Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization

We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of piecewise constant values between neighboring regions, from noisy data obtained at the output of a linear operator (e.g., a blurring kernel or...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on imaging sciences Vol. 1; no. 1; pp. 2 - 25
Main Authors Nikolova, Mila, Ng, Michael K., Zhang, Shuqin, Ching, Wai-Ki
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2008
Subjects
Online AccessGet full text
ISSN1936-4954
1936-4954
DOI10.1137/070692285

Cover

Abstract We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of piecewise constant values between neighboring regions, from noisy data obtained at the output of a linear operator (e.g., a blurring kernel or a Radon transform). Thus we also address the generic problem of unsupervised segmentation in the context of linear inverse problems. The segmentation and the restoration tasks are solved jointly by minimizing an objective function (an energy) composed of a quadratic data-fidelity term and a nonsmooth nonconvex regularization term. The pertinence of such an energy is ensured by the analytical properties of its minimizers. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonsmooth nonconvex minimization. Indeed, the existing methods are unsatisfactory since they (implicitly or explicitly) involve a smooth approximation of the regularization term and often get stuck in shallow local minima. The goal of this paper is to design a method that efficiently handles the nonsmooth nonconvex minimization. More precisely, we propose a continuation method where one tracks the minimizers along a sequence of approximate nonsmooth energies $\{J_\eps\}$, the first of which being strictly convex and the last one the original energy to minimize. Knowing the importance of the nonsmoothness of the regularization term for the segmentation task, each $J_\eps$ is nonsmooth and is expressed as the sum of an $\ell_1$ regularization term and a smooth nonconvex function. Furthermore, the local minimization of each $J_{\eps}$ is reformulated as the minimization of a smooth function subject to a set of linear constraints. The latter problem is solved by the modified primal-dual interior point method, which guarantees the descent direction at each step. Experimental results are presented and show the effectiveness and the efficiency of the proposed method. Comparison with simulated annealing methods further shows the advantage of our method.
AbstractList We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of piecewise constant values between neighboring regions, from noisy data obtained at the output of a linear operator (e.g., a blurring kernel or a Radon transform). Thus we also address the generic problem of unsupervised segmentation in the context of linear inverse problems. The segmentation and the restoration tasks are solved jointly by minimizing an objective function (an energy) composed of a quadratic data-fidelity term and a nonsmooth nonconvex regularization term. The pertinence of such an energy is ensured by the analytical properties of its minimizers. However, its practical interest used to be limited by the difficulty of the computational stage which requires a nonsmooth nonconvex minimization. Indeed, the existing methods are unsatisfactory since they (implicitly or explicitly) involve a smooth approximation of the regularization term and often get stuck in shallow local minima. The goal of this paper is to design a method that efficiently handles the nonsmooth nonconvex minimization. More precisely, we propose a continuation method where one tracks the minimizers along a sequence of approximate nonsmooth energies $\{J_\eps\}$, the first of which being strictly convex and the last one the original energy to minimize. Knowing the importance of the nonsmoothness of the regularization term for the segmentation task, each $J_\eps$ is nonsmooth and is expressed as the sum of an $\ell_1$ regularization term and a smooth nonconvex function. Furthermore, the local minimization of each $J_{\eps}$ is reformulated as the minimization of a smooth function subject to a set of linear constraints. The latter problem is solved by the modified primal-dual interior point method, which guarantees the descent direction at each step. Experimental results are presented and show the effectiveness and the efficiency of the proposed method. Comparison with simulated annealing methods further shows the advantage of our method.
Author Nikolova, Mila
Ng, Michael K.
Zhang, Shuqin
Ching, Wai-Ki
Author_xml – sequence: 1
  givenname: Mila
  surname: Nikolova
  fullname: Nikolova, Mila
– sequence: 2
  givenname: Michael K.
  surname: Ng
  fullname: Ng, Michael K.
– sequence: 3
  givenname: Shuqin
  surname: Zhang
  fullname: Zhang, Shuqin
– sequence: 4
  givenname: Wai-Ki
  surname: Ching
  fullname: Ching, Wai-Ki
BookMark eNptkMtOwzAQRS1UJNrCgj-I2LEIteNHnCWqClQqD6GyQ4ocxy6uGrvYDq-vJ6EIIcRqRjPnzujeERhYZxUAxwieIYTzCcwhK7KM0z0wRAVmKSkoGfzqD8AohDWEDBKeD8HjTGsjjbIxuVfS2RB9K6NxNnE6uTNKqlcTVDLtN6KD5o1YqZA8BGNXyU03bZyLT33XiV_UW3JtrGnMh-hvHIJ9LTZBHX3XMVhezJbTq3Rxezmfni9SmVEWU4qxqnRdVZxLyHUhCGM011BTXOMC0SIXBDNSM0JonlWshjWiBOnOAOM1w2Nwsju79e65VSGWa9d6230si4xSwiGHHXS6g6R3IXily603jfDvJYJlH135E13HTv6w0sQvR9ELs_lH8Qn9kXG8
CitedBy_id crossref_primary_10_1137_080720243
crossref_primary_10_1016_j_jsv_2014_06_027
crossref_primary_10_1016_j_jsv_2019_115135
crossref_primary_10_1109_TSP_2014_2329274
crossref_primary_10_1137_090761471
crossref_primary_10_1007_s10851_024_01204_y
crossref_primary_10_1016_j_amc_2021_126168
crossref_primary_10_1142_S0218213020500189
crossref_primary_10_1007_s10851_011_0319_6
crossref_primary_10_1016_j_cam_2019_112684
crossref_primary_10_12677_AAM_2022_1110792
crossref_primary_10_1137_140985639
crossref_primary_10_1007_s11425_017_9260_8
crossref_primary_10_1007_s10208_017_9366_8
crossref_primary_10_1007_s11042_019_7625_1
crossref_primary_10_1137_130950367
crossref_primary_10_1088_1361_6420_abc793
crossref_primary_10_1007_s11045_021_00785_w
crossref_primary_10_1007_s11401_022_0377_7
crossref_primary_10_1088_0266_5611_31_2_025003
crossref_primary_10_1109_TIP_2015_2451957
crossref_primary_10_3934_mfc_2024041
crossref_primary_10_1007_s10444_018_9629_1
crossref_primary_10_1016_j_ymssp_2015_05_004
crossref_primary_10_1007_s41980_018_0170_2
crossref_primary_10_1137_11085997X
crossref_primary_10_1137_15M1028054
crossref_primary_10_1016_j_sigpro_2024_109700
crossref_primary_10_1109_TIP_2010_2052275
crossref_primary_10_1007_s10851_018_0830_0
crossref_primary_10_1109_TIP_2015_2401430
crossref_primary_10_1109_TSP_2014_2298839
crossref_primary_10_1016_j_amc_2021_125977
crossref_primary_10_3390_app13105861
crossref_primary_10_1287_moor_2016_0837
crossref_primary_10_1117_1_JEI_31_4_043012
crossref_primary_10_1007_s10589_021_00308_0
crossref_primary_10_1137_15M1027528
crossref_primary_10_1016_j_sigpro_2017_08_021
crossref_primary_10_1016_j_cag_2022_06_006
crossref_primary_10_1007_s10589_013_9553_8
crossref_primary_10_1016_j_apm_2022_09_018
crossref_primary_10_1007_s11760_017_1164_x
crossref_primary_10_1137_15M1052834
crossref_primary_10_1016_j_cam_2024_116045
crossref_primary_10_1080_10556788_2019_1684492
crossref_primary_10_1137_130951075
crossref_primary_10_1007_s10589_013_9583_2
crossref_primary_10_1007_s10851_015_0597_5
crossref_primary_10_1007_s10957_023_02348_4
crossref_primary_10_1016_j_amc_2021_126059
crossref_primary_10_1016_j_sigpro_2024_109572
crossref_primary_10_1088_1361_6420_ab6619
crossref_primary_10_1016_j_cviu_2015_04_002
crossref_primary_10_3934_ipi_2015_9_337
crossref_primary_10_1016_j_cam_2022_114615
crossref_primary_10_1109_TIP_2019_2924339
crossref_primary_10_1137_20M1356634
crossref_primary_10_1016_j_patcog_2011_05_002
crossref_primary_10_1016_j_apm_2024_04_055
crossref_primary_10_1137_141001457
crossref_primary_10_7498_aps_63_189501
crossref_primary_10_1109_TIP_2015_2478405
crossref_primary_10_1007_s00530_024_01585_5
crossref_primary_10_1137_17M1137991
crossref_primary_10_1007_s10208_020_09466_9
crossref_primary_10_1088_1361_6420_ac3c55
crossref_primary_10_1007_s10915_021_01677_8
crossref_primary_10_1007_s10851_017_0731_7
crossref_primary_10_1007_s00034_019_01285_w
crossref_primary_10_1002_nla_2265
crossref_primary_10_1016_j_ifacol_2017_08_102
crossref_primary_10_1080_17415977_2020_1820001
crossref_primary_10_1016_j_laa_2011_10_012
crossref_primary_10_1016_j_cam_2015_06_006
crossref_primary_10_1088_1361_6420_acbe5e
crossref_primary_10_1007_s10107_012_0569_0
crossref_primary_10_1111_cgf_12589
crossref_primary_10_1007_s10107_014_0753_5
crossref_primary_10_1007_s10915_018_0801_z
crossref_primary_10_1109_JSTARS_2016_2549942
crossref_primary_10_1117_1_JEI_25_2_023013
crossref_primary_10_1137_070702187
crossref_primary_10_1007_s10957_019_01545_4
crossref_primary_10_1007_s10915_023_02268_5
crossref_primary_10_1007_s10107_024_02113_z
crossref_primary_10_1137_080740167
crossref_primary_10_3390_fractalfract7040336
crossref_primary_10_1155_2014_906464
crossref_primary_10_3724_SP_J_1004_2012_00444
crossref_primary_10_1016_j_patcog_2009_10_012
crossref_primary_10_1049_iet_ipr_2011_0345
crossref_primary_10_1049_sil2_12088
crossref_primary_10_1007_s10915_023_02366_4
crossref_primary_10_1016_j_apnum_2023_06_008
crossref_primary_10_3390_math10132227
crossref_primary_10_1137_110854746
crossref_primary_10_1109_TIP_2012_2208979
crossref_primary_10_1016_j_ymssp_2018_09_002
crossref_primary_10_1016_j_dsp_2025_105075
crossref_primary_10_1137_090775397
crossref_primary_10_1038_s41598_022_11938_7
crossref_primary_10_1007_s11075_014_9929_6
crossref_primary_10_1007_s11704_016_5552_0
crossref_primary_10_1088_1361_6420_aadb23
crossref_primary_10_1088_1361_6420_aad1c5
crossref_primary_10_1109_TIP_2012_2214051
crossref_primary_10_1007_s11042_019_08179_8
crossref_primary_10_1109_ACCESS_2020_3034155
crossref_primary_10_1002_nla_626
crossref_primary_10_1007_s11075_022_01322_x
crossref_primary_10_3934_jimo_2021170
crossref_primary_10_1007_s10107_015_0939_5
crossref_primary_10_1137_120869079
crossref_primary_10_1016_j_ejor_2019_11_051
crossref_primary_10_1088_1361_6420_33_2_025010
crossref_primary_10_1007_s10898_019_00776_z
crossref_primary_10_1016_j_apm_2024_04_001
crossref_primary_10_1016_j_cam_2014_12_011
crossref_primary_10_1007_s11075_024_01965_y
crossref_primary_10_1007_s10589_023_00468_1
crossref_primary_10_1016_j_apm_2018_12_021
crossref_primary_10_1016_j_patcog_2012_10_010
crossref_primary_10_1137_17M1123687
crossref_primary_10_1007_s10589_016_9854_9
crossref_primary_10_1007_s10915_014_9860_y
crossref_primary_10_1137_22M1482822
crossref_primary_10_1007_s00034_014_9760_2
crossref_primary_10_1080_17415977_2018_1557655
crossref_primary_10_1137_120871390
crossref_primary_10_1016_j_sigpro_2012_07_011
crossref_primary_10_1137_090756181
crossref_primary_10_1137_120864908
crossref_primary_10_1016_j_neucom_2019_05_073
crossref_primary_10_1007_s11265_012_0671_9
crossref_primary_10_1109_TNNLS_2011_2181867
crossref_primary_10_1109_TNNLS_2019_2944388
crossref_primary_10_1137_18M1178566
crossref_primary_10_1137_10080172X
crossref_primary_10_1007_s11075_020_00928_3
crossref_primary_10_1049_iet_ipr_2015_0787
crossref_primary_10_1109_TNS_2016_2589246
crossref_primary_10_1007_s10915_015_0129_x
crossref_primary_10_1137_23M159439X
crossref_primary_10_1007_s10851_019_00937_5
crossref_primary_10_1007_s12190_023_01949_6
crossref_primary_10_1137_120876277
crossref_primary_10_1007_s10589_018_0036_9
crossref_primary_10_1007_s10915_017_0357_3
crossref_primary_10_1088_1361_6420_abf5ed
crossref_primary_10_1007_s10915_015_0162_9
crossref_primary_10_1007_s10915_020_01190_4
crossref_primary_10_1016_j_nonrwa_2016_05_007
Cites_doi 10.1109/TPAMI.1984.4767596
10.1080/02664768900000049
10.1109/83.392335
10.1137/040608982
10.1137/1015003
10.1007/s00607-004-0097-8
10.1137/040604297
10.1016/S0734-189X(88)80029-X
10.1109/83.709660
10.1126/science.220.4598.671
10.1109/34.23109
10.1109/34.120331
10.1023/B:JMIV.0000035180.40477.bd
10.1109/83.660997
10.1109/34.387509
10.1109/42.61759
10.1109/42.241890
10.1109/83.701163
10.1109/42.52985
10.1007/BF00054839
10.1109/83.663502
10.1109/83.791963
10.1109/TIP.2005.863120
10.1016/0167-2789(92)90242-F
10.1111/j.2517-6161.1986.tb01412.x
10.1137/040615079
10.1109/83.661189
10.1137/S0036142901389165
10.1109/83.784433
10.1109/34.56205
10.1109/29.45551
10.1364/JOSAA.8.000290
10.1109/TIP.2002.804527
10.1109/83.551699
10.1023/B:JMIV.0000011920.58935.9c
10.1006/cgip.1994.1011
10.1109/83.236536
10.1016/0167-8655(94)90153-8
10.1007/BF00131148
10.1109/TIP.2006.873446
ContentType Journal Article
Copyright [Copyright] © 2008 Society for Industrial and Applied Mathematics
Copyright_xml – notice: [Copyright] © 2008 Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
3V.
7X2
7XB
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KB.
L6V
LK8
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0W
DOI 10.1137/070692285
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Computing Database
Military Database
Research Library
Science Database
Telecommunications Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Agricultural & Environmental Science Database
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Agricultural Science Database
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1936-4954
EndPage 25
ExternalDocumentID 2599280951
10_1137_070692285
GroupedDBID .4S
.DC
123
4.4
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8G5
AALVN
AASXH
AAYXX
ABJCF
ABKAD
ABMZU
ABUWG
ACGOD
ACIWK
ACPRK
ADBBV
ADIYS
AENEX
AEUYN
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CZ9
D1I
D1J
D1K
DQ2
DU5
DWQXO
EBS
EDO
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
I-F
J9A
K6-
K6V
K7-
KB.
KC.
L6V
LK5
LK8
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P62
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCSY
RJG
RSI
S0W
SJN
TUS
3V.
7XB
88A
88K
8AL
8FK
JQ2
M0N
M2T
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c256t-533ebfdbb88c08f9a46657f0f53d391597a4364d644572b6d0d1541f48768d63
IEDL.DBID BENPR
ISSN 1936-4954
IngestDate Fri Jul 25 10:39:01 EDT 2025
Wed Oct 01 05:08:00 EDT 2025
Thu Apr 24 22:57:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c256t-533ebfdbb88c08f9a46657f0f53d391597a4364d644572b6d0d1541f48768d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
PQID 925548080
PQPubID 666309
PageCount 24
ParticipantIDs proquest_journals_925548080
crossref_primary_10_1137_070692285
crossref_citationtrail_10_1137_070692285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-00
20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-00
PublicationDecade 2000
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle SIAM journal on imaging sciences
PublicationYear 2008
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References Besag J. E. (R6) 1986; 48
R40
R21
R43
R20
R42
R45
R22
R44
R25
R47
R24
R27
R49
R26
R29
R28
R3
R4
R5
R7
R8
R9
Geman S. (R23) 1987; 52
R30
R52
R32
R12
R11
R33
R14
R36
R13
R16
R38
R15
R37
R18
R17
R39
R19
References_xml – ident: R22
  doi: 10.1109/TPAMI.1984.4767596
– ident: R7
  doi: 10.1080/02664768900000049
– ident: R21
  doi: 10.1109/83.392335
– ident: R24
  doi: 10.1137/040608982
– ident: R52
  doi: 10.1137/1015003
– ident: R27
  doi: 10.1007/s00607-004-0097-8
– ident: R14
  doi: 10.1137/040604297
– ident: R32
  doi: 10.1016/S0734-189X(88)80029-X
– ident: R26
  doi: 10.1109/83.709660
– ident: R28
  doi: 10.1126/science.220.4598.671
– ident: R11
  doi: 10.1109/34.23109
– volume: 52
  start-page: 22
  year: 1987
  ident: R23
  publication-title: in Proceedings of the 46th Session of the ISI, Bulletin of the ISI
– ident: R20
  doi: 10.1109/34.120331
– ident: R40
  doi: 10.1023/B:JMIV.0000035180.40477.bd
– ident: R17
  doi: 10.1109/83.660997
– ident: R47
  doi: 10.1109/34.387509
– ident: R29
  doi: 10.1109/42.61759
– ident: R13
  doi: 10.1109/42.241890
– ident: R45
  doi: 10.1109/83.701163
– ident: R25
  doi: 10.1109/42.52985
– ident: R30
  doi: 10.1007/BF00054839
– ident: R36
  doi: 10.1109/83.663502
– ident: R43
  doi: 10.1109/83.791963
– ident: R3
  doi: 10.1109/TIP.2005.863120
– ident: R44
  doi: 10.1016/0167-2789(92)90242-F
– volume: 48
  start-page: 259
  year: 1986
  ident: R6
  publication-title: J. Roy. Statist. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1986.tb01412.x
– ident: R19
  doi: 10.1137/040615079
– ident: R49
  doi: 10.1109/83.661189
– ident: R38
  doi: 10.1137/S0036142901389165
– ident: R37
  doi: 10.1109/83.784433
– ident: R42
  doi: 10.1109/34.56205
– ident: R18
  doi: 10.1109/29.45551
– ident: R8
  doi: 10.1364/JOSAA.8.000290
– ident: R16
  doi: 10.1109/TIP.2002.804527
– ident: R15
  doi: 10.1109/83.551699
– ident: R39
  doi: 10.1023/B:JMIV.0000011920.58935.9c
– ident: R4
  doi: 10.1006/cgip.1994.1011
– ident: R12
  doi: 10.1109/83.236536
– ident: R5
  doi: 10.1016/0167-8655(94)90153-8
– ident: R9
  doi: 10.1007/BF00131148
– ident: R33
  doi: 10.1109/TIP.2006.873446
SSID ssj0060487
Score 2.2346141
Snippet We consider the restoration of piecewise constant images where the number of the regions and their values are not fixed in advance, with a good difference of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2
SubjectTerms Objective function
Radon
Title Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization
URI https://www.proquest.com/docview/925548080
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1936-4954
  dateEnd: 20140731
  omitProxy: true
  ssIdentifier: ssj0060487
  issn: 1936-4954
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1936-4954
  dateEnd: 20140731
  omitProxy: true
  ssIdentifier: ssj0060487
  issn: 1936-4954
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5zu3jxtzinI4gHL8GuS9P2IKJjcwobQybsIJT8hIJrJx3on29em04F8VbSnN5L3vte8vJ9CF2GxijOhSSMc0ko15wITRXxVAzu9gIh4b3zZMrGL_RpESwaaFK_hYG2yjomloFa5RLOyK9ji30pkCDert4JiEbB5WqtoMGdsoK6KRnGtlDLB2KsJmrdD6ez5zo0M7tcQ0cv1ANin9Bjse-DjvLPpPQ7JpeJZrSHdhxCxHeVS_dRQ2cHaNehRez2YnGIXocl-4NNGhhqyG8mWJwbPEu11B9pofGgAoBr_Li0oaPAZY8AntrRZW69BF9l5_knnqRZunTPMo_QfDScD8bEaSUQaUHLmljUpoVRQkSR9CITcwpXKsYzQV8BB3wcctpnVFn4E4S-YMpTFjz1jDUIixTrH6Nmlmf6BHqdFNQQgseBpCrWPOCMKZvoIyND6cs2uqptlUjHIw5yFm9JWU_0w2Rj1ja62ExdVeQZf03q1AZP3P4pko23T__920HbVf8GHImcoaY1tD63IGEtumgrGj103QL4AvZPwBQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF7UHvTiW6zPRRS8BNNks0kOIj5aWrVFpIIHIewTCvYhKaj_zR_nTLqpCuLNW0iWHGbn8c3uzDeEHMbWaiGk8rgQymPCCE8apj1fp7jdfiQV9ju3O7z5wK4fo8cZ8lH2wmBZZekTC0ethwrPyE9SwL4MSRDPRi8eDo3Cy9VygoZwkxX0acEw5vo6bsz7K2Rw-WnrCrb7KAga9e5l03NDBjwF0X7sAdwx0mopk0T5iU0Fw7sI69so1EiensaChZxpwA1RHEiufQ2oo2YB6PNE8xB-O0sqLGQppH6Vi3rn7r6MBBysI3ZsRjXkEYp9ngYBjm3-HgN_hoAirjWWyaIDpPR8okErZMYMVsmSA6fUmX6-Rp7qBdkExCiKKesX8SwdWnrXM8q89nJDLyd4c0xbffBUOS1KEmgH3vaHoBT4VBS6v9F2b9Druy7QddL9D6ltkLnBcGA2sbRKY8oiRRopplMjIsG5BlyRWBWrQFXJcSmrTDnacpye8ZwV6UsYZ1OxVsnBdOlowtXx26LtUuCZM9c8myrX1p9f98l8s9u-zW5bnZttsjApHcHTmB0yB0I3u4BPxnLPqQEl2T8r3ifGvfng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Reconstruction+of+Piecewise+Constant+Images+Using+Nonsmooth+Nonconvex+Minimization&rft.jtitle=SIAM+journal+on+imaging+sciences&rft.au=Nikolova%2C+Mila&rft.au=Ng%2C+Michael+K.&rft.au=Zhang%2C+Shuqin&rft.au=Ching%2C+Wai-Ki&rft.date=2008-01-01&rft.issn=1936-4954&rft.eissn=1936-4954&rft.volume=1&rft.issue=1&rft.spage=2&rft.epage=25&rft_id=info:doi/10.1137%2F070692285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_070692285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-4954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-4954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-4954&client=summon