Thermal analysis of nanofluid saturated in a semicircular hot enclosure cooled by a rotating half‐immersed active circular cylinder subject to a convective condition

In this study, the natural and mixed convections were numerically investigated using semicircular enclosures heated by an isotherm‐heat flux along a semicircular enclosure wall. The concentric conductive rotating cylinder was designed with a semicircular enclosure. The lower half‐cylindrical wall wa...

Full description

Saved in:
Bibliographic Details
Published inHeat transfer (Hoboken, N.J. Print) Vol. 51; no. 1; pp. 22 - 66
Main Authors Swdi, Farah S., Jabbar, Mohammed Y.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text
ISSN2688-4534
2688-4542
DOI10.1002/htj.22297

Cover

Abstract In this study, the natural and mixed convections were numerically investigated using semicircular enclosures heated by an isotherm‐heat flux along a semicircular enclosure wall. The concentric conductive rotating cylinder was designed with a semicircular enclosure. The lower half‐cylindrical wall was immersed in nanofluid (Cu–water) that filled the enclosure, whereas the upper half‐cylindrical wall was subjected to ambient convection. The horizontal walls were thermally insulated. The Galerkin finite element process was used for the dimensionless governing equations of velocity and temperature and then modeled by COMSOL 5.5. The parameters were represented in the following ranges: radial aspect ratios, 0.4 ≤ r/R ≤ 0.8; thermal conductivity ratio, 1 ≤ Kr ≤ 10; angular rotational velocity, 0 ≤ Ω ≤ 1000; ambient convection heat transfer coefficient, 5 ≤  h ∞ ≤ 20; and nanofluid concentration, 0 ≤ φ ≤ 0.05. The Prandtl number (Pr) and Rayleigh number (Ra) were taken as constants at Pr = 6.2 and Ra = 105. Results showed that the convection influence was prominent when the angular rotational velocity was increased, whereas the influence was minimal when the aspect ratio was increased. An inverse relation was found between heating and cooling thermal penetration depths with respect to angular rotational velocity for the thermal conductivity ratio and all aspect ratios. Our numerical work was compared with past research for validation. Findings indicate a strong agreement between the findings of the current research and those in the past studies.
AbstractList In this study, the natural and mixed convections were numerically investigated using semicircular enclosures heated by an isotherm‐heat flux along a semicircular enclosure wall. The concentric conductive rotating cylinder was designed with a semicircular enclosure. The lower half‐cylindrical wall was immersed in nanofluid (Cu–water) that filled the enclosure, whereas the upper half‐cylindrical wall was subjected to ambient convection. The horizontal walls were thermally insulated. The Galerkin finite element process was used for the dimensionless governing equations of velocity and temperature and then modeled by COMSOL 5.5. The parameters were represented in the following ranges: radial aspect ratios, 0.4 ≤ r/R ≤ 0.8; thermal conductivity ratio, 1 ≤ Kr ≤ 10; angular rotational velocity, 0 ≤ Ω ≤ 1000; ambient convection heat transfer coefficient, 5 ≤  h ∞ ≤ 20; and nanofluid concentration, 0 ≤ φ ≤ 0.05. The Prandtl number (Pr) and Rayleigh number (Ra) were taken as constants at Pr = 6.2 and Ra = 105. Results showed that the convection influence was prominent when the angular rotational velocity was increased, whereas the influence was minimal when the aspect ratio was increased. An inverse relation was found between heating and cooling thermal penetration depths with respect to angular rotational velocity for the thermal conductivity ratio and all aspect ratios. Our numerical work was compared with past research for validation. Findings indicate a strong agreement between the findings of the current research and those in the past studies.
In this study, the natural and mixed convections were numerically investigated using semicircular enclosures heated by an isotherm‐heat flux along a semicircular enclosure wall. The concentric conductive rotating cylinder was designed with a semicircular enclosure. The lower half‐cylindrical wall was immersed in nanofluid (Cu–water) that filled the enclosure, whereas the upper half‐cylindrical wall was subjected to ambient convection. The horizontal walls were thermally insulated. The Galerkin finite element process was used for the dimensionless governing equations of velocity and temperature and then modeled by COMSOL 5.5. The parameters were represented in the following ranges: radial aspect ratios, 0.4 ≤ r/R ≤ 0.8; thermal conductivity ratio, 1 ≤ Kr ≤ 10; angular rotational velocity, 0 ≤ Ω ≤ 1000; ambient convection heat transfer coefficient, 5 ≤ h∞ ≤ 20; and nanofluid concentration, 0 ≤ φ ≤ 0.05. The Prandtl number (Pr) and Rayleigh number (Ra) were taken as constants at Pr = 6.2 and Ra = 105. Results showed that the convection influence was prominent when the angular rotational velocity was increased, whereas the influence was minimal when the aspect ratio was increased. An inverse relation was found between heating and cooling thermal penetration depths with respect to angular rotational velocity for the thermal conductivity ratio and all aspect ratios. Our numerical work was compared with past research for validation. Findings indicate a strong agreement between the findings of the current research and those in the past studies.
In this study, the natural and mixed convections were numerically investigated using semicircular enclosures heated by an isotherm‐heat flux along a semicircular enclosure wall. The concentric conductive rotating cylinder was designed with a semicircular enclosure. The lower half‐cylindrical wall was immersed in nanofluid (Cu–water) that filled the enclosure, whereas the upper half‐cylindrical wall was subjected to ambient convection. The horizontal walls were thermally insulated. The Galerkin finite element process was used for the dimensionless governing equations of velocity and temperature and then modeled by COMSOL 5.5. The parameters were represented in the following ranges: radial aspect ratios, 0.4 ≤  r / R  ≤ 0.8; thermal conductivity ratio, 1 ≤  Kr  ≤ 10; angular rotational velocity, 0 ≤ Ω ≤ 1000; ambient convection heat transfer coefficient, 5 ≤  ≤ 20; and nanofluid concentration, 0 ≤  φ  ≤ 0.05. The Prandtl number ( Pr ) and Rayleigh number ( Ra ) were taken as constants at Pr  = 6.2 and Ra  = 10 5 . Results showed that the convection influence was prominent when the angular rotational velocity was increased, whereas the influence was minimal when the aspect ratio was increased. An inverse relation was found between heating and cooling thermal penetration depths with respect to angular rotational velocity for the thermal conductivity ratio and all aspect ratios. Our numerical work was compared with past research for validation. Findings indicate a strong agreement between the findings of the current research and those in the past studies.
Author Jabbar, Mohammed Y.
Swdi, Farah S.
Author_xml – sequence: 1
  givenname: Farah S.
  surname: Swdi
  fullname: Swdi, Farah S.
  organization: University of Babylon
– sequence: 2
  givenname: Mohammed Y.
  surname: Jabbar
  fullname: Jabbar, Mohammed Y.
  email: eng.mohammed.yousif@uobabylon.edu.iq
  organization: University of Babylon
BookMark eNp10b1OwzAQB3ALgUQpHXgDS0wMbW3ne0QVUFAlljJHjnOhrhy72E5RNh6Bt-C9eBIMKWxMd9L97ob7n6FjbTQgdEHJjBLC5hu_nTHGiuwIjVia59M4idnxXx_Fp2ji3JYEm1CasXSEPtYbsC1XmGuueicdNg3WXJtGdbLGjvvOcg81lhpz7KCVQlrRKW7xxngMWijjOgtYGKMCq_rArPHcS_2MN1w1n2_vsm3BujDlwst9sL8nRK-krsFi11VbEB57E9aF0Xs4SKNr6aXR5-ik4crB5FDH6On2Zr1YTlePd_eL69VUsCTLppClhNJEZFXSVIKSJoWKCiCQs7giRZQWBbCExDQpOGU0JZyktQDBIY9yEafRGF0Od3fWvHTgfLk1nQ2_cWXEWBzFeVKwoK4GJaxxzkJT7qxsue1LSsrvKMoQRfkTRbDzwb5KBf3_sFyuH4aNL0d2kPk
Cites_doi 10.1016/j.ijthermalsci.2013.11.005
10.1051/epjap/2010042
10.1002/htj.21387
10.1007/s10973-020-10123-0
10.1063/1.4958426
10.1016/j.icheatmasstransfer.2017.05.025
10.2298/TSCI140802128E
10.1016/j.icheatmasstransfer.2015.12.007
10.1016/j.icheatmasstransfer.2010.12.006
10.1016/j.ijmecsci.2020.105688
10.1016/j.proeng.2010.03.076
10.1016/j.ijheatmasstransfer.2013.09.059
10.1007/s10973-018-7520-4
10.1063/1.5079789
10.1016/j.jtice.2015.09.012
10.1016/j.ijmecsci.2017.03.007
10.1007/s10973-020-09604-z
10.1108/EC-11-2015-0368
10.1007/s10973-020-09497-y
10.1007/s10973-020-09668-x
10.1016/j.proeng.2015.05.028
10.1063/1.5017474
10.1016/j.icheatmasstransfer.2010.07.010
10.1016/j.ijthermalsci.2014.01.010
10.1007/s10973-020-09379-3
10.1177/0309324712445120
10.1007/s10973-018-7455-9
10.1038/s41598-021-83944-0
10.1016/j.applthermaleng.2008.12.013
10.1016/j.ijheatmasstransfer.2009.10.007
10.3390/e20090664
10.1080/10407782.2014.986361
10.1007/s10973-020-09472-7
10.1016/j.molliq.2017.02.048
10.1002/htj.21822
10.1016/j.ijheatmasstransfer.2019.06.003
10.1016/j.ijheatmasstransfer.2018.01.008
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
Copyright_xml – notice: 2021 Wiley Periodicals LLC
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/htj.22297
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2688-4542
EndPage 66
ExternalDocumentID 10_1002_htj_22297
HTJ22297
Genre article
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
ABJNI
ACAHQ
ACCFJ
ACCZN
ACXBN
ADOZA
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
DCZOG
DRFUL
DRSTM
EBS
HGLYW
LATKE
LEEKS
MEWTI
SUPJJ
TUS
WXSBR
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ROL
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c2577-e760115c7b5fbc10f6eb1ce0e824b093699e2504159a12160a06dcecae838c463
ISSN 2688-4534
IngestDate Thu Jul 10 13:10:52 EDT 2025
Wed Oct 01 04:17:47 EDT 2025
Wed Jan 22 16:27:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2577-e760115c7b5fbc10f6eb1ce0e824b093699e2504159a12160a06dcecae838c463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3224348592
PQPubID 996354
PageCount 45
ParticipantIDs proquest_journals_3224348592
crossref_primary_10_1002_htj_22297
wiley_primary_10_1002_htj_22297_HTJ22297
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Heat transfer (Hoboken, N.J. Print)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 86
2010; 53
2018; 121
2010; 37
2016; 19
2019; 31
2015; 105
2020; 141
2011
2019; 12
2020; 181
2011; 54
2014; 68
2016; 71
2021; 144
2021; 143
2017; 231
2019; 140
2011; 38
2016; 59
2018; 20
2009; 29
2017; 124–125
2015; 68
2021; 11
2020
2017; 13
2019; 48
2017; 34
2019
2016; 20
2020; 49
2019; 135
2014; 79
2016; 1754
1984
2018; 30
2016
2012; 47
2010; 2
2014; 78
2010; 50
Barnoon P (e_1_2_9_30_1) 2020
e_1_2_9_31_1
Hamzah HK (e_1_2_9_6_1) 2019
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
Bensouici FZ (e_1_2_9_12_1) 2017; 13
Benasciutti D (e_1_2_9_42_1) 2011
Lefevre MR (e_1_2_9_48_1) 1984
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
Khan M (e_1_2_9_23_1) 2016; 1754
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
Majdi HS (e_1_2_9_7_1) 2019; 12
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
Malik S (e_1_2_9_10_1) 2016; 19
e_1_2_9_25_1
e_1_2_9_28_1
Gradeck M (e_1_2_9_44_1) 2011; 54
e_1_2_9_47_1
e_1_2_9_27_1
Kashyap SS (e_1_2_9_49_1) 2016
e_1_2_9_29_1
References_xml – volume: 48
  start-page: 343
  year: 2019
  end-page: 360
  article-title: Numerical study of mixed convection nanofluid in an annulus enclosure between outer rotating cylinder and inner corrugation cylinder
  publication-title: Heat Transf– Asian Res
– volume: 141
  start-page: 1829
  year: 2020
  end-page: 1846
  article-title: Mixed convection enhancement by using optimized porous media and nanofluid in a cavity with two rotating cylinders
  publication-title: J Therm Anal Calorim
– volume: 34
  start-page: 1
  year: 2017
  end-page: 31
  article-title: Numerical solution of mixed convection in a lid‐driven cavity with arc‐shaped moving wall
  publication-title: Eng Computat
– volume: 53
  start-page: 1208
  year: 2010
  end-page: 1219
  article-title: Steady mixed convection in a differentially heated square enclosure with an active rotating circular cylinder
  publication-title: Int J Heat Mass Transf
– volume: 68
  start-page: 411
  year: 2015
  end-page: 431
  article-title: Magneto‐convective transport of Nanofluid in a vertical lid‐driven cavity including a heat‐conducting rotating circular cylinder
  publication-title: Numer Heat Transf Part A Appl
– volume: 105
  start-page: 418
  year: 2015
  end-page: 424
  article-title: Natural convection and entropy generation in a nanofluid‐filled semi‐circular enclosure with heat flux source
  publication-title: Procedia Eng
– start-page: 395
  year: 2011
  end-page: 406
  article-title: Work roll in hot strip rolling: a semi‐analytical approach for estimating temperatures and thermal stresses
  publication-title: Adv Manuf Syst Technol
– volume: 2
  start-page: 707
  year: 2010
  end-page: 716
  article-title: Finite elements prediction of thermal stresses in work roll of hot rolling mills
  publication-title: Procedia Eng
– volume: 1754
  year: 2016
  article-title: Mixed convection heat transfer inside a differentially heated square enclosure in presence of a rotating heat conducting cylinder
  publication-title: AIP Conf Proc
– volume: 30
  start-page: 169
  year: 2018
  end-page: 172
  article-title: Mixed convection heat transfer enhancement in a cubic lid‐driven cavity containing a rotating cylinder through the introduction of artificial roughness on the heated wall
  publication-title: Phys Fluids
– volume: 59
  start-page: 138
  year: 2016
  end-page: 151
  article-title: Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid‐saturated porous media and heated by a triangular solid
  publication-title: J Taiwan Inst Chem Eng
– volume: 13
  start-page: 189
  year: 2017
  end-page: 212
  article-title: Mixed convection of nanofluids inside a lid‐driven cavity heated by a central square heat source
  publication-title: Fluid Dyn Mater Process
– volume: 11
  start-page: 1
  year: 2021
  end-page: 21
  article-title: Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis
  publication-title: Sci Rep
– volume: 20
  start-page: 1597
  year: 2016
  end-page: 1608
  article-title: Mixed convection in an eccentric annulus filled by copper nanofluid
  publication-title: Therm Sci
– volume: 135
  start-page: 3485
  year: 2019
  end-page: 3497
  article-title: Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall
  publication-title: J Therm Anal Calorim
– volume: 78
  start-page: 1
  year: 2014
  end-page: 8
  article-title: Heat transfer of a circular impinging jet on a circular cylinder in crossflow
  publication-title: Int J Therm Sci
– year: 1984
  article-title: Heat transfer technology
  publication-title: Am Inst Chem Eng Natl Meet
– volume: 144
  start-page: 1299
  year: 2021
  end-page: 1323
  article-title: Thermal analysis of nanofluid saturated in inclined porous cavity cooled by rotating active cylinder subjected to convective condition
  publication-title: J Therm Anal Calorim
– volume: 135
  start-page: 1095
  year: 2019
  end-page: 1105
  article-title: Mixed convection heat transfer of a nanofluid in a lid‐driven enclosure with two adherent porous blocks
  publication-title: J Therm Anal Calorim
– volume: 29
  start-page: 2386
  year: 2009
  end-page: 2390
  article-title: Thermal behaviour of rollers during the rolling process
  publication-title: Appl Therm Eng
– start-page: 121
  year: 2016
  end-page: 126
  article-title: Analysis of surface thermal behavior of work rolls in hot rolling process for various cooling
  publication-title: Techniques
– volume: 141
  start-page: 635
  year: 2020
  end-page: 648
  article-title: Free convection/radiation and entropy generation analyses for nanofluid of inclined square enclosure with uniform magnetic field
  publication-title: J Therm Anal Calorim
– volume: 86
  start-page: 131
  year: 2017
  end-page: 142
  article-title: Mixed convection heat transfer in a lid‐driven cavity with a rotating circular cylinder
  publication-title: Int Commun Heat Mass Transf
– volume: 121
  start-page: 233
  year: 2018
  end-page: 245
  article-title: Analysis and predictive modeling of nanofluid‐jet impingement cooling of an isothermal surface under the influence of a rotating cylinder
  publication-title: Int J Heat Mass Transf
– volume: 37
  start-page: 1350
  year: 2010
  end-page: 1358
  article-title: Natural convection in divided trapezoidal cavities filled with fluid‐saturated porous media
  publication-title: Int Commun Heat Mass Transf
– start-page: 11006
  year: 2019
  end-page: 11023
  article-title: Natural convection visualization by heatline for nanofluids inside a square enclosure having a concentric inner circular cylinder at isoflux heating condition on bottom wall
  publication-title: J Eng Appl Sci
– volume: 79
  start-page: 132
  year: 2014
  end-page: 145
  article-title: Numerical study and identification of cooling of heated blocks in pulsating channel flow with a rotating cylinder
  publication-title: Int J Therm Sci
– volume: 50
  start-page: 205041
  year: 2010
  end-page: 205044
  article-title: Temperature field in a rotating roller subjected to interface heating
  publication-title: EPJ Appl Phys
– year: 2020
  article-title: Application of rotating circular obstacles in improving ferrofluid heat transfer in an enclosure saturated with porous medium subjected to a magnetic field
  publication-title: J Therm Anal Calorim
– volume: 143
  start-page: 1467
  year: 2021
  end-page: 1484
  article-title: MHD mixed convection of Ag–MgO/water nanofluid in a triangular shape partitioned lid‐driven square cavity involving a porous compound
  publication-title: J Therm Anal Calorim
– volume: 143
  start-page: 4229
  year: 2021
  end-page: 4248
  article-title: Numerical simulation of transient mixed convection of water–Cu nanofluid in a square cavity with multiple rotating cylinders having harmonic motion
  publication-title: J Therm Anal Calorim
– volume: 38
  start-page: 263
  year: 2011
  end-page: 274
  article-title: Mixed convection heat transfer in a differentially heated square enclosure with a conductive rotating circular cylinder at different vertical locations
  publication-title: Int Commun Heat Mass Transf
– volume: 71
  start-page: 9
  year: 2016
  end-page: 19
  article-title: Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2‐water nanofluids: Effect of nanoparticle shape
  publication-title: Int Commun Heat Mass Transf
– volume: 231
  start-page: 620
  year: 2017
  end-page: 631
  article-title: Optimization of a lid‐driven T‐shaped porous cavity to improve the nanofluids mixed convection heat transfer
  publication-title: J Mol Liq
– volume: 124–125
  start-page: 95
  year: 2017
  end-page: 108
  article-title: Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder
  publication-title: Int J Mech Sci
– volume: 49
  start-page: 4173
  year: 2020
  end-page: 4203
  article-title: Mixed convection of nanofluid in a square enclosure with a hot bottom wall and a conductive half‐immersed rotating circular cylinder
  publication-title: Heat Transf
– volume: 143
  start-page: 1727
  year: 2021
  end-page: 1753
  article-title: Magneto‐hydrodynamic thermal convection of Cu–Al2O3/water hybrid nanofluid saturated with porous media subjected to half‐sinusoidal nonuniform heating
  publication-title: J Therm Anal Calorim
– volume: 19
  start-page: 1283
  year: 2016
  end-page: 1298
  article-title: A comparative study of mixed convection and its effect on partially active thermal zones in a two sided lid‐driven cavity filled with nanofluid
  publication-title: Eng Sci Technol Int J
– volume: 68
  start-page: 466
  year: 2014
  end-page: 478
  article-title: Subcooled water jet quenching phenomena for a high temperature rotating cylinder
  publication-title: Int J Heat Mass Transf
– volume: 1754
  start-page: 77
  year: 2016
  end-page: 85
  article-title: Numerical study of mixed convection heat transfer from a rotating cylinder inside a trapezoidal enclosure
  publication-title: AIP Conf Proc
– volume: 54
  start-page: 5527
  year: 2011
  end-page: 5539
  article-title: Heat transfer from a hot moving cylinder impinged by a planar subcooled water jet
  publication-title: Int J Heat Mass Transf
– volume: 31
  year: 2019
  article-title: MHD mixed convection and entropy generation of nanofluid in a lid‐driven U‐shaped cavity with internal heat and partial slip
  publication-title: Phys Fluids
– volume: 181
  year: 2020
  article-title: MHD mixed convection due to a rotating circular cylinder in a trapezoidal enclosure filled with a nanofluid saturated with a porous media
  publication-title: Int J Mech Sci
– volume: 12
  year: 2019
  article-title: Numerical investigation of natural convection heat transfer in a parallelogramic enclosure having an inner circular cylinder using liquid nanofluid
  publication-title: Front Heat Mass Transf
– volume: 140
  start-page: 331
  year: 2019
  end-page: 345
  article-title: Fluid‐structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder
  publication-title: Int J Heat Mass Transf
– volume: 20
  year: 2018
  article-title: Numerical investigation of mixed convection and entropy generation in a wavy‐walled cavity filled with nanofluid and involving a rotating cylinder
  publication-title: Entropy
– volume: 47
  start-page: 297
  year: 2012
  end-page: 312
  article-title: On thermal stress and fatigue life evaluation in work rolls of hot rolling mill
  publication-title: J Strain Anal Eng Des
– ident: e_1_2_9_47_1
  doi: 10.1016/j.ijthermalsci.2013.11.005
– ident: e_1_2_9_43_1
  doi: 10.1051/epjap/2010042
– ident: e_1_2_9_27_1
  doi: 10.1002/htj.21387
– ident: e_1_2_9_9_1
  doi: 10.1007/s10973-020-10123-0
– ident: e_1_2_9_24_1
  doi: 10.1063/1.4958426
– ident: e_1_2_9_35_1
  doi: 10.1016/j.icheatmasstransfer.2017.05.025
– ident: e_1_2_9_22_1
  doi: 10.2298/TSCI140802128E
– ident: e_1_2_9_20_1
  doi: 10.1016/j.icheatmasstransfer.2015.12.007
– ident: e_1_2_9_18_1
  doi: 10.1016/j.icheatmasstransfer.2010.12.006
– volume: 19
  start-page: 1283
  year: 2016
  ident: e_1_2_9_10_1
  article-title: A comparative study of mixed convection and its effect on partially active thermal zones in a two sided lid‐driven cavity filled with nanofluid
  publication-title: Eng Sci Technol Int J
– volume: 13
  start-page: 189
  year: 2017
  ident: e_1_2_9_12_1
  article-title: Mixed convection of nanofluids inside a lid‐driven cavity heated by a central square heat source
  publication-title: Fluid Dyn Mater Process
– start-page: 121
  year: 2016
  ident: e_1_2_9_49_1
  article-title: Analysis of surface thermal behavior of work rolls in hot rolling process for various cooling
  publication-title: Techniques
– ident: e_1_2_9_32_1
  doi: 10.1016/j.ijmecsci.2020.105688
– ident: e_1_2_9_41_1
  doi: 10.1016/j.proeng.2010.03.076
– ident: e_1_2_9_21_1
– ident: e_1_2_9_46_1
  doi: 10.1016/j.ijheatmasstransfer.2013.09.059
– ident: e_1_2_9_5_1
  doi: 10.1007/s10973-018-7520-4
– ident: e_1_2_9_15_1
  doi: 10.1063/1.5079789
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jtice.2015.09.012
– ident: e_1_2_9_25_1
  doi: 10.1016/j.ijmecsci.2017.03.007
– ident: e_1_2_9_29_1
  doi: 10.1007/s10973-020-09604-z
– ident: e_1_2_9_13_1
  doi: 10.1108/EC-11-2015-0368
– ident: e_1_2_9_8_1
  doi: 10.1007/s10973-020-09497-y
– ident: e_1_2_9_39_1
  doi: 10.1007/s10973-020-09668-x
– ident: e_1_2_9_3_1
  doi: 10.1016/j.proeng.2015.05.028
– ident: e_1_2_9_36_1
  doi: 10.1063/1.5017474
– year: 1984
  ident: e_1_2_9_48_1
  article-title: Heat transfer technology
  publication-title: Am Inst Chem Eng Natl Meet
– volume: 1754
  start-page: 77
  year: 2016
  ident: e_1_2_9_23_1
  article-title: Numerical study of mixed convection heat transfer from a rotating cylinder inside a trapezoidal enclosure
  publication-title: AIP Conf Proc
– start-page: 395
  year: 2011
  ident: e_1_2_9_42_1
  article-title: Work roll in hot strip rolling: a semi‐analytical approach for estimating temperatures and thermal stresses
  publication-title: Adv Manuf Syst Technol
– ident: e_1_2_9_2_1
  doi: 10.1016/j.icheatmasstransfer.2010.07.010
– ident: e_1_2_9_19_1
  doi: 10.1016/j.ijthermalsci.2014.01.010
– ident: e_1_2_9_38_1
  doi: 10.1007/s10973-020-09379-3
– ident: e_1_2_9_45_1
  doi: 10.1177/0309324712445120
– ident: e_1_2_9_14_1
  doi: 10.1007/s10973-018-7455-9
– volume: 54
  start-page: 5527
  year: 2011
  ident: e_1_2_9_44_1
  article-title: Heat transfer from a hot moving cylinder impinged by a planar subcooled water jet
  publication-title: Int J Heat Mass Transf
– ident: e_1_2_9_33_1
  doi: 10.1038/s41598-021-83944-0
– ident: e_1_2_9_40_1
  doi: 10.1016/j.applthermaleng.2008.12.013
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ijheatmasstransfer.2009.10.007
– ident: e_1_2_9_28_1
  doi: 10.3390/e20090664
– year: 2020
  ident: e_1_2_9_30_1
  article-title: Application of rotating circular obstacles in improving ferrofluid heat transfer in an enclosure saturated with porous medium subjected to a magnetic field
  publication-title: J Therm Anal Calorim
– ident: e_1_2_9_34_1
  doi: 10.1080/10407782.2014.986361
– ident: e_1_2_9_16_1
  doi: 10.1007/s10973-020-09472-7
– start-page: 11006
  year: 2019
  ident: e_1_2_9_6_1
  article-title: Natural convection visualization by heatline for nanofluids inside a square enclosure having a concentric inner circular cylinder at isoflux heating condition on bottom wall
  publication-title: J Eng Appl Sci
– ident: e_1_2_9_11_1
  doi: 10.1016/j.molliq.2017.02.048
– volume: 12
  year: 2019
  ident: e_1_2_9_7_1
  article-title: Numerical investigation of natural convection heat transfer in a parallelogramic enclosure having an inner circular cylinder using liquid nanofluid
  publication-title: Front Heat Mass Transf
– ident: e_1_2_9_31_1
  doi: 10.1002/htj.21822
– ident: e_1_2_9_37_1
  doi: 10.1016/j.ijheatmasstransfer.2019.06.003
– ident: e_1_2_9_26_1
  doi: 10.1016/j.ijheatmasstransfer.2018.01.008
SSID ssj0002511726
Score 2.1867254
Snippet In this study, the natural and mixed convections were numerically investigated using semicircular enclosures heated by an isotherm‐heat flux along a...
In this study, the natural and mixed convections were numerically investigated using semicircular enclosures heated by an isotherm‐heat flux along a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 22
SubjectTerms Angular velocity
Aspect ratio
Circular cylinders
Convection
Enclosures
Heat conductivity
Heat flux
Heat transfer coefficients
mixed convection
nanofluid
Nanofluids
Penetration depth
Prandtl number
rotating cylinder
Rotating cylinders
Rotation
semicircular enclosure
Thermal analysis
Thermal conductivity
Velocity
Title Thermal analysis of nanofluid saturated in a semicircular hot enclosure cooled by a rotating half‐immersed active circular cylinder subject to a convective condition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhtj.22297
https://www.proquest.com/docview/3224348592
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2688-4542
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0002511726
  issn: 2688-4534
  databaseCode: ADMLS
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ditNAFB5qF8Eb8RerqwwiIoTUdPLby0W3lNKuwrbQuzCZTLbRklnbFFmvfATfwgfyDXwSz0kmk67_ehPCMJmSnK_nnDlzzncIeZIOnUgGQtop1n54qevYETiuNtIrJUEowKhhgfPsJBgvvMnSX3Y6X_aylnZl0hcfflpX8j9ShTGQK1bJ_oNkzaIwAPcgX7iChOH6tzIGvYrF_i2zSMELla13eWptkbOTo0eZFxa3tpgGn2_qvNOVKi14k7XCAKEllFrXnii3NgoP54sz7LKSmVSIvIpvwxxe6UfLLCQu1ki4uLG2uwRDOujL8jqXXc9UeCjeSF-7wWOMS5SVz4xUFiwaq0S9lbr2a9K3Xm9yJEQwUYrT92mVdjDCAHYbrp3wJKkzxGdqhTH4VNsTHcdg7Ls4xp-1ZasZWQBA8HwdBZX7Y94l1a65bPchrPU027P4dduXH2xJzU27Kt_0sed52BrMJkng5FU8Wkyn8fx4OX96_s7GVmZ45K_7ulwhBywMAtYlB0cvZ9NTE_rDXV1YNQI0L9JwXjnsufnBy55Su_3Z30RVXtD8Brmuty_0qMbiTdKRxS1ytUojFtvb5LNGJG0QSVVGDSKpQSTNC8rpPiIpIJIaRNIakTS5gGkNIiki8uvHTw0WaY1FapZosEg1Fmmp4PEWi9Rg8Q5ZjI7nL8a2bgViC7ApoS0xdWvgizDxs0SA_gjAxxDSkRHzEgebUg4lkvGBc84HbBA43AlSIQWXkRsJL3Dvkm6hCnmPUB8-fZhlXuBLQIvHh670UxnybMiZC_v3HnncfPb4vGZ8iWtubxaDbOJKNj1y2Agk1gphG4Nt9Fwv8oesR55VQvr1AvF4Pqlu7v9-pQfkWvtnOSTdcrOTD8ENLpNHGlbfAN6JvEs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+analysis+of+nanofluid+saturated+in+a+semicircular+hot+enclosure+cooled+by+a+rotating+half%E2%80%90immersed+active+circular+cylinder+subject+to+a+convective+condition&rft.jtitle=Heat+transfer+%28Hoboken%2C+N.J.+Print%29&rft.au=Swdi%2C+Farah+S&rft.au=Jabbar%2C+Mohammed+Y&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=2688-4534&rft.eissn=2688-4542&rft.volume=51&rft.issue=1&rft.spage=22&rft.epage=66&rft_id=info:doi/10.1002%2Fhtj.22297&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4534&client=summon