Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization
We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of piecewise constant values between neighboring regions, from noisy data obtained at the output of a linear operator (e.g., a blurring kernel or...
        Saved in:
      
    
          | Published in | SIAM journal on imaging sciences Vol. 1; no. 1; pp. 2 - 25 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Philadelphia
          Society for Industrial and Applied Mathematics
    
        01.01.2008
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1936-4954 1936-4954  | 
| DOI | 10.1137/070692285 | 
Cover
| Abstract | We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of piecewise constant values between neighboring regions, from noisy data obtained at the output of a linear operator (e.g., a blurring kernel or a Radon transform). Thus we also address the generic problem of unsupervised segmentation in the context of linear inverse problems. The segmentation and the restoration tasks are solved jointly by minimizing an objective function (an energy) composed of a quadratic data-fidelity term and a nonsmooth nonconvex regularization term. The pertinence of such an energy is ensured by the analytical properties of its minimizers. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonsmooth nonconvex minimization. Indeed, the existing methods are unsatisfactory since they (implicitly or explicitly) involve a smooth approximation of the regularization term and often get stuck in shallow local minima. The goal of this paper is to design a method that efficiently handles the nonsmooth nonconvex minimization. More precisely, we propose a continuation method where one tracks the minimizers along a sequence of approximate nonsmooth energies $\{J_\eps\}$, the first of which being strictly convex and the last one the original energy to minimize. Knowing the importance of the nonsmoothness of the regularization term for the segmentation task, each $J_\eps$ is nonsmooth and is expressed as the sum of an $\ell_1$ regularization term and a smooth nonconvex function. Furthermore, the local minimization of each $J_{\eps}$ is reformulated as the minimization of a smooth function subject to a set of linear constraints. The latter problem is solved by the modified primal-dual interior point method, which guarantees the descent direction at each step. Experimental results are presented and show the effectiveness and the efficiency of the proposed method. Comparison with simulated annealing methods further shows the advantage of our method. | 
    
|---|---|
| AbstractList | We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of piecewise constant values between neighboring regions, from noisy data obtained at the output of a linear operator (e.g., a blurring kernel or a Radon transform). Thus we also address the generic problem of unsupervised segmentation in the context of linear inverse problems. The segmentation and the restoration tasks are solved jointly by minimizing an objective function (an energy) composed of a quadratic data-fidelity term and a nonsmooth nonconvex regularization term. The pertinence of such an energy is ensured by the analytical properties of its minimizers. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonsmooth nonconvex minimization. Indeed, the existing methods are unsatisfactory since they (implicitly or explicitly) involve a smooth approximation of the regularization term and often get stuck in shallow local minima. The goal of this paper is to design a method that efficiently handles the nonsmooth nonconvex minimization. More precisely, we propose a continuation method where one tracks the minimizers along a sequence of approximate nonsmooth energies $\{J_\eps\}$, the first of which being strictly convex and the last one the original energy to minimize. Knowing the importance of the nonsmoothness of the regularization term for the segmentation task, each $J_\eps$ is nonsmooth and is expressed as the sum of an $\ell_1$ regularization term and a smooth nonconvex function. Furthermore, the local minimization of each $J_{\eps}$ is reformulated as the minimization of a smooth function subject to a set of linear constraints. The latter problem is solved by the modified primal-dual interior point method, which guarantees the descent direction at each step. Experimental results are presented and show the effectiveness and the efficiency of the proposed method. Comparison with simulated annealing methods further shows the advantage of our method. | 
    
| Author | Nikolova, Mila Ng, Michael K. Zhang, Shuqin Ching, Wai-Ki  | 
    
| Author_xml | – sequence: 1 givenname: Mila surname: Nikolova fullname: Nikolova, Mila – sequence: 2 givenname: Michael K. surname: Ng fullname: Ng, Michael K. – sequence: 3 givenname: Shuqin surname: Zhang fullname: Zhang, Shuqin – sequence: 4 givenname: Wai-Ki surname: Ching fullname: Ching, Wai-Ki  | 
    
| BookMark | eNptkMtOwzAQRS1UJNrCgj-I2LEIteNHnCWqClQqD6GyQ4ocxy6uGrvYDq-vJ6EIIcRqRjPnzujeERhYZxUAxwieIYTzCcwhK7KM0z0wRAVmKSkoGfzqD8AohDWEDBKeD8HjTGsjjbIxuVfS2RB9K6NxNnE6uTNKqlcTVDLtN6KD5o1YqZA8BGNXyU03bZyLT33XiV_UW3JtrGnMh-hvHIJ9LTZBHX3XMVhezJbTq3Rxezmfni9SmVEWU4qxqnRdVZxLyHUhCGM011BTXOMC0SIXBDNSM0JonlWshjWiBOnOAOM1w2Nwsju79e65VSGWa9d6230si4xSwiGHHXS6g6R3IXily603jfDvJYJlH135E13HTv6w0sQvR9ELs_lH8Qn9kXG8 | 
    
| CitedBy_id | crossref_primary_10_1137_080720243 crossref_primary_10_1016_j_jsv_2014_06_027 crossref_primary_10_1016_j_jsv_2019_115135 crossref_primary_10_1109_TSP_2014_2329274 crossref_primary_10_1137_090761471 crossref_primary_10_1007_s10851_024_01204_y crossref_primary_10_1016_j_amc_2021_126168 crossref_primary_10_1142_S0218213020500189 crossref_primary_10_1007_s10851_011_0319_6 crossref_primary_10_1016_j_cam_2019_112684 crossref_primary_10_12677_AAM_2022_1110792 crossref_primary_10_1137_140985639 crossref_primary_10_1007_s11425_017_9260_8 crossref_primary_10_1007_s10208_017_9366_8 crossref_primary_10_1007_s11042_019_7625_1 crossref_primary_10_1137_130950367 crossref_primary_10_1088_1361_6420_abc793 crossref_primary_10_1007_s11045_021_00785_w crossref_primary_10_1007_s11401_022_0377_7 crossref_primary_10_1088_0266_5611_31_2_025003 crossref_primary_10_1109_TIP_2015_2451957 crossref_primary_10_3934_mfc_2024041 crossref_primary_10_1007_s10444_018_9629_1 crossref_primary_10_1016_j_ymssp_2015_05_004 crossref_primary_10_1007_s41980_018_0170_2 crossref_primary_10_1137_11085997X crossref_primary_10_1137_15M1028054 crossref_primary_10_1016_j_sigpro_2024_109700 crossref_primary_10_1109_TIP_2010_2052275 crossref_primary_10_1007_s10851_018_0830_0 crossref_primary_10_1109_TIP_2015_2401430 crossref_primary_10_1109_TSP_2014_2298839 crossref_primary_10_1016_j_amc_2021_125977 crossref_primary_10_3390_app13105861 crossref_primary_10_1287_moor_2016_0837 crossref_primary_10_1117_1_JEI_31_4_043012 crossref_primary_10_1007_s10589_021_00308_0 crossref_primary_10_1137_15M1027528 crossref_primary_10_1016_j_sigpro_2017_08_021 crossref_primary_10_1016_j_cag_2022_06_006 crossref_primary_10_1007_s10589_013_9553_8 crossref_primary_10_1016_j_apm_2022_09_018 crossref_primary_10_1007_s11760_017_1164_x crossref_primary_10_1137_15M1052834 crossref_primary_10_1016_j_cam_2024_116045 crossref_primary_10_1080_10556788_2019_1684492 crossref_primary_10_1137_130951075 crossref_primary_10_1007_s10589_013_9583_2 crossref_primary_10_1007_s10851_015_0597_5 crossref_primary_10_1007_s10957_023_02348_4 crossref_primary_10_1016_j_amc_2021_126059 crossref_primary_10_1016_j_sigpro_2024_109572 crossref_primary_10_1088_1361_6420_ab6619 crossref_primary_10_1016_j_cviu_2015_04_002 crossref_primary_10_3934_ipi_2015_9_337 crossref_primary_10_1016_j_cam_2022_114615 crossref_primary_10_1109_TIP_2019_2924339 crossref_primary_10_1137_20M1356634 crossref_primary_10_1016_j_patcog_2011_05_002 crossref_primary_10_1016_j_apm_2024_04_055 crossref_primary_10_1137_141001457 crossref_primary_10_7498_aps_63_189501 crossref_primary_10_1109_TIP_2015_2478405 crossref_primary_10_1007_s00530_024_01585_5 crossref_primary_10_1137_17M1137991 crossref_primary_10_1007_s10208_020_09466_9 crossref_primary_10_1088_1361_6420_ac3c55 crossref_primary_10_1007_s10915_021_01677_8 crossref_primary_10_1007_s10851_017_0731_7 crossref_primary_10_1007_s00034_019_01285_w crossref_primary_10_1002_nla_2265 crossref_primary_10_1016_j_ifacol_2017_08_102 crossref_primary_10_1080_17415977_2020_1820001 crossref_primary_10_1016_j_laa_2011_10_012 crossref_primary_10_1016_j_cam_2015_06_006 crossref_primary_10_1088_1361_6420_acbe5e crossref_primary_10_1007_s10107_012_0569_0 crossref_primary_10_1111_cgf_12589 crossref_primary_10_1007_s10107_014_0753_5 crossref_primary_10_1007_s10915_018_0801_z crossref_primary_10_1109_JSTARS_2016_2549942 crossref_primary_10_1117_1_JEI_25_2_023013 crossref_primary_10_1137_070702187 crossref_primary_10_1007_s10957_019_01545_4 crossref_primary_10_1007_s10915_023_02268_5 crossref_primary_10_1007_s10107_024_02113_z crossref_primary_10_1137_080740167 crossref_primary_10_3390_fractalfract7040336 crossref_primary_10_1155_2014_906464 crossref_primary_10_3724_SP_J_1004_2012_00444 crossref_primary_10_1016_j_patcog_2009_10_012 crossref_primary_10_1049_iet_ipr_2011_0345 crossref_primary_10_1049_sil2_12088 crossref_primary_10_1007_s10915_023_02366_4 crossref_primary_10_1016_j_apnum_2023_06_008 crossref_primary_10_3390_math10132227 crossref_primary_10_1137_110854746 crossref_primary_10_1109_TIP_2012_2208979 crossref_primary_10_1016_j_ymssp_2018_09_002 crossref_primary_10_1016_j_dsp_2025_105075 crossref_primary_10_1137_090775397 crossref_primary_10_1038_s41598_022_11938_7 crossref_primary_10_1007_s11075_014_9929_6 crossref_primary_10_1007_s11704_016_5552_0 crossref_primary_10_1088_1361_6420_aadb23 crossref_primary_10_1088_1361_6420_aad1c5 crossref_primary_10_1109_TIP_2012_2214051 crossref_primary_10_1007_s11042_019_08179_8 crossref_primary_10_1109_ACCESS_2020_3034155 crossref_primary_10_1002_nla_626 crossref_primary_10_1007_s11075_022_01322_x crossref_primary_10_3934_jimo_2021170 crossref_primary_10_1007_s10107_015_0939_5 crossref_primary_10_1137_120869079 crossref_primary_10_1016_j_ejor_2019_11_051 crossref_primary_10_1088_1361_6420_33_2_025010 crossref_primary_10_1007_s10898_019_00776_z crossref_primary_10_1016_j_apm_2024_04_001 crossref_primary_10_1016_j_cam_2014_12_011 crossref_primary_10_1007_s11075_024_01965_y crossref_primary_10_1007_s10589_023_00468_1 crossref_primary_10_1016_j_apm_2018_12_021 crossref_primary_10_1016_j_patcog_2012_10_010 crossref_primary_10_1137_17M1123687 crossref_primary_10_1007_s10589_016_9854_9 crossref_primary_10_1007_s10915_014_9860_y crossref_primary_10_1137_22M1482822 crossref_primary_10_1007_s00034_014_9760_2 crossref_primary_10_1080_17415977_2018_1557655 crossref_primary_10_1137_120871390 crossref_primary_10_1016_j_sigpro_2012_07_011 crossref_primary_10_1137_090756181 crossref_primary_10_1137_120864908 crossref_primary_10_1016_j_neucom_2019_05_073 crossref_primary_10_1007_s11265_012_0671_9 crossref_primary_10_1109_TNNLS_2011_2181867 crossref_primary_10_1109_TNNLS_2019_2944388 crossref_primary_10_1137_18M1178566 crossref_primary_10_1137_10080172X crossref_primary_10_1007_s11075_020_00928_3 crossref_primary_10_1049_iet_ipr_2015_0787 crossref_primary_10_1109_TNS_2016_2589246 crossref_primary_10_1007_s10915_015_0129_x crossref_primary_10_1137_23M159439X crossref_primary_10_1007_s10851_019_00937_5 crossref_primary_10_1007_s12190_023_01949_6 crossref_primary_10_1137_120876277 crossref_primary_10_1007_s10589_018_0036_9 crossref_primary_10_1007_s10915_017_0357_3 crossref_primary_10_1088_1361_6420_abf5ed crossref_primary_10_1007_s10915_015_0162_9 crossref_primary_10_1007_s10915_020_01190_4 crossref_primary_10_1016_j_nonrwa_2016_05_007  | 
    
| Cites_doi | 10.1109/TPAMI.1984.4767596 10.1080/02664768900000049 10.1109/83.392335 10.1137/040608982 10.1137/1015003 10.1007/s00607-004-0097-8 10.1137/040604297 10.1016/S0734-189X(88)80029-X 10.1109/83.709660 10.1126/science.220.4598.671 10.1109/34.23109 10.1109/34.120331 10.1023/B:JMIV.0000035180.40477.bd 10.1109/83.660997 10.1109/34.387509 10.1109/42.61759 10.1109/42.241890 10.1109/83.701163 10.1109/42.52985 10.1007/BF00054839 10.1109/83.663502 10.1109/83.791963 10.1109/TIP.2005.863120 10.1016/0167-2789(92)90242-F 10.1111/j.2517-6161.1986.tb01412.x 10.1137/040615079 10.1109/83.661189 10.1137/S0036142901389165 10.1109/83.784433 10.1109/34.56205 10.1109/29.45551 10.1364/JOSAA.8.000290 10.1109/TIP.2002.804527 10.1109/83.551699 10.1023/B:JMIV.0000011920.58935.9c 10.1006/cgip.1994.1011 10.1109/83.236536 10.1016/0167-8655(94)90153-8 10.1007/BF00131148 10.1109/TIP.2006.873446  | 
    
| ContentType | Journal Article | 
    
| Copyright | [Copyright] © 2008 Society for Industrial and Applied Mathematics | 
    
| Copyright_xml | – notice: [Copyright] © 2008 Society for Industrial and Applied Mathematics | 
    
| DBID | AAYXX CITATION 3V. 7X2 7XB 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- KB. L6V LK8 M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U S0W  | 
    
| DOI | 10.1137/070692285 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Materials Science Database ProQuest Engineering Collection Biological Sciences Agricultural Science Database Computing Database Military Database Research Library Science Database Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Agricultural & Environmental Science Database ProQuest Central Basic DELNET Engineering & Technology Collection  | 
    
| DatabaseTitle | CrossRef Agricultural Science Database Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ProQuest Telecommunications ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Agricultural Science Database | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISSN | 1936-4954 | 
    
| EndPage | 25 | 
    
| ExternalDocumentID | 2599280951 10_1137_070692285  | 
    
| GroupedDBID | .4S .DC 123 4.4 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8G5 AALVN AASXH AAYXX ABJCF ABKAD ABMZU ABUWG ACGOD ACIWK ACPRK ADBBV ADIYS AENEX AEUYN AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ CCPQU CITATION CZ9 D1I D1J D1K DQ2 DU5 DWQXO EBS EDO EJD F5P GNUQQ GUQSH H13 HCIFZ I-F J9A K6- K6V K7- KB. KC. L6V LK5 LK8 M0K M1Q M2O M2P M7P M7R M7S P1Q P62 PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO PYCSY RJG RSI S0W SJN TUS 3V. 7XB 88A 88K 8AL 8FK JQ2 M0N M2T MBDVC PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c256t-533ebfdbb88c08f9a46657f0f53d391597a4364d644572b6d0d1541f48768d63 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1936-4954 | 
    
| IngestDate | Fri Jul 25 10:39:01 EDT 2025 Wed Oct 01 05:08:00 EDT 2025 Thu Apr 24 22:57:42 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c256t-533ebfdbb88c08f9a46657f0f53d391597a4364d644572b6d0d1541f48768d63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14  | 
    
| PQID | 925548080 | 
    
| PQPubID | 666309 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | proquest_journals_925548080 crossref_primary_10_1137_070692285 crossref_citationtrail_10_1137_070692285  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2008-01-00 20080101  | 
    
| PublicationDateYYYYMMDD | 2008-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-00  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Philadelphia | 
    
| PublicationPlace_xml | – name: Philadelphia | 
    
| PublicationTitle | SIAM journal on imaging sciences | 
    
| PublicationYear | 2008 | 
    
| Publisher | Society for Industrial and Applied Mathematics | 
    
| Publisher_xml | – name: Society for Industrial and Applied Mathematics | 
    
| References | Besag J. E. (R6) 1986; 48 R40 R21 R43 R20 R42 R45 R22 R44 R25 R47 R24 R27 R49 R26 R29 R28 R3 R4 R5 R7 R8 R9 Geman S. (R23) 1987; 52 R30 R52 R32 R12 R11 R33 R14 R36 R13 R16 R38 R15 R37 R18 R17 R39 R19  | 
    
| References_xml | – ident: R22 doi: 10.1109/TPAMI.1984.4767596 – ident: R7 doi: 10.1080/02664768900000049 – ident: R21 doi: 10.1109/83.392335 – ident: R24 doi: 10.1137/040608982 – ident: R52 doi: 10.1137/1015003 – ident: R27 doi: 10.1007/s00607-004-0097-8 – ident: R14 doi: 10.1137/040604297 – ident: R32 doi: 10.1016/S0734-189X(88)80029-X – ident: R26 doi: 10.1109/83.709660 – ident: R28 doi: 10.1126/science.220.4598.671 – ident: R11 doi: 10.1109/34.23109 – volume: 52 start-page: 22 year: 1987 ident: R23 publication-title: in Proceedings of the 46th Session of the ISI, Bulletin of the ISI – ident: R20 doi: 10.1109/34.120331 – ident: R40 doi: 10.1023/B:JMIV.0000035180.40477.bd – ident: R17 doi: 10.1109/83.660997 – ident: R47 doi: 10.1109/34.387509 – ident: R29 doi: 10.1109/42.61759 – ident: R13 doi: 10.1109/42.241890 – ident: R45 doi: 10.1109/83.701163 – ident: R25 doi: 10.1109/42.52985 – ident: R30 doi: 10.1007/BF00054839 – ident: R36 doi: 10.1109/83.663502 – ident: R43 doi: 10.1109/83.791963 – ident: R3 doi: 10.1109/TIP.2005.863120 – ident: R44 doi: 10.1016/0167-2789(92)90242-F – volume: 48 start-page: 259 year: 1986 ident: R6 publication-title: J. Roy. Statist. Soc. Ser. B doi: 10.1111/j.2517-6161.1986.tb01412.x – ident: R19 doi: 10.1137/040615079 – ident: R49 doi: 10.1109/83.661189 – ident: R38 doi: 10.1137/S0036142901389165 – ident: R37 doi: 10.1109/83.784433 – ident: R42 doi: 10.1109/34.56205 – ident: R18 doi: 10.1109/29.45551 – ident: R8 doi: 10.1364/JOSAA.8.000290 – ident: R16 doi: 10.1109/TIP.2002.804527 – ident: R15 doi: 10.1109/83.551699 – ident: R39 doi: 10.1023/B:JMIV.0000011920.58935.9c – ident: R4 doi: 10.1006/cgip.1994.1011 – ident: R12 doi: 10.1109/83.236536 – ident: R5 doi: 10.1016/0167-8655(94)90153-8 – ident: R9 doi: 10.1007/BF00131148 – ident: R33 doi: 10.1109/TIP.2006.873446  | 
    
| SSID | ssj0060487 | 
    
| Score | 2.2346141 | 
    
| Snippet | We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of... | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 2 | 
    
| SubjectTerms | Objective function Radon  | 
    
| Title | Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization | 
    
| URI | https://www.proquest.com/docview/925548080 | 
    
| Volume | 1 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1936-4954 dateEnd: 20140731 omitProxy: true ssIdentifier: ssj0060487 issn: 1936-4954 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1936-4954 dateEnd: 20140731 omitProxy: true ssIdentifier: ssj0060487 issn: 1936-4954 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5zu3jxtzinI4gHL8GuS9P2IKJjcwobQybsIJT8hIJrJx3on29em04F8VbSnN5L3vte8vJ9CF2GxijOhSSMc0ko15wITRXxVAzu9gIh4b3zZMrGL_RpESwaaFK_hYG2yjomloFa5RLOyK9ji30pkCDert4JiEbB5WqtoMGdsoK6KRnGtlDLB2KsJmrdD6ez5zo0M7tcQ0cv1ANin9Bjse-DjvLPpPQ7JpeJZrSHdhxCxHeVS_dRQ2cHaNehRez2YnGIXocl-4NNGhhqyG8mWJwbPEu11B9pofGgAoBr_Li0oaPAZY8AntrRZW69BF9l5_knnqRZunTPMo_QfDScD8bEaSUQaUHLmljUpoVRQkSR9CITcwpXKsYzQV8BB3wcctpnVFn4E4S-YMpTFjz1jDUIixTrH6Nmlmf6BHqdFNQQgseBpCrWPOCMKZvoIyND6cs2uqptlUjHIw5yFm9JWU_0w2Rj1ja62ExdVeQZf03q1AZP3P4pko23T__920HbVf8GHImcoaY1tD63IGEtumgrGj103QL4AvZPwBQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF7UHvTiW6zPRRS8BNNks0kOIj5aWrVFpIIHIewTCvYhKaj_zR_nTLqpCuLNW0iWHGbn8c3uzDeEHMbWaiGk8rgQymPCCE8apj1fp7jdfiQV9ju3O7z5wK4fo8cZ8lH2wmBZZekTC0ethwrPyE9SwL4MSRDPRi8eDo3Cy9VygoZwkxX0acEw5vo6bsz7K2Rw-WnrCrb7KAga9e5l03NDBjwF0X7sAdwx0mopk0T5iU0Fw7sI69so1EiensaChZxpwA1RHEiufQ2oo2YB6PNE8xB-O0sqLGQppH6Vi3rn7r6MBBysI3ZsRjXkEYp9ngYBjm3-HgN_hoAirjWWyaIDpPR8okErZMYMVsmSA6fUmX6-Rp7qBdkExCiKKesX8SwdWnrXM8q89nJDLyd4c0xbffBUOS1KEmgH3vaHoBT4VBS6v9F2b9Druy7QddL9D6ltkLnBcGA2sbRKY8oiRRopplMjIsG5BlyRWBWrQFXJcSmrTDnacpye8ZwV6UsYZ1OxVsnBdOlowtXx26LtUuCZM9c8myrX1p9f98l8s9u-zW5bnZttsjApHcHTmB0yB0I3u4BPxnLPqQEl2T8r3ifGvfng | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Reconstruction+of+Piecewise+Constant+Images+Using+Nonsmooth+Nonconvex+Minimization&rft.jtitle=SIAM+journal+on+imaging+sciences&rft.au=Nikolova%2C+Mila&rft.au=Ng%2C+Michael+K.&rft.au=Zhang%2C+Shuqin&rft.au=Ching%2C+Wai-Ki&rft.date=2008-01-01&rft.issn=1936-4954&rft.eissn=1936-4954&rft.volume=1&rft.issue=1&rft.spage=2&rft.epage=25&rft_id=info:doi/10.1137%2F070692285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_070692285 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-4954&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-4954&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-4954&client=summon |