Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 27; no. 2
Main Authors Wang, Qianxi, Manmi, Kawa, Calvisi, Michael L.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.02.2015
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/1.4908045

Cover

Abstract Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff’s model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet directions for the coated and uncoated bubble are similar but the jet width and jet velocity are smaller for a coated bubble. The effects of shell thickness and shell viscosity are analyzed and determined to affect the bubble dynamics, including jet development.
AbstractList Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff’s model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet directions for the coated and uncoated bubble are similar but the jet width and jet velocity are smaller for a coated bubble. The effects of shell thickness and shell viscosity are analyzed and determined to affect the bubble dynamics, including jet development.
Author Manmi, Kawa
Wang, Qianxi
Calvisi, Michael L.
Author_xml – sequence: 1
  givenname: Qianxi
  orcidid: 0000-0002-2574-6752
  surname: Wang
  fullname: Wang, Qianxi
– sequence: 2
  givenname: Kawa
  surname: Manmi
  fullname: Manmi, Kawa
– sequence: 3
  givenname: Michael L.
  surname: Calvisi
  fullname: Calvisi, Michael L.
BookMark eNptkDtPwzAUhS1UJNrCwD-wxMSQ1o4fSUZUnlIFC8yRYzutq9QutjP032PTTojpPvSde3XODEyssxqAW4wWGHGyxAvaoBpRdgGmGNVNUXHOJ7mvUME5wVdgFsIOIUSakk-Bfx_32hspBrh3Sg_GbqDrYdxqSB6hOlqxNzLk1ThEL4IbrYLS2dxHKDbaRpgI77qx6wYd4BjyiazvMiv8ERob9cbnDzpunboGl70Ygr451zn4en76XL0W64-Xt9XDupAlq2JBKa2V7ImsGeZ1w8o09Ew3tKwrJUulBCGs7KRQrFGy6WmnelqRWiuiG8UwmYO7092Dd9-jDrHdudHb9LItcZliwjWniVqeqOQhBK_7Vpooovm1aIYWozYH2-L2HGxS3P9RHLzZJ6P_sD9JrHvg
CitedBy_id crossref_primary_10_1063_5_0222631
crossref_primary_10_1063_5_0220395
crossref_primary_10_1121_1_5058403
crossref_primary_10_1016_j_ultsonch_2024_106972
crossref_primary_10_1007_s42241_021_0090_0
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103834
crossref_primary_10_1016_j_oceaneng_2019_06_001
crossref_primary_10_1063_1_5140740
crossref_primary_10_1063_1_5116424
crossref_primary_10_1063_1_4952583
crossref_primary_10_1063_1_4939007
crossref_primary_10_1063_1_4997081
crossref_primary_10_1016_j_enganabound_2023_12_023
crossref_primary_10_1016_j_ultsonch_2024_107023
crossref_primary_10_1017_jfm_2018_82
crossref_primary_10_1016_j_compfluid_2015_11_008
crossref_primary_10_1016_j_jcp_2022_111106
crossref_primary_10_1016_j_oceaneng_2015_09_017
crossref_primary_10_1016_j_euromechflu_2019_09_002
crossref_primary_10_1016_j_jcp_2019_109107
crossref_primary_10_1017_jfm_2023_292
crossref_primary_10_1016_j_euromechflu_2018_05_003
crossref_primary_10_1016_j_ultsonch_2018_01_012
crossref_primary_10_1063_1_5143095
crossref_primary_10_1063_5_0057594
crossref_primary_10_1063_1_5097929
crossref_primary_10_1088_1873_7005_aa5dad
crossref_primary_10_1016_j_ultsonch_2020_104969
crossref_primary_10_1063_1_4972771
crossref_primary_10_1098_rsfs_2015_0048
crossref_primary_10_1016_j_enganabound_2019_09_008
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104308
crossref_primary_10_1016_j_ultsonch_2023_106562
crossref_primary_10_1016_j_ultrasmedbio_2023_02_017
crossref_primary_10_1007_s13344_020_0075_8
crossref_primary_10_1063_5_0235543
crossref_primary_10_1063_1_5005534
crossref_primary_10_1063_1_5000086
crossref_primary_10_1016_j_oceaneng_2020_108563
crossref_primary_10_1093_imamat_hxz032
crossref_primary_10_1016_j_ijmecsci_2023_108861
crossref_primary_10_1063_5_0163793
Cites_doi 10.1121/1.428557
10.1098/rsta.1966.0046
10.1016/0041-624x(94)90065-5
10.1103/PhysRevLett.106.034301
10.1007/s001620050097
10.1016/j.compfluid.2013.12.020
10.1121/1.412091
10.1063/1.1595647
10.1016/0041-624x(93)90004-j
10.1016/j.ultrasmedbio.2010.08.015
10.1063/1.1704645
10.1007/s00162-011-0227-9
10.1016/0041-624x(92)90041-j
10.1016/j.ultrasmedbio.2011.02.013
10.1017/jfm.2013.656
10.1017/jfm.2011.149
10.1016/j.ultras.2008.09.006
10.1017/S0022112087002052
10.1073/pnas.1301479110
10.1121/1.2109427
10.1016/j.ultrasmedbio.2006.03.005
10.1016/j.ultras.2004.01.089
10.1088/0031-9155/51/20/001
10.1063/1.38981
10.1121/1.2967488
10.1098/rsta.1997.0023
10.1016/S0045-7930(02)00105-6
10.1016/j.ultrasmedbio.2008.01.020
10.1017/s0022112008003054
10.1063/1.869275
10.1115/1.4005688
10.1017/s0022112004008602
10.1007/s00466-003-0508-2
10.1121/1.2909553
10.1063/1.4866772
10.1016/j.jcp.2003.09.011
10.1016/j.ultras.2006.07.018
10.1017/jfm.2013.341
10.1016/j.ultrasmedbio.2007.10.001
10.1063/1.4794289
10.1016/j.ultrasmedbio.2006.12.009
10.1063/1.1421102
10.1016/S0301-5629(03)01051-2
10.1017/s0022112005005306
10.1016/S0301-5629(98)00009-X
10.1017/S0022112086000988
10.1063/1.1803925
10.1063/1.868185
10.1121/1.1923367
10.1109/58.883539
10.1017/S0022112093002216
10.1017/S0022112093003027
10.1063/1.2716633
10.1017/S0022112093003349
10.1115/1.4005424
10.1121/1.4792492
10.1146/annurev.fluid.40.111406.102116
10.1017/s0022112010002430
10.1016/j.ultras.2008.09.007
10.1016/0041-624x(94)90064-7
10.1007/BF00312403
10.1016/j.cagd.2005.06.005
10.1007/s11517-009-0497-1
10.1109/TUFFC.2011.1899
10.1007/BF00911690
10.1016/j.jcp.2005.04.012
10.1243/09544110360729072
10.1121/1.2836746
10.1017/jfm.2011.477
10.1007/s00162-005-0164-6
ContentType Journal Article
Copyright 2015 AIP Publishing LLC.
Copyright_xml – notice: 2015 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4908045
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_1_4908045
GroupedDBID -~X
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NPSNA
O-B
P2P
RIP
RNS
RQS
SC5
TN5
WH7
~02
8FD
H8D
L7M
ID FETCH-LOGICAL-c257t-4448dcf3c85168952dcff5e94287dc2dda3352bcad59dc9f4bdf4738ed3e9d513
ISSN 1070-6631
IngestDate Mon Jun 30 05:01:53 EDT 2025
Tue Jul 01 03:20:13 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-4448dcf3c85168952dcff5e94287dc2dda3352bcad59dc9f4bdf4738ed3e9d513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2574-6752
PQID 2124901864
PQPubID 2050667
ParticipantIDs proquest_journals_2124901864
crossref_citationtrail_10_1063_1_4908045
crossref_primary_10_1063_1_4908045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2015
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023062818105093400_c37) 2012; 26
(2023062818105093400_c32) 1979; 20
(2023062818105093400_c49) 2004; 33
(2023062818105093400_c9) 2000; 107
(2023062818105093400_c31) 2011; 37
(2023062818105093400_c76) 2004; 505
(2023062818105093400_c55) 2014; 26
(2023062818105093400_c57) 1992; 30
(2023062818105093400_c13) 2005; 118
(2023062818105093400_c2) 2009; 47
(2023062818105093400_c36) 2003; 15
(2023062818105093400_c77) 2014; 92
(2023062818105093400_c11) 2001
(2023062818105093400_c54) 2013; 730
(2023062818105093400_c68) 2004; 194
(2023062818105093400_c25) 1982; 45
(2023062818105093400_c28) 1987; 181
(2023062818105093400_c46) 2007; 19
(2023062818105093400_c53) 2008; 616
(2023062818105093400_c64) 1997; 9
(2023062818105093400_c34) 1997; 355
(2023062818105093400_c74) 1906
(2023062818105093400_c30) 2008; 34
(2023062818105093400_c6) 2006; 45
(2023062818105093400_c29) 2011; 106
(2023062818105093400_c48) 2011; 679
(2023062818105093400_c3) 2013; 110
(2023062818105093400_c39) 1990; 197
(2023062818105093400_c10) 2000; 47
(2023062818105093400_c21) 2008; 34
(2023062818105093400_c14) 2008; 123
(2023062818105093400_c60) 1994; 32
(2023062818105093400_c70) 1994; 6
(2023062818105093400_c38) 1980
(2023062818105093400_c44) 2011; 133
(2023062818105093400_c41) 1998; 12
(2023062818105093400_c63) 1993; 254
(2023062818105093400_c16) 2009; 49
(2023062818105093400_c20) 2007; 33
(2023062818105093400_c24) 1966; 260
(2023062818105093400_c35) 2002; 14
(2023062818105093400_c42) 2004; 16
(2023062818105093400_c18) 2012; 691
(2023062818105093400_c47) 2010; 659
2023062818105093400_c40
(2023062818105093400_c1) 2003; 217
(2023062818105093400_c58) 1993; 31
(2023062818105093400_c56) 2013; 133
(2023062818105093400_c78) 1948
(2023062818105093400_c51) 2006; 32
(2023062818105093400_c22) 2008; 124
(2023062818105093400_c72) 1996; 8
(2023062818105093400_c45) 2012; 134
(2023062818105093400_c52) 2008; 123
(2023062818105093400_c50) 2004; 96
Le Croissette (2023062818105093400_c33) 1981
(2023062818105093400_c43) 2005; 537
(2023062818105093400_c67) 2003; 32
(2023062818105093400_c62) 2011; 58
(2023062818105093400_c17) 2010; 36
(2023062818105093400_c27) 1986; 170
(2023062818105093400_c12) 2003; 29
(2023062818105093400_c61) 2005; 118
(2023062818105093400_c26) 2014; 742
(2023062818105093400_c71) 1993; 251
(2023062818105093400_c5) 2004; 42
(2023062818105093400_c8) 1998; 24
(2023062818105093400_c75) 2005
(2023062818105093400_c4) 2008; 40
(2023062818105093400_c15) 2009; 49
(2023062818105093400_c19) 2006; 51
(2023062818105093400_c69) 1993; 257
(2023062818105093400_c66) 2005; 22
(2023062818105093400_c73) 2005; 19
(2023062818105093400_c23) 2013; 25
(2023062818105093400_c7) 1995; 97
(2023062818105093400_c59) 1994; 32
(2023062818105093400_c65) 2005; 210
References_xml – volume: 107
  start-page: 2272
  issue: 4
  year: 2000
  ident: 2023062818105093400_c9
  article-title: Oscillations of polymeric microbubbles: Effect of the encapsulating shell
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.428557
– volume-title: Fields of Force
  year: 1906
  ident: 2023062818105093400_c74
– volume: 260
  start-page: 221
  year: 1966
  ident: 2023062818105093400_c24
  article-title: The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries
  publication-title: Philos. Trans. R. Soc. London A
  doi: 10.1098/rsta.1966.0046
– volume: 32
  start-page: 455
  issue: 6
  year: 1994
  ident: 2023062818105093400_c60
  article-title: Higher harmonics of vibrating gas-filled microspheres. Part two: Measurements
  publication-title: Ultrasonics
  doi: 10.1016/0041-624x(94)90065-5
– volume: 106
  start-page: 034301
  issue: 3
  year: 2011
  ident: 2023062818105093400_c29
  article-title: Blood vessel deformations on microsecond time scales by ultrasonic cavitation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.034301
– volume: 12
  start-page: 29
  year: 1998
  ident: 2023062818105093400_c41
  article-title: The evolution of a gas bubble near an inclined wall
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s001620050097
– volume: 92
  start-page: 22
  year: 2014
  ident: 2023062818105093400_c77
  article-title: Three-dimensional boundary integral simulations of motion and deformation of bubbles with viscous effects
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2013.12.020
– volume: 97
  start-page: 1510
  issue: 3
  year: 1995
  ident: 2023062818105093400_c7
  article-title: The effects of an elastic solid surface layer on the radial pulsations of gas bubbles
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.412091
– volume: 15
  start-page: 2576
  issue: 9
  year: 2003
  ident: 2023062818105093400_c36
  article-title: Heat and mass transfer during the violent collapse of nonspherical bubbles
  publication-title: Phys. Fluids
  doi: 10.1063/1.1595647
– volume: 31
  start-page: 175
  issue: 3
  year: 1993
  ident: 2023062818105093400_c58
  article-title: Ultrasound scattering of Albunex microspheres
  publication-title: Ultrasonics
  doi: 10.1016/0041-624x(93)90004-j
– volume: 36
  start-page: 2080
  issue: 12
  year: 2010
  ident: 2023062818105093400_c17
  article-title: Nonlinear shell behavior of phospholipid-coated microbubbles
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2010.08.015
– volume: 16
  start-page: 1610
  issue: 5
  year: 2004
  ident: 2023062818105093400_c42
  article-title: Numerical simulation of violent bubble motion
  publication-title: Phys. Fluids
  doi: 10.1063/1.1704645
– volume: 26
  start-page: 245
  issue: 1-4
  year: 2012
  ident: 2023062818105093400_c37
  article-title: The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-011-0227-9
– volume: 30
  start-page: 95
  issue: 2
  year: 1992
  ident: 2023062818105093400_c57
  article-title: Absorption and scatter of encapsulated gas filled microspheres: Theoretical consideration and some measurements
  publication-title: Ultrasonics
  doi: 10.1016/0041-624x(92)90041-j
– volume: 37
  start-page: 935
  issue: 6
  year: 2011
  ident: 2023062818105093400_c31
  article-title: Nonspherical shape oscillations of coated microbubbles in contact with a wall
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2011.02.013
– volume: 742
  start-page: 425
  year: 2014
  ident: 2023062818105093400_c26
  article-title: Effect of a distant rigid wall on microstreaming generated by an acoustically driven gas bubble
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.656
– volume: 679
  start-page: 559
  year: 2011
  ident: 2023062818105093400_c48
  article-title: Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.149
– volume: 49
  start-page: 263
  year: 2009
  ident: 2023062818105093400_c15
  article-title: Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2008.09.006
– volume: 181
  start-page: 197
  year: 1987
  ident: 2023062818105093400_c28
  article-title: Transient cavities near boundaries. 2. Free-surface
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087002052
– volume: 110
  start-page: 9225
  issue: 23
  year: 2013
  ident: 2023062818105093400_c3
  article-title: Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1301479110
– volume: 118
  start-page: 3499
  issue: 6
  year: 2005
  ident: 2023062818105093400_c13
  article-title: A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2109427
– volume: 32
  start-page: 925
  issue: 6
  year: 2006
  ident: 2023062818105093400_c51
  article-title: Numerical analysis of a gas bubble near biomaterials in an ultrasound field
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.03.005
– volume: 42
  start-page: 931
  year: 2004
  ident: 2023062818105093400_c5
  article-title: High-intensity focused ultrasound for the treatment of liver tumours
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2004.01.089
– volume: 51
  start-page: 5065
  issue: 20
  year: 2006
  ident: 2023062818105093400_c19
  article-title: Acoustic response of compliable microvessels containing ultrasound contrast agents
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/20/001
– volume: 197
  start-page: 188
  year: 1990
  ident: 2023062818105093400_c39
  article-title: Simulation of the three-dimensional behavior of an unsteady large bubble near a structure
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.38981
– volume: 124
  start-page: 2374
  issue: 4
  year: 2008
  ident: 2023062818105093400_c22
  article-title: Ultrasonic excitation of a bubble inside a deformable tube: Implications for ultrasonically induced hemorrhage
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2967488
– volume: 355
  start-page: 537
  year: 1997
  ident: 2023062818105093400_c34
  article-title: Collapsing cavities, toroidal bubbles and jet impact
  publication-title: Philos. Trans. R. Soc. London A
  doi: 10.1098/rsta.1997.0023
– volume: 32
  start-page: 1195
  issue: 9
  year: 2003
  ident: 2023062818105093400_c67
  article-title: Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics
  publication-title: Comput. Fluids
  doi: 10.1016/S0045-7930(02)00105-6
– volume: 34
  start-page: 1465
  issue: 9
  year: 2008
  ident: 2023062818105093400_c21
  article-title: Nonspherical oscillations of ultrasound contrast agent microbubbles
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2008.01.020
– volume: 616
  start-page: 63
  year: 2008
  ident: 2023062818105093400_c53
  article-title: Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies nonspherical cavitation collapse
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112008003054
– volume: 9
  start-page: 1493
  issue: 6
  year: 1997
  ident: 2023062818105093400_c64
  article-title: A novel boundary-integral algorithm for viscous interaction of deformable drops
  publication-title: Phys. Fluids
  doi: 10.1063/1.869275
– volume: 134
  start-page: 031301-1
  issue: 3
  year: 2012
  ident: 2023062818105093400_c45
  article-title: Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4005688
– volume: 505
  start-page: 365
  year: 2004
  ident: 2023062818105093400_c76
  article-title: The dissipation approximation and viscous potential flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112004008602
– volume: 33
  start-page: 129
  issue: 2
  year: 2004
  ident: 2023062818105093400_c49
  article-title: Boundary integral equations as applied to an oscillating bubble near a fluid-fluid interface
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-003-0508-2
– volume: 123
  start-page: 4059
  issue: 6
  year: 2008
  ident: 2023062818105093400_c14
  article-title: Radial oscillations of insonated contrast agents: Effect of the membrane constitutive
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2909553
– volume-title: Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications
  year: 2005
  ident: 2023062818105093400_c75
  article-title: Bjerknes forces and translational bubble dynamics
– volume: 26
  start-page: 032104
  issue: 3
  year: 2014
  ident: 2023062818105093400_c55
  article-title: Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound
  publication-title: Phys. Fluids
  doi: 10.1063/1.4866772
– volume: 194
  start-page: 451
  issue: 2
  year: 2004
  ident: 2023062818105093400_c68
  article-title: An indirect boundary element method for three dimensional explosion bubbles
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.011
– volume: 45
  start-page: 113
  issue: 1
  year: 2006
  ident: 2023062818105093400_c6
  article-title: Microbubble–enhanced hemorrhage control using high intensity focused ultrasound
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2006.07.018
– volume-title: Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging
  year: 2001
  ident: 2023062818105093400_c11
– volume: 730
  start-page: 245
  year: 2013
  ident: 2023062818105093400_c54
  article-title: Ultrasonic cavitation near a tissue layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.341
– volume: 34
  start-page: 685
  issue: 4
  year: 2008
  ident: 2023062818105093400_c30
  article-title: Nonspherical vibrations of microbubbles in contact with a wall—A pilot study at low mechanical index
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2007.10.001
– volume: 25
  start-page: 032109
  issue: 3
  year: 2013
  ident: 2023062818105093400_c23
  article-title: Simulations of insonated contrast agents: Saturation and transient break-up
  publication-title: Phys. Fluids
  doi: 10.1063/1.4794289
– volume: 33
  start-page: 1140
  issue: 7
  year: 2007
  ident: 2023062818105093400_c20
  article-title: The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.12.009
– volume: 14
  start-page: 85
  issue: 1
  year: 2002
  ident: 2023062818105093400_c35
  article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary
  publication-title: Phys. Fluids
  doi: 10.1063/1.1421102
– volume: 29
  start-page: 1749
  issue: 12
  year: 2003
  ident: 2023062818105093400_c12
  article-title: A Newtonian rheological model for the interface of microbubble contrast agents
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(03)01051-2
– volume: 537
  start-page: 387
  year: 2005
  ident: 2023062818105093400_c43
  article-title: Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112005005306
– volume: 24
  start-page: 523
  issue: 4
  year: 1998
  ident: 2023062818105093400_c8
  article-title: Acoustic modeling of shell-encapsulated gas bubbles
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(98)00009-X
– volume: 170
  start-page: 479
  year: 1986
  ident: 2023062818105093400_c27
  article-title: Transient cavities near boundaries. 1. Rigid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112086000988
– volume: 96
  start-page: 5808
  issue: 10
  year: 2004
  ident: 2023062818105093400_c50
  article-title: An oscillating bubble near an elastic material
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1803925
– start-page: 23
  volume-title: Oscillation and Collapse of a Cavitation Bubble in the Vicinity of a Two–Liquid Interface
  year: 1980
  ident: 2023062818105093400_c38
– volume: 6
  start-page: 2352
  issue: 7
  year: 1994
  ident: 2023062818105093400_c70
  article-title: On the nonspherical collapse and rebound of a cavitation bubble
  publication-title: Phys. Fluids
  doi: 10.1063/1.868185
– volume: 45
  start-page: 156
  issue: 5
  year: 1982
  ident: 2023062818105093400_c25
  article-title: Ultrasonic microstreaming and related phenomena
  publication-title: Br. J. Cancer, Suppl.
– volume: 118
  start-page: 539
  issue: 1
  year: 2005
  ident: 2023062818105093400_c61
  article-title: Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1923367
– volume: 47
  start-page: 1494
  issue: 6
  year: 2000
  ident: 2023062818105093400_c10
  article-title: Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Control
  doi: 10.1109/58.883539
– start-page: 175
  volume-title: Proc. 2nd Int. Colloq. on Drops and Bubbles
  year: 1981
  ident: 2023062818105093400_c33
  article-title: A numerical method for the dynamics of non-spherical cavitation bubbles
– volume: 254
  start-page: 437
  year: 1993
  ident: 2023062818105093400_c63
  article-title: Gas bubbles bursting at a free surface
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112093002216
– volume: 257
  start-page: 147
  year: 1993
  ident: 2023062818105093400_c69
  article-title: The final stage of the collapse of a cavitation bubble near a rigid wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112093003027
– ident: 2023062818105093400_c40
– volume: 19
  start-page: 047101
  issue: 4
  year: 2007
  ident: 2023062818105093400_c46
  article-title: Shape stability and violent collapse of microbubbles in acoustic traveling waves
  publication-title: Phys. Fluids
  doi: 10.1063/1.2716633
– volume: 251
  start-page: 79
  year: 1993
  ident: 2023062818105093400_c71
  article-title: The formation of toroidal bubbles upon the collapse of transient cavities
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112093003349
– volume: 133
  start-page: 121305
  issue: 12
  year: 2011
  ident: 2023062818105093400_c44
  article-title: Experimental and numerical investigation of single bubble dynamics in a two-phase Bubbly Medium
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4005424
– volume: 133
  start-page: 1897
  issue: 4
  year: 2013
  ident: 2023062818105093400_c56
  article-title: Breakup of finite thickness viscous shell microbubbles by ultrasound: A simplified zero-thickness shell model
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4792492
– volume-title: Underwater Explosions
  year: 1948
  ident: 2023062818105093400_c78
– volume: 40
  start-page: 395
  year: 2008
  ident: 2023062818105093400_c4
  article-title: Applications of acoustics and cavitation to noninvasive therapy and drug delivery
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.40.111406.102116
– volume: 659
  start-page: 191
  year: 2010
  ident: 2023062818105093400_c47
  article-title: Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112010002430
– volume: 49
  start-page: 269
  issue: 2
  year: 2009
  ident: 2023062818105093400_c16
  article-title: Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2008.09.007
– volume: 32
  start-page: 447
  issue: 6
  year: 1994
  ident: 2023062818105093400_c59
  article-title: Higher harmonics of vibrating gas-filled microspheres. Part one: Simulations
  publication-title: Ultrasonics
  doi: 10.1016/0041-624x(94)90064-7
– volume: 8
  start-page: 73
  year: 1996
  ident: 2023062818105093400_c72
  article-title: Strong interaction between buoyancy bubble and free surface
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/BF00312403
– volume: 22
  start-page: 632
  issue: 7
  year: 2005
  ident: 2023062818105093400_c66
  article-title: Curvature formulas for implicit curves and surfaces
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2005.06.005
– volume: 47
  start-page: 861
  year: 2009
  ident: 2023062818105093400_c2
  article-title: Ultrasonic characterization of ultrasound contrast agents
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-009-0497-1
– volume: 58
  start-page: 981
  issue: 5
  year: 2011
  ident: 2023062818105093400_c62
  article-title: Review of shell models for contrast agent microbubbles
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
  doi: 10.1109/TUFFC.2011.1899
– volume: 20
  start-page: 333
  issue: 3
  year: 1979
  ident: 2023062818105093400_c32
  article-title: A calculation of the parameters of the high-speed jet formed in the collapse of a bubble
  publication-title: J. Appl. Mech. Tech. Phys.
  doi: 10.1007/BF00911690
– volume: 210
  start-page: 368
  issue: 1
  year: 2005
  ident: 2023062818105093400_c65
  article-title: Unstructured MEL modelling of nonlinear unsteady ship waves
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.04.012
– volume: 217
  start-page: 429
  year: 2003
  ident: 2023062818105093400_c1
  article-title: Microbubble ultrasound contrast agents: A review
  publication-title: Proc. Inst. Mech. Eng., Part H
  doi: 10.1243/09544110360729072
– volume: 123
  start-page: 1784
  issue: 3
  year: 2008
  ident: 2023062818105093400_c52
  article-title: Interaction of microbubbles with high intensity pulsed ultrasound
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2836746
– volume: 691
  start-page: 315
  year: 2012
  ident: 2023062818105093400_c18
  article-title: Surface instability of an encapsulated bubble induced by an ultrasonic pressure wave
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.477
– volume: 19
  start-page: 303
  issue: 5
  year: 2005
  ident: 2023062818105093400_c73
  article-title: Vortex ring modelling for toroidal bubbles
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-005-0164-6
SSID ssj0003926
Score 2.340908
Snippet Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Ablation
Acoustic waves
Acoustics
Amplitudes
Boundary integral method
Bubbles
Cell membranes
Chemical compounds
Coating effects
Contrast agents
Dynamics
Encapsulation
Finite element method
Fluid dynamics
Integrals
Lipids
Mathematical models
Pharmacology
Physics
Proteins
Rigid walls
Spherical shells
Three dimensional models
Ultrasonic imaging
Ultrasonic testing
Ultrasound
Title Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method
URI https://www.proquest.com/docview/2124901864
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABJ
  databaseName: American Institute of Physics
  customDbUrl:
  eissn: 1089-7666
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003926
  issn: 1070-6631
  databaseCode: M71
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://www.scitation.org/
  providerName: American Institute of Physics
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7666
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0003926
  issn: 1070-6631
  databaseCode: ADMLS
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVgKyQufBRQWwqyEAekKMsmdhL7WLGgCrWVEK3oLbJjW6qUbtEmEZRfzzi2kyzsoXCJklHirHZexjP2mxmE3qaaUGYgyCmYETHlELNyqUTMC5HY8ufMFdM5PcuPL-jny-xy5Kr22SWtnFe_tuaV_I9WQQZ6tVmy_6DZYVAQwDnoF46gYTjeScdnndtvqV1DG09gtq4kWUbK9ZrvqRpd3a5FYzsoOW66aNpI2KSq6NoS8mQnZa2bqGtC8pTsuy2tb0M5idq3mp76sj151I1v6u5KuaJPnNPJ6sI3vxz9BVD482pc_l5dOxaB-DEyhURtE90nXP7oZD5dlEiywGMe7ChYkhicGSfSXsZ4XOSuyUowvq4wgAdZutWmgxNllxfmdoty4WpPbtbN_mM-G1iG_f56Tsqk9I_eRzspGP_FDO0cLU9Pvg5TNjiJuSOnul8dSlDl5P3w3k3HZXPe7p2R8yfokY8i8JGDxFN0T6920WMfUWBvr5td9MDr6BlaD1jBASv4xmDQNSZLHLBiRSNWcMAK7rGCp1jBPVb65wNWcMAKdlh5ji4-fTz_cBz7fhtxBYa7jSmE6qoypAIvPGc8S-HCZJrbqFpVqVLCJujJSqiMq4obKpWh8C1rRTRXWUJeoNnqZqX3EJamSHWVk0IxQ7lRkmoGpp4yqQotCN1H78KfWVa-GL3tiVKXfyltH70Zbv3uKrBsu-kwaKT0H2hTprax-iJhOT24yxgv0cMRyodo1q47_Qo8zla-9nj5DRDNgkI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+modeling+of+the+3D+dynamics+of+ultrasound+contrast+agent+microbubbles+using+the+boundary+integral+method&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Wang%2C+Qianxi&rft.au=Manmi%2C+Kawa&rft.au=Calvisi%2C+Michael+L.&rft.date=2015-02-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1063%2F1.4908045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4908045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon