVwy65ePsk4adH5CdjQyCh2SEgpte5sGaQC_Wy1e49u6vg4ULPFvcflDM5w21njpIwa3Uti6vC9yFCdzoYRggVfSITPo3k96AVgoJVMNQW1HFGbNwiJzDMgI8ERx_3OQiVFpKE0sdOs0kYFjqYpPYPJSOFyzKY8z6zvgxac4Xc3tCAgWOiFNOFVrBilFEOZQ1c6he5aIiZS1Ca7tkyzIPRlYTxF6y0o4Z2jEr7dgiSW287Mf7zACq_-x5-u-eZ2Qb70oG2Dlprt7W9gJchlXR9t9Em2x1h3eD8ReieL9b
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MeVAP4ifOzx68xqVN-nWU6dh0HaITvIU2HzKRbegGnvzbfUlbnAgepJCGNIHy0vzyXvp77wGcF36kCk4VoQoLnkqfpMzEhEudUCZzFbnzjmwY9R75zVP41IBO7QtjaZUV9peY7tC6amlX0mzPxuP2g3XE8d1vJBfILFyBVR4GsbXALj6_eR4-c67Ctjex3Wv_OUfyeh8_I1ChmRiElhBPq3xtv_anpT2nuwWblbLoXZbvsw0NPdmBjaUQgruQ2YybLs-DVp6cLmaveO_cXXlT4zm6uP4gNqA3tjruIEG9Uuq6vijsMYxnsvu-Z7miezDqXo86PVKlSCAS19qcJIxSjRfPGdoRqIrYBchUzv1ERpEKI-kbSSMEsdSEKta5HxlW0CAPbdh3yvahOZlO9AF4CWoiJjFJIRM0GXmQY11SY9NXmaBIaQtILRcxKwNhiJoh9iJKOQorR1HKsQVxLTzxY0IFYvWfIw__PfIM1nqjbCAG_eHtEazbJyUd7Bia87eFPkH9YV6cuu_jC1QhwPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+coupled+CPD+of+complex-valued+multi-slice+multi-subject+fMRI+data&rft.jtitle=Signal+processing&rft.au=Kuang%2C+Li-Dan&rft.au=Zhu%2C+Hao&rft.au=Long%2C+Lei&rft.au=Tang%2C+Ting&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.volume=234&rft_id=info:doi/10.1016%2Fj.sigpro.2025.110004&rft.externalDocID=S0165168425001185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon