Improvement of Colon Polyp Detection Performance by Modifying the Multi-scale Network Structure and Data Augmentation
This study proposed a computer-assisted diagnosis system that detects polyps during colonoscopy using a multiscale network structure. Medical data require institutional review board approval, and collecting sufficient data is challenging for several reasons. The amount of data may be small thereby r...
Saved in:
Published in | Journal of electrical engineering & technology Vol. 17; no. 5; pp. 3057 - 3065 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.09.2022
대한전기학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1975-0102 2093-7423 |
DOI | 10.1007/s42835-022-01191-3 |
Cover
Abstract | This study proposed a computer-assisted diagnosis system that detects polyps during colonoscopy using a multiscale network structure. Medical data require institutional review board approval, and collecting sufficient data is challenging for several reasons. The amount of data may be small thereby resulting in overfitting. This study attempted to increase the amount of data available to solve this problem. Autoaugment and the policy applied to the CIFAR-10 dataset were used. This data augmentation can be learned immediately without review by a colonist because no changes in the shape of the polyp occur during colonoscopy with minimal movement in location. The object detection network used was YOLOv4, which is capable of multiscale learning. Multiscale learning is advantageous in detecting an object regardless of the size of the lesion because it can extract features of various sizes through one learning. In this study, the learning advantages of multiple scales were reinforced via the addition of scales to YOLOv4, while the learning accuracy was improved by changing the activation function. Therefore, the changed activation function can continuously extract features when updating the layer weight. When using all the methods presented, mAP exhibited the highest performance at 98.36. |
---|---|
AbstractList | This study proposed a computer-assisted diagnosis system that detects polyps during colonoscopy using a multiscale network structure. Medical data require institutional review board approval, and collecting suffi cient data is challenging for several reasons. The amount of data may be small thereby resulting in overfi tting. This study attempted to increase the amount of data available to solve this problem. Autoaugment and the policy applied to the CIFAR-10 dataset were used. This data augmentation can be learned immediately without review by a colonist because no changes in the shape of the polyp occur during colonoscopy with minimal movement in location. The object detection network used was YOLOv4, which is capable of multiscale learning. Multiscale learning is advantageous in detecting an object regardless of the size of the lesion because it can extract features of various sizes through one learning. In this study, the learning advantages of multiple scales were reinforced via the addition of scales to YOLOv4, while the learning accuracy was improved by changing the activation function. Therefore, the changed activation function can continuously extract features when updating the layer weight. When using all the methods presented, mAP exhibited the highest performance at 98.36. KCI Citation Count: 0 This study proposed a computer-assisted diagnosis system that detects polyps during colonoscopy using a multiscale network structure. Medical data require institutional review board approval, and collecting sufficient data is challenging for several reasons. The amount of data may be small thereby resulting in overfitting. This study attempted to increase the amount of data available to solve this problem. Autoaugment and the policy applied to the CIFAR-10 dataset were used. This data augmentation can be learned immediately without review by a colonist because no changes in the shape of the polyp occur during colonoscopy with minimal movement in location. The object detection network used was YOLOv4, which is capable of multiscale learning. Multiscale learning is advantageous in detecting an object regardless of the size of the lesion because it can extract features of various sizes through one learning. In this study, the learning advantages of multiple scales were reinforced via the addition of scales to YOLOv4, while the learning accuracy was improved by changing the activation function. Therefore, the changed activation function can continuously extract features when updating the layer weight. When using all the methods presented, mAP exhibited the highest performance at 98.36. |
Author | Cho, Hyun-chong Lee, Jeong-nam Chae, Jung-woo |
Author_xml | – sequence: 1 givenname: Jeong-nam surname: Lee fullname: Lee, Jeong-nam organization: Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University – sequence: 2 givenname: Jung-woo surname: Chae fullname: Chae, Jung-woo email: cowjddn94@kangwon.ac.kr organization: Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University – sequence: 3 givenname: Hyun-chong orcidid: 0000-0003-2122-468X surname: Cho fullname: Cho, Hyun-chong email: hyuncho@kangwon.ac.kr organization: Department of Electronics Engineering and Interdisciplinary Graduate Program for BIT Medical Convergence, Kangwon National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002874945$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kMFOGzEQhq0KpIbAC3DyudKC7fF6s8coFIgEbQW5W17vbGqysSOvt1XeHoftqQdOo9H838zouyBnPngk5JqzG85YdTtIsYCyYEIUjPOaF_CFzASroaikgDMy43WVx5yJr-RiGN4YU5yVMCPjen-I4Q_u0ScaOroKffD0V-iPB3qHCW1ypx5jF-LeeIu0OdLn0Lru6PyWpt9In8c-uWKwpkf6A9PfEHf0NcXRpjEiNb6ldyYZuhy3pyPmtPCSnHemH_DqX52Tzf33zeqxePr5sF4tnworSpUK3tgaWgGgsBTQNlIJ3oCQYFXXSkQFTSs7tjCSWaNkqYBVtaqRmdwxBXPybVrrY6d31ulg3EfdBr2LevmyWeusTzLIpuZkMYVtDMMQsdPWTd-maFyfg6dspSfVOqvWH6o1ZFT8hx6i25t4_ByCCRpy2G8x6rcwRp91fEa9A6xCk7M |
CitedBy_id | crossref_primary_10_3390_diagnostics14050474 crossref_primary_10_1007_s11760_023_02835_1 crossref_primary_10_1109_JBHI_2023_3334240 crossref_primary_10_3390_diagnostics14232762 |
Cites_doi | 10.5124/jkma.2019.62.8.398 10.1016/j.compbiomed.2020.104029 10.1038/s41598-019-56847-4 10.1016/j.patcog.2012.03.002 10.1109/TITB.2003.813794 10.5370/KIEE.2020.69.1.170 10.1111/j.1572-0241.2003.07448.x 10.1055/s-0031-1291666 10.1109/TMI.2015.2487997 10.1056/NEJM199312303292701 10.1109/CVPR.2018.00913 10.1109/CVPR42600.2020.01076 10.1109/CVPR.2017.106 10.1109/CVPR.2019.00020 10.1109/CVPR.2017.195 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2022 |
Copyright_xml | – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2022 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s42835-022-01191-3 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2093-7423 |
EndPage | 3065 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10040309 10_1007_s42835_022_01191_3 |
GrantInformation_xml | – fundername: Ministry of Education grantid: No. 2022R1I1A3053872 funderid: http://dx.doi.org/10.13039/501100002701 – fundername: National Research Foundation of Korea grantid: No. 2017R1E1A1A03070297 funderid: http://dx.doi.org/10.13039/501100003725 |
GroupedDBID | -~X .UV 0R~ 2WC 406 9ZL AACDK AAHNG AAJBT AASML AATNV AAUYE AAYYP ABAKF ABECU ABFTV ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEMSY AENEX AESKC AFBBN AFQWF AGDGC AGMZJ AGQEE AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AXYYD BGNMA CSCUP DBRKI DPUIP EBLON EBS EJD FIGPU FNLPD FRJ GGCAI GW5 IKXTQ IWAJR JDI JZLTJ KOV KVFHK LLZTM M4Y NPVJJ NQJWS NU0 OK1 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW TDB UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ACYCR |
ID | FETCH-LOGICAL-c256t-1bc93d2336e523db4621b3243c6fd4ee63bd4f08a40ca6456307969e0aa64063 |
ISSN | 1975-0102 |
IngestDate | Sun Mar 09 07:51:17 EDT 2025 Tue Jul 01 00:40:54 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Fri Feb 21 02:45:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Multi-scale networks Network layer Data augmentation Computer-aided diagnosis systems Colonoscopy |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c256t-1bc93d2336e523db4621b3243c6fd4ee63bd4f08a40ca6456307969e0aa64063 |
ORCID | 0000-0003-2122-468X |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10040309 crossref_citationtrail_10_1007_s42835_022_01191_3 crossref_primary_10_1007_s42835_022_01191_3 springer_journals_10_1007_s42835_022_01191_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220900 2022-09-00 2022-09 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of electrical engineering & technology |
PublicationTitleAbbrev | J. Electr. Eng. Technol |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore 대한전기학회 |
Publisher_xml | – name: Springer Nature Singapore – name: 대한전기학회 |
References | Bernal, Sánchez, Vilarino (CR9) 2012; 45 CR2 Luís, João, Nuno (CR11) 2007 Karkanis, Iakovidis, Maroulis, Karras, Tzivras (CR7) 2003; 7 Xin, Michael, Gerard, Joseph, Andrew (CR8) 2006; 11 CR19 CR18 Winawer, Zauber, Ho, O'Brien, Gottlieb, Sternberg, Waye, Schapiro, Bond, Panish, Ackroyd, Shike, Kurtz, Lynn, Gerdes, Stewart (CR3) 1993; 329 CR17 CR16 de Luis, Leandro, Robert, Alanna, Andreas, Helmut, Christoph, Joao (CR13) 2020; 126 CR15 Rabeneck, Souchek, El-Serag (CR5) 2003; 98 Pacal, Karaman, Karaboga, Akay, Basturk, Nalbantoglu, Coskun (CR14) 2021; 141 Leufkens, van Oijen, Vleggaar, Siersema (CR4) 2012; 44 CR24 CR23 CR22 CR21 CR20 Tajbakhsh, Gurudu, Liang (CR10) 2015; 35 Ko (CR1) 2019; 62 Eun, Beomhee, Chun-Ae, Sung, Sang, Dong-Hoon, Byong, Seung-Jae, Suk-Kyun, Namkug, Jeong-Sik (CR6) 2020; 10 Kim, Lee, Chae, Ham, Cho, Cho (CR12) 2020; 69 N Tajbakhsh (1191_CR10) 2015; 35 AA Luís (1191_CR11) 2007 AS de Luis (1191_CR13) 2020; 126 Y Kim (1191_CR12) 2020; 69 I Pacal (1191_CR14) 2021; 141 Q Xin (1191_CR8) 2006; 11 AM Leufkens (1191_CR4) 2012; 44 J Bernal (1191_CR9) 2012; 45 1191_CR18 1191_CR2 1191_CR17 SA Karkanis (1191_CR7) 2003; 7 1191_CR19 1191_CR24 1191_CR16 SJ Winawer (1191_CR3) 1993; 329 1191_CR15 1191_CR21 1191_CR20 1191_CR23 L Rabeneck (1191_CR5) 2003; 98 MS Eun (1191_CR6) 2020; 10 1191_CR22 K Ko (1191_CR1) 2019; 62 |
References_xml | – ident: CR21 – volume: 62 start-page: 398 issue: 8 year: 2019 end-page: 406 ident: CR1 article-title: Epidemiology of gastric cancer in Korea publication-title: J Korean Med Assoc doi: 10.5124/jkma.2019.62.8.398 – ident: CR22 – ident: CR19 – ident: CR18 – volume: 126 start-page: 104029 year: 2020 ident: CR13 article-title: Assisting Barrett's esophagus identification using endoscopic data augmentation based on Generative Adversarial Networks publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.104029 – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 10 ident: CR6 article-title: Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model publication-title: Sci Rep doi: 10.1038/s41598-019-56847-4 – ident: CR15 – ident: CR2 – ident: CR16 – volume: 45 start-page: 3166 issue: 9 year: 2012 end-page: 3182 ident: CR9 article-title: Towards automatic polyp detection with a polyp appearance model publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.03.002 – ident: CR17 – volume: 7 start-page: 141 issue: 3 year: 2003 end-page: 152 ident: CR7 article-title: Computer-aided tumor detection in endoscopic video using color wavelet features publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2003.813794 – volume: 11 start-page: 0010 issue: 4 year: 2006 ident: CR8 article-title: Computer-aided diagnosis of dysplasia in Barrett's esophagus using endoscopic optical coherence tomography publication-title: J Biomed Opt – year: 2007 ident: CR11 article-title: Polyp detection in endoscopic video using SVMS publication-title: European conference on principles of data mining and knowledge discovery – volume: 141 start-page: 1031 year: 2021 ident: CR14 article-title: An efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasets publication-title: Comput Biol Med – volume: 69 start-page: 170 issue: 1 year: 2020 end-page: 176 ident: CR12 article-title: Machine learning based gastric cancer computer-aided diagnosis system using feature selection publication-title: Trans Korean Inst Electr Eng doi: 10.5370/KIEE.2020.69.1.170 – volume: 98 start-page: 1186 issue: 5 year: 2003 end-page: 1192 ident: CR5 article-title: Survival of colorectal cancer patients hospitalized in the veterans affairs health care system publication-title: Am J Gastroenterol doi: 10.1111/j.1572-0241.2003.07448.x – volume: 44 start-page: 470 issue: 05 year: 2012 end-page: 475 ident: CR4 article-title: Factors influencing the miss rate of polyps in a back-to-back colonoscopy study publication-title: Endoscopy doi: 10.1055/s-0031-1291666 – ident: CR24 – volume: 35 start-page: 630 issue: 2 year: 2015 end-page: 644 ident: CR10 article-title: Automated polyp detection in colonoscopy videos using shape and context information publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2487997 – ident: CR23 – ident: CR20 – volume: 329 start-page: 1977 issue: 27 year: 1993 end-page: 1981 ident: CR3 article-title: Prevention of colorectal cancer by colonoscopic polypectomy publication-title: N Engl J Med doi: 10.1056/NEJM199312303292701 – volume: 44 start-page: 470 issue: 05 year: 2012 ident: 1191_CR4 publication-title: Endoscopy doi: 10.1055/s-0031-1291666 – volume: 62 start-page: 398 issue: 8 year: 2019 ident: 1191_CR1 publication-title: J Korean Med Assoc doi: 10.5124/jkma.2019.62.8.398 – ident: 1191_CR2 – ident: 1191_CR20 doi: 10.1109/CVPR.2018.00913 – volume: 35 start-page: 630 issue: 2 year: 2015 ident: 1191_CR10 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2487997 – ident: 1191_CR23 – volume: 45 start-page: 3166 issue: 9 year: 2012 ident: 1191_CR9 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.03.002 – ident: 1191_CR18 doi: 10.1109/CVPR42600.2020.01076 – ident: 1191_CR19 doi: 10.1109/CVPR.2017.106 – ident: 1191_CR22 – volume: 329 start-page: 1977 issue: 27 year: 1993 ident: 1191_CR3 publication-title: N Engl J Med doi: 10.1056/NEJM199312303292701 – volume: 7 start-page: 141 issue: 3 year: 2003 ident: 1191_CR7 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2003.813794 – ident: 1191_CR15 doi: 10.1109/CVPR.2019.00020 – ident: 1191_CR17 – volume: 11 start-page: 0010 issue: 4 year: 2006 ident: 1191_CR8 publication-title: J Biomed Opt – ident: 1191_CR24 doi: 10.1109/CVPR.2017.195 – ident: 1191_CR16 – volume-title: European conference on principles of data mining and knowledge discovery year: 2007 ident: 1191_CR11 – volume: 98 start-page: 1186 issue: 5 year: 2003 ident: 1191_CR5 publication-title: Am J Gastroenterol doi: 10.1111/j.1572-0241.2003.07448.x – ident: 1191_CR21 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 1191_CR6 publication-title: Sci Rep doi: 10.1038/s41598-019-56847-4 – volume: 126 start-page: 104029 year: 2020 ident: 1191_CR13 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.104029 – volume: 69 start-page: 170 issue: 1 year: 2020 ident: 1191_CR12 publication-title: Trans Korean Inst Electr Eng doi: 10.5370/KIEE.2020.69.1.170 – volume: 141 start-page: 1031 year: 2021 ident: 1191_CR14 publication-title: Comput Biol Med |
SSID | ssj0061053 |
Score | 2.2848618 |
Snippet | This study proposed a computer-assisted diagnosis system that detects polyps during colonoscopy using a multiscale network structure. Medical data require... |
SourceID | nrf crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 3057 |
SubjectTerms | Electrical Engineering Electrical Machines and Networks Electronics and Microelectronics Engineering Instrumentation Original Article Power Electronics 전기공학 |
Title | Improvement of Colon Polyp Detection Performance by Modifying the Multi-scale Network Structure and Data Augmentation |
URI | https://link.springer.com/article/10.1007/s42835-022-01191-3 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002874945 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Electrical Engineering & Technology, 2022, 17(5), , pp.3057-3065 |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2093-7423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061053 issn: 1975-0102 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67gUeEJ9iDJAlyFMxSuPEiR_TrFOZ2MRDkfYWxY5bTWPJtKZC3U_kV3HtfHl0VIOXKHVjK_U5vT62771G6GPAlSczj8MkB-SbL6OcCKE4yWmgXOFREQQ6Gvn0jM2--yfnwflg8MvyWlpX4rO8vTeu5H9QhTLAVUfJ_gOyXaNQAPeAL1wBYbg-CON6RUC1-_kJGLJCe7RtrsGOVKo-BfybFRoAWvO0zC_q2CYtOU38LVkBUNrV0XiE643qdb-xcJRV2SheL6-aIKXiL3K2Pk_HQK76HIeGWdXW8v1XpUYnqiyWpMiuLA8DKAXjQ36WZV9YjmabdUHATDeDbLNGAdPb1gmrZpUznThRol03pkcODxyeONPEiV0n8p1p7EwiZ9J9xc1NDM9bVpmH2sPQrc22MmWeyynR28yW9QXbFVojOcyGgntHidoxZGVyzRHzujrNHaH9mNj6AfwxVN5Jyn0pL9JlmV7epDD1-KKTP_t6v2oP7XshY94Q7cfHk8lZqwtAp5qcqN2PaUK4TCDn1qvckUl7xc1ia6feCKD5U_SkgRrHNQ2foYEqnqPHVj7LF2htERKXC2wIiQ0hcUdIbBESiw3uCImBkNgiJG4IiTtCYiAk1oTENiFfovnxdJ7MSHOuB5EgsCsyFpLT3KOUqcCjufCZNxYg7Klki9xXilGR-ws3ynxXZszXGexCzrhyM_gEkvoVGhZloV4j7OWREAsmJYMawg3EGFqDKbMKWRiqjB6gcduLqWxy3uujV36kXbZu0_Mp9Hxqej6FOqOuznWd8WXn0x8AHMOFHZw4QJ9a8NLGfqx2NPrmQY0eokf9f-0tGgIW6h0o5Eq8b6j3GzVAtPY |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+Colon+Polyp+Detection+Performance+by+Modifying+the+Multi-scale+Network+Structure+and+Data+Augmentation&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Lee+Jeong-nam&rft.au=Chae+Jung-woo&rft.au=Cho+Hyun-chong&rft.date=2022-09-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C&rft.issn=1975-0102&rft.eissn=2093-7423&rft.spage=3057&rft.epage=3065&rft_id=info:doi/10.1007%2Fs42835-022-01191-3&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10040309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon |