A direct analytical methodology for the assessment of ductile fracture in metals based on multiaxial tests

The prediction accuracy of ductile damage models is subject to a sound calibration strategy, which normally involves the execution of complex multiaxial tests and requires dedicated facilities. In addition, finite element (FE) analysis is mandatory to retrieve the stress and strain states at the cri...

Full description

Saved in:
Bibliographic Details
Published inFatigue & fracture of engineering materials & structures Vol. 47; no. 9; pp. 3408 - 3424
Main Authors Cortis, Gabriele, Piacenti, Marcello, Nalli, Filippo, Cortese, Luca
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.09.2024
Subjects
Online AccessGet full text
ISSN8756-758X
1460-2695
DOI10.1111/ffe.14378

Cover

Abstract The prediction accuracy of ductile damage models is subject to a sound calibration strategy, which normally involves the execution of complex multiaxial tests and requires dedicated facilities. In addition, finite element (FE) analysis is mandatory to retrieve the stress and strain states at the critical point, which cannot be directly measured from experiments. To overcome this complexity, a minimal set of simple multiaxial tests is selected, and an analytical‐numerical approach is proposed to evaluate, without resorting to FE, both the stress evolution with plastic deformation and the fracture strain, under any different loading condition of each test. This is achieved from the sole knowledge of the material bilinear stress–strain relation and of the applied test displacement at fracture. The obtained results are compared with a traditional testing and calibration methodology, and the robustness of the approach is proved on a 17‐4PH steel, an X65 steel, and a Ti6Al4V alloy. Highlights Ductile damage models are calibrated by an analytical approach based on multiaxial tests. Local stress and strain in tests can be calculated from experiments without resort to FEM. Uniaxial and different shear‐tension stress states are investigated. The method works on a wide range of alloys; only test displacement at failure is required.
AbstractList The prediction accuracy of ductile damage models is subject to a sound calibration strategy, which normally involves the execution of complex multiaxial tests and requires dedicated facilities. In addition, finite element (FE) analysis is mandatory to retrieve the stress and strain states at the critical point, which cannot be directly measured from experiments. To overcome this complexity, a minimal set of simple multiaxial tests is selected, and an analytical‐numerical approach is proposed to evaluate, without resorting to FE, both the stress evolution with plastic deformation and the fracture strain, under any different loading condition of each test. This is achieved from the sole knowledge of the material bilinear stress–strain relation and of the applied test displacement at fracture. The obtained results are compared with a traditional testing and calibration methodology, and the robustness of the approach is proved on a 17‐4PH steel, an X65 steel, and a Ti6Al4V alloy.
The prediction accuracy of ductile damage models is subject to a sound calibration strategy, which normally involves the execution of complex multiaxial tests and requires dedicated facilities. In addition, finite element (FE) analysis is mandatory to retrieve the stress and strain states at the critical point, which cannot be directly measured from experiments. To overcome this complexity, a minimal set of simple multiaxial tests is selected, and an analytical‐numerical approach is proposed to evaluate, without resorting to FE, both the stress evolution with plastic deformation and the fracture strain, under any different loading condition of each test. This is achieved from the sole knowledge of the material bilinear stress–strain relation and of the applied test displacement at fracture. The obtained results are compared with a traditional testing and calibration methodology, and the robustness of the approach is proved on a 17‐4PH steel, an X65 steel, and a Ti6Al4V alloy. Ductile damage models are calibrated by an analytical approach based on multiaxial tests. Local stress and strain in tests can be calculated from experiments without resort to FEM. Uniaxial and different shear‐tension stress states are investigated. The method works on a wide range of alloys; only test displacement at failure is required.
The prediction accuracy of ductile damage models is subject to a sound calibration strategy, which normally involves the execution of complex multiaxial tests and requires dedicated facilities. In addition, finite element (FE) analysis is mandatory to retrieve the stress and strain states at the critical point, which cannot be directly measured from experiments. To overcome this complexity, a minimal set of simple multiaxial tests is selected, and an analytical‐numerical approach is proposed to evaluate, without resorting to FE, both the stress evolution with plastic deformation and the fracture strain, under any different loading condition of each test. This is achieved from the sole knowledge of the material bilinear stress–strain relation and of the applied test displacement at fracture. The obtained results are compared with a traditional testing and calibration methodology, and the robustness of the approach is proved on a 17‐4PH steel, an X65 steel, and a Ti6Al4V alloy. Highlights Ductile damage models are calibrated by an analytical approach based on multiaxial tests. Local stress and strain in tests can be calculated from experiments without resort to FEM. Uniaxial and different shear‐tension stress states are investigated. The method works on a wide range of alloys; only test displacement at failure is required.
Author Cortis, Gabriele
Cortese, Luca
Piacenti, Marcello
Nalli, Filippo
Author_xml – sequence: 1
  givenname: Gabriele
  surname: Cortis
  fullname: Cortis, Gabriele
  email: gabriele.cortis@uniroma1.it
  organization: Sapienza University of Rome
– sequence: 2
  givenname: Marcello
  surname: Piacenti
  fullname: Piacenti, Marcello
  organization: Sapienza University of Rome
– sequence: 3
  givenname: Filippo
  surname: Nalli
  fullname: Nalli, Filippo
  organization: Rina Consulting – Centro Sviluppo Materiali
– sequence: 4
  givenname: Luca
  surname: Cortese
  fullname: Cortese, Luca
  organization: Sapienza University of Rome
BookMark eNp1kE9LAzEQxYMo2FYPfoOAJw_bJpu_eyylVaHgRcFbSLOJ3bLd1CSL7rc3db06l5mB35vhvSm47HxnAbjDaI5zLZyzc0yJkBdggilHRckrdgkmUjBeCCbfr8E0xgNCmFNCJuCwhHUTrElQd7odUmN0C4827X3tW_8xQOcDTHsLdYw2xqPtEvQO1r1JTWuhC9qkPljYdGeVbiPc6Whr6PPet6nR300-mGxM8QZcuQzY278-A2-b9evqqdi-PD6vltvClEzIQtbYaYNFVVFUsbJkshTOuZpQngdMd5pLgmrLscSWSG2qndEMYcKYFpyXZAbux7un4D_7_FkdfB-yu6gIkkJQRAXL1MNImeBjDNapU2iOOgwKI3WOUuUo1W-UmV2M7Ff2PPwPqs1mPSp-ANBRd4M
Cites_doi 10.1016/j.engfracmech.2020.107395
10.1115/1.3225775
10.1016/0022-5096(69)90033-7
10.1115/1.3443401
10.1016/j.ijmecsci.2005.03.003
10.1016/j.mechmat.2009.11.012
10.1016/j.engfracmech.2009.02.006
10.1115/1.4030457
10.1177/1056789513485967
10.1007/BF01400222
10.1016/0022-5096(76)90024-7
10.1186/s10033‐021‐00549‐4
10.1016/j.ijsolstr.2015.02.024
10.1088/1757‐899X/1214/1/012016
10.1177/1056789515577228
10.1016/j.mechmat.2021.104173
10.1115/1.3078390
10.1016/S0013-7944(97)00074-X
10.1016/j.ijmecsci.2004.02.006
10.1115/1.3601204
10.1007/s10704-009-9422-8
10.1016/0001-6160(84)90213-X
10.1007/978‐3‐319‐21765‐9_7
10.1115/1.3443491
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1111/ffe.14378
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1460-2695
EndPage 3424
ExternalDocumentID 10_1111_ffe_14378
FFE14378
Genre researchArticle
GrantInformation_xml – fundername: European Union
  funderid: CN00000023
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6KP
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDEX
ABEFU
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c2578-8d1fac17994095225827fffd34627f14ba6830de6181e38ac9bca501355a76623
IEDL.DBID DR2
ISSN 8756-758X
IngestDate Fri Jul 25 19:16:59 EDT 2025
Wed Oct 01 04:42:26 EDT 2025
Wed Jan 22 17:17:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2578-8d1fac17994095225827fffd34627f14ba6830de6181e38ac9bca501355a76623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3087740475
PQPubID 45644
PageCount 17
ParticipantIDs proquest_journals_3087740475
crossref_primary_10_1111_ffe_14378
wiley_primary_10_1111_ffe_14378_FFE14378
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Fatigue & fracture of engineering materials & structures
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1952; 177
1976; 24
2010
2004; 46
1995
2010; 161
2021; 241
1985; 107
1969; 17
1926; 36
2009; 131
2014; 23
2005; 47
2022; 1214
2022; 165
1968; 35
2015; 25
2010; 42
2009; 76
2021; 34
2015; 82
1984; 32
1997; 58
1978; 100
1977; 99
2016
2015; 67‐68
2007; 42
1969
1968; 96
e_1_2_10_23_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Cockcroft MG (e_1_2_10_11_1) 1968; 96
Broggiato GB (e_1_2_10_31_1) 2010
Xu B (e_1_2_10_25_1) 1995
e_1_2_10_2_1
e_1_2_10_4_1
Bridgman PW (e_1_2_10_3_1) 1952
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
Broggiato GB (e_1_2_10_18_1) 2007; 42
e_1_2_10_10_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
Malvern LE (e_1_2_10_24_1) 1969
e_1_2_10_26_1
References_xml – volume: 24
  start-page: 147
  issue: 2–3
  year: 1976
  end-page: 160
  article-title: On the mechanism of ductile failure in high‐strength steel subjected to multi‐axial stresses
  publication-title: J Mech Phys Solids
– volume: 47
  start-page: 719
  issue: 4–5
  year: 2005
  end-page: 743
  article-title: Calibration and evaluation of seven fracture models
  publication-title: Int J Mech Sci
– volume: 34
  start-page: 35
  year: 2021
  article-title: Comparison of modified Mohr–Coulomb model and Bai–Wierzbicki model for constructing 3D ductile fracture envelope of AA6063
  publication-title: Chin J Mech Eng
– volume: 58
  start-page: 11
  issue: 1–2
  year: 1997
  end-page: 28
  article-title: A nonlinear CDM model for ductile failure
  publication-title: Eng Fract Mech
– volume: 23
  start-page: 104
  issue: 1
  year: 2014
  end-page: 123
  article-title: Prediction of ductile failure in materials for onshore and offshore pipeline applications
  publication-title: Int J Damage Mech
– volume: 99
  start-page: 2
  issue: 1
  year: 1977
  end-page: 15
  article-title: Continuum theory of ductile rupture by void nucleation and growth: Part I – yield criteria and flow rules for porous ductile media
  publication-title: ASME J Eng Mater Technol
– volume: 32
  start-page: 157
  issue: 1
  year: 1984
  end-page: 169
  article-title: Analysis of the cup‐cone fracture in a round tensile bar
  publication-title: Acta Metall
– year: 2016
– volume: 131
  issue: 2
  year: 2009
  article-title: On the application of stress triaxiality formula for plane strain fracture testing. ASME
  publication-title: J Eng Mater Technol
– volume: 17
  start-page: 201
  issue: 3
  year: 1969
  end-page: 217
  article-title: On the ductile enlargement of voids in triaxial stress fields
  publication-title: J Mech Phys Solids
– volume: 161
  start-page: 1
  issue: 1
  year: 2010
  end-page: 20
  article-title: Application of extended Mohr–Coulomb criterion to ductile fracture
  publication-title: Int J Fract
– year: 2010
– volume: 1214
  year: 2022
  article-title: A direct methodology for the calibration of ductile damage models from a simple multiaxial test
  publication-title: IOP Conf Ser: Mater Sci Eng
– volume: 46
  start-page: 81
  issue: 1
  year: 2004
  end-page: 98
  article-title: On fracture locus in the equivalent strain and stress triaxiality space
  publication-title: Int J Mech Sci
– volume: 42
  start-page: 207
  issue: 2
  year: 2010
  end-page: 217
  article-title: Experiments on stress‐triaxiality dependence of material behavior of aluminum alloys
  publication-title: Mech Mater
– volume: 36
  start-page: 913
  issue: 11‐12
  year: 1926
  end-page: 939
  article-title: Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel
  publication-title: Z Physik
– volume: 96
  start-page: 33
  year: 1968
  end-page: 39
  article-title: Ductility and the workability of metals
  publication-title: J Inst Metal
– volume: 82
  issue: 7
  year: 2015
  article-title: On the evaluation of stress triaxiality fields in a notched titanium alloy sample via integrated digital image correlation. ASME
  publication-title: J Appl Mech
– year: 1969
– volume: 107
  start-page: 83
  issue: 1
  year: 1985
  end-page: 89
  article-title: A continuous damage mechanics model for ductile fracture
  publication-title: ASME J Eng Mater Technol
– volume: 67‐68
  start-page: 40
  year: 2015
  end-page: 55
  article-title: Micromechanically‐motivated phenomenological Hosford–coulomb model for predicting ductile fracture initiation at low stress triaxialities
  publication-title: Int J Solids Struct
– volume: 177
  year: 1952
– volume: 76
  start-page: 1288
  issue: 9
  year: 2009
  end-page: 1302
  article-title: The effect of stress invariants on ductile fracture limit in steels
  publication-title: Eng Fract Mech
– volume: 241
  year: 2021
  article-title: Ductile damage assessment of Ti6Al4V, 17‐4PH and AlSi10Mg for additive manufacturing
  publication-title: Eng Fract Mech
– volume: 100
  start-page: 279
  issue: 3
  year: 1978
  end-page: 286
  article-title: A plastic‐strain mean‐stress criterion for ductile fracture
  publication-title: ASME J Eng Mater Technol
– year: 1995
– volume: 165
  year: 2022
  article-title: Additive manufacturing structural redesign of hip prostheses for stress‐shielding reduction and improved functionality and safety
  publication-title: Mech Mater
– volume: 25
  start-page: 228
  issue: 2
  year: 2015
  end-page: 250
  article-title: A J2–J3 approach in plastic and damage description of ductile materials
  publication-title: Int J Damage Mech
– volume: 42
  start-page: 9
  issue: 1
  year: 2007
  end-page: 17
  article-title: Identification of material damage model parameters: an inverse approach using digital processing
  publication-title: Mec Dent
– volume: 35
  start-page: 363
  issue: 2
  year: 1968
  end-page: 371
  article-title: A criterion for ductile fracture by growth of holes
  publication-title: ASME J Appl Mech
– ident: e_1_2_10_20_1
  doi: 10.1016/j.engfracmech.2020.107395
– ident: e_1_2_10_9_1
  doi: 10.1115/1.3225775
– volume: 42
  start-page: 9
  issue: 1
  year: 2007
  ident: e_1_2_10_18_1
  article-title: Identification of material damage model parameters: an inverse approach using digital processing
  publication-title: Mec Dent
– ident: e_1_2_10_2_1
  doi: 10.1016/0022-5096(69)90033-7
– volume-title: Studies in large plastic flow and fracture
  year: 1952
  ident: e_1_2_10_3_1
– ident: e_1_2_10_7_1
  doi: 10.1115/1.3443401
– ident: e_1_2_10_26_1
  doi: 10.1016/j.ijmecsci.2005.03.003
– ident: e_1_2_10_28_1
  doi: 10.1016/j.mechmat.2009.11.012
– ident: e_1_2_10_15_1
  doi: 10.1016/j.engfracmech.2009.02.006
– ident: e_1_2_10_19_1
  doi: 10.1115/1.4030457
– ident: e_1_2_10_21_1
  doi: 10.1177/1056789513485967
– volume: 96
  start-page: 33
  year: 1968
  ident: e_1_2_10_11_1
  article-title: Ductility and the workability of metals
  publication-title: J Inst Metal
– ident: e_1_2_10_23_1
  doi: 10.1007/BF01400222
– ident: e_1_2_10_6_1
  doi: 10.1016/0022-5096(76)90024-7
– ident: e_1_2_10_27_1
  doi: 10.1186/s10033‐021‐00549‐4
– ident: e_1_2_10_16_1
  doi: 10.1016/j.ijsolstr.2015.02.024
– ident: e_1_2_10_29_1
  doi: 10.1088/1757‐899X/1214/1/012016
– volume-title: Applied mechanics: elasticity and plasticity
  year: 1995
  ident: e_1_2_10_25_1
– ident: e_1_2_10_17_1
  doi: 10.1177/1056789515577228
– ident: e_1_2_10_4_1
  doi: 10.1016/j.mechmat.2021.104173
– ident: e_1_2_10_30_1
  doi: 10.1115/1.3078390
– ident: e_1_2_10_10_1
  doi: 10.1016/S0013-7944(97)00074-X
– volume-title: Proceedings of XXXIX Congresso Nazionale AIAS (ed. Nuova Editoriale bios), Vol. CD paper 180, Maratea, Italy, September 7–10
  year: 2010
  ident: e_1_2_10_31_1
– ident: e_1_2_10_13_1
  doi: 10.1016/j.ijmecsci.2004.02.006
– ident: e_1_2_10_5_1
  doi: 10.1115/1.3601204
– ident: e_1_2_10_14_1
  doi: 10.1007/s10704-009-9422-8
– ident: e_1_2_10_8_1
  doi: 10.1016/0001-6160(84)90213-X
– ident: e_1_2_10_22_1
  doi: 10.1007/978‐3‐319‐21765‐9_7
– volume-title: Introduction to the mechanics of continuous medium
  year: 1969
  ident: e_1_2_10_24_1
– ident: e_1_2_10_12_1
  doi: 10.1115/1.3443491
SSID ssj0016433
Score 2.3934507
Snippet The prediction accuracy of ductile damage models is subject to a sound calibration strategy, which normally involves the execution of complex multiaxial tests...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 3408
SubjectTerms Calibration
Complexity
Critical point
Damage assessment
damage models calibration
Ductile fracture
material characterization
Mathematical models
multiaxial tests
Plastic deformation
Strain analysis
Stress-strain relationships
Title A direct analytical methodology for the assessment of ductile fracture in metals based on multiaxial tests
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.14378
https://www.proquest.com/docview/3087740475
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1460-2695
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016433
  issn: 8756-758X
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2695
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0016433
  issn: 8756-758X
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 8756-758X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1460-2695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016433
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-GT_rgtzidEsQHXzLSNk1bfBqyMgR9EAd7EErSJqBCJ1sH4l_vJf1wCoL4lkJT0uQu97vj7ncAl5FSUjLBKIsSn_IiUlQJ31DNDItNkMjEFYXd3YvJlN_OwlkPrttamJofogu4Wc1w97VVcKmWa0pujEY1DyJb6OsFwrlTDx11FHoBro08wnFBERPPGlYhm8XTzfxui74A5jpMdXYm3YGndoV1esnrcFWpYf7xg7zxn7-wC9sN_iSjWmD2oKfLfdhaYyU8gJcRqQ0dkZaxxAW7Sd1p2sXgCeJcgriRyI7Vk8wNscSxuApibN3VaqHJc2lnoXgTayoLMsdnm74o31HmCULcankI03T8eDOhTUsGmlvdpnHhGZlbFjn0CxG6hbEfGWOKgAsceFxJEQes0AKBgw5imSfK9lzwENXISCDUOoKNcl7qYyBFGAa-YmFhuOZ4zcg84EYntvkxl0rGfbhoDyd7q5k3stZjwY3L3Mb1YdAeW9Yo3zJzJIec8Sjsw5Xb_98_kKXp2A1O_v7qKWz6CG3qTLMBbFSLlT5DaFKpcyeDn6qh35A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfcx7Ug7_F6dQgHrx0dG2atuBlyMbUbQfZYBcpSZuACp1sHYh_vS_pD6cgiLcUmpImeXmfhJfvA7jyheDcZrZl-6Fj0cQXlmCOsqSt7EC5IQ_NpbDhiPUn9H7qTWtwU96FyfUhqgM3bRlmvdYGrg-kV6xcKYl27vrBGqxThvsUjUSPlXgU7gNMInkEcmYhFU8LXSEdx1NV_e6NvhBzFVSNp-ntwFPZxjzA5LW1zEQr_vgh3_jfn9iF7QJBSSefM3tQk-k-bK0IEx7AS4fkvo5wLVpizrtJnmzaHMMTRF2C6Eh4JexJZopo7VhsBlH66tVyLslzqmvhDCfaWyZkhs86gpG_47QnSLnZ4hAmve74tm8VWRmsWJu3FSRtxWMtJIddjvTmBY6vlEpcyrDQpoKzwLUTyZAdpBvwOBQ67UIbwYb7DGnrCOrpLJXHQBLPcx1he4mikuJKw2OXKhnq_MeUCx404LIcnegtF9-Iyk0LdlxkOq4BzXLcosL-FpHROaQ29b0GXJsB-P0DUa_XNYWTv796ARv98XAQDe5GD6ew6SDp5IFnTahn86U8Q1LJxLmZkJ-2mOOx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPc4Log3dxOjWID750dG2atuDLcJZ5GyIO9iIlaRNQYRtbB-Kn9yS9OAVBfEuhKWlyTvJLOPkfgDNfCM5tZlu2HzoWTX1hCeYoS9rKDpQb8tBcCrvvs96A3gy9YQ0uyrswuT5EdeCmPcPM19rB5SRVC16ulEQ_d_1gCZapFwY6oK_7WIlH4T7AJJJHIGcWUvGw0BXScTxV1e-r0RdiLoKqWWmiDXgu25gHmLy15ploJR8_5Bv_-xObsF4gKOnkNrMFNTnahrUFYcIdeO2QfK0jXIuWmPNukiebNsfwBFGXIDoSXgl7krEiWjsWm0GUvno1n0ryMtK10MKJXi1TMsZnHcHI39HsCVJuNtuFQXT1dNmziqwMVqLd2wrStuKJFpLDrSHSmxc4vlIqdSnDQpsKzgLXTiVDdpBuwJNQ6LQLbQQb7jOkrT2oj8YjuQ8k9TzXEbaXKiopzjQ8camSoc5_TLngQQNOy9GJJ7n4RlxuWrDjYtNxDWiW4xYX_jeLjc4htanvNeDcDMDvH4ij6MoUDv7-6gmsPHSj-O66f3sIqw6CTh531oR6Np3LIwSVTBwbe_wEhVTjNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+direct+analytical+methodology+for+the+assessment+of+ductile+fracture+in+metals+based+on+multiaxial+tests&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Cortis%2C+Gabriele&rft.au=Piacenti%2C+Marcello&rft.au=Nalli%2C+Filippo&rft.au=Cortese%2C+Luca&rft.date=2024-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=47&rft.issue=9&rft.spage=3408&rft.epage=3424&rft_id=info:doi/10.1111%2Fffe.14378&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon