Molecular Identification and Functional Characterization of a Putrescine Hydroxycinnamoyltransferase in Suspension Cells of Bamboo (Phyllostachys nigra)
Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous phenylpropanoid-derived compounds based on the rational metabolic-flow switching strategy. In the strategy, the biosynthetic pathway of hydroxycinnamoylp...
        Saved in:
      
    
          | Published in | Applied biochemistry and biotechnology | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
        
        09.08.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0273-2289 1559-0291 1559-0291  | 
| DOI | 10.1007/s12010-025-05349-3 | 
Cover
| Abstract | Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous phenylpropanoid-derived compounds based on the rational metabolic-flow switching strategy. In the strategy, the biosynthetic pathway of hydroxycinnamoylputrescines, the major secondary metabolites in Pn cells, was redirected to the biosynthetic pathways of the compounds of interest through genetic transformation. To improve the efficiency of metabolic-flow switching in transgenic Pn cells, functionally disrupting the endogenous gene encoding putrescine hydroxycinnamoyltransferase (PHT), catalyzing the formation of hydroxycinnamoylputrescine, may be a promising strategy. In this study, we identified the gene (PnPHT1) encoding PHT following the purification of a native enzyme from Pn cells treated with a chitosan oligomer, an elicitor used to promote PHT production. PnPHT1 was revealed to belong to Clade IVa of the BAHD acyltransferase superfamily, similar to other PHTs, and catalyzed the formation of hydroxycinnamoylputrescines, with feruloyl-CoA and putrescine as the preferred acyl donor and acceptor, respectively. PnPHT1 transcript levels rapidly increased after Pn cells were treated with a chitosan oligomer, with peaking at 24 h, which was markedly quicker than the transcriptional induction after 10 days of culture without elicitor treatment. Combining the culture system using chitosan oligomer elicitor with PnPHT1-knockout/knockdown will increase the utility of Pn cells as a host for producing exogenous phenylpropanoid-derived compounds via rational metabolic-flow switching. | 
    
|---|---|
| AbstractList | Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous phenylpropanoid-derived compounds based on the rational metabolic-flow switching strategy. In the strategy, the biosynthetic pathway of hydroxycinnamoylputrescines, the major secondary metabolites in Pn cells, was redirected to the biosynthetic pathways of the compounds of interest through genetic transformation. To improve the efficiency of metabolic-flow switching in transgenic Pn cells, functionally disrupting the endogenous gene encoding putrescine hydroxycinnamoyltransferase (PHT), catalyzing the formation of hydroxycinnamoylputrescine, may be a promising strategy. In this study, we identified the gene (PnPHT1) encoding PHT following the purification of a native enzyme from Pn cells treated with a chitosan oligomer, an elicitor used to promote PHT production. PnPHT1 was revealed to belong to Clade IVa of the BAHD acyltransferase superfamily, similar to other PHTs, and catalyzed the formation of hydroxycinnamoylputrescines, with feruloyl-CoA and putrescine as the preferred acyl donor and acceptor, respectively. PnPHT1 transcript levels rapidly increased after Pn cells were treated with a chitosan oligomer, with peaking at 24 h, which was markedly quicker than the transcriptional induction after 10 days of culture without elicitor treatment. Combining the culture system using chitosan oligomer elicitor with PnPHT1-knockout/knockdown will increase the utility of Pn cells as a host for producing exogenous phenylpropanoid-derived compounds via rational metabolic-flow switching.Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous phenylpropanoid-derived compounds based on the rational metabolic-flow switching strategy. In the strategy, the biosynthetic pathway of hydroxycinnamoylputrescines, the major secondary metabolites in Pn cells, was redirected to the biosynthetic pathways of the compounds of interest through genetic transformation. To improve the efficiency of metabolic-flow switching in transgenic Pn cells, functionally disrupting the endogenous gene encoding putrescine hydroxycinnamoyltransferase (PHT), catalyzing the formation of hydroxycinnamoylputrescine, may be a promising strategy. In this study, we identified the gene (PnPHT1) encoding PHT following the purification of a native enzyme from Pn cells treated with a chitosan oligomer, an elicitor used to promote PHT production. PnPHT1 was revealed to belong to Clade IVa of the BAHD acyltransferase superfamily, similar to other PHTs, and catalyzed the formation of hydroxycinnamoylputrescines, with feruloyl-CoA and putrescine as the preferred acyl donor and acceptor, respectively. PnPHT1 transcript levels rapidly increased after Pn cells were treated with a chitosan oligomer, with peaking at 24 h, which was markedly quicker than the transcriptional induction after 10 days of culture without elicitor treatment. Combining the culture system using chitosan oligomer elicitor with PnPHT1-knockout/knockdown will increase the utility of Pn cells as a host for producing exogenous phenylpropanoid-derived compounds via rational metabolic-flow switching. Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous phenylpropanoid-derived compounds based on the rational metabolic-flow switching strategy. In the strategy, the biosynthetic pathway of hydroxycinnamoylputrescines, the major secondary metabolites in Pn cells, was redirected to the biosynthetic pathways of the compounds of interest through genetic transformation. To improve the efficiency of metabolic-flow switching in transgenic Pn cells, functionally disrupting the endogenous gene encoding putrescine hydroxycinnamoyltransferase (PHT), catalyzing the formation of hydroxycinnamoylputrescine, may be a promising strategy. In this study, we identified the gene (PnPHT1) encoding PHT following the purification of a native enzyme from Pn cells treated with a chitosan oligomer, an elicitor used to promote PHT production. PnPHT1 was revealed to belong to Clade IVa of the BAHD acyltransferase superfamily, similar to other PHTs, and catalyzed the formation of hydroxycinnamoylputrescines, with feruloyl-CoA and putrescine as the preferred acyl donor and acceptor, respectively. PnPHT1 transcript levels rapidly increased after Pn cells were treated with a chitosan oligomer, with peaking at 24 h, which was markedly quicker than the transcriptional induction after 10 days of culture without elicitor treatment. Combining the culture system using chitosan oligomer elicitor with PnPHT1-knockout/knockdown will increase the utility of Pn cells as a host for producing exogenous phenylpropanoid-derived compounds via rational metabolic-flow switching.  | 
    
| Author | Nomura, Taiji Kato, Yasuo  | 
    
| Author_xml | – sequence: 1 givenname: Taiji orcidid: 0000-0003-4876-9866 surname: Nomura fullname: Nomura, Taiji – sequence: 2 givenname: Yasuo orcidid: 0000-0002-9731-799X surname: Kato fullname: Kato, Yasuo  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40782307$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNo9kU1v1DAQhi1URHcX_gCHysdyCPgjXsdHWLW0UhGVgLM1sSdsKsde7ERq-CX8XLLdwmm-3hmN3mdNzmKKSMhbzt5zxvSHwgXjrGJCVUzJ2lTyBVlxpczSMvyMrJjQshKiMedkXcoDY1w0Sr8i5zXTjZBMr8ifLymgmwJkeusxjn3XOxj7FClET6-n6I4FBLrbQwY3Yu5_n-apo0DvpzFjcX1EejP7nB7nJY8wpDmMGWLpMENB2kf6bSoHjOW4ucMQynH_EwxtSvTyfj-HkMoIbj8XGvufGd69Ji87CAXfPMcN-XF99X13U919_Xy7-3hXOaG2Y8WlMpqzmkuU3G_RtMYb1J1THpURzrSqBq06XXNoONsKbUQravBCys6jkRtyebp7yOnXhGW0Q1_c8iFETFOxUshmsbNZHN6Qi2fp1A7o7SH3A-TZ_nNzEYiTwOVUSsbuv4Qze0RmT8jsgsw-IbNS_gXov4vC | 
    
| Cites_doi | 10.5511/plantbiotechnology.22.119 10.1111/tpj.16013 10.1016/j.phytochem.2024.114271 10.5511/plantbiotechnology.10.1101a 10.1126/science.3890182 10.1104/pp.111.187229 10.1111/j.1467-7652.2011.00664.x 10.1111/j.1399-3054.1962.tb08052.x 10.1111/jipb.12480 10.1007/s11101-015-9417-1 10.1038/s41598-018-31566-4 10.1146/annurev-arplant-042110-103814 10.1271/bbb.130021 10.1007/s12010-021-03629-2 10.5511/plantbiotechnology.23.1218a 10.3389/fpls.2020.610118 10.5511/plantbiotechnology.20.1 10.1146/annurev-arplant-060223-013842 10.1146/annurev.arplant.043008.092035 10.1016/j.jbiosc.2020.02.010 10.1126/science.336.6089.1657 10.1007/s12010-024-05096-x 10.1038/s41467-024-47968-0 10.1093/pcp/pcr165 10.1104/pp.114.251371 10.1016/0031-9422(89)80035-4 10.1007/s11240-017-1332-2 10.1104/pp.89.2.488 10.1016/j.btre.2020.e00450 10.1038/ncomms4438 10.1093/molbev/msy096 10.1016/j.pbi.2006.03.016 10.1186/1746-4811-8-40 10.1186/1471-2164-12-236 10.5511/plantbiotechnology.13.0704a 10.1007/s12010-021-03522-y 10.1371/journal.pone.0151350 10.1186/1471-2229-10-116 10.1104/pp.98.4.1264 10.1104/pp.112.195388 10.1016/j.phytochem.2010.08.003 10.1016/S0031-9422(00)95177-X  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. | 
    
| Copyright_xml | – notice: 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. | 
    
| DBID | AAYXX CITATION NPM 7X8  | 
    
| DOI | 10.1007/s12010-025-05349-3 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Chemistry  | 
    
| EISSN | 1559-0291 | 
    
| ExternalDocumentID | 40782307 10_1007_s12010_025_05349_3  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: JP21K05403 – fundername: Japan Society for the Promotion of Science grantid: JP23K05059 – fundername: Japan Society for the Promotion of Science grantid: 25450134  | 
    
| GroupedDBID | --- .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40D 40E 53G 5GY 5VS 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHPBZ AHSBF AHWEU AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBNVY BENPR BGNMA BHPHI CITATION CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 HCIFZ HF~ HG6 HMJXF HRMNR IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y M7P MA- N9A NB0 NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3A S3B SAP SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSV TUC U2A U9L UG4 UOJIU UTJUX VC2 W48 WK8 YLTOR ZMTXR ~02 ~A9 ~EX ~KM ALIPV NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c256t-1359710413e31d6e9b9d9e7fc5de592c9b54a75f741a81062792b24ad233fde93 | 
    
| ISSN | 0273-2289 1559-0291  | 
    
| IngestDate | Fri Sep 05 15:14:28 EDT 2025 Sun Aug 10 01:31:16 EDT 2025 Wed Oct 01 05:31:31 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Phenolamide Metabolic engineering Hydroxycinnamoylputrescine BAHD acyltransferase Phenylamide Plant cell culture  | 
    
| Language | English | 
    
| License | 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c256t-1359710413e31d6e9b9d9e7fc5de592c9b54a75f741a81062792b24ad233fde93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-9731-799X 0000-0003-4876-9866  | 
    
| PMID | 40782307 | 
    
| PQID | 3238029805 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_3238029805 pubmed_primary_40782307 crossref_primary_10_1007_s12010_025_05349_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-08-09 | 
    
| PublicationDateYYYYMMDD | 2025-08-09 | 
    
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-09 day: 09  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Applied biochemistry and biotechnology | 
    
| PublicationTitleAlternate | Appl Biochem Biotechnol | 
    
| PublicationYear | 2025 | 
    
| References | S Kumar (5349_CR43) 2018; 35 SA Wilson (5349_CR5) 2012; 10 S Ogita (5349_CR13) 2005; 22 K Saito (5349_CR1) 2010; 61 T Nomura (5349_CR10) 2025; 197 5349_CR34 T Nomura (5349_CR8) 2021; 193 T Nomura (5349_CR12) 2018; 8 B Meurer-Grimes (5349_CR39) 1989; 89 K Tanabe (5349_CR23) 2016; 58 C Wang (5349_CR20) 2021; 11 Y Bai (5349_CR11) 2024; 75 E Pichersky (5349_CR24) 2011; 62 T Nomura (5349_CR28) 2013; 77 J Zeng (5349_CR36) 2024; 15 MF Balandrin (5349_CR3) 1985; 228 A Moglia (5349_CR35) 2014; 166 T Nomura (5349_CR14) 2013; 30 Y Niwa (5349_CR29) 2003; 20 T Nomura (5349_CR9) 2022; 112 5349_CR18 Z Peng (5349_CR27) 2010; 10 JC D’Auria (5349_CR31) 2006; 9 M Peng (5349_CR33) 2016; 28 M Petersen (5349_CR32) 2016; 15 M Roumani (5349_CR21) 2025; 229 J Negrel (5349_CR41) 1989; 28 S Ogita (5349_CR15) 2012; 8 JE Bassard (5349_CR37) 2010; 71 J Negrel (5349_CR40) 1992; 98 N Kitaoka (5349_CR16) 2020; 130 J Negrel (5349_CR42) 1991; 30 PJ Hines (5349_CR4) 2012; 336 N Ube (5349_CR17) 2024; 41 T Nomura (5349_CR30) 2012; 159 W Wen (5349_CR22) 2014; 5 MI Mhlongo (5349_CR38) 2016; 11 T Murashige (5349_CR25) 1962; 15 T Isah (5349_CR7) 2018; 132 S Ogita (5349_CR26) 2011; 28 N Onkokesung (5349_CR19) 2012; 158 FM Afendi (5349_CR2) 2012; 53 H Chandran (5349_CR6) 2020; 26  | 
    
| References_xml | – volume: 22 start-page: 119 year: 2005 ident: 5349_CR13 publication-title: Plant Biotechnology doi: 10.5511/plantbiotechnology.22.119 – volume: 112 start-page: 1266 year: 2022 ident: 5349_CR9 publication-title: The Plant Journal doi: 10.1111/tpj.16013 – volume: 229 start-page: 114271 year: 2025 ident: 5349_CR21 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2024.114271 – volume: 28 start-page: 43 year: 2011 ident: 5349_CR26 publication-title: Plant Biotechnology doi: 10.5511/plantbiotechnology.10.1101a – volume: 228 start-page: 1154 year: 1985 ident: 5349_CR3 publication-title: Science doi: 10.1126/science.3890182 – volume: 158 start-page: 389 year: 2012 ident: 5349_CR19 publication-title: Plant Physiology doi: 10.1104/pp.111.187229 – volume: 10 start-page: 249 year: 2012 ident: 5349_CR5 publication-title: Plant Biotechnology Journal doi: 10.1111/j.1467-7652.2011.00664.x – volume: 15 start-page: 473 year: 1962 ident: 5349_CR25 publication-title: Physiolosia Plantarum doi: 10.1111/j.1399-3054.1962.tb08052.x – volume: 58 start-page: 903 year: 2016 ident: 5349_CR23 publication-title: Journal of Integrative Plant Biology doi: 10.1111/jipb.12480 – volume: 15 start-page: 669 year: 2016 ident: 5349_CR32 publication-title: Phytochemistry Reviews doi: 10.1007/s11101-015-9417-1 – volume: 8 start-page: 13203 year: 2018 ident: 5349_CR12 publication-title: Scientific Reports doi: 10.1038/s41598-018-31566-4 – volume: 62 start-page: 549 year: 2011 ident: 5349_CR24 publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-042110-103814 – volume: 77 start-page: 1042 year: 2013 ident: 5349_CR28 publication-title: Bioscience, Biotechnology, and Biochemistry doi: 10.1271/bbb.130021 – volume: 193 start-page: 3496 year: 2021 ident: 5349_CR8 publication-title: Applied Biochemistry and Biotechnology doi: 10.1007/s12010-021-03629-2 – volume: 41 start-page: 83 year: 2024 ident: 5349_CR17 publication-title: Plant Biotechnology doi: 10.5511/plantbiotechnology.23.1218a – volume: 11 start-page: 610118 year: 2021 ident: 5349_CR20 publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.610118 – volume: 20 start-page: 1 year: 2003 ident: 5349_CR29 publication-title: Plant Biotechnology doi: 10.5511/plantbiotechnology.20.1 – volume: 75 start-page: 629 year: 2024 ident: 5349_CR11 publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-060223-013842 – volume: 61 start-page: 463 year: 2010 ident: 5349_CR1 publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.043008.092035 – volume: 130 start-page: 89 year: 2020 ident: 5349_CR16 publication-title: Journal of Bioscience and Bioengineering doi: 10.1016/j.jbiosc.2020.02.010 – volume: 336 start-page: 1657 year: 2012 ident: 5349_CR4 publication-title: Science doi: 10.1126/science.336.6089.1657 – volume: 28 start-page: 1533 year: 2016 ident: 5349_CR33 publication-title: The Plant Cell – volume: 197 start-page: 1225 year: 2025 ident: 5349_CR10 publication-title: Applied Biochemistry and Biotechnology doi: 10.1007/s12010-024-05096-x – volume: 15 start-page: 3623 year: 2024 ident: 5349_CR36 publication-title: Nature Communications doi: 10.1038/s41467-024-47968-0 – volume: 53 start-page: e1 year: 2012 ident: 5349_CR2 publication-title: Plant and Cell Physiology doi: 10.1093/pcp/pcr165 – volume: 166 start-page: 1777 year: 2014 ident: 5349_CR35 publication-title: Plant Physiology doi: 10.1104/pp.114.251371 – volume: 28 start-page: 477 year: 1989 ident: 5349_CR41 publication-title: Phytochemistry doi: 10.1016/0031-9422(89)80035-4 – volume: 132 start-page: 239 year: 2018 ident: 5349_CR7 publication-title: Plant Cell, Tissue and Organ Culture doi: 10.1007/s11240-017-1332-2 – volume: 89 start-page: 488 year: 1989 ident: 5349_CR39 publication-title: Plant Physiology doi: 10.1104/pp.89.2.488 – volume: 26 start-page: e00450 year: 2020 ident: 5349_CR6 publication-title: Biotechnology Reports doi: 10.1016/j.btre.2020.e00450 – volume: 5 start-page: 3438 year: 2014 ident: 5349_CR22 publication-title: Nature Communications doi: 10.1038/ncomms4438 – volume: 35 start-page: 1547 year: 2018 ident: 5349_CR43 publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msy096 – volume: 9 start-page: 331 year: 2006 ident: 5349_CR31 publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2006.03.016 – volume: 8 start-page: 40 year: 2012 ident: 5349_CR15 publication-title: Plant Methods doi: 10.1186/1746-4811-8-40 – ident: 5349_CR34 doi: 10.1186/1471-2164-12-236 – volume: 30 start-page: 447 year: 2013 ident: 5349_CR14 publication-title: Plant Biotechnology doi: 10.5511/plantbiotechnology.13.0704a – ident: 5349_CR18 doi: 10.1007/s12010-021-03522-y – volume: 11 start-page: e0151350 year: 2016 ident: 5349_CR38 publication-title: PLoS One doi: 10.1371/journal.pone.0151350 – volume: 10 start-page: 116 year: 2010 ident: 5349_CR27 publication-title: BMC Plant Biology doi: 10.1186/1471-2229-10-116 – volume: 98 start-page: 1264 year: 1992 ident: 5349_CR40 publication-title: Plant Physiology doi: 10.1104/pp.98.4.1264 – volume: 159 start-page: 565 year: 2012 ident: 5349_CR30 publication-title: Plant Physiology doi: 10.1104/pp.112.195388 – volume: 71 start-page: 1808 year: 2010 ident: 5349_CR37 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2010.08.003 – volume: 30 start-page: 1089 year: 1991 ident: 5349_CR42 publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)95177-X  | 
    
| SSID | ssj0012857 | 
    
| Score | 2.4456284 | 
    
| SecondaryResourceType | online_first | 
    
| Snippet | Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous... | 
    
| SourceID | proquest pubmed crossref  | 
    
| SourceType | Aggregation Database Index Database  | 
    
| Title | Molecular Identification and Functional Characterization of a Putrescine Hydroxycinnamoyltransferase in Suspension Cells of Bamboo (Phyllostachys nigra) | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40782307 https://www.proquest.com/docview/3238029805  | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1559-0291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012857 issn: 0273-2289 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1559-0291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012857 issn: 0273-2289 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1559-0291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012857 issn: 0273-2289 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4A9IBiXjZuMhBAoypTZSVs_rtWqCm1lEqlUniIntiGoTcqaPHS_hJ_LsZ1LuwIavESRpTiRvy_253N8zkHobUJ8Rf0ehx-JU9cXXd-Ne_A_xkIyj_GkT4WORr6YdMdT_-MsmLUHMk10SREfJ9e_jSv5H1ShDXDVUbL_gGzTKTTAPeALV0AYrrfC-KKubevYeFtVGeCMR2AEK1Zl6Bs2WZmvG4XInctSx4lox7ozXgt9nAXuM77I1_PCyFl5BUucNoh8LldLfdAdnhzKuc23POALEOhaoF5-W8_nOajMBDB3svSrLl3ENlVvI3VTXZ_LFpgz3wgNxY5tf5IvSlP9yAl5-j1tlgRuKj45X_iqzDeNFSQwR-XY5vwaMNcjtkDXsdxt25nRvSrC2XrtdY8B9ZlL2_Wr9tlPPkWj6fl5FJ7NwnfLH66uLKY98FWZlbtoj8DM73XQ3uloMJg0vibSN_lgm8-oQqtsgOXN127Llz_sSYw2CR-iB9WmAp9ahjxCd2R2gO4N66E-QPsbaScfo58Nb_A2bzBgglve4Ju8wbnCHLe8wX_hDU4z3PIGG97o5y1v8Pst1mDDmg9P0HR0Fg7HblWhw01AKhfuCYX9KGzojSlddCWLmWCyp5JAyICRhMWBz3uBAtnK-yc6IzYjMfG5IJQqmA3oU9TJ8kweIqyI9KRHVFdJ7osYZgoQw4pJkK-SMhEcIace-GhpE7FEbcptDVMEMEUGpogeoTc1NhEMtXaC8Uzm5SqioFF12QEPenxmQWv60z5tHRjx_BZPv0D3W4K_RJ3iqpSvQJ8W8euKYL8AayGYXA | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Identification+and+Functional+Characterization+of+a+Putrescine+Hydroxycinnamoyltransferase+in+Suspension+Cells+of+Bamboo+%28Phyllostachys+nigra%29&rft.jtitle=Applied+biochemistry+and+biotechnology&rft.au=Nomura%2C+Taiji&rft.au=Kato%2C+Yasuo&rft.date=2025-08-09&rft.issn=1559-0291&rft.eissn=1559-0291&rft_id=info:doi/10.1007%2Fs12010-025-05349-3&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-2289&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-2289&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-2289&client=summon |