LBSR-YOLO: Blueberry health monitoring algorithm for WSN scenario application

•The LBSR-YOLO is proposed for intensive blueberry health monitoring in WSN scenarios.•The proposed CSFPC module effectively reduces the complexity of the algorithm.•The BSRN algorithm improves the detection accuracy and prolongs the survival time of WSN nodes•Ablation experiments show that CCFF and...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 238; p. 110803
Main Authors Song, Zhiwen, Li, Wei, Tan, Wei, Qin, Tao, Chen, Changsheng, Yang, Jing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2025
Subjects
Online AccessGet full text
ISSN0168-1699
DOI10.1016/j.compag.2025.110803

Cover

Abstract •The LBSR-YOLO is proposed for intensive blueberry health monitoring in WSN scenarios.•The proposed CSFPC module effectively reduces the complexity of the algorithm.•The BSRN algorithm improves the detection accuracy and prolongs the survival time of WSN nodes•Ablation experiments show that CCFF and DWR modules are helpful for the detection of small target blueberry diseases. Aiming at the problem of high cost and low efficiency of blueberry health monitoring in the blueberry intensive planting scene, present an enhanced LBSR-YOLO algorithm, combining the BSRN algorithm and YOLO v10n algorithm, for health monitoring of blueberries in a wireless sensor network (WSN) environment. Firstly, the input layer of the BSRN network uses large kernel weight sharing convolution (LKWSConv) to improve the quality of image generation, and partial convolution (PConv) is integrated into the network backbone to reduce complexity and parameters. Secondly, on the YOLOv10n network, free partial convolution (FPConv) is introduced to reduce model complexity and parameter count, and omni-dimensional dynamic convolution (ODConv) is introduced to enhance the model’s feature extraction capability. Cross-scale feature fusion module (CCFF) and dilation-wise residual module (DWR) are used to optimize and reconstruct the neck structure to detect small target objects. Finally, the improved network embedding is integrated into the LBSR-YOLO algorithm, and it is run on the edge computing node in the WSN application scenario. The results show that LBSR-YOLO achieves 79.3 % mAP on low-resolution images, with a model size of 3.7 MB and a computational complexity of 44.5 GFLOPs. For the edge detection node of the WSN scene, the detection of the same resolution image, the LBSR-YOLO algorithm can save 0.76 J of energy compared to the traditional method. Under the power supply of a 7.4 Wh battery, the LBSR-YOLO algorithm extends the battery life by 1300 s compared to the traditional method. The LBSR-YOLO algorithm can be deployed on low-cost devices to monitor blueberries’ health efficiently and has high use value.
AbstractList •The LBSR-YOLO is proposed for intensive blueberry health monitoring in WSN scenarios.•The proposed CSFPC module effectively reduces the complexity of the algorithm.•The BSRN algorithm improves the detection accuracy and prolongs the survival time of WSN nodes•Ablation experiments show that CCFF and DWR modules are helpful for the detection of small target blueberry diseases. Aiming at the problem of high cost and low efficiency of blueberry health monitoring in the blueberry intensive planting scene, present an enhanced LBSR-YOLO algorithm, combining the BSRN algorithm and YOLO v10n algorithm, for health monitoring of blueberries in a wireless sensor network (WSN) environment. Firstly, the input layer of the BSRN network uses large kernel weight sharing convolution (LKWSConv) to improve the quality of image generation, and partial convolution (PConv) is integrated into the network backbone to reduce complexity and parameters. Secondly, on the YOLOv10n network, free partial convolution (FPConv) is introduced to reduce model complexity and parameter count, and omni-dimensional dynamic convolution (ODConv) is introduced to enhance the model’s feature extraction capability. Cross-scale feature fusion module (CCFF) and dilation-wise residual module (DWR) are used to optimize and reconstruct the neck structure to detect small target objects. Finally, the improved network embedding is integrated into the LBSR-YOLO algorithm, and it is run on the edge computing node in the WSN application scenario. The results show that LBSR-YOLO achieves 79.3 % mAP on low-resolution images, with a model size of 3.7 MB and a computational complexity of 44.5 GFLOPs. For the edge detection node of the WSN scene, the detection of the same resolution image, the LBSR-YOLO algorithm can save 0.76 J of energy compared to the traditional method. Under the power supply of a 7.4 Wh battery, the LBSR-YOLO algorithm extends the battery life by 1300 s compared to the traditional method. The LBSR-YOLO algorithm can be deployed on low-cost devices to monitor blueberries’ health efficiently and has high use value.
ArticleNumber 110803
Author Li, Wei
Yang, Jing
Chen, Changsheng
Song, Zhiwen
Tan, Wei
Qin, Tao
Author_xml – sequence: 1
  givenname: Zhiwen
  orcidid: 0009-0000-7468-8168
  surname: Song
  fullname: Song, Zhiwen
  organization: Electrical Engineering College, Guizhou University, Guizhou, Guiyang 550025, China
– sequence: 2
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Agricultural College, Guizhou University, Guizhou, Guiyang 550025, China
– sequence: 3
  givenname: Wei
  surname: Tan
  fullname: Tan, Wei
  organization: Forestry College, Guizhou University, Guizhou, Guiyang 550025, China
– sequence: 4
  givenname: Tao
  surname: Qin
  fullname: Qin, Tao
  organization: Electrical Engineering College, Guizhou University, Guizhou, Guiyang 550025, China
– sequence: 5
  givenname: Changsheng
  surname: Chen
  fullname: Chen, Changsheng
  organization: Electrical Engineering College, Guizhou University, Guizhou, Guiyang 550025, China
– sequence: 6
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
  email: jyang7@gzu.edu.cn
  organization: Electrical Engineering College, Guizhou University, Guizhou, Guiyang 550025, China
BookMark eNp9kF1LwzAYhXMxwW36D7zIH2jNm34lXghu-AXVgVPEq5Ck6ZbRJiWtwv69HfXaq3MOL-fw8izQzHlnELoCEgOB_PoQa992chdTQrMYgDCSzNB8PLEIcs7P0aLvD2TMnBVz9FKutm_R16bc3OBV822UCeGI90Y2wx633tnBB-t2WDa70Qz7Ftc-4M_tK-61cTJYj2XXNVbLwXp3gc5q2fTm8k-X6OPh_n39FJWbx-f1XRlpmhVDlOdpWus6M5TXObCUs7TIFINKVpyOliuAjAInlBmdQKGKQmaS1aCUIhktkiVKp10dfN8HU4su2FaGowAiThjEQUwYxAmDmDCMtdupZsbffqwJotfWOG0qG4weROXt_wO_-vJq2Q
Cites_doi 10.14419/ijet.v7i2.33.15473
10.1016/j.compag.2025.110204
10.1016/j.compag.2024.108752
10.1016/j.eswa.2023.121352
10.1016/j.compag.2022.106928
10.1109/ACCESS.2024.3416332
10.1016/j.compag.2024.109118
10.3389/fpls.2015.00782
10.1016/j.compag.2025.110177
10.1007/s10462-020-09816-7
10.1007/s11760-025-04034-6
10.1016/j.compag.2024.108670
10.1016/j.compag.2007.01.019
10.1016/j.ijfoodmicro.2022.109890
10.1016/j.compag.2023.108233
10.1016/j.compag.2023.107665
10.1016/j.measurement.2024.116019
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compag.2025.110803
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_compag_2025_110803
S0168169925009093
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACMHX
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADQTV
ADSLC
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AEXOQ
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWPP
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~HD
~KM
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-6644fcf5e29f618498475b81dad924759b115219028ec317b77a5a8f1bbb05273
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Wed Oct 01 05:29:49 EDT 2025
Sat Oct 11 16:53:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Wireless sensor network
Blueberry health monitoring
Mobile deployment
YOLO v10n
BSRN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-6644fcf5e29f618498475b81dad924759b115219028ec317b77a5a8f1bbb05273
ORCID 0009-0000-7468-8168
ParticipantIDs crossref_primary_10_1016_j_compag_2025_110803
elsevier_sciencedirect_doi_10_1016_j_compag_2025_110803
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Camilli, Cugnasca, Saraiva, Hirakawa, Corrêa (b0005) 2007; 58
Lavanya, Srinivasan (b0045) 2018; 7
Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., Ding, G., 2024. YOLOv10: Real-Time End-to-End Object Detection. DOI: 10.48550/arXiv.2405.14458.
Chou, Chang, Zhong, Guo, Hsieh, Peng, Tai, Chung, Wang, Jiang (b0015) 2023; 206
Mohinur Rahaman, Azharuddin (b0080) 2022; 197
Choudhary, Mishra, Goswami, Sarangapani (b0020) 2020; 53
Duan, Tarafdar, Chaurasia, Singh, Bhargava, Yang, Li, Ni, Tian, Li, Awasthi (b0025) 2022; 381
Gai, Liu, Xu (b0030) 2024; 12
Li, C., Zhou, A., Yao, A., 2022. Omni-dimensional dynamic convolution. arXiv preprint arXiv:2209.07947.
Wei, H., Liu, X., Xu, S., Dai, Z., Dai, Y., Xu, X., 2022. DWRSeg: Rethinking efficient acquisition of multi-scale contextual information for real-time semantic segmentation. arXiv preprint arXiv:2212.01173.
Li, Ma, Li, Zhang, Zhang, Zhou (b0055) 2024; 219
Tian, Wang, Li, Yang, Liang, Tan (b0090) 2023; 213
Chen, Kao, He, Zhuo, Wen, Lee, Chan (b0010) 2023
Lau, Po, Rehman (b0040) 2024; 236
Yang, Yang, Wu, Yuan, Li, Li (b0110) 2025; 234
Li, Liu, Chen, Cai, Gu, Qiao, Dong (b0060) 2022
Wang, Liao, Wu, Chen, Hsieh, Yeh (b0100) 2020
Zhao, Lv, Xu, Wei, Wang, Dang, Liu, Chen (b0125) 2024
Lobos, Hancock (b0075) 2015; 6
He, Li, An, Yao (b0035) 2025; 234
Liu, Abeyrathna, Mulya Sampurno, Massaki Nakaguchi, Ahamed (b0070) 2024; 223
Yi, Wu, Wu, Li (b0120) 2025; 19
Ye, Ma, Zhao, Duan, Wang, Ma (b0115) 2025; 242
Li, Zhu, Sui, Zhao, Liu, Li (b0065) 2024; 218
Redmon (b0085) 2016
Lobos (10.1016/j.compag.2025.110803_b0075) 2015; 6
He (10.1016/j.compag.2025.110803_b0035) 2025; 234
Li (10.1016/j.compag.2025.110803_b0065) 2024; 218
Lau (10.1016/j.compag.2025.110803_b0040) 2024; 236
Camilli (10.1016/j.compag.2025.110803_b0005) 2007; 58
Mohinur Rahaman (10.1016/j.compag.2025.110803_b0080) 2022; 197
Duan (10.1016/j.compag.2025.110803_b0025) 2022; 381
Liu (10.1016/j.compag.2025.110803_b0070) 2024; 223
Lavanya (10.1016/j.compag.2025.110803_b0045) 2018; 7
Yang (10.1016/j.compag.2025.110803_b0110) 2025; 234
Choudhary (10.1016/j.compag.2025.110803_b0020) 2020; 53
Li (10.1016/j.compag.2025.110803_b0055) 2024; 219
Ye (10.1016/j.compag.2025.110803_b0115) 2025; 242
Redmon (10.1016/j.compag.2025.110803_b0085) 2016
10.1016/j.compag.2025.110803_b0105
Zhao (10.1016/j.compag.2025.110803_b0125) 2024
Gai (10.1016/j.compag.2025.110803_b0030) 2024; 12
Yi (10.1016/j.compag.2025.110803_b0120) 2025; 19
Wang (10.1016/j.compag.2025.110803_b0100) 2020
Tian (10.1016/j.compag.2025.110803_b0090) 2023; 213
Chou (10.1016/j.compag.2025.110803_b0015) 2023; 206
Li (10.1016/j.compag.2025.110803_b0060) 2022
10.1016/j.compag.2025.110803_b0050
10.1016/j.compag.2025.110803_b0095
Chen (10.1016/j.compag.2025.110803_b0010) 2023
References_xml – volume: 234
  year: 2025
  ident: b0110
  article-title: MFD-YOLO: a fast and lightweight model for strawberry growth state detection
  publication-title: Comput. Electron. Agric.
– volume: 242
  year: 2025
  ident: b0115
  article-title: ADD-YOLO: an algorithm for detecting animals in outdoor environments based on unmanned aerial imagery
  publication-title: Measurement
– volume: 223
  year: 2024
  ident: b0070
  article-title: Faster-YOLO-AP: a lightweight apple detection algorithm based on improved YOLOv8 with a new efficient PDWConv in orchard
  publication-title: Comput. Electron. Agric.
– start-page: 832
  year: 2022
  end-page: 842
  ident: b0060
  publication-title: Blueprint Separable Residual Network for Efficient Image Super-Resolution, in
– reference: Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., Ding, G., 2024. YOLOv10: Real-Time End-to-End Object Detection. DOI: 10.48550/arXiv.2405.14458.
– volume: 58
  start-page: 25
  year: 2007
  end-page: 36
  ident: b0005
  article-title: From wireless sensors to field mapping: Anatomy of an application for precision agriculture
  publication-title: Comput. Electron. Agric., Precision Agriculture in Latin America
– volume: 219
  year: 2024
  ident: b0055
  article-title: Cotton-YOLO: improved YOLOV7 for rapid detection of foreign fibers in seed cotton
  publication-title: Comput. Electron. Agric.
– volume: 6
  start-page: 782
  year: 2015
  ident: b0075
  article-title: Breeding blueberries for a changing global environment: a review
  publication-title: Front. Plant Sci.
– volume: 213
  year: 2023
  ident: b0090
  article-title: MD-YOLO: Multi-scale Dense YOLO for small target pest detection
  publication-title: Comput. Electron. Agric.
– reference: Li, C., Zhou, A., Yao, A., 2022. Omni-dimensional dynamic convolution. arXiv preprint arXiv:2209.07947.
– volume: 218
  year: 2024
  ident: b0065
  article-title: Real-time detection and counting of wheat ears based on improved YOLOv7
  publication-title: Comput. Electron. Agric.
– volume: 234
  year: 2025
  ident: b0035
  article-title: Real-time monitoring system for evaluating the operational quality of rice transplanters
  publication-title: Comput. Electron. Agric.
– volume: 7
  start-page: 673
  year: 2018
  end-page: 677
  ident: b0045
  article-title: A survey on agriculture and greenhouse monitoring using IOT and WSN
  publication-title: Int. J. Eng. & Technol.
– reference: Wei, H., Liu, X., Xu, S., Dai, Z., Dai, Y., Xu, X., 2022. DWRSeg: Rethinking efficient acquisition of multi-scale contextual information for real-time semantic segmentation. arXiv preprint arXiv:2212.01173.
– volume: 236
  year: 2024
  ident: b0040
  article-title: Large separable kernel attention: Rethinking the large kernel attention design in cnn
  publication-title: Expert Syst. Appl.
– volume: 53
  year: 2020
  ident: b0020
  article-title: A comprehensive survey on model compression and acceleration
  publication-title: Artif. Intell. Rev.
– volume: 19
  start-page: 430
  year: 2025
  ident: b0120
  article-title: CCO-DETR: a lightweight multi-scale object detection model for coal coking operations
  publication-title: SIViP
– start-page: 12021
  year: 2023
  end-page: 12031
  ident: b0010
  article-title: Run, don’t walk: chasing higher FLOPS for faster neural networks
  publication-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 390
  year: 2020
  end-page: 391
  ident: b0100
  article-title: CSPNet: a new backbone that can enhance learning capability of CNN, in
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
– volume: 206
  year: 2023
  ident: b0015
  article-title: Development of AIoT System for facility asparagus cultivation
  publication-title: Comput. Electron. Agric.
– volume: 197
  year: 2022
  ident: b0080
  article-title: Wireless sensor networks in agriculture through machine learning: a survey
  publication-title: Comput. Electron. Agric.
– year: 2016
  ident: b0085
  article-title: You only look once: Unified, real-time object detection, in
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 12
  start-page: 86378
  year: 2024
  end-page: 86390
  ident: b0030
  article-title: TL-YOLOv8: a blueberry fruit detection algorithm based on improved YOLOv8 and transfer learning
  publication-title: IEEE Access
– volume: 381
  year: 2022
  ident: b0025
  article-title: Blueberry fruit valorization and valuable constituents: a review
  publication-title: Int. J. Food Microbiol.
– start-page: 16965
  year: 2024
  end-page: 16974
  ident: b0125
  article-title: Detrs beat yolos on real-time object detection
  publication-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 7
  start-page: 673
  year: 2018
  ident: 10.1016/j.compag.2025.110803_b0045
  article-title: A survey on agriculture and greenhouse monitoring using IOT and WSN
  publication-title: Int. J. Eng. & Technol.
  doi: 10.14419/ijet.v7i2.33.15473
– volume: 234
  year: 2025
  ident: 10.1016/j.compag.2025.110803_b0035
  article-title: Real-time monitoring system for evaluating the operational quality of rice transplanters
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2025.110204
– volume: 219
  year: 2024
  ident: 10.1016/j.compag.2025.110803_b0055
  article-title: Cotton-YOLO: improved YOLOV7 for rapid detection of foreign fibers in seed cotton
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108752
– start-page: 832
  year: 2022
  ident: 10.1016/j.compag.2025.110803_b0060
– volume: 236
  year: 2024
  ident: 10.1016/j.compag.2025.110803_b0040
  article-title: Large separable kernel attention: Rethinking the large kernel attention design in cnn
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121352
– start-page: 16965
  year: 2024
  ident: 10.1016/j.compag.2025.110803_b0125
  article-title: Detrs beat yolos on real-time object detection
– volume: 197
  year: 2022
  ident: 10.1016/j.compag.2025.110803_b0080
  article-title: Wireless sensor networks in agriculture through machine learning: a survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106928
– volume: 12
  start-page: 86378
  year: 2024
  ident: 10.1016/j.compag.2025.110803_b0030
  article-title: TL-YOLOv8: a blueberry fruit detection algorithm based on improved YOLOv8 and transfer learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3416332
– volume: 223
  year: 2024
  ident: 10.1016/j.compag.2025.110803_b0070
  article-title: Faster-YOLO-AP: a lightweight apple detection algorithm based on improved YOLOv8 with a new efficient PDWConv in orchard
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109118
– volume: 6
  start-page: 782
  year: 2015
  ident: 10.1016/j.compag.2025.110803_b0075
  article-title: Breeding blueberries for a changing global environment: a review
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00782
– volume: 234
  year: 2025
  ident: 10.1016/j.compag.2025.110803_b0110
  article-title: MFD-YOLO: a fast and lightweight model for strawberry growth state detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2025.110177
– volume: 53
  year: 2020
  ident: 10.1016/j.compag.2025.110803_b0020
  article-title: A comprehensive survey on model compression and acceleration
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09816-7
– ident: 10.1016/j.compag.2025.110803_b0095
– volume: 19
  start-page: 430
  year: 2025
  ident: 10.1016/j.compag.2025.110803_b0120
  article-title: CCO-DETR: a lightweight multi-scale object detection model for coal coking operations
  publication-title: SIViP
  doi: 10.1007/s11760-025-04034-6
– ident: 10.1016/j.compag.2025.110803_b0105
– volume: 218
  year: 2024
  ident: 10.1016/j.compag.2025.110803_b0065
  article-title: Real-time detection and counting of wheat ears based on improved YOLOv7
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108670
– start-page: 390
  year: 2020
  ident: 10.1016/j.compag.2025.110803_b0100
  article-title: CSPNet: a new backbone that can enhance learning capability of CNN, in
– volume: 58
  start-page: 25
  year: 2007
  ident: 10.1016/j.compag.2025.110803_b0005
  article-title: From wireless sensors to field mapping: Anatomy of an application for precision agriculture
  publication-title: Comput. Electron. Agric., Precision Agriculture in Latin America
  doi: 10.1016/j.compag.2007.01.019
– volume: 381
  year: 2022
  ident: 10.1016/j.compag.2025.110803_b0025
  article-title: Blueberry fruit valorization and valuable constituents: a review
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2022.109890
– ident: 10.1016/j.compag.2025.110803_b0050
– year: 2016
  ident: 10.1016/j.compag.2025.110803_b0085
  article-title: You only look once: Unified, real-time object detection, in
– volume: 213
  year: 2023
  ident: 10.1016/j.compag.2025.110803_b0090
  article-title: MD-YOLO: Multi-scale Dense YOLO for small target pest detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108233
– volume: 206
  year: 2023
  ident: 10.1016/j.compag.2025.110803_b0015
  article-title: Development of AIoT System for facility asparagus cultivation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107665
– start-page: 12021
  year: 2023
  ident: 10.1016/j.compag.2025.110803_b0010
  article-title: Run, don’t walk: chasing higher FLOPS for faster neural networks
– volume: 242
  year: 2025
  ident: 10.1016/j.compag.2025.110803_b0115
  article-title: ADD-YOLO: an algorithm for detecting animals in outdoor environments based on unmanned aerial imagery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.116019
SSID ssj0016987
Score 2.457842
Snippet •The LBSR-YOLO is proposed for intensive blueberry health monitoring in WSN scenarios.•The proposed CSFPC module effectively reduces the complexity of the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110803
SubjectTerms Blueberry health monitoring
BSRN
Mobile deployment
Wireless sensor network
YOLO v10n
Title LBSR-YOLO: Blueberry health monitoring algorithm for WSN scenario application
URI https://dx.doi.org/10.1016/j.compag.2025.110803
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0168-1699
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016987
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0168-1699
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016987
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0168-1699
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016987
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0168-1699
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016987
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0168-1699
  databaseCode: AKRWK
  dateStart: 19851001
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywmjZpbMdsbUVVoA-JUlGmKI6dUtSXonRg4bdzjhNUGBjYEsuWokt8933xfXcIXXNH6QbTIfF9BwiKkpKEWjCiAJxz3TBplUbv3B-w7th7mNBJCbULLYxJq8x9v_XpmbfOR2q5NWvr2aw2ArDiO0wICOJ1AcTcKNg9broY3Hx-p3nABN9KphmwJZhdyOeyHK8sz3sKLNGlWT580Trrd3jaCjmdA7SfY0XctI9ziEp6eYT2mtMkr5ehj1G_1xo9kddhb3iLW_MN2CpJPrAVN-JFtl_Njzsczqdwkb4tMIBU_DIaYFPFCXjyCm8dYZ-gcefuud0leYcEEsFWSwkDNBNHMdWuiE3nFgGxhkqAoKECXsWpkI6Jz6ZCi44AKUjOQxr6sSOlrJvSa6eovFwt9RnCkesKHiugc1R40oskY4opHYq6gvHIryBSGCZY20IYQZEh9h5YQwbGkIE1ZAXxwnrBjxcagK_-c-X5v1deoF1zZ6WCl6icJht9BZghldXso6iineb9Y3fwBV0Jv7w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGYAB8SnKpwdW0yZN7JitragKpK1EWwGTFSdOKeqXonRg4bdzjhNUGBjYIseRopf47r3k3Rmha2ZFqk5VQDzPAoESSUkCxSmJgJwzVde2Sl3v3O3Rzsh5eHFfSqhV1MJoW2Ue-01Mz6J1PlLN0awuJ5PqAMiKZ1HOIYnXOAjzDbTpuDbTCuzm89vnATM8UzNNQS7B9KJ-LjN5ZUbvMchE280M8cXeWb_z01rOae-h3Zws4oa5n31UUvMDtNMYJ3nDDHWIun5z8ERe-37_FjenKwArST6wqW7Es2zB6i93OJiO4SB9m2Fgqfh50MO6jRMI5QVe-4d9hEbtu2GrQ_ItEkgIay0lFOhMHMausnmst27hkGxcCRw0iEBYMZdLSydo3aJFhUAVJGOBG3ixJaWs6d5rx6g8X8zVCcKhbXMWR6DnXO5IJ5SURjRSAa9FMB56FUQKYMTSdMIQhUXsXRgghQZSGCAriBXoiR9PVECw_vPK039feYW2OsOuL_z73uMZ2tZnTN3gOSqnyUpdAIFI5WX2gnwBELrBUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LBSR-YOLO%3A+Blueberry+health+monitoring+algorithm+for+WSN+scenario+application&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Song%2C+Zhiwen&rft.au=Li%2C+Wei&rft.au=Tan%2C+Wei&rft.au=Qin%2C+Tao&rft.date=2025-11-01&rft.issn=0168-1699&rft.volume=238&rft.spage=110803&rft_id=info:doi/10.1016%2Fj.compag.2025.110803&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2025_110803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon