LBSR-YOLO: Blueberry health monitoring algorithm for WSN scenario application
•The LBSR-YOLO is proposed for intensive blueberry health monitoring in WSN scenarios.•The proposed CSFPC module effectively reduces the complexity of the algorithm.•The BSRN algorithm improves the detection accuracy and prolongs the survival time of WSN nodes•Ablation experiments show that CCFF and...
        Saved in:
      
    
          | Published in | Computers and electronics in agriculture Vol. 238; p. 110803 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.11.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0168-1699 | 
| DOI | 10.1016/j.compag.2025.110803 | 
Cover
| Abstract | •The LBSR-YOLO is proposed for intensive blueberry health monitoring in WSN scenarios.•The proposed CSFPC module effectively reduces the complexity of the algorithm.•The BSRN algorithm improves the detection accuracy and prolongs the survival time of WSN nodes•Ablation experiments show that CCFF and DWR modules are helpful for the detection of small target blueberry diseases.
Aiming at the problem of high cost and low efficiency of blueberry health monitoring in the blueberry intensive planting scene, present an enhanced LBSR-YOLO algorithm, combining the BSRN algorithm and YOLO v10n algorithm, for health monitoring of blueberries in a wireless sensor network (WSN) environment. Firstly, the input layer of the BSRN network uses large kernel weight sharing convolution (LKWSConv) to improve the quality of image generation, and partial convolution (PConv) is integrated into the network backbone to reduce complexity and parameters. Secondly, on the YOLOv10n network, free partial convolution (FPConv) is introduced to reduce model complexity and parameter count, and omni-dimensional dynamic convolution (ODConv) is introduced to enhance the model’s feature extraction capability. Cross-scale feature fusion module (CCFF) and dilation-wise residual module (DWR) are used to optimize and reconstruct the neck structure to detect small target objects. Finally, the improved network embedding is integrated into the LBSR-YOLO algorithm, and it is run on the edge computing node in the WSN application scenario. The results show that LBSR-YOLO achieves 79.3 % mAP on low-resolution images, with a model size of 3.7 MB and a computational complexity of 44.5 GFLOPs. For the edge detection node of the WSN scene, the detection of the same resolution image, the LBSR-YOLO algorithm can save 0.76 J of energy compared to the traditional method. Under the power supply of a 7.4 Wh battery, the LBSR-YOLO algorithm extends the battery life by 1300 s compared to the traditional method. The LBSR-YOLO algorithm can be deployed on low-cost devices to monitor blueberries’ health efficiently and has high use value. | 
    
|---|---|
| AbstractList | •The LBSR-YOLO is proposed for intensive blueberry health monitoring in WSN scenarios.•The proposed CSFPC module effectively reduces the complexity of the algorithm.•The BSRN algorithm improves the detection accuracy and prolongs the survival time of WSN nodes•Ablation experiments show that CCFF and DWR modules are helpful for the detection of small target blueberry diseases.
Aiming at the problem of high cost and low efficiency of blueberry health monitoring in the blueberry intensive planting scene, present an enhanced LBSR-YOLO algorithm, combining the BSRN algorithm and YOLO v10n algorithm, for health monitoring of blueberries in a wireless sensor network (WSN) environment. Firstly, the input layer of the BSRN network uses large kernel weight sharing convolution (LKWSConv) to improve the quality of image generation, and partial convolution (PConv) is integrated into the network backbone to reduce complexity and parameters. Secondly, on the YOLOv10n network, free partial convolution (FPConv) is introduced to reduce model complexity and parameter count, and omni-dimensional dynamic convolution (ODConv) is introduced to enhance the model’s feature extraction capability. Cross-scale feature fusion module (CCFF) and dilation-wise residual module (DWR) are used to optimize and reconstruct the neck structure to detect small target objects. Finally, the improved network embedding is integrated into the LBSR-YOLO algorithm, and it is run on the edge computing node in the WSN application scenario. The results show that LBSR-YOLO achieves 79.3 % mAP on low-resolution images, with a model size of 3.7 MB and a computational complexity of 44.5 GFLOPs. For the edge detection node of the WSN scene, the detection of the same resolution image, the LBSR-YOLO algorithm can save 0.76 J of energy compared to the traditional method. Under the power supply of a 7.4 Wh battery, the LBSR-YOLO algorithm extends the battery life by 1300 s compared to the traditional method. The LBSR-YOLO algorithm can be deployed on low-cost devices to monitor blueberries’ health efficiently and has high use value. | 
    
| ArticleNumber | 110803 | 
    
| Author | Li, Wei Yang, Jing Chen, Changsheng Song, Zhiwen Tan, Wei Qin, Tao  | 
    
| Author_xml | – sequence: 1 givenname: Zhiwen orcidid: 0009-0000-7468-8168 surname: Song fullname: Song, Zhiwen organization: Electrical Engineering College, Guizhou University, Guizhou, Guiyang 550025, China – sequence: 2 givenname: Wei surname: Li fullname: Li, Wei organization: Agricultural College, Guizhou University, Guizhou, Guiyang 550025, China – sequence: 3 givenname: Wei surname: Tan fullname: Tan, Wei organization: Forestry College, Guizhou University, Guizhou, Guiyang 550025, China – sequence: 4 givenname: Tao surname: Qin fullname: Qin, Tao organization: Electrical Engineering College, Guizhou University, Guizhou, Guiyang 550025, China – sequence: 5 givenname: Changsheng surname: Chen fullname: Chen, Changsheng organization: Electrical Engineering College, Guizhou University, Guizhou, Guiyang 550025, China – sequence: 6 givenname: Jing surname: Yang fullname: Yang, Jing email: jyang7@gzu.edu.cn organization: Electrical Engineering College, Guizhou University, Guizhou, Guiyang 550025, China  | 
    
| BookMark | eNp9kF1LwzAYhXMxwW36D7zIH2jNm34lXghu-AXVgVPEq5Ck6ZbRJiWtwv69HfXaq3MOL-fw8izQzHlnELoCEgOB_PoQa992chdTQrMYgDCSzNB8PLEIcs7P0aLvD2TMnBVz9FKutm_R16bc3OBV822UCeGI90Y2wx633tnBB-t2WDa70Qz7Ftc-4M_tK-61cTJYj2XXNVbLwXp3gc5q2fTm8k-X6OPh_n39FJWbx-f1XRlpmhVDlOdpWus6M5TXObCUs7TIFINKVpyOliuAjAInlBmdQKGKQmaS1aCUIhktkiVKp10dfN8HU4su2FaGowAiThjEQUwYxAmDmDCMtdupZsbffqwJotfWOG0qG4weROXt_wO_-vJq2Q | 
    
| Cites_doi | 10.14419/ijet.v7i2.33.15473 10.1016/j.compag.2025.110204 10.1016/j.compag.2024.108752 10.1016/j.eswa.2023.121352 10.1016/j.compag.2022.106928 10.1109/ACCESS.2024.3416332 10.1016/j.compag.2024.109118 10.3389/fpls.2015.00782 10.1016/j.compag.2025.110177 10.1007/s10462-020-09816-7 10.1007/s11760-025-04034-6 10.1016/j.compag.2024.108670 10.1016/j.compag.2007.01.019 10.1016/j.ijfoodmicro.2022.109890 10.1016/j.compag.2023.108233 10.1016/j.compag.2023.107665 10.1016/j.measurement.2024.116019  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2025 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.compag.2025.110803 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture | 
    
| ExternalDocumentID | 10_1016_j_compag_2025_110803 S0168169925009093  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABMAC ABMZM ABRWV ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACIWK ACLOT ACMHX ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADQTV ADSLC AEBSH AEFWE AEIPS AEKER AENEX AEQOU AEUPX AEXOQ AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWPP AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~HD ~KM AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c257t-6644fcf5e29f618498475b81dad924759b115219028ec317b77a5a8f1bbb05273 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0168-1699 | 
    
| IngestDate | Wed Oct 01 05:29:49 EDT 2025 Sat Oct 11 16:53:22 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Wireless sensor network Blueberry health monitoring Mobile deployment YOLO v10n BSRN  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c257t-6644fcf5e29f618498475b81dad924759b115219028ec317b77a5a8f1bbb05273 | 
    
| ORCID | 0009-0000-7468-8168 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_compag_2025_110803 elsevier_sciencedirect_doi_10_1016_j_compag_2025_110803  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | November 2025 2025-11-00  | 
    
| PublicationDateYYYYMMDD | 2025-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Computers and electronics in agriculture | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Camilli, Cugnasca, Saraiva, Hirakawa, Corrêa (b0005) 2007; 58 Lavanya, Srinivasan (b0045) 2018; 7 Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., Ding, G., 2024. YOLOv10: Real-Time End-to-End Object Detection. DOI: 10.48550/arXiv.2405.14458. Chou, Chang, Zhong, Guo, Hsieh, Peng, Tai, Chung, Wang, Jiang (b0015) 2023; 206 Mohinur Rahaman, Azharuddin (b0080) 2022; 197 Choudhary, Mishra, Goswami, Sarangapani (b0020) 2020; 53 Duan, Tarafdar, Chaurasia, Singh, Bhargava, Yang, Li, Ni, Tian, Li, Awasthi (b0025) 2022; 381 Gai, Liu, Xu (b0030) 2024; 12 Li, C., Zhou, A., Yao, A., 2022. Omni-dimensional dynamic convolution. arXiv preprint arXiv:2209.07947. Wei, H., Liu, X., Xu, S., Dai, Z., Dai, Y., Xu, X., 2022. DWRSeg: Rethinking efficient acquisition of multi-scale contextual information for real-time semantic segmentation. arXiv preprint arXiv:2212.01173. Li, Ma, Li, Zhang, Zhang, Zhou (b0055) 2024; 219 Tian, Wang, Li, Yang, Liang, Tan (b0090) 2023; 213 Chen, Kao, He, Zhuo, Wen, Lee, Chan (b0010) 2023 Lau, Po, Rehman (b0040) 2024; 236 Yang, Yang, Wu, Yuan, Li, Li (b0110) 2025; 234 Li, Liu, Chen, Cai, Gu, Qiao, Dong (b0060) 2022 Wang, Liao, Wu, Chen, Hsieh, Yeh (b0100) 2020 Zhao, Lv, Xu, Wei, Wang, Dang, Liu, Chen (b0125) 2024 Lobos, Hancock (b0075) 2015; 6 He, Li, An, Yao (b0035) 2025; 234 Liu, Abeyrathna, Mulya Sampurno, Massaki Nakaguchi, Ahamed (b0070) 2024; 223 Yi, Wu, Wu, Li (b0120) 2025; 19 Ye, Ma, Zhao, Duan, Wang, Ma (b0115) 2025; 242 Li, Zhu, Sui, Zhao, Liu, Li (b0065) 2024; 218 Redmon (b0085) 2016 Lobos (10.1016/j.compag.2025.110803_b0075) 2015; 6 He (10.1016/j.compag.2025.110803_b0035) 2025; 234 Li (10.1016/j.compag.2025.110803_b0065) 2024; 218 Lau (10.1016/j.compag.2025.110803_b0040) 2024; 236 Camilli (10.1016/j.compag.2025.110803_b0005) 2007; 58 Mohinur Rahaman (10.1016/j.compag.2025.110803_b0080) 2022; 197 Duan (10.1016/j.compag.2025.110803_b0025) 2022; 381 Liu (10.1016/j.compag.2025.110803_b0070) 2024; 223 Lavanya (10.1016/j.compag.2025.110803_b0045) 2018; 7 Yang (10.1016/j.compag.2025.110803_b0110) 2025; 234 Choudhary (10.1016/j.compag.2025.110803_b0020) 2020; 53 Li (10.1016/j.compag.2025.110803_b0055) 2024; 219 Ye (10.1016/j.compag.2025.110803_b0115) 2025; 242 Redmon (10.1016/j.compag.2025.110803_b0085) 2016 10.1016/j.compag.2025.110803_b0105 Zhao (10.1016/j.compag.2025.110803_b0125) 2024 Gai (10.1016/j.compag.2025.110803_b0030) 2024; 12 Yi (10.1016/j.compag.2025.110803_b0120) 2025; 19 Wang (10.1016/j.compag.2025.110803_b0100) 2020 Tian (10.1016/j.compag.2025.110803_b0090) 2023; 213 Chou (10.1016/j.compag.2025.110803_b0015) 2023; 206 Li (10.1016/j.compag.2025.110803_b0060) 2022 10.1016/j.compag.2025.110803_b0050 10.1016/j.compag.2025.110803_b0095 Chen (10.1016/j.compag.2025.110803_b0010) 2023  | 
    
| References_xml | – volume: 234 year: 2025 ident: b0110 article-title: MFD-YOLO: a fast and lightweight model for strawberry growth state detection publication-title: Comput. Electron. Agric. – volume: 242 year: 2025 ident: b0115 article-title: ADD-YOLO: an algorithm for detecting animals in outdoor environments based on unmanned aerial imagery publication-title: Measurement – volume: 223 year: 2024 ident: b0070 article-title: Faster-YOLO-AP: a lightweight apple detection algorithm based on improved YOLOv8 with a new efficient PDWConv in orchard publication-title: Comput. Electron. Agric. – start-page: 832 year: 2022 end-page: 842 ident: b0060 publication-title: Blueprint Separable Residual Network for Efficient Image Super-Resolution, in – reference: Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., Ding, G., 2024. YOLOv10: Real-Time End-to-End Object Detection. DOI: 10.48550/arXiv.2405.14458. – volume: 58 start-page: 25 year: 2007 end-page: 36 ident: b0005 article-title: From wireless sensors to field mapping: Anatomy of an application for precision agriculture publication-title: Comput. Electron. Agric., Precision Agriculture in Latin America – volume: 219 year: 2024 ident: b0055 article-title: Cotton-YOLO: improved YOLOV7 for rapid detection of foreign fibers in seed cotton publication-title: Comput. Electron. Agric. – volume: 6 start-page: 782 year: 2015 ident: b0075 article-title: Breeding blueberries for a changing global environment: a review publication-title: Front. Plant Sci. – volume: 213 year: 2023 ident: b0090 article-title: MD-YOLO: Multi-scale Dense YOLO for small target pest detection publication-title: Comput. Electron. Agric. – reference: Li, C., Zhou, A., Yao, A., 2022. Omni-dimensional dynamic convolution. arXiv preprint arXiv:2209.07947. – volume: 218 year: 2024 ident: b0065 article-title: Real-time detection and counting of wheat ears based on improved YOLOv7 publication-title: Comput. Electron. Agric. – volume: 234 year: 2025 ident: b0035 article-title: Real-time monitoring system for evaluating the operational quality of rice transplanters publication-title: Comput. Electron. Agric. – volume: 7 start-page: 673 year: 2018 end-page: 677 ident: b0045 article-title: A survey on agriculture and greenhouse monitoring using IOT and WSN publication-title: Int. J. Eng. & Technol. – reference: Wei, H., Liu, X., Xu, S., Dai, Z., Dai, Y., Xu, X., 2022. DWRSeg: Rethinking efficient acquisition of multi-scale contextual information for real-time semantic segmentation. arXiv preprint arXiv:2212.01173. – volume: 236 year: 2024 ident: b0040 article-title: Large separable kernel attention: Rethinking the large kernel attention design in cnn publication-title: Expert Syst. Appl. – volume: 53 year: 2020 ident: b0020 article-title: A comprehensive survey on model compression and acceleration publication-title: Artif. Intell. Rev. – volume: 19 start-page: 430 year: 2025 ident: b0120 article-title: CCO-DETR: a lightweight multi-scale object detection model for coal coking operations publication-title: SIViP – start-page: 12021 year: 2023 end-page: 12031 ident: b0010 article-title: Run, don’t walk: chasing higher FLOPS for faster neural networks publication-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 390 year: 2020 end-page: 391 ident: b0100 article-title: CSPNet: a new backbone that can enhance learning capability of CNN, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops – volume: 206 year: 2023 ident: b0015 article-title: Development of AIoT System for facility asparagus cultivation publication-title: Comput. Electron. Agric. – volume: 197 year: 2022 ident: b0080 article-title: Wireless sensor networks in agriculture through machine learning: a survey publication-title: Comput. Electron. Agric. – year: 2016 ident: b0085 article-title: You only look once: Unified, real-time object detection, in publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 12 start-page: 86378 year: 2024 end-page: 86390 ident: b0030 article-title: TL-YOLOv8: a blueberry fruit detection algorithm based on improved YOLOv8 and transfer learning publication-title: IEEE Access – volume: 381 year: 2022 ident: b0025 article-title: Blueberry fruit valorization and valuable constituents: a review publication-title: Int. J. Food Microbiol. – start-page: 16965 year: 2024 end-page: 16974 ident: b0125 article-title: Detrs beat yolos on real-time object detection publication-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 7 start-page: 673 year: 2018 ident: 10.1016/j.compag.2025.110803_b0045 article-title: A survey on agriculture and greenhouse monitoring using IOT and WSN publication-title: Int. J. Eng. & Technol. doi: 10.14419/ijet.v7i2.33.15473 – volume: 234 year: 2025 ident: 10.1016/j.compag.2025.110803_b0035 article-title: Real-time monitoring system for evaluating the operational quality of rice transplanters publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2025.110204 – volume: 219 year: 2024 ident: 10.1016/j.compag.2025.110803_b0055 article-title: Cotton-YOLO: improved YOLOV7 for rapid detection of foreign fibers in seed cotton publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108752 – start-page: 832 year: 2022 ident: 10.1016/j.compag.2025.110803_b0060 – volume: 236 year: 2024 ident: 10.1016/j.compag.2025.110803_b0040 article-title: Large separable kernel attention: Rethinking the large kernel attention design in cnn publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121352 – start-page: 16965 year: 2024 ident: 10.1016/j.compag.2025.110803_b0125 article-title: Detrs beat yolos on real-time object detection – volume: 197 year: 2022 ident: 10.1016/j.compag.2025.110803_b0080 article-title: Wireless sensor networks in agriculture through machine learning: a survey publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106928 – volume: 12 start-page: 86378 year: 2024 ident: 10.1016/j.compag.2025.110803_b0030 article-title: TL-YOLOv8: a blueberry fruit detection algorithm based on improved YOLOv8 and transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3416332 – volume: 223 year: 2024 ident: 10.1016/j.compag.2025.110803_b0070 article-title: Faster-YOLO-AP: a lightweight apple detection algorithm based on improved YOLOv8 with a new efficient PDWConv in orchard publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.109118 – volume: 6 start-page: 782 year: 2015 ident: 10.1016/j.compag.2025.110803_b0075 article-title: Breeding blueberries for a changing global environment: a review publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00782 – volume: 234 year: 2025 ident: 10.1016/j.compag.2025.110803_b0110 article-title: MFD-YOLO: a fast and lightweight model for strawberry growth state detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2025.110177 – volume: 53 year: 2020 ident: 10.1016/j.compag.2025.110803_b0020 article-title: A comprehensive survey on model compression and acceleration publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09816-7 – ident: 10.1016/j.compag.2025.110803_b0095 – volume: 19 start-page: 430 year: 2025 ident: 10.1016/j.compag.2025.110803_b0120 article-title: CCO-DETR: a lightweight multi-scale object detection model for coal coking operations publication-title: SIViP doi: 10.1007/s11760-025-04034-6 – ident: 10.1016/j.compag.2025.110803_b0105 – volume: 218 year: 2024 ident: 10.1016/j.compag.2025.110803_b0065 article-title: Real-time detection and counting of wheat ears based on improved YOLOv7 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108670 – start-page: 390 year: 2020 ident: 10.1016/j.compag.2025.110803_b0100 article-title: CSPNet: a new backbone that can enhance learning capability of CNN, in – volume: 58 start-page: 25 year: 2007 ident: 10.1016/j.compag.2025.110803_b0005 article-title: From wireless sensors to field mapping: Anatomy of an application for precision agriculture publication-title: Comput. Electron. Agric., Precision Agriculture in Latin America doi: 10.1016/j.compag.2007.01.019 – volume: 381 year: 2022 ident: 10.1016/j.compag.2025.110803_b0025 article-title: Blueberry fruit valorization and valuable constituents: a review publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2022.109890 – ident: 10.1016/j.compag.2025.110803_b0050 – year: 2016 ident: 10.1016/j.compag.2025.110803_b0085 article-title: You only look once: Unified, real-time object detection, in – volume: 213 year: 2023 ident: 10.1016/j.compag.2025.110803_b0090 article-title: MD-YOLO: Multi-scale Dense YOLO for small target pest detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108233 – volume: 206 year: 2023 ident: 10.1016/j.compag.2025.110803_b0015 article-title: Development of AIoT System for facility asparagus cultivation publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107665 – start-page: 12021 year: 2023 ident: 10.1016/j.compag.2025.110803_b0010 article-title: Run, don’t walk: chasing higher FLOPS for faster neural networks – volume: 242 year: 2025 ident: 10.1016/j.compag.2025.110803_b0115 article-title: ADD-YOLO: an algorithm for detecting animals in outdoor environments based on unmanned aerial imagery publication-title: Measurement doi: 10.1016/j.measurement.2024.116019  | 
    
| SSID | ssj0016987 | 
    
| Score | 2.457842 | 
    
| Snippet | •The LBSR-YOLO is proposed for intensive blueberry health monitoring in WSN scenarios.•The proposed CSFPC module effectively reduces the complexity of the... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 110803 | 
    
| SubjectTerms | Blueberry health monitoring BSRN Mobile deployment Wireless sensor network YOLO v10n  | 
    
| Title | LBSR-YOLO: Blueberry health monitoring algorithm for WSN scenario application | 
    
| URI | https://dx.doi.org/10.1016/j.compag.2025.110803 | 
    
| Volume | 238 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0168-1699 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016987 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0168-1699 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016987 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0168-1699 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016987 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0168-1699 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016987 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0168-1699 databaseCode: AKRWK dateStart: 19851001 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywmjZpbMdsbUVVoA-JUlGmKI6dUtSXonRg4bdzjhNUGBjYEsuWokt8933xfXcIXXNH6QbTIfF9BwiKkpKEWjCiAJxz3TBplUbv3B-w7th7mNBJCbULLYxJq8x9v_XpmbfOR2q5NWvr2aw2ArDiO0wICOJ1AcTcKNg9broY3Hx-p3nABN9KphmwJZhdyOeyHK8sz3sKLNGlWT580Trrd3jaCjmdA7SfY0XctI9ziEp6eYT2mtMkr5ehj1G_1xo9kddhb3iLW_MN2CpJPrAVN-JFtl_Njzsczqdwkb4tMIBU_DIaYFPFCXjyCm8dYZ-gcefuud0leYcEEsFWSwkDNBNHMdWuiE3nFgGxhkqAoKECXsWpkI6Jz6ZCi44AKUjOQxr6sSOlrJvSa6eovFwt9RnCkesKHiugc1R40oskY4opHYq6gvHIryBSGCZY20IYQZEh9h5YQwbGkIE1ZAXxwnrBjxcagK_-c-X5v1deoF1zZ6WCl6icJht9BZghldXso6iineb9Y3fwBV0Jv7w | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SnKpwdW0yZN7JitragKpK1EWwGTFSdOKeqXonRg4bdzjhNUGBjYIseRopf47r3k3Rmha2ZFqk5VQDzPAoESSUkCxSmJgJwzVde2Sl3v3O3Rzsh5eHFfSqhV1MJoW2Ue-01Mz6J1PlLN0awuJ5PqAMiKZ1HOIYnXOAjzDbTpuDbTCuzm89vnATM8UzNNQS7B9KJ-LjN5ZUbvMchE280M8cXeWb_z01rOae-h3Zws4oa5n31UUvMDtNMYJ3nDDHWIun5z8ERe-37_FjenKwArST6wqW7Es2zB6i93OJiO4SB9m2Fgqfh50MO6jRMI5QVe-4d9hEbtu2GrQ_ItEkgIay0lFOhMHMausnmst27hkGxcCRw0iEBYMZdLSydo3aJFhUAVJGOBG3ixJaWs6d5rx6g8X8zVCcKhbXMWR6DnXO5IJ5SURjRSAa9FMB56FUQKYMTSdMIQhUXsXRgghQZSGCAriBXoiR9PVECw_vPK039feYW2OsOuL_z73uMZ2tZnTN3gOSqnyUpdAIFI5WX2gnwBELrBUQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LBSR-YOLO%3A+Blueberry+health+monitoring+algorithm+for+WSN+scenario+application&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Song%2C+Zhiwen&rft.au=Li%2C+Wei&rft.au=Tan%2C+Wei&rft.au=Qin%2C+Tao&rft.date=2025-11-01&rft.issn=0168-1699&rft.volume=238&rft.spage=110803&rft_id=info:doi/10.1016%2Fj.compag.2025.110803&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2025_110803 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |