Molecular Identification and Functional Characterization of a Putrescine Hydroxycinnamoyltransferase in Suspension Cells of Bamboo (Phyllostachys nigra)

Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous phenylpropanoid-derived compounds based on the rational metabolic-flow switching strategy. In the strategy, the biosynthetic pathway of hydroxycinnamoylp...

Full description

Saved in:
Bibliographic Details
Published inApplied biochemistry and biotechnology
Main Authors Nomura, Taiji, Kato, Yasuo
Format Journal Article
LanguageEnglish
Published United States 09.08.2025
Subjects
Online AccessGet full text
ISSN0273-2289
1559-0291
1559-0291
DOI10.1007/s12010-025-05349-3

Cover

Abstract Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous phenylpropanoid-derived compounds based on the rational metabolic-flow switching strategy. In the strategy, the biosynthetic pathway of hydroxycinnamoylputrescines, the major secondary metabolites in Pn cells, was redirected to the biosynthetic pathways of the compounds of interest through genetic transformation. To improve the efficiency of metabolic-flow switching in transgenic Pn cells, functionally disrupting the endogenous gene encoding putrescine hydroxycinnamoyltransferase (PHT), catalyzing the formation of hydroxycinnamoylputrescine, may be a promising strategy. In this study, we identified the gene (PnPHT1) encoding PHT following the purification of a native enzyme from Pn cells treated with a chitosan oligomer, an elicitor used to promote PHT production. PnPHT1 was revealed to belong to Clade IVa of the BAHD acyltransferase superfamily, similar to other PHTs, and catalyzed the formation of hydroxycinnamoylputrescines, with feruloyl-CoA and putrescine as the preferred acyl donor and acceptor, respectively. PnPHT1 transcript levels rapidly increased after Pn cells were treated with a chitosan oligomer, with peaking at 24 h, which was markedly quicker than the transcriptional induction after 10 days of culture without elicitor treatment. Combining the culture system using chitosan oligomer elicitor with PnPHT1-knockout/knockdown will increase the utility of Pn cells as a host for producing exogenous phenylpropanoid-derived compounds via rational metabolic-flow switching.
AbstractList Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous phenylpropanoid-derived compounds based on the rational metabolic-flow switching strategy. In the strategy, the biosynthetic pathway of hydroxycinnamoylputrescines, the major secondary metabolites in Pn cells, was redirected to the biosynthetic pathways of the compounds of interest through genetic transformation. To improve the efficiency of metabolic-flow switching in transgenic Pn cells, functionally disrupting the endogenous gene encoding putrescine hydroxycinnamoyltransferase (PHT), catalyzing the formation of hydroxycinnamoylputrescine, may be a promising strategy. In this study, we identified the gene (PnPHT1) encoding PHT following the purification of a native enzyme from Pn cells treated with a chitosan oligomer, an elicitor used to promote PHT production. PnPHT1 was revealed to belong to Clade IVa of the BAHD acyltransferase superfamily, similar to other PHTs, and catalyzed the formation of hydroxycinnamoylputrescines, with feruloyl-CoA and putrescine as the preferred acyl donor and acceptor, respectively. PnPHT1 transcript levels rapidly increased after Pn cells were treated with a chitosan oligomer, with peaking at 24 h, which was markedly quicker than the transcriptional induction after 10 days of culture without elicitor treatment. Combining the culture system using chitosan oligomer elicitor with PnPHT1-knockout/knockdown will increase the utility of Pn cells as a host for producing exogenous phenylpropanoid-derived compounds via rational metabolic-flow switching.Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous phenylpropanoid-derived compounds based on the rational metabolic-flow switching strategy. In the strategy, the biosynthetic pathway of hydroxycinnamoylputrescines, the major secondary metabolites in Pn cells, was redirected to the biosynthetic pathways of the compounds of interest through genetic transformation. To improve the efficiency of metabolic-flow switching in transgenic Pn cells, functionally disrupting the endogenous gene encoding putrescine hydroxycinnamoyltransferase (PHT), catalyzing the formation of hydroxycinnamoylputrescine, may be a promising strategy. In this study, we identified the gene (PnPHT1) encoding PHT following the purification of a native enzyme from Pn cells treated with a chitosan oligomer, an elicitor used to promote PHT production. PnPHT1 was revealed to belong to Clade IVa of the BAHD acyltransferase superfamily, similar to other PHTs, and catalyzed the formation of hydroxycinnamoylputrescines, with feruloyl-CoA and putrescine as the preferred acyl donor and acceptor, respectively. PnPHT1 transcript levels rapidly increased after Pn cells were treated with a chitosan oligomer, with peaking at 24 h, which was markedly quicker than the transcriptional induction after 10 days of culture without elicitor treatment. Combining the culture system using chitosan oligomer elicitor with PnPHT1-knockout/knockdown will increase the utility of Pn cells as a host for producing exogenous phenylpropanoid-derived compounds via rational metabolic-flow switching.
Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous phenylpropanoid-derived compounds based on the rational metabolic-flow switching strategy. In the strategy, the biosynthetic pathway of hydroxycinnamoylputrescines, the major secondary metabolites in Pn cells, was redirected to the biosynthetic pathways of the compounds of interest through genetic transformation. To improve the efficiency of metabolic-flow switching in transgenic Pn cells, functionally disrupting the endogenous gene encoding putrescine hydroxycinnamoyltransferase (PHT), catalyzing the formation of hydroxycinnamoylputrescine, may be a promising strategy. In this study, we identified the gene (PnPHT1) encoding PHT following the purification of a native enzyme from Pn cells treated with a chitosan oligomer, an elicitor used to promote PHT production. PnPHT1 was revealed to belong to Clade IVa of the BAHD acyltransferase superfamily, similar to other PHTs, and catalyzed the formation of hydroxycinnamoylputrescines, with feruloyl-CoA and putrescine as the preferred acyl donor and acceptor, respectively. PnPHT1 transcript levels rapidly increased after Pn cells were treated with a chitosan oligomer, with peaking at 24 h, which was markedly quicker than the transcriptional induction after 10 days of culture without elicitor treatment. Combining the culture system using chitosan oligomer elicitor with PnPHT1-knockout/knockdown will increase the utility of Pn cells as a host for producing exogenous phenylpropanoid-derived compounds via rational metabolic-flow switching.
Author Nomura, Taiji
Kato, Yasuo
Author_xml – sequence: 1
  givenname: Taiji
  orcidid: 0000-0003-4876-9866
  surname: Nomura
  fullname: Nomura, Taiji
– sequence: 2
  givenname: Yasuo
  orcidid: 0000-0002-9731-799X
  surname: Kato
  fullname: Kato, Yasuo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40782307$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1v1DAQhi1URHcX_gCHysdyCPgjXsdHWLW0UhGVgLM1sSdsKsde7ERq-CX8XLLdwmm-3hmN3mdNzmKKSMhbzt5zxvSHwgXjrGJCVUzJ2lTyBVlxpczSMvyMrJjQshKiMedkXcoDY1w0Sr8i5zXTjZBMr8ifLymgmwJkeusxjn3XOxj7FClET6-n6I4FBLrbQwY3Yu5_n-apo0DvpzFjcX1EejP7nB7nJY8wpDmMGWLpMENB2kf6bSoHjOW4ucMQynH_EwxtSvTyfj-HkMoIbj8XGvufGd69Ji87CAXfPMcN-XF99X13U919_Xy7-3hXOaG2Y8WlMpqzmkuU3G_RtMYb1J1THpURzrSqBq06XXNoONsKbUQravBCys6jkRtyebp7yOnXhGW0Q1_c8iFETFOxUshmsbNZHN6Qi2fp1A7o7SH3A-TZ_nNzEYiTwOVUSsbuv4Qze0RmT8jsgsw-IbNS_gXov4vC
Cites_doi 10.5511/plantbiotechnology.22.119
10.1111/tpj.16013
10.1016/j.phytochem.2024.114271
10.5511/plantbiotechnology.10.1101a
10.1126/science.3890182
10.1104/pp.111.187229
10.1111/j.1467-7652.2011.00664.x
10.1111/j.1399-3054.1962.tb08052.x
10.1111/jipb.12480
10.1007/s11101-015-9417-1
10.1038/s41598-018-31566-4
10.1146/annurev-arplant-042110-103814
10.1271/bbb.130021
10.1007/s12010-021-03629-2
10.5511/plantbiotechnology.23.1218a
10.3389/fpls.2020.610118
10.5511/plantbiotechnology.20.1
10.1146/annurev-arplant-060223-013842
10.1146/annurev.arplant.043008.092035
10.1016/j.jbiosc.2020.02.010
10.1126/science.336.6089.1657
10.1007/s12010-024-05096-x
10.1038/s41467-024-47968-0
10.1093/pcp/pcr165
10.1104/pp.114.251371
10.1016/0031-9422(89)80035-4
10.1007/s11240-017-1332-2
10.1104/pp.89.2.488
10.1016/j.btre.2020.e00450
10.1038/ncomms4438
10.1093/molbev/msy096
10.1016/j.pbi.2006.03.016
10.1186/1746-4811-8-40
10.1186/1471-2164-12-236
10.5511/plantbiotechnology.13.0704a
10.1007/s12010-021-03522-y
10.1371/journal.pone.0151350
10.1186/1471-2229-10-116
10.1104/pp.98.4.1264
10.1104/pp.112.195388
10.1016/j.phytochem.2010.08.003
10.1016/S0031-9422(00)95177-X
ContentType Journal Article
Copyright 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Copyright_xml – notice: 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s12010-025-05349-3
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1559-0291
ExternalDocumentID 40782307
10_1007_s12010_025_05349_3
Genre Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP21K05403
– fundername: Japan Society for the Promotion of Science
  grantid: JP23K05059
– fundername: Japan Society for the Promotion of Science
  grantid: 25450134
GroupedDBID ---
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40D
40E
53G
5GY
5VS
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBNVY
BENPR
BGNMA
BHPHI
CITATION
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
HCIFZ
HF~
HG6
HMJXF
HRMNR
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
M7P
MA-
N9A
NB0
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W48
WK8
YLTOR
ZMTXR
~02
~A9
~EX
~KM
ALIPV
NPM
7X8
ID FETCH-LOGICAL-c256t-1359710413e31d6e9b9d9e7fc5de592c9b54a75f741a81062792b24ad233fde93
ISSN 0273-2289
1559-0291
IngestDate Fri Sep 05 15:14:28 EDT 2025
Sun Aug 10 01:31:16 EDT 2025
Wed Oct 01 05:31:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Phenolamide
Metabolic engineering
Hydroxycinnamoylputrescine
BAHD acyltransferase
Phenylamide
Plant cell culture
Language English
License 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c256t-1359710413e31d6e9b9d9e7fc5de592c9b54a75f741a81062792b24ad233fde93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9731-799X
0000-0003-4876-9866
PMID 40782307
PQID 3238029805
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3238029805
pubmed_primary_40782307
crossref_primary_10_1007_s12010_025_05349_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-09
PublicationDateYYYYMMDD 2025-08-09
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied biochemistry and biotechnology
PublicationTitleAlternate Appl Biochem Biotechnol
PublicationYear 2025
References S Kumar (5349_CR43) 2018; 35
SA Wilson (5349_CR5) 2012; 10
S Ogita (5349_CR13) 2005; 22
K Saito (5349_CR1) 2010; 61
T Nomura (5349_CR10) 2025; 197
5349_CR34
T Nomura (5349_CR8) 2021; 193
T Nomura (5349_CR12) 2018; 8
B Meurer-Grimes (5349_CR39) 1989; 89
K Tanabe (5349_CR23) 2016; 58
C Wang (5349_CR20) 2021; 11
Y Bai (5349_CR11) 2024; 75
E Pichersky (5349_CR24) 2011; 62
T Nomura (5349_CR28) 2013; 77
J Zeng (5349_CR36) 2024; 15
MF Balandrin (5349_CR3) 1985; 228
A Moglia (5349_CR35) 2014; 166
T Nomura (5349_CR14) 2013; 30
Y Niwa (5349_CR29) 2003; 20
T Nomura (5349_CR9) 2022; 112
5349_CR18
Z Peng (5349_CR27) 2010; 10
JC D’Auria (5349_CR31) 2006; 9
M Peng (5349_CR33) 2016; 28
M Petersen (5349_CR32) 2016; 15
M Roumani (5349_CR21) 2025; 229
J Negrel (5349_CR41) 1989; 28
S Ogita (5349_CR15) 2012; 8
JE Bassard (5349_CR37) 2010; 71
J Negrel (5349_CR40) 1992; 98
N Kitaoka (5349_CR16) 2020; 130
J Negrel (5349_CR42) 1991; 30
PJ Hines (5349_CR4) 2012; 336
N Ube (5349_CR17) 2024; 41
T Nomura (5349_CR30) 2012; 159
W Wen (5349_CR22) 2014; 5
MI Mhlongo (5349_CR38) 2016; 11
T Murashige (5349_CR25) 1962; 15
T Isah (5349_CR7) 2018; 132
S Ogita (5349_CR26) 2011; 28
N Onkokesung (5349_CR19) 2012; 158
FM Afendi (5349_CR2) 2012; 53
H Chandran (5349_CR6) 2020; 26
References_xml – volume: 22
  start-page: 119
  year: 2005
  ident: 5349_CR13
  publication-title: Plant Biotechnology
  doi: 10.5511/plantbiotechnology.22.119
– volume: 112
  start-page: 1266
  year: 2022
  ident: 5349_CR9
  publication-title: The Plant Journal
  doi: 10.1111/tpj.16013
– volume: 229
  start-page: 114271
  year: 2025
  ident: 5349_CR21
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2024.114271
– volume: 28
  start-page: 43
  year: 2011
  ident: 5349_CR26
  publication-title: Plant Biotechnology
  doi: 10.5511/plantbiotechnology.10.1101a
– volume: 228
  start-page: 1154
  year: 1985
  ident: 5349_CR3
  publication-title: Science
  doi: 10.1126/science.3890182
– volume: 158
  start-page: 389
  year: 2012
  ident: 5349_CR19
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.187229
– volume: 10
  start-page: 249
  year: 2012
  ident: 5349_CR5
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/j.1467-7652.2011.00664.x
– volume: 15
  start-page: 473
  year: 1962
  ident: 5349_CR25
  publication-title: Physiolosia Plantarum
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– volume: 58
  start-page: 903
  year: 2016
  ident: 5349_CR23
  publication-title: Journal of Integrative Plant Biology
  doi: 10.1111/jipb.12480
– volume: 15
  start-page: 669
  year: 2016
  ident: 5349_CR32
  publication-title: Phytochemistry Reviews
  doi: 10.1007/s11101-015-9417-1
– volume: 8
  start-page: 13203
  year: 2018
  ident: 5349_CR12
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-31566-4
– volume: 62
  start-page: 549
  year: 2011
  ident: 5349_CR24
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev-arplant-042110-103814
– volume: 77
  start-page: 1042
  year: 2013
  ident: 5349_CR28
  publication-title: Bioscience, Biotechnology, and Biochemistry
  doi: 10.1271/bbb.130021
– volume: 193
  start-page: 3496
  year: 2021
  ident: 5349_CR8
  publication-title: Applied Biochemistry and Biotechnology
  doi: 10.1007/s12010-021-03629-2
– volume: 41
  start-page: 83
  year: 2024
  ident: 5349_CR17
  publication-title: Plant Biotechnology
  doi: 10.5511/plantbiotechnology.23.1218a
– volume: 11
  start-page: 610118
  year: 2021
  ident: 5349_CR20
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.610118
– volume: 20
  start-page: 1
  year: 2003
  ident: 5349_CR29
  publication-title: Plant Biotechnology
  doi: 10.5511/plantbiotechnology.20.1
– volume: 75
  start-page: 629
  year: 2024
  ident: 5349_CR11
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev-arplant-060223-013842
– volume: 61
  start-page: 463
  year: 2010
  ident: 5349_CR1
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.043008.092035
– volume: 130
  start-page: 89
  year: 2020
  ident: 5349_CR16
  publication-title: Journal of Bioscience and Bioengineering
  doi: 10.1016/j.jbiosc.2020.02.010
– volume: 336
  start-page: 1657
  year: 2012
  ident: 5349_CR4
  publication-title: Science
  doi: 10.1126/science.336.6089.1657
– volume: 28
  start-page: 1533
  year: 2016
  ident: 5349_CR33
  publication-title: The Plant Cell
– volume: 197
  start-page: 1225
  year: 2025
  ident: 5349_CR10
  publication-title: Applied Biochemistry and Biotechnology
  doi: 10.1007/s12010-024-05096-x
– volume: 15
  start-page: 3623
  year: 2024
  ident: 5349_CR36
  publication-title: Nature Communications
  doi: 10.1038/s41467-024-47968-0
– volume: 53
  start-page: e1
  year: 2012
  ident: 5349_CR2
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcr165
– volume: 166
  start-page: 1777
  year: 2014
  ident: 5349_CR35
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.251371
– volume: 28
  start-page: 477
  year: 1989
  ident: 5349_CR41
  publication-title: Phytochemistry
  doi: 10.1016/0031-9422(89)80035-4
– volume: 132
  start-page: 239
  year: 2018
  ident: 5349_CR7
  publication-title: Plant Cell, Tissue and Organ Culture
  doi: 10.1007/s11240-017-1332-2
– volume: 89
  start-page: 488
  year: 1989
  ident: 5349_CR39
  publication-title: Plant Physiology
  doi: 10.1104/pp.89.2.488
– volume: 26
  start-page: e00450
  year: 2020
  ident: 5349_CR6
  publication-title: Biotechnology Reports
  doi: 10.1016/j.btre.2020.e00450
– volume: 5
  start-page: 3438
  year: 2014
  ident: 5349_CR22
  publication-title: Nature Communications
  doi: 10.1038/ncomms4438
– volume: 35
  start-page: 1547
  year: 2018
  ident: 5349_CR43
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msy096
– volume: 9
  start-page: 331
  year: 2006
  ident: 5349_CR31
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2006.03.016
– volume: 8
  start-page: 40
  year: 2012
  ident: 5349_CR15
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-8-40
– ident: 5349_CR34
  doi: 10.1186/1471-2164-12-236
– volume: 30
  start-page: 447
  year: 2013
  ident: 5349_CR14
  publication-title: Plant Biotechnology
  doi: 10.5511/plantbiotechnology.13.0704a
– ident: 5349_CR18
  doi: 10.1007/s12010-021-03522-y
– volume: 11
  start-page: e0151350
  year: 2016
  ident: 5349_CR38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0151350
– volume: 10
  start-page: 116
  year: 2010
  ident: 5349_CR27
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-10-116
– volume: 98
  start-page: 1264
  year: 1992
  ident: 5349_CR40
  publication-title: Plant Physiology
  doi: 10.1104/pp.98.4.1264
– volume: 159
  start-page: 565
  year: 2012
  ident: 5349_CR30
  publication-title: Plant Physiology
  doi: 10.1104/pp.112.195388
– volume: 71
  start-page: 1808
  year: 2010
  ident: 5349_CR37
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.08.003
– volume: 30
  start-page: 1089
  year: 1991
  ident: 5349_CR42
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)95177-X
SSID ssj0012857
Score 2.4456284
SecondaryResourceType online_first
Snippet Cultured cells of a bamboo species (Phyllostachys nigra; Pn) were previously demonstrated to be a suitable host for the bioproduction of exogenous...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title Molecular Identification and Functional Characterization of a Putrescine Hydroxycinnamoyltransferase in Suspension Cells of Bamboo (Phyllostachys nigra)
URI https://www.ncbi.nlm.nih.gov/pubmed/40782307
https://www.proquest.com/docview/3238029805
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1559-0291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012857
  issn: 0273-2289
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1559-0291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012857
  issn: 0273-2289
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1559-0291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012857
  issn: 0273-2289
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4A9IBiXjZuMhBAoypTZSVs_rtWqCm1lEqlUniIntiGoTcqaPHS_hJ_LsZ1LuwIavESRpTiRvy_253N8zkHobUJ8Rf0ehx-JU9cXXd-Ne_A_xkIyj_GkT4WORr6YdMdT_-MsmLUHMk10SREfJ9e_jSv5H1ShDXDVUbL_gGzTKTTAPeALV0AYrrfC-KKubevYeFtVGeCMR2AEK1Zl6Bs2WZmvG4XInctSx4lox7ozXgt9nAXuM77I1_PCyFl5BUucNoh8LldLfdAdnhzKuc23POALEOhaoF5-W8_nOajMBDB3svSrLl3ENlVvI3VTXZ_LFpgz3wgNxY5tf5IvSlP9yAl5-j1tlgRuKj45X_iqzDeNFSQwR-XY5vwaMNcjtkDXsdxt25nRvSrC2XrtdY8B9ZlL2_Wr9tlPPkWj6fl5FJ7NwnfLH66uLKY98FWZlbtoj8DM73XQ3uloMJg0vibSN_lgm8-oQqtsgOXN127Llz_sSYw2CR-iB9WmAp9ahjxCd2R2gO4N66E-QPsbaScfo58Nb_A2bzBgglve4Ju8wbnCHLe8wX_hDU4z3PIGG97o5y1v8Pst1mDDmg9P0HR0Fg7HblWhw01AKhfuCYX9KGzojSlddCWLmWCyp5JAyICRhMWBz3uBAtnK-yc6IzYjMfG5IJQqmA3oU9TJ8kweIqyI9KRHVFdJ7osYZgoQw4pJkK-SMhEcIace-GhpE7FEbcptDVMEMEUGpogeoTc1NhEMtXaC8Uzm5SqioFF12QEPenxmQWv60z5tHRjx_BZPv0D3W4K_RJ3iqpSvQJ8W8euKYL8AayGYXA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Identification+and+Functional+Characterization+of+a+Putrescine+Hydroxycinnamoyltransferase+in+Suspension+Cells+of+Bamboo+%28Phyllostachys+nigra%29&rft.jtitle=Applied+biochemistry+and+biotechnology&rft.au=Nomura%2C+Taiji&rft.au=Kato%2C+Yasuo&rft.date=2025-08-09&rft.issn=1559-0291&rft.eissn=1559-0291&rft_id=info:doi/10.1007%2Fs12010-025-05349-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-2289&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-2289&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-2289&client=summon