Energy‐principle‐based analysis of elastic instability in polymer cylinders subject to surface tension
An elastic instability model of polymer cylinder subject to surface tension is studied by energy functional analysis. The no‐classical boundary conditions and equilibrium equation are derived by introducing stress double harmonic function. The criteria of instability with surface tension contributio...
Saved in:
Published in | Journal of applied polymer science Vol. 141; no. 32 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
20.08.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0021-8995 1097-4628 |
DOI | 10.1002/app.55751 |
Cover
Abstract | An elastic instability model of polymer cylinder subject to surface tension is studied by energy functional analysis. The no‐classical boundary conditions and equilibrium equation are derived by introducing stress double harmonic function. The criteria of instability with surface tension contribution are deduced by substituting stress solution into boundary conditions. The results show that the criterion equation of elastic instability is relevant to the radius and intrinsic scale and instable wavelength or wavenumber of cylinder. Therefore, the relation between shear modulus and surface tension has the same trend comparing with the result of Barrierès' et al. This study provides insights into the instability of polymer and has important implications for the development of nanoscale cylindrical element in micro electro mechanical systems (MEMS) or nano electro mechanical systems (NEMS).
Beginning with the energy principle, the energy functional of isotropic elastic colloidal systems was studied. Governing equations and boundary conditions were derived, stress was solved using the stress function, and then substituted into the boundary conditions to obtain the criterion equation for instability. |
---|---|
AbstractList | An elastic instability model of polymer cylinder subject to surface tension is studied by energy functional analysis. The no‐classical boundary conditions and equilibrium equation are derived by introducing stress double harmonic function. The criteria of instability with surface tension contribution are deduced by substituting stress solution into boundary conditions. The results show that the criterion equation of elastic instability is relevant to the radius and intrinsic scale and instable wavelength or wavenumber of cylinder. Therefore, the relation between shear modulus and surface tension has the same trend comparing with the result of Barrierès' et al. This study provides insights into the instability of polymer and has important implications for the development of nanoscale cylindrical element in micro electro mechanical systems (MEMS) or nano electro mechanical systems (NEMS).
Beginning with the energy principle, the energy functional of isotropic elastic colloidal systems was studied. Governing equations and boundary conditions were derived, stress was solved using the stress function, and then substituted into the boundary conditions to obtain the criterion equation for instability. An elastic instability model of polymer cylinder subject to surface tension is studied by energy functional analysis. The no‐classical boundary conditions and equilibrium equation are derived by introducing stress double harmonic function. The criteria of instability with surface tension contribution are deduced by substituting stress solution into boundary conditions. The results show that the criterion equation of elastic instability is relevant to the radius and intrinsic scale and instable wavelength or wavenumber of cylinder. Therefore, the relation between shear modulus and surface tension has the same trend comparing with the result of Barrierès' et al. This study provides insights into the instability of polymer and has important implications for the development of nanoscale cylindrical element in micro electro mechanical systems (MEMS) or nano electro mechanical systems (NEMS). An elastic instability model of polymer cylinder subject to surface tension is studied by energy functional analysis. The no‐classical boundary conditions and equilibrium equation are derived by introducing stress double harmonic function. The criteria of instability with surface tension contribution are deduced by substituting stress solution into boundary conditions. The results show that the criterion equation of elastic instability is relevant to the radius and intrinsic scale and instable wavelength or wavenumber of cylinder. Therefore, the relation between shear modulus and surface tension has the same trend comparing with the result of Barrierès' et al. This study provides insights into the instability of polymer and has important implications for the development of nanoscale cylindrical element in micro electro mechanical systems (MEMS) or nano electro mechanical systems (NEMS). |
Author | Huang, Dianwu Liu, Hongfei |
Author_xml | – sequence: 1 givenname: Dianwu surname: Huang fullname: Huang, Dianwu organization: Jiaxing University – sequence: 2 givenname: Hongfei orcidid: 0009-0002-4630-7529 surname: Liu fullname: Liu, Hongfei email: liuh10510@gmail.com organization: Jiaxing University |
BookMark | eNp1kE1OwzAQRi1UJNrCghtYYsUixU7qOFlWVfmRKtEFrC3HHiNHqR3sVCg7jsAZOQkuZctqPmneN9K8GZo47wCha0oWlJD8Tvb9gjHO6BmaUlLzbFnm1QRN045mVV2zCzSLsSWEUkbKKWo3DsLb-P351QfrlO07SLmRETSWTnZjtBF7g6GTcbAKWxcH2djODmPKuPfduIeA1dhZpyFEHA9NC2rAg08xGKkAD-Ci9e4SnRvZRbj6m3P0er95WT9m2-eHp_Vqm6mccZrRJs9LxQujlhWRUtO6YpqrppQGat3oggLVFa8JL4gpDWiWM1mTgjdgJC9VMUc3p7t98O8HiINo_SGkX6IoSHUUQUiRqNsTpYKPMYARScBehlFQIo4qRVIpflUm9u7EftgOxv9BsdrtTo0f3et7kw |
Cites_doi | 10.1016/j.wavemoti.2007.02.009 10.1080/15376494.2018.1494870 10.1063/1.105017 10.1063/1.1897825 10.1007/s00419-021-01938-w 10.1016/0021-9797(76)90227-7 10.1002/app.41050 10.1016/j.jpcs.2018.12.038 10.1016/S0040-6090(01)01464-X 10.1088/0957-4484/8/3/001 10.1063/1.1594280 10.1063/1.1530365 10.2514/1.5282 10.1088/0957-4484/11/3/301 10.1002/app.43258 10.1080/15376494.2017.1285464 10.1140/epjp/i2019-12852-2 10.1016/0022-5096(75)90001-0 10.1016/j.ijsolstr.2007.08.006 10.1063/1.472544 10.1016/S0894-9166(11)60009-8 10.1115/1.1781177 10.1126/science.277.5334.1971 10.1016/j.ijengsci.2017.06.002 10.1016/j.physe.2010.11.031 10.1007/BF00261375 10.1016/S0021-9797(02)00045-0 10.1016/j.ijmecsci.2004.09.003 10.1016/0079-6816(94)90005-1 10.1007/BF00250426 10.1016/j.physe.2014.10.040 10.1063/1.1682698 10.1016/j.ijengsci.2017.11.020 10.1016/0022-5096(82)90025-4 10.1063/1.1527229 10.1016/j.apm.2012.07.049 10.1016/j.compositesb.2016.04.002 10.1016/j.apm.2019.07.027 10.1016/j.ijsolstr.2003.10.001 10.1126/science.290.5496.1532 10.1016/0020-7683(78)90008-2 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.55751 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_55751 APP55751 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: B220203007 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 8FD AAMMB ADMLS AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c2571-1b226c73fc480aad1985d7cb6afe9dbd31e1d8790730f6fed525a9037befa76c3 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Wed Aug 13 10:05:15 EDT 2025 Tue Jul 01 00:59:38 EDT 2025 Wed Jan 22 17:17:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2571-1b226c73fc480aad1985d7cb6afe9dbd31e1d8790730f6fed525a9037befa76c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-4630-7529 |
PQID | 3080021003 |
PQPubID | 1006379 |
PageCount | 6 |
ParticipantIDs | proquest_journals_3080021003 crossref_primary_10_1002_app_55751 wiley_primary_10_1002_app_55751_APP55751 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 20, 2024 |
PublicationDateYYYYMMDD | 2024-08-20 |
PublicationDate_xml | – month: 08 year: 2024 text: August 20, 2024 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 119 2004; 41 2004; 42 2004; 84 1991; 58 2019; 50 1982; 30 2018; 124 1997; 277 2004; 46 1975; 57 2005; 86 1975; 59 1994; 46 2016; 95 2002; 81 2020; 77 1978; 14 2019; 129 2003; 93 2014; 131 2016; 13 2000; 290 2018; 25 1996; 105 1997; 8 2021; 91 2015; 67 2001; 398 2013; 37 1976; 57 2004; 71 1941; 12 2000; 11 1975; 23 2020; 27 2008; 45 2011; 43 2011; 24 2003; 83 2007; 44 2019; 134 2003; 262 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Guth E. (e_1_2_8_11_1) 1941; 12 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 Khoram M. M. (e_1_2_8_19_1) 2019; 50 |
References_xml | – volume: 11 start-page: 139 year: 2000 publication-title: Nanotechnology – volume: 262 start-page: 16 year: 2003 publication-title: J. Colloid Interface Sci. – volume: 134 start-page: 1 year: 2019 publication-title: Eur. Phys. J. Plus – volume: 45 start-page: 568 year: 2008 publication-title: Int. J. Solids Struct. – volume: 81 start-page: 4365 year: 2002 publication-title: Appl. Phys. Lett. – volume: 91 start-page: 2853 year: 2021 publication-title: Arch. Appl. Mech. – volume: 42 start-page: 2002 year: 2004 publication-title: AIAA J. – volume: 277 start-page: 1971 year: 1997 publication-title: Science – volume: 84 start-page: 1940 year: 2004 publication-title: Appl. Phys. Lett. – volume: 129 start-page: 140 year: 2019 publication-title: J. Phys. Chem. Solids – volume: 57 start-page: 291 year: 1975 publication-title: Arch. Ration. Mech. Anal. – volume: 105 start-page: 1735 year: 1996 publication-title: J. Chem. Phys. – volume: 290 start-page: 1532 year: 2000 publication-title: Science – volume: 57 start-page: 488 year: 1976 publication-title: J. Colloid Interface Sci. – volume: 25 start-page: 611 year: 2018 publication-title: Mechan. Adv. Mater. Struct. – volume: 44 start-page: 501 year: 2007 publication-title: Wave Motion – volume: 398 start-page: 496 year: 2001 publication-title: Thin Solid Films – volume: 13 start-page: 43258 year: 2016 publication-title: J. Appl. Polym. Sci. – volume: 12 start-page: 403 year: 1941 publication-title: J. Appl. Phys. – volume: 46 start-page: 1715 year: 2004 publication-title: Int. J. Mech. Sci. – volume: 41 start-page: 847 year: 2004 publication-title: Int. J. Solids Struct. – volume: 43 start-page: 975 year: 2011 publication-title: Phys. E – volume: 46 start-page: 1 year: 1994 publication-title: Prog. Surf. Sci. – volume: 59 start-page: 389 year: 1975 publication-title: Arch. Ration. Mech. Anal. – volume: 77 start-page: 137 year: 2020 publication-title: Appl. Math. Model. – volume: 83 start-page: 473 year: 2003 publication-title: Appl. Phys. Lett. – volume: 86 start-page: , 151912 year: 2005 publication-title: Appl. Phys. Lett. – volume: 131 start-page: 41050 year: 2014 publication-title: J. Appl. Polym. Sci. – volume: 37 start-page: 3575 year: 2013 publication-title: Appl. Math. Model. – volume: 119 start-page: 128 year: 2017 publication-title: Int. J.Eng. Sci. – volume: 58 start-page: 2081 year: 1991 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 371 year: 1975 publication-title: J. Mech. Phys. Solids – volume: 71 start-page: 663 year: 2004 publication-title: J. Appl. Mech. – volume: 95 start-page: 301 year: 2016 publication-title: Composites, Part B – volume: 27 start-page: 697 year: 2020 publication-title: Mech. Adv. Mater. Struct. – volume: 67 start-page: 12 year: 2015 publication-title: Phys. E – volume: 14 start-page: 431 year: 1978 publication-title: Int. J. Solids Struct. – volume: 93 start-page: 1212 year: 2003 publication-title: J. Appl. Phys. – volume: 8 start-page: 95 year: 1997 publication-title: Nanotechnology – volume: 30 start-page: 399 year: 1982 publication-title: J. Mech. Phys. Solids – volume: 24 start-page: 52 year: 2011 publication-title: Acta Mechanica Solida Sinica – volume: 50 start-page: 420 year: 2019 publication-title: J. Comput. Appl. Mech – volume: 124 start-page: 24 year: 2018 publication-title: Int. J. Eng. Sci. – ident: e_1_2_8_3_1 doi: 10.1016/j.wavemoti.2007.02.009 – ident: e_1_2_8_16_1 doi: 10.1080/15376494.2018.1494870 – ident: e_1_2_8_34_1 doi: 10.1063/1.105017 – ident: e_1_2_8_35_1 doi: 10.1063/1.1897825 – ident: e_1_2_8_14_1 doi: 10.1007/s00419-021-01938-w – ident: e_1_2_8_6_1 doi: 10.1016/0021-9797(76)90227-7 – ident: e_1_2_8_15_1 doi: 10.1002/app.41050 – ident: e_1_2_8_20_1 doi: 10.1016/j.jpcs.2018.12.038 – ident: e_1_2_8_30_1 doi: 10.1016/S0040-6090(01)01464-X – ident: e_1_2_8_7_1 doi: 10.1088/0957-4484/8/3/001 – ident: e_1_2_8_31_1 doi: 10.1063/1.1594280 – ident: e_1_2_8_32_1 doi: 10.1063/1.1530365 – ident: e_1_2_8_36_1 doi: 10.2514/1.5282 – ident: e_1_2_8_43_1 doi: 10.1088/0957-4484/11/3/301 – ident: e_1_2_8_8_1 doi: 10.1002/app.43258 – ident: e_1_2_8_27_1 doi: 10.1080/15376494.2017.1285464 – ident: e_1_2_8_17_1 doi: 10.1140/epjp/i2019-12852-2 – ident: e_1_2_8_9_1 doi: 10.1016/0022-5096(75)90001-0 – volume: 50 start-page: 420 year: 2019 ident: e_1_2_8_19_1 publication-title: J. Comput. Appl. Mech – ident: e_1_2_8_24_1 doi: 10.1016/j.ijsolstr.2007.08.006 – ident: e_1_2_8_2_1 doi: 10.1063/1.472544 – ident: e_1_2_8_12_1 doi: 10.1016/S0894-9166(11)60009-8 – ident: e_1_2_8_25_1 doi: 10.1115/1.1781177 – ident: e_1_2_8_13_1 doi: 10.1126/science.277.5334.1971 – ident: e_1_2_8_28_1 doi: 10.1016/j.ijengsci.2017.06.002 – ident: e_1_2_8_23_1 doi: 10.1016/j.physe.2010.11.031 – ident: e_1_2_8_38_1 doi: 10.1007/BF00261375 – ident: e_1_2_8_4_1 doi: 10.1016/S0021-9797(02)00045-0 – ident: e_1_2_8_42_1 doi: 10.1016/j.ijmecsci.2004.09.003 – ident: e_1_2_8_18_1 doi: 10.1016/0079-6816(94)90005-1 – volume: 12 start-page: 403 year: 1941 ident: e_1_2_8_11_1 publication-title: J. Appl. Phys. – ident: e_1_2_8_39_1 doi: 10.1007/BF00250426 – ident: e_1_2_8_29_1 doi: 10.1016/j.physe.2014.10.040 – ident: e_1_2_8_37_1 doi: 10.1063/1.1682698 – ident: e_1_2_8_21_1 doi: 10.1016/j.ijengsci.2017.11.020 – ident: e_1_2_8_10_1 doi: 10.1016/0022-5096(82)90025-4 – ident: e_1_2_8_33_1 doi: 10.1063/1.1527229 – ident: e_1_2_8_44_1 doi: 10.1016/j.apm.2012.07.049 – ident: e_1_2_8_22_1 doi: 10.1016/j.compositesb.2016.04.002 – ident: e_1_2_8_26_1 doi: 10.1016/j.apm.2019.07.027 – ident: e_1_2_8_41_1 doi: 10.1016/j.ijsolstr.2003.10.001 – ident: e_1_2_8_5_1 doi: 10.1126/science.290.5496.1532 – ident: e_1_2_8_40_1 doi: 10.1016/0020-7683(78)90008-2 |
SSID | ssj0011506 |
Score | 2.4454448 |
SecondaryResourceType | review_article |
Snippet | An elastic instability model of polymer cylinder subject to surface tension is studied by energy functional analysis. The no‐classical boundary conditions and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Boundary conditions Cylinders Elastic analysis Elastic instability Equilibrium equations Functional analysis Harmonic functions intrinsic scale Microelectromechanical systems Modulus of elasticity Nanoelectromechanical systems polymer cylinder Polymers Shear modulus Stability criteria Surface stability Surface tension Wavelengths |
Title | Energy‐principle‐based analysis of elastic instability in polymer cylinders subject to surface tension |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.55751 https://www.proquest.com/docview/3080021003 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEA6lJz34L1arBPHgZdsm2exu8VS0pQhKEQs9CEuSTaBau6U_h3ryEXxGn8RJtttWQRBvc8gOu0lm5svszBeELnyqOBGh79mmTM9nQnkyMdwzRAeGRcKPtG1OvrsP2l3_tsd7BXSV98Jk_BDLhJu1DOevrYELOamuSEPtNVjc_jUA_0tYYHnzbx6W1FEW6ARZeQfx4EzBc1ahGq0un_wei1YAcx2mujjT2kZP-Rtm5SUvldlUVtTbD_LGf37CDtpa4E_cyDbMLiro4R7aXGMl3EfPTdcP-Pn-Mcoz8SDbcJdgseAwwanBGoA3aMF9izBdje0cZDxKB_NXPcZqPui7zhk8mUmb7cHTFMSxEUpjVzefDg9Qt9V8vG57iysZPAW2TTwiAa6pkBnlRzUhElKPeBIqGQij64lMGNEkicK6dRwmMDrhlIt6jYVSGxEGih2i4jAd6iOEBaAHSQGBaMnhjB6Co2VWjZQiooqGJXSeL048ypg34oxjmcYwcbGbuBIq58sWL4xvEjOHgmEgK6FLN_-_K4gbnY4Tjv8-9ARtUIA2NrNMa2VUnI5n-hSgyVSeuT34BSGh5G0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEB5qPagH_8Vq1SAevKx2k83uFrwUaalapYiFXmRJsglUa7f051BPPoLP6JOYZLutCoJ4m0M2ZJPMzJfJzBeAEw8L6rLAc0xRpuMRJhweK-ooV_qKhMwLpSlOvr3z6y3vuk3bObjIamFSfohZwM1ohrXXRsFNQPp8zhpq3sGi5tpgARbt_ZyBRPcz8igDdfw0wcN19KmCZrxCJXw--_S7N5pDzK9A1Xqa2ho8ZmNME0yez8YjfiZef9A3_vcn1mF1CkFRJd0zG5CTvU1Y-UJMuAVPVVsS-PH23s-C8Vo2Hi9GbEpjghKFpMbeuhfUMSDTptlOtIz6SXfyIgdITLodWzyDhmNuAj5olGhxoJiQyKbOJ71taNWqD5d1Z_oqgyO0eruOyzViEwFRwgtLjMVuOaRxILjPlCzHPCaudOMwKBvboXwlY4opK5dIwKVigS_IDuR7SU_uAmIaQHCsQYjkVB_TA21riemGcxZigYMCHGerE_VT8o0opVnGkZ64yE5cAYrZukVT_RtGxAJh3ZAU4NQuwO8dRJVm0wp7f296BEv1h9tG1Li6u9mHZayRjgk041IR8qPBWB5opDLih3ZDfgJg2OiL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjBt7g-g3jwUt0mTdvFk6iLbxZR8CCUPMHXdll3D-vJn-Bv9Jc4SbfrAwTxNod0aJPMzJfpzBeAzYgqHookClxTZhAxoQKpLQ9saGLLUhGlxjUnn1_ER9fRyQ2_GYLdshem4IcYJNycZXh_7Qy8pe3OJ2mouwaLu78GwzAaxRgmHSK6HHBHOaQTF_UdYYCHCl7SClXpzuDR78HoE2F-xak-0NSn4LZ8xaK-5GG725Hb6uUHe-M_v2EaJvsAlOwVO2YGhkxzFia-0BLOwf2hbwh8f31rlal4lF2800T0SUxIbolB5I1ayJ2DmL7ItocyaeWPvSfTJqr3eOdbZ8hzV7p0D-nkKLatUIb4wvm8OQ_X9cOr_aOgfydDoNC4wyCUiNdUwqyK0qoQOqylXCdKxsKampaahSbUaVJznsPG1mhOuahVWSKNFUms2AKMNPOmWQQiED5IihDESI6H9AQ9LXNqpBQpVTSpwEa5OFmroN7ICpJlmuHEZX7iKrBSLlvWt77njHkYjANZBbb8_P-uINtrNLyw9Peh6zDWOKhnZ8cXp8swThHmuCwzra7ASKfdNasIUzpyzW_HD85O5zo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy%E2%80%90principle%E2%80%90based+analysis+of+elastic+instability+in+polymer+cylinders+subject+to+surface+tension&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Huang%2C+Dianwu&rft.au=Liu%2C+Hongfei&rft.date=2024-08-20&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=141&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapp.55751&rft.externalDBID=10.1002%252Fapp.55751&rft.externalDocID=APP55751 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |