Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method
Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations...
        Saved in:
      
    
          | Published in | Physics of fluids (1994) Vol. 27; no. 2 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Melville
          American Institute of Physics
    
        01.02.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1070-6631 1089-7666  | 
| DOI | 10.1063/1.4908045 | 
Cover
| Abstract | Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff’s model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet directions for the coated and uncoated bubble are similar but the jet width and jet velocity are smaller for a coated bubble. The effects of shell thickness and shell viscosity are analyzed and determined to affect the bubble dynamics, including jet development. | 
    
|---|---|
| AbstractList | Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff’s model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet directions for the coated and uncoated bubble are similar but the jet width and jet velocity are smaller for a coated bubble. The effects of shell thickness and shell viscosity are analyzed and determined to affect the bubble dynamics, including jet development. | 
    
| Author | Manmi, Kawa Wang, Qianxi Calvisi, Michael L.  | 
    
| Author_xml | – sequence: 1 givenname: Qianxi orcidid: 0000-0002-2574-6752 surname: Wang fullname: Wang, Qianxi – sequence: 2 givenname: Kawa surname: Manmi fullname: Manmi, Kawa – sequence: 3 givenname: Michael L. surname: Calvisi fullname: Calvisi, Michael L.  | 
    
| BookMark | eNptkDtPwzAUhS1UJNrCwD-wxMSQ1o4fSUZUnlIFC8yRYzutq9QutjP032PTTojpPvSde3XODEyssxqAW4wWGHGyxAvaoBpRdgGmGNVNUXHOJ7mvUME5wVdgFsIOIUSakk-Bfx_32hspBrh3Sg_GbqDrYdxqSB6hOlqxNzLk1ThEL4IbrYLS2dxHKDbaRpgI77qx6wYd4BjyiazvMiv8ERob9cbnDzpunboGl70Ygr451zn4en76XL0W64-Xt9XDupAlq2JBKa2V7ImsGeZ1w8o09Ew3tKwrJUulBCGs7KRQrFGy6WmnelqRWiuiG8UwmYO7092Dd9-jDrHdudHb9LItcZliwjWniVqeqOQhBK_7Vpooovm1aIYWozYH2-L2HGxS3P9RHLzZJ6P_sD9JrHvg | 
    
| CitedBy_id | crossref_primary_10_1063_5_0222631 crossref_primary_10_1063_5_0220395 crossref_primary_10_1121_1_5058403 crossref_primary_10_1016_j_ultsonch_2024_106972 crossref_primary_10_1007_s42241_021_0090_0 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103834 crossref_primary_10_1016_j_oceaneng_2019_06_001 crossref_primary_10_1063_1_5140740 crossref_primary_10_1063_1_5116424 crossref_primary_10_1063_1_4952583 crossref_primary_10_1063_1_4939007 crossref_primary_10_1063_1_4997081 crossref_primary_10_1016_j_enganabound_2023_12_023 crossref_primary_10_1016_j_ultsonch_2024_107023 crossref_primary_10_1017_jfm_2018_82 crossref_primary_10_1016_j_compfluid_2015_11_008 crossref_primary_10_1016_j_jcp_2022_111106 crossref_primary_10_1016_j_oceaneng_2015_09_017 crossref_primary_10_1016_j_euromechflu_2019_09_002 crossref_primary_10_1016_j_jcp_2019_109107 crossref_primary_10_1017_jfm_2023_292 crossref_primary_10_1016_j_euromechflu_2018_05_003 crossref_primary_10_1016_j_ultsonch_2018_01_012 crossref_primary_10_1063_1_5143095 crossref_primary_10_1063_5_0057594 crossref_primary_10_1063_1_5097929 crossref_primary_10_1088_1873_7005_aa5dad crossref_primary_10_1016_j_ultsonch_2020_104969 crossref_primary_10_1063_1_4972771 crossref_primary_10_1098_rsfs_2015_0048 crossref_primary_10_1016_j_enganabound_2019_09_008 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104308 crossref_primary_10_1016_j_ultsonch_2023_106562 crossref_primary_10_1016_j_ultrasmedbio_2023_02_017 crossref_primary_10_1007_s13344_020_0075_8 crossref_primary_10_1063_5_0235543 crossref_primary_10_1063_1_5005534 crossref_primary_10_1063_1_5000086 crossref_primary_10_1016_j_oceaneng_2020_108563 crossref_primary_10_1093_imamat_hxz032 crossref_primary_10_1016_j_ijmecsci_2023_108861 crossref_primary_10_1063_5_0163793  | 
    
| Cites_doi | 10.1121/1.428557 10.1098/rsta.1966.0046 10.1016/0041-624x(94)90065-5 10.1103/PhysRevLett.106.034301 10.1007/s001620050097 10.1016/j.compfluid.2013.12.020 10.1121/1.412091 10.1063/1.1595647 10.1016/0041-624x(93)90004-j 10.1016/j.ultrasmedbio.2010.08.015 10.1063/1.1704645 10.1007/s00162-011-0227-9 10.1016/0041-624x(92)90041-j 10.1016/j.ultrasmedbio.2011.02.013 10.1017/jfm.2013.656 10.1017/jfm.2011.149 10.1016/j.ultras.2008.09.006 10.1017/S0022112087002052 10.1073/pnas.1301479110 10.1121/1.2109427 10.1016/j.ultrasmedbio.2006.03.005 10.1016/j.ultras.2004.01.089 10.1088/0031-9155/51/20/001 10.1063/1.38981 10.1121/1.2967488 10.1098/rsta.1997.0023 10.1016/S0045-7930(02)00105-6 10.1016/j.ultrasmedbio.2008.01.020 10.1017/s0022112008003054 10.1063/1.869275 10.1115/1.4005688 10.1017/s0022112004008602 10.1007/s00466-003-0508-2 10.1121/1.2909553 10.1063/1.4866772 10.1016/j.jcp.2003.09.011 10.1016/j.ultras.2006.07.018 10.1017/jfm.2013.341 10.1016/j.ultrasmedbio.2007.10.001 10.1063/1.4794289 10.1016/j.ultrasmedbio.2006.12.009 10.1063/1.1421102 10.1016/S0301-5629(03)01051-2 10.1017/s0022112005005306 10.1016/S0301-5629(98)00009-X 10.1017/S0022112086000988 10.1063/1.1803925 10.1063/1.868185 10.1121/1.1923367 10.1109/58.883539 10.1017/S0022112093002216 10.1017/S0022112093003027 10.1063/1.2716633 10.1017/S0022112093003349 10.1115/1.4005424 10.1121/1.4792492 10.1146/annurev.fluid.40.111406.102116 10.1017/s0022112010002430 10.1016/j.ultras.2008.09.007 10.1016/0041-624x(94)90064-7 10.1007/BF00312403 10.1016/j.cagd.2005.06.005 10.1007/s11517-009-0497-1 10.1109/TUFFC.2011.1899 10.1007/BF00911690 10.1016/j.jcp.2005.04.012 10.1243/09544110360729072 10.1121/1.2836746 10.1017/jfm.2011.477 10.1007/s00162-005-0164-6  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 AIP Publishing LLC. | 
    
| Copyright_xml | – notice: 2015 AIP Publishing LLC. | 
    
| DBID | AAYXX CITATION 8FD H8D L7M  | 
    
| DOI | 10.1063/1.4908045 | 
    
| DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitleList | CrossRef Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Physics  | 
    
| EISSN | 1089-7666 | 
    
| ExternalDocumentID | 10_1063_1_4908045 | 
    
| GroupedDBID | -~X 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BDMKI BPZLN CITATION CS3 DU5 EBS EJD F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NPSNA O-B P2P RIP RNS RQS SC5 TN5 WH7 ~02 8FD H8D L7M  | 
    
| ID | FETCH-LOGICAL-c257t-4448dcf3c85168952dcff5e94287dc2dda3352bcad59dc9f4bdf4738ed3e9d513 | 
    
| ISSN | 1070-6631 | 
    
| IngestDate | Mon Jun 30 05:01:53 EDT 2025 Tue Jul 01 03:20:13 EDT 2025 Thu Apr 24 23:00:57 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c257t-4448dcf3c85168952dcff5e94287dc2dda3352bcad59dc9f4bdf4738ed3e9d513 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2574-6752 | 
    
| PQID | 2124901864 | 
    
| PQPubID | 2050667 | 
    
| ParticipantIDs | proquest_journals_2124901864 crossref_citationtrail_10_1063_1_4908045 crossref_primary_10_1063_1_4908045  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-02-01 | 
    
| PublicationDateYYYYMMDD | 2015-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Melville | 
    
| PublicationPlace_xml | – name: Melville | 
    
| PublicationTitle | Physics of fluids (1994) | 
    
| PublicationYear | 2015 | 
    
| Publisher | American Institute of Physics | 
    
| Publisher_xml | – name: American Institute of Physics | 
    
| References | (2023062818105093400_c37) 2012; 26 (2023062818105093400_c32) 1979; 20 (2023062818105093400_c49) 2004; 33 (2023062818105093400_c9) 2000; 107 (2023062818105093400_c31) 2011; 37 (2023062818105093400_c76) 2004; 505 (2023062818105093400_c55) 2014; 26 (2023062818105093400_c57) 1992; 30 (2023062818105093400_c13) 2005; 118 (2023062818105093400_c2) 2009; 47 (2023062818105093400_c36) 2003; 15 (2023062818105093400_c77) 2014; 92 (2023062818105093400_c11) 2001 (2023062818105093400_c54) 2013; 730 (2023062818105093400_c68) 2004; 194 (2023062818105093400_c25) 1982; 45 (2023062818105093400_c28) 1987; 181 (2023062818105093400_c46) 2007; 19 (2023062818105093400_c53) 2008; 616 (2023062818105093400_c64) 1997; 9 (2023062818105093400_c34) 1997; 355 (2023062818105093400_c74) 1906 (2023062818105093400_c30) 2008; 34 (2023062818105093400_c6) 2006; 45 (2023062818105093400_c29) 2011; 106 (2023062818105093400_c48) 2011; 679 (2023062818105093400_c3) 2013; 110 (2023062818105093400_c39) 1990; 197 (2023062818105093400_c10) 2000; 47 (2023062818105093400_c21) 2008; 34 (2023062818105093400_c14) 2008; 123 (2023062818105093400_c60) 1994; 32 (2023062818105093400_c70) 1994; 6 (2023062818105093400_c38) 1980 (2023062818105093400_c44) 2011; 133 (2023062818105093400_c41) 1998; 12 (2023062818105093400_c63) 1993; 254 (2023062818105093400_c16) 2009; 49 (2023062818105093400_c20) 2007; 33 (2023062818105093400_c24) 1966; 260 (2023062818105093400_c35) 2002; 14 (2023062818105093400_c42) 2004; 16 (2023062818105093400_c18) 2012; 691 (2023062818105093400_c47) 2010; 659 2023062818105093400_c40 (2023062818105093400_c1) 2003; 217 (2023062818105093400_c58) 1993; 31 (2023062818105093400_c56) 2013; 133 (2023062818105093400_c78) 1948 (2023062818105093400_c51) 2006; 32 (2023062818105093400_c22) 2008; 124 (2023062818105093400_c72) 1996; 8 (2023062818105093400_c45) 2012; 134 (2023062818105093400_c52) 2008; 123 (2023062818105093400_c50) 2004; 96 Le Croissette (2023062818105093400_c33) 1981 (2023062818105093400_c43) 2005; 537 (2023062818105093400_c67) 2003; 32 (2023062818105093400_c62) 2011; 58 (2023062818105093400_c17) 2010; 36 (2023062818105093400_c27) 1986; 170 (2023062818105093400_c12) 2003; 29 (2023062818105093400_c61) 2005; 118 (2023062818105093400_c26) 2014; 742 (2023062818105093400_c71) 1993; 251 (2023062818105093400_c5) 2004; 42 (2023062818105093400_c8) 1998; 24 (2023062818105093400_c75) 2005 (2023062818105093400_c4) 2008; 40 (2023062818105093400_c15) 2009; 49 (2023062818105093400_c19) 2006; 51 (2023062818105093400_c69) 1993; 257 (2023062818105093400_c66) 2005; 22 (2023062818105093400_c73) 2005; 19 (2023062818105093400_c23) 2013; 25 (2023062818105093400_c7) 1995; 97 (2023062818105093400_c59) 1994; 32 (2023062818105093400_c65) 2005; 210  | 
    
| References_xml | – volume: 107 start-page: 2272 issue: 4 year: 2000 ident: 2023062818105093400_c9 article-title: Oscillations of polymeric microbubbles: Effect of the encapsulating shell publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.428557 – volume-title: Fields of Force year: 1906 ident: 2023062818105093400_c74 – volume: 260 start-page: 221 year: 1966 ident: 2023062818105093400_c24 article-title: The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries publication-title: Philos. Trans. R. Soc. London A doi: 10.1098/rsta.1966.0046 – volume: 32 start-page: 455 issue: 6 year: 1994 ident: 2023062818105093400_c60 article-title: Higher harmonics of vibrating gas-filled microspheres. Part two: Measurements publication-title: Ultrasonics doi: 10.1016/0041-624x(94)90065-5 – volume: 106 start-page: 034301 issue: 3 year: 2011 ident: 2023062818105093400_c29 article-title: Blood vessel deformations on microsecond time scales by ultrasonic cavitation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.034301 – volume: 12 start-page: 29 year: 1998 ident: 2023062818105093400_c41 article-title: The evolution of a gas bubble near an inclined wall publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s001620050097 – volume: 92 start-page: 22 year: 2014 ident: 2023062818105093400_c77 article-title: Three-dimensional boundary integral simulations of motion and deformation of bubbles with viscous effects publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2013.12.020 – volume: 97 start-page: 1510 issue: 3 year: 1995 ident: 2023062818105093400_c7 article-title: The effects of an elastic solid surface layer on the radial pulsations of gas bubbles publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.412091 – volume: 15 start-page: 2576 issue: 9 year: 2003 ident: 2023062818105093400_c36 article-title: Heat and mass transfer during the violent collapse of nonspherical bubbles publication-title: Phys. Fluids doi: 10.1063/1.1595647 – volume: 31 start-page: 175 issue: 3 year: 1993 ident: 2023062818105093400_c58 article-title: Ultrasound scattering of Albunex microspheres publication-title: Ultrasonics doi: 10.1016/0041-624x(93)90004-j – volume: 36 start-page: 2080 issue: 12 year: 2010 ident: 2023062818105093400_c17 article-title: Nonlinear shell behavior of phospholipid-coated microbubbles publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2010.08.015 – volume: 16 start-page: 1610 issue: 5 year: 2004 ident: 2023062818105093400_c42 article-title: Numerical simulation of violent bubble motion publication-title: Phys. Fluids doi: 10.1063/1.1704645 – volume: 26 start-page: 245 issue: 1-4 year: 2012 ident: 2023062818105093400_c37 article-title: The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-011-0227-9 – volume: 30 start-page: 95 issue: 2 year: 1992 ident: 2023062818105093400_c57 article-title: Absorption and scatter of encapsulated gas filled microspheres: Theoretical consideration and some measurements publication-title: Ultrasonics doi: 10.1016/0041-624x(92)90041-j – volume: 37 start-page: 935 issue: 6 year: 2011 ident: 2023062818105093400_c31 article-title: Nonspherical shape oscillations of coated microbubbles in contact with a wall publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2011.02.013 – volume: 742 start-page: 425 year: 2014 ident: 2023062818105093400_c26 article-title: Effect of a distant rigid wall on microstreaming generated by an acoustically driven gas bubble publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.656 – volume: 679 start-page: 559 year: 2011 ident: 2023062818105093400_c48 article-title: Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.149 – volume: 49 start-page: 263 year: 2009 ident: 2023062818105093400_c15 article-title: Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations publication-title: Ultrasonics doi: 10.1016/j.ultras.2008.09.006 – volume: 181 start-page: 197 year: 1987 ident: 2023062818105093400_c28 article-title: Transient cavities near boundaries. 2. Free-surface publication-title: J. Fluid Mech. doi: 10.1017/S0022112087002052 – volume: 110 start-page: 9225 issue: 23 year: 2013 ident: 2023062818105093400_c3 article-title: Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1301479110 – volume: 118 start-page: 3499 issue: 6 year: 2005 ident: 2023062818105093400_c13 article-title: A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2109427 – volume: 32 start-page: 925 issue: 6 year: 2006 ident: 2023062818105093400_c51 article-title: Numerical analysis of a gas bubble near biomaterials in an ultrasound field publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2006.03.005 – volume: 42 start-page: 931 year: 2004 ident: 2023062818105093400_c5 article-title: High-intensity focused ultrasound for the treatment of liver tumours publication-title: Ultrasonics doi: 10.1016/j.ultras.2004.01.089 – volume: 51 start-page: 5065 issue: 20 year: 2006 ident: 2023062818105093400_c19 article-title: Acoustic response of compliable microvessels containing ultrasound contrast agents publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/20/001 – volume: 197 start-page: 188 year: 1990 ident: 2023062818105093400_c39 article-title: Simulation of the three-dimensional behavior of an unsteady large bubble near a structure publication-title: AIP Conf. Proc. doi: 10.1063/1.38981 – volume: 124 start-page: 2374 issue: 4 year: 2008 ident: 2023062818105093400_c22 article-title: Ultrasonic excitation of a bubble inside a deformable tube: Implications for ultrasonically induced hemorrhage publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2967488 – volume: 355 start-page: 537 year: 1997 ident: 2023062818105093400_c34 article-title: Collapsing cavities, toroidal bubbles and jet impact publication-title: Philos. Trans. R. Soc. London A doi: 10.1098/rsta.1997.0023 – volume: 32 start-page: 1195 issue: 9 year: 2003 ident: 2023062818105093400_c67 article-title: Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics publication-title: Comput. Fluids doi: 10.1016/S0045-7930(02)00105-6 – volume: 34 start-page: 1465 issue: 9 year: 2008 ident: 2023062818105093400_c21 article-title: Nonspherical oscillations of ultrasound contrast agent microbubbles publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2008.01.020 – volume: 616 start-page: 63 year: 2008 ident: 2023062818105093400_c53 article-title: Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies nonspherical cavitation collapse publication-title: J. Fluid Mech. doi: 10.1017/s0022112008003054 – volume: 9 start-page: 1493 issue: 6 year: 1997 ident: 2023062818105093400_c64 article-title: A novel boundary-integral algorithm for viscous interaction of deformable drops publication-title: Phys. Fluids doi: 10.1063/1.869275 – volume: 134 start-page: 031301-1 issue: 3 year: 2012 ident: 2023062818105093400_c45 article-title: Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall publication-title: J. Fluids Eng. doi: 10.1115/1.4005688 – volume: 505 start-page: 365 year: 2004 ident: 2023062818105093400_c76 article-title: The dissipation approximation and viscous potential flow publication-title: J. Fluid Mech. doi: 10.1017/s0022112004008602 – volume: 33 start-page: 129 issue: 2 year: 2004 ident: 2023062818105093400_c49 article-title: Boundary integral equations as applied to an oscillating bubble near a fluid-fluid interface publication-title: Comput. Mech. doi: 10.1007/s00466-003-0508-2 – volume: 123 start-page: 4059 issue: 6 year: 2008 ident: 2023062818105093400_c14 article-title: Radial oscillations of insonated contrast agents: Effect of the membrane constitutive publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2909553 – volume-title: Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications year: 2005 ident: 2023062818105093400_c75 article-title: Bjerknes forces and translational bubble dynamics – volume: 26 start-page: 032104 issue: 3 year: 2014 ident: 2023062818105093400_c55 article-title: Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound publication-title: Phys. Fluids doi: 10.1063/1.4866772 – volume: 194 start-page: 451 issue: 2 year: 2004 ident: 2023062818105093400_c68 article-title: An indirect boundary element method for three dimensional explosion bubbles publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.09.011 – volume: 45 start-page: 113 issue: 1 year: 2006 ident: 2023062818105093400_c6 article-title: Microbubble–enhanced hemorrhage control using high intensity focused ultrasound publication-title: Ultrasonics doi: 10.1016/j.ultras.2006.07.018 – volume-title: Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging year: 2001 ident: 2023062818105093400_c11 – volume: 730 start-page: 245 year: 2013 ident: 2023062818105093400_c54 article-title: Ultrasonic cavitation near a tissue layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.341 – volume: 34 start-page: 685 issue: 4 year: 2008 ident: 2023062818105093400_c30 article-title: Nonspherical vibrations of microbubbles in contact with a wall—A pilot study at low mechanical index publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2007.10.001 – volume: 25 start-page: 032109 issue: 3 year: 2013 ident: 2023062818105093400_c23 article-title: Simulations of insonated contrast agents: Saturation and transient break-up publication-title: Phys. Fluids doi: 10.1063/1.4794289 – volume: 33 start-page: 1140 issue: 7 year: 2007 ident: 2023062818105093400_c20 article-title: The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2006.12.009 – volume: 14 start-page: 85 issue: 1 year: 2002 ident: 2023062818105093400_c35 article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary publication-title: Phys. Fluids doi: 10.1063/1.1421102 – volume: 29 start-page: 1749 issue: 12 year: 2003 ident: 2023062818105093400_c12 article-title: A Newtonian rheological model for the interface of microbubble contrast agents publication-title: Ultrasound Med. Biol. doi: 10.1016/S0301-5629(03)01051-2 – volume: 537 start-page: 387 year: 2005 ident: 2023062818105093400_c43 article-title: Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure publication-title: J. Fluid Mech. doi: 10.1017/s0022112005005306 – volume: 24 start-page: 523 issue: 4 year: 1998 ident: 2023062818105093400_c8 article-title: Acoustic modeling of shell-encapsulated gas bubbles publication-title: Ultrasound Med. Biol. doi: 10.1016/S0301-5629(98)00009-X – volume: 170 start-page: 479 year: 1986 ident: 2023062818105093400_c27 article-title: Transient cavities near boundaries. 1. Rigid boundary publication-title: J. Fluid Mech. doi: 10.1017/S0022112086000988 – volume: 96 start-page: 5808 issue: 10 year: 2004 ident: 2023062818105093400_c50 article-title: An oscillating bubble near an elastic material publication-title: J. Appl. Phys. doi: 10.1063/1.1803925 – start-page: 23 volume-title: Oscillation and Collapse of a Cavitation Bubble in the Vicinity of a Two–Liquid Interface year: 1980 ident: 2023062818105093400_c38 – volume: 6 start-page: 2352 issue: 7 year: 1994 ident: 2023062818105093400_c70 article-title: On the nonspherical collapse and rebound of a cavitation bubble publication-title: Phys. Fluids doi: 10.1063/1.868185 – volume: 45 start-page: 156 issue: 5 year: 1982 ident: 2023062818105093400_c25 article-title: Ultrasonic microstreaming and related phenomena publication-title: Br. J. Cancer, Suppl. – volume: 118 start-page: 539 issue: 1 year: 2005 ident: 2023062818105093400_c61 article-title: Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1923367 – volume: 47 start-page: 1494 issue: 6 year: 2000 ident: 2023062818105093400_c10 article-title: Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Control doi: 10.1109/58.883539 – start-page: 175 volume-title: Proc. 2nd Int. Colloq. on Drops and Bubbles year: 1981 ident: 2023062818105093400_c33 article-title: A numerical method for the dynamics of non-spherical cavitation bubbles – volume: 254 start-page: 437 year: 1993 ident: 2023062818105093400_c63 article-title: Gas bubbles bursting at a free surface publication-title: J. Fluid Mech. doi: 10.1017/S0022112093002216 – volume: 257 start-page: 147 year: 1993 ident: 2023062818105093400_c69 article-title: The final stage of the collapse of a cavitation bubble near a rigid wall publication-title: J. Fluid Mech. doi: 10.1017/S0022112093003027 – ident: 2023062818105093400_c40 – volume: 19 start-page: 047101 issue: 4 year: 2007 ident: 2023062818105093400_c46 article-title: Shape stability and violent collapse of microbubbles in acoustic traveling waves publication-title: Phys. Fluids doi: 10.1063/1.2716633 – volume: 251 start-page: 79 year: 1993 ident: 2023062818105093400_c71 article-title: The formation of toroidal bubbles upon the collapse of transient cavities publication-title: J. Fluid Mech. doi: 10.1017/S0022112093003349 – volume: 133 start-page: 121305 issue: 12 year: 2011 ident: 2023062818105093400_c44 article-title: Experimental and numerical investigation of single bubble dynamics in a two-phase Bubbly Medium publication-title: J. Fluids Eng. doi: 10.1115/1.4005424 – volume: 133 start-page: 1897 issue: 4 year: 2013 ident: 2023062818105093400_c56 article-title: Breakup of finite thickness viscous shell microbubbles by ultrasound: A simplified zero-thickness shell model publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4792492 – volume-title: Underwater Explosions year: 1948 ident: 2023062818105093400_c78 – volume: 40 start-page: 395 year: 2008 ident: 2023062818105093400_c4 article-title: Applications of acoustics and cavitation to noninvasive therapy and drug delivery publication-title: Ann. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.40.111406.102116 – volume: 659 start-page: 191 year: 2010 ident: 2023062818105093400_c47 article-title: Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave publication-title: J. Fluid Mech. doi: 10.1017/s0022112010002430 – volume: 49 start-page: 269 issue: 2 year: 2009 ident: 2023062818105093400_c16 article-title: Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles publication-title: Ultrasonics doi: 10.1016/j.ultras.2008.09.007 – volume: 32 start-page: 447 issue: 6 year: 1994 ident: 2023062818105093400_c59 article-title: Higher harmonics of vibrating gas-filled microspheres. Part one: Simulations publication-title: Ultrasonics doi: 10.1016/0041-624x(94)90064-7 – volume: 8 start-page: 73 year: 1996 ident: 2023062818105093400_c72 article-title: Strong interaction between buoyancy bubble and free surface publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/BF00312403 – volume: 22 start-page: 632 issue: 7 year: 2005 ident: 2023062818105093400_c66 article-title: Curvature formulas for implicit curves and surfaces publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2005.06.005 – volume: 47 start-page: 861 year: 2009 ident: 2023062818105093400_c2 article-title: Ultrasonic characterization of ultrasound contrast agents publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-009-0497-1 – volume: 58 start-page: 981 issue: 5 year: 2011 ident: 2023062818105093400_c62 article-title: Review of shell models for contrast agent microbubbles publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr. doi: 10.1109/TUFFC.2011.1899 – volume: 20 start-page: 333 issue: 3 year: 1979 ident: 2023062818105093400_c32 article-title: A calculation of the parameters of the high-speed jet formed in the collapse of a bubble publication-title: J. Appl. Mech. Tech. Phys. doi: 10.1007/BF00911690 – volume: 210 start-page: 368 issue: 1 year: 2005 ident: 2023062818105093400_c65 article-title: Unstructured MEL modelling of nonlinear unsteady ship waves publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.04.012 – volume: 217 start-page: 429 year: 2003 ident: 2023062818105093400_c1 article-title: Microbubble ultrasound contrast agents: A review publication-title: Proc. Inst. Mech. Eng., Part H doi: 10.1243/09544110360729072 – volume: 123 start-page: 1784 issue: 3 year: 2008 ident: 2023062818105093400_c52 article-title: Interaction of microbubbles with high intensity pulsed ultrasound publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2836746 – volume: 691 start-page: 315 year: 2012 ident: 2023062818105093400_c18 article-title: Surface instability of an encapsulated bubble induced by an ultrasonic pressure wave publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.477 – volume: 19 start-page: 303 issue: 5 year: 2005 ident: 2023062818105093400_c73 article-title: Vortex ring modelling for toroidal bubbles publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-005-0164-6  | 
    
| SSID | ssj0003926 | 
    
| Score | 2.340908 | 
    
| Snippet | Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for... | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database  | 
    
| SubjectTerms | Ablation Acoustic waves Acoustics Amplitudes Boundary integral method Bubbles Cell membranes Chemical compounds Coating effects Contrast agents Dynamics Encapsulation Finite element method Fluid dynamics Integrals Lipids Mathematical models Pharmacology Physics Proteins Rigid walls Spherical shells Three dimensional models Ultrasonic imaging Ultrasonic testing Ultrasound  | 
    
| Title | Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method | 
    
| URI | https://www.proquest.com/docview/2124901864 | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABJ databaseName: American Institute of Physics customDbUrl: eissn: 1089-7666 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003926 issn: 1070-6631 databaseCode: M71 dateStart: 19940101 isFulltext: true titleUrlDefault: http://www.scitation.org/ providerName: American Institute of Physics – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7666 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0003926 issn: 1070-6631 databaseCode: ADMLS dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVgKyQufBRQWwqyEAekKMsmdhL7WLGgCrWVEK3oLbJjW6qUbtEmEZRfzzi2kyzsoXCJklHirHZexjP2mxmE3qaaUGYgyCmYETHlELNyqUTMC5HY8ufMFdM5PcuPL-jny-xy5Kr22SWtnFe_tuaV_I9WQQZ6tVmy_6DZYVAQwDnoF46gYTjeScdnndtvqV1DG09gtq4kWUbK9ZrvqRpd3a5FYzsoOW66aNpI2KSq6NoS8mQnZa2bqGtC8pTsuy2tb0M5idq3mp76sj151I1v6u5KuaJPnNPJ6sI3vxz9BVD482pc_l5dOxaB-DEyhURtE90nXP7oZD5dlEiywGMe7ChYkhicGSfSXsZ4XOSuyUowvq4wgAdZutWmgxNllxfmdoty4WpPbtbN_mM-G1iG_f56Tsqk9I_eRzspGP_FDO0cLU9Pvg5TNjiJuSOnul8dSlDl5P3w3k3HZXPe7p2R8yfokY8i8JGDxFN0T6920WMfUWBvr5td9MDr6BlaD1jBASv4xmDQNSZLHLBiRSNWcMAK7rGCp1jBPVb65wNWcMAKdlh5ji4-fTz_cBz7fhtxBYa7jSmE6qoypAIvPGc8S-HCZJrbqFpVqVLCJujJSqiMq4obKpWh8C1rRTRXWUJeoNnqZqX3EJamSHWVk0IxQ7lRkmoGpp4yqQotCN1H78KfWVa-GL3tiVKXfyltH70Zbv3uKrBsu-kwaKT0H2hTprax-iJhOT24yxgv0cMRyodo1q47_Qo8zla-9nj5DRDNgkI | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+modeling+of+the+3D+dynamics+of+ultrasound+contrast+agent+microbubbles+using+the+boundary+integral+method&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Wang%2C+Qianxi&rft.au=Manmi%2C+Kawa&rft.au=Calvisi%2C+Michael+L.&rft.date=2015-02-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1063%2F1.4908045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4908045 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |