Improvement of Colon Polyp Detection Performance by Modifying the Multi-scale Network Structure and Data Augmentation

This study proposed a computer-assisted diagnosis system that detects polyps during colonoscopy using a multiscale network structure. Medical data require institutional review board approval, and collecting sufficient data is challenging for several reasons. The amount of data may be small thereby r...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrical engineering & technology Vol. 17; no. 5; pp. 3057 - 3065
Main Authors Lee, Jeong-nam, Chae, Jung-woo, Cho, Hyun-chong
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.09.2022
대한전기학회
Subjects
Online AccessGet full text
ISSN1975-0102
2093-7423
DOI10.1007/s42835-022-01191-3

Cover

Abstract This study proposed a computer-assisted diagnosis system that detects polyps during colonoscopy using a multiscale network structure. Medical data require institutional review board approval, and collecting sufficient data is challenging for several reasons. The amount of data may be small thereby resulting in overfitting. This study attempted to increase the amount of data available to solve this problem. Autoaugment and the policy applied to the CIFAR-10 dataset were used. This data augmentation can be learned immediately without review by a colonist because no changes in the shape of the polyp occur during colonoscopy with minimal movement in location. The object detection network used was YOLOv4, which is capable of multiscale learning. Multiscale learning is advantageous in detecting an object regardless of the size of the lesion because it can extract features of various sizes through one learning. In this study, the learning advantages of multiple scales were reinforced via the addition of scales to YOLOv4, while the learning accuracy was improved by changing the activation function. Therefore, the changed activation function can continuously extract features when updating the layer weight. When using all the methods presented, mAP exhibited the highest performance at 98.36.
AbstractList This study proposed a computer-assisted diagnosis system that detects polyps during colonoscopy using a multiscale network structure. Medical data require institutional review board approval, and collecting suffi cient data is challenging for several reasons. The amount of data may be small thereby resulting in overfi tting. This study attempted to increase the amount of data available to solve this problem. Autoaugment and the policy applied to the CIFAR-10 dataset were used. This data augmentation can be learned immediately without review by a colonist because no changes in the shape of the polyp occur during colonoscopy with minimal movement in location. The object detection network used was YOLOv4, which is capable of multiscale learning. Multiscale learning is advantageous in detecting an object regardless of the size of the lesion because it can extract features of various sizes through one learning. In this study, the learning advantages of multiple scales were reinforced via the addition of scales to YOLOv4, while the learning accuracy was improved by changing the activation function. Therefore, the changed activation function can continuously extract features when updating the layer weight. When using all the methods presented, mAP exhibited the highest performance at 98.36. KCI Citation Count: 0
This study proposed a computer-assisted diagnosis system that detects polyps during colonoscopy using a multiscale network structure. Medical data require institutional review board approval, and collecting sufficient data is challenging for several reasons. The amount of data may be small thereby resulting in overfitting. This study attempted to increase the amount of data available to solve this problem. Autoaugment and the policy applied to the CIFAR-10 dataset were used. This data augmentation can be learned immediately without review by a colonist because no changes in the shape of the polyp occur during colonoscopy with minimal movement in location. The object detection network used was YOLOv4, which is capable of multiscale learning. Multiscale learning is advantageous in detecting an object regardless of the size of the lesion because it can extract features of various sizes through one learning. In this study, the learning advantages of multiple scales were reinforced via the addition of scales to YOLOv4, while the learning accuracy was improved by changing the activation function. Therefore, the changed activation function can continuously extract features when updating the layer weight. When using all the methods presented, mAP exhibited the highest performance at 98.36.
Author Cho, Hyun-chong
Lee, Jeong-nam
Chae, Jung-woo
Author_xml – sequence: 1
  givenname: Jeong-nam
  surname: Lee
  fullname: Lee, Jeong-nam
  organization: Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University
– sequence: 2
  givenname: Jung-woo
  surname: Chae
  fullname: Chae, Jung-woo
  email: cowjddn94@kangwon.ac.kr
  organization: Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University
– sequence: 3
  givenname: Hyun-chong
  orcidid: 0000-0003-2122-468X
  surname: Cho
  fullname: Cho, Hyun-chong
  email: hyuncho@kangwon.ac.kr
  organization: Department of Electronics Engineering and Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002874945$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMFOGzEQhq0KpIbAC3DyudKC7fF6s8coFIgEbQW5W17vbGqysSOvt1XeHoftqQdOo9H838zouyBnPngk5JqzG85YdTtIsYCyYEIUjPOaF_CFzASroaikgDMy43WVx5yJr-RiGN4YU5yVMCPjen-I4Q_u0ScaOroKffD0V-iPB3qHCW1ypx5jF-LeeIu0OdLn0Lru6PyWpt9In8c-uWKwpkf6A9PfEHf0NcXRpjEiNb6ldyYZuhy3pyPmtPCSnHemH_DqX52Tzf33zeqxePr5sF4tnworSpUK3tgaWgGgsBTQNlIJ3oCQYFXXSkQFTSs7tjCSWaNkqYBVtaqRmdwxBXPybVrrY6d31ulg3EfdBr2LevmyWeusTzLIpuZkMYVtDMMQsdPWTd-maFyfg6dspSfVOqvWH6o1ZFT8hx6i25t4_ByCCRpy2G8x6rcwRp91fEa9A6xCk7M
CitedBy_id crossref_primary_10_3390_diagnostics14050474
crossref_primary_10_1007_s11760_023_02835_1
crossref_primary_10_1109_JBHI_2023_3334240
crossref_primary_10_3390_diagnostics14232762
Cites_doi 10.5124/jkma.2019.62.8.398
10.1016/j.compbiomed.2020.104029
10.1038/s41598-019-56847-4
10.1016/j.patcog.2012.03.002
10.1109/TITB.2003.813794
10.5370/KIEE.2020.69.1.170
10.1111/j.1572-0241.2003.07448.x
10.1055/s-0031-1291666
10.1109/TMI.2015.2487997
10.1056/NEJM199312303292701
10.1109/CVPR.2018.00913
10.1109/CVPR42600.2020.01076
10.1109/CVPR.2017.106
10.1109/CVPR.2019.00020
10.1109/CVPR.2017.195
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2022
Copyright_xml – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2022
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42835-022-01191-3
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 3065
ExternalDocumentID oai_kci_go_kr_ARTI_10040309
10_1007_s42835_022_01191_3
GrantInformation_xml – fundername: Ministry of Education
  grantid: No. 2022R1I1A3053872
  funderid: http://dx.doi.org/10.13039/501100002701
– fundername: National Research Foundation of Korea
  grantid: No. 2017R1E1A1A03070297
  funderid: http://dx.doi.org/10.13039/501100003725
GroupedDBID -~X
.UV
0R~
2WC
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
AAYYP
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
FRJ
GGCAI
GW5
IKXTQ
IWAJR
JDI
JZLTJ
KOV
KVFHK
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ACYCR
ID FETCH-LOGICAL-c256t-1bc93d2336e523db4621b3243c6fd4ee63bd4f08a40ca6456307969e0aa64063
ISSN 1975-0102
IngestDate Sun Mar 09 07:51:17 EDT 2025
Tue Jul 01 00:40:54 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Fri Feb 21 02:45:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Multi-scale networks
Network layer
Data augmentation
Computer-aided diagnosis systems
Colonoscopy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c256t-1bc93d2336e523db4621b3243c6fd4ee63bd4f08a40ca6456307969e0aa64063
ORCID 0000-0003-2122-468X
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10040309
crossref_citationtrail_10_1007_s42835_022_01191_3
crossref_primary_10_1007_s42835_022_01191_3
springer_journals_10_1007_s42835_022_01191_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220900
2022-09-00
2022-09
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220900
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2022
Publisher Springer Nature Singapore
대한전기학회
Publisher_xml – name: Springer Nature Singapore
– name: 대한전기학회
References Bernal, Sánchez, Vilarino (CR9) 2012; 45
CR2
Luís, João, Nuno (CR11) 2007
Karkanis, Iakovidis, Maroulis, Karras, Tzivras (CR7) 2003; 7
Xin, Michael, Gerard, Joseph, Andrew (CR8) 2006; 11
CR19
CR18
Winawer, Zauber, Ho, O'Brien, Gottlieb, Sternberg, Waye, Schapiro, Bond, Panish, Ackroyd, Shike, Kurtz, Lynn, Gerdes, Stewart (CR3) 1993; 329
CR17
CR16
de Luis, Leandro, Robert, Alanna, Andreas, Helmut, Christoph, Joao (CR13) 2020; 126
CR15
Rabeneck, Souchek, El-Serag (CR5) 2003; 98
Pacal, Karaman, Karaboga, Akay, Basturk, Nalbantoglu, Coskun (CR14) 2021; 141
Leufkens, van Oijen, Vleggaar, Siersema (CR4) 2012; 44
CR24
CR23
CR22
CR21
CR20
Tajbakhsh, Gurudu, Liang (CR10) 2015; 35
Ko (CR1) 2019; 62
Eun, Beomhee, Chun-Ae, Sung, Sang, Dong-Hoon, Byong, Seung-Jae, Suk-Kyun, Namkug, Jeong-Sik (CR6) 2020; 10
Kim, Lee, Chae, Ham, Cho, Cho (CR12) 2020; 69
N Tajbakhsh (1191_CR10) 2015; 35
AA Luís (1191_CR11) 2007
AS de Luis (1191_CR13) 2020; 126
Y Kim (1191_CR12) 2020; 69
I Pacal (1191_CR14) 2021; 141
Q Xin (1191_CR8) 2006; 11
AM Leufkens (1191_CR4) 2012; 44
J Bernal (1191_CR9) 2012; 45
1191_CR18
1191_CR2
1191_CR17
SA Karkanis (1191_CR7) 2003; 7
1191_CR19
1191_CR24
1191_CR16
SJ Winawer (1191_CR3) 1993; 329
1191_CR15
1191_CR21
1191_CR20
1191_CR23
L Rabeneck (1191_CR5) 2003; 98
MS Eun (1191_CR6) 2020; 10
1191_CR22
K Ko (1191_CR1) 2019; 62
References_xml – ident: CR21
– volume: 62
  start-page: 398
  issue: 8
  year: 2019
  end-page: 406
  ident: CR1
  article-title: Epidemiology of gastric cancer in Korea
  publication-title: J Korean Med Assoc
  doi: 10.5124/jkma.2019.62.8.398
– ident: CR22
– ident: CR19
– ident: CR18
– volume: 126
  start-page: 104029
  year: 2020
  ident: CR13
  article-title: Assisting Barrett's esophagus identification using endoscopic data augmentation based on Generative Adversarial Networks
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.104029
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 10
  ident: CR6
  article-title: Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56847-4
– ident: CR15
– ident: CR2
– ident: CR16
– volume: 45
  start-page: 3166
  issue: 9
  year: 2012
  end-page: 3182
  ident: CR9
  article-title: Towards automatic polyp detection with a polyp appearance model
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.03.002
– ident: CR17
– volume: 7
  start-page: 141
  issue: 3
  year: 2003
  end-page: 152
  ident: CR7
  article-title: Computer-aided tumor detection in endoscopic video using color wavelet features
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2003.813794
– volume: 11
  start-page: 0010
  issue: 4
  year: 2006
  ident: CR8
  article-title: Computer-aided diagnosis of dysplasia in Barrett's esophagus using endoscopic optical coherence tomography
  publication-title: J Biomed Opt
– year: 2007
  ident: CR11
  article-title: Polyp detection in endoscopic video using SVMS
  publication-title: European conference on principles of data mining and knowledge discovery
– volume: 141
  start-page: 1031
  year: 2021
  ident: CR14
  article-title: An efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasets
  publication-title: Comput Biol Med
– volume: 69
  start-page: 170
  issue: 1
  year: 2020
  end-page: 176
  ident: CR12
  article-title: Machine learning based gastric cancer computer-aided diagnosis system using feature selection
  publication-title: Trans Korean Inst Electr Eng
  doi: 10.5370/KIEE.2020.69.1.170
– volume: 98
  start-page: 1186
  issue: 5
  year: 2003
  end-page: 1192
  ident: CR5
  article-title: Survival of colorectal cancer patients hospitalized in the veterans affairs health care system
  publication-title: Am J Gastroenterol
  doi: 10.1111/j.1572-0241.2003.07448.x
– volume: 44
  start-page: 470
  issue: 05
  year: 2012
  end-page: 475
  ident: CR4
  article-title: Factors influencing the miss rate of polyps in a back-to-back colonoscopy study
  publication-title: Endoscopy
  doi: 10.1055/s-0031-1291666
– ident: CR24
– volume: 35
  start-page: 630
  issue: 2
  year: 2015
  end-page: 644
  ident: CR10
  article-title: Automated polyp detection in colonoscopy videos using shape and context information
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2487997
– ident: CR23
– ident: CR20
– volume: 329
  start-page: 1977
  issue: 27
  year: 1993
  end-page: 1981
  ident: CR3
  article-title: Prevention of colorectal cancer by colonoscopic polypectomy
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199312303292701
– volume: 44
  start-page: 470
  issue: 05
  year: 2012
  ident: 1191_CR4
  publication-title: Endoscopy
  doi: 10.1055/s-0031-1291666
– volume: 62
  start-page: 398
  issue: 8
  year: 2019
  ident: 1191_CR1
  publication-title: J Korean Med Assoc
  doi: 10.5124/jkma.2019.62.8.398
– ident: 1191_CR2
– ident: 1191_CR20
  doi: 10.1109/CVPR.2018.00913
– volume: 35
  start-page: 630
  issue: 2
  year: 2015
  ident: 1191_CR10
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2487997
– ident: 1191_CR23
– volume: 45
  start-page: 3166
  issue: 9
  year: 2012
  ident: 1191_CR9
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.03.002
– ident: 1191_CR18
  doi: 10.1109/CVPR42600.2020.01076
– ident: 1191_CR19
  doi: 10.1109/CVPR.2017.106
– ident: 1191_CR22
– volume: 329
  start-page: 1977
  issue: 27
  year: 1993
  ident: 1191_CR3
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199312303292701
– volume: 7
  start-page: 141
  issue: 3
  year: 2003
  ident: 1191_CR7
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2003.813794
– ident: 1191_CR15
  doi: 10.1109/CVPR.2019.00020
– ident: 1191_CR17
– volume: 11
  start-page: 0010
  issue: 4
  year: 2006
  ident: 1191_CR8
  publication-title: J Biomed Opt
– ident: 1191_CR24
  doi: 10.1109/CVPR.2017.195
– ident: 1191_CR16
– volume-title: European conference on principles of data mining and knowledge discovery
  year: 2007
  ident: 1191_CR11
– volume: 98
  start-page: 1186
  issue: 5
  year: 2003
  ident: 1191_CR5
  publication-title: Am J Gastroenterol
  doi: 10.1111/j.1572-0241.2003.07448.x
– ident: 1191_CR21
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 1191_CR6
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56847-4
– volume: 126
  start-page: 104029
  year: 2020
  ident: 1191_CR13
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.104029
– volume: 69
  start-page: 170
  issue: 1
  year: 2020
  ident: 1191_CR12
  publication-title: Trans Korean Inst Electr Eng
  doi: 10.5370/KIEE.2020.69.1.170
– volume: 141
  start-page: 1031
  year: 2021
  ident: 1191_CR14
  publication-title: Comput Biol Med
SSID ssj0061053
Score 2.2848618
Snippet This study proposed a computer-assisted diagnosis system that detects polyps during colonoscopy using a multiscale network structure. Medical data require...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3057
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title Improvement of Colon Polyp Detection Performance by Modifying the Multi-scale Network Structure and Data Augmentation
URI https://link.springer.com/article/10.1007/s42835-022-01191-3
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002874945
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2022, 17(5), , pp.3057-3065
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2093-7423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061053
  issn: 1975-0102
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67gUeEJ9iDJAlyFMxSuPEiR_TrFOZ2MRDkfYWxY5bTWPJtKZC3U_kV3HtfHl0VIOXKHVjK_U5vT62771G6GPAlSczj8MkB-SbL6OcCKE4yWmgXOFREQQ6Gvn0jM2--yfnwflg8MvyWlpX4rO8vTeu5H9QhTLAVUfJ_gOyXaNQAPeAL1wBYbg-CON6RUC1-_kJGLJCe7RtrsGOVKo-BfybFRoAWvO0zC_q2CYtOU38LVkBUNrV0XiE643qdb-xcJRV2SheL6-aIKXiL3K2Pk_HQK76HIeGWdXW8v1XpUYnqiyWpMiuLA8DKAXjQ36WZV9YjmabdUHATDeDbLNGAdPb1gmrZpUznThRol03pkcODxyeONPEiV0n8p1p7EwiZ9J9xc1NDM9bVpmH2sPQrc22MmWeyynR28yW9QXbFVojOcyGgntHidoxZGVyzRHzujrNHaH9mNj6AfwxVN5Jyn0pL9JlmV7epDD1-KKTP_t6v2oP7XshY94Q7cfHk8lZqwtAp5qcqN2PaUK4TCDn1qvckUl7xc1ia6feCKD5U_SkgRrHNQ2foYEqnqPHVj7LF2htERKXC2wIiQ0hcUdIbBESiw3uCImBkNgiJG4IiTtCYiAk1oTENiFfovnxdJ7MSHOuB5EgsCsyFpLT3KOUqcCjufCZNxYg7Klki9xXilGR-ws3ynxXZszXGexCzrhyM_gEkvoVGhZloV4j7OWREAsmJYMawg3EGFqDKbMKWRiqjB6gcduLqWxy3uujV36kXbZu0_Mp9Hxqej6FOqOuznWd8WXn0x8AHMOFHZw4QJ9a8NLGfqx2NPrmQY0eokf9f-0tGgIW6h0o5Eq8b6j3GzVAtPY
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+Colon+Polyp+Detection+Performance+by+Modifying+the+Multi-scale+Network+Structure+and+Data+Augmentation&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Lee+Jeong-nam&rft.au=Chae+Jung-woo&rft.au=Cho+Hyun-chong&rft.date=2022-09-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C&rft.issn=1975-0102&rft.eissn=2093-7423&rft.spage=3057&rft.epage=3065&rft_id=info:doi/10.1007%2Fs42835-022-01191-3&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10040309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon