Reliability Modeling and Switching Decision Optimization for Standby Systems with Switching Time Redundancy

ABSTRACT Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online operating unit, requiring the standby unit to activate within a designated random time interval to ensure operational continuity. This p...

Full description

Saved in:
Bibliographic Details
Published inQuality and reliability engineering international Vol. 41; no. 7; pp. 2751 - 2764
Main Authors Qiu, Qingan, Sun, Rongchi, Liu, Bosen, Pei, Cuicui, Zhao, Xian
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.11.2025
Subjects
Online AccessGet full text
ISSN0748-8017
1099-1638
DOI10.1002/qre.3819

Cover

Abstract ABSTRACT Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online operating unit, requiring the standby unit to activate within a designated random time interval to ensure operational continuity. This paper examines a two‐unit warm standby system that integrates switching time redundancy. System failure can occur due to simultaneous failures of both units or failure of the standby unit's activation within the allowed redundancy period. The proposed warm standby system model with switching time redundancy is especially pertinent in critical applications, such as hospitals, where backup generators are vital for maintaining a continuous power supply to life‐support systems and other essential functions. Our primary aim is to identify the optimal switching timing for the standby unit's transition to the online mode, striking a balance between key trade‐offs: early activation may lead to excessive wear and increased operational costs, whereas delayed activation could result in detrimental downtime. We propose switching strategies aimed at (a) maximizing expected system lifetime and (b) maximizing expected operational profit. Numerical examples illustrate the practical applicability of these strategies and offer valuable guidance for effective operations management within warm standby systems.
AbstractList ABSTRACT Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online operating unit, requiring the standby unit to activate within a designated random time interval to ensure operational continuity. This paper examines a two‐unit warm standby system that integrates switching time redundancy. System failure can occur due to simultaneous failures of both units or failure of the standby unit's activation within the allowed redundancy period. The proposed warm standby system model with switching time redundancy is especially pertinent in critical applications, such as hospitals, where backup generators are vital for maintaining a continuous power supply to life‐support systems and other essential functions. Our primary aim is to identify the optimal switching timing for the standby unit's transition to the online mode, striking a balance between key trade‐offs: early activation may lead to excessive wear and increased operational costs, whereas delayed activation could result in detrimental downtime. We propose switching strategies aimed at (a) maximizing expected system lifetime and (b) maximizing expected operational profit. Numerical examples illustrate the practical applicability of these strategies and offer valuable guidance for effective operations management within warm standby systems.
Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online operating unit, requiring the standby unit to activate within a designated random time interval to ensure operational continuity. This paper examines a two‐unit warm standby system that integrates switching time redundancy. System failure can occur due to simultaneous failures of both units or failure of the standby unit's activation within the allowed redundancy period. The proposed warm standby system model with switching time redundancy is especially pertinent in critical applications, such as hospitals, where backup generators are vital for maintaining a continuous power supply to life‐support systems and other essential functions. Our primary aim is to identify the optimal switching timing for the standby unit's transition to the online mode, striking a balance between key trade‐offs: early activation may lead to excessive wear and increased operational costs, whereas delayed activation could result in detrimental downtime. We propose switching strategies aimed at (a) maximizing expected system lifetime and (b) maximizing expected operational profit. Numerical examples illustrate the practical applicability of these strategies and offer valuable guidance for effective operations management within warm standby systems.
Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online operating unit, requiring the standby unit to activate within a designated random time interval to ensure operational continuity. This paper examines a two‐unit warm standby system that integrates switching time redundancy. System failure can occur due to simultaneous failures of both units or failure of the standby unit's activation within the allowed redundancy period. The proposed warm standby system model with switching time redundancy is especially pertinent in critical applications, such as hospitals, where backup generators are vital for maintaining a continuous power supply to life‐support systems and other essential functions. Our primary aim is to identify the optimal switching timing for the standby unit's transition to the online mode, striking a balance between key trade‐offs: early activation may lead to excessive wear and increased operational costs, whereas delayed activation could result in detrimental downtime. We propose switching strategies aimed at (a) maximizing expected system lifetime and (b) maximizing expected operational profit. Numerical examples illustrate the practical applicability of these strategies and offer valuable guidance for effective operations management within warm standby systems.
Author Zhao, Xian
Sun, Rongchi
Pei, Cuicui
Qiu, Qingan
Liu, Bosen
Author_xml – sequence: 1
  givenname: Qingan
  orcidid: 0000-0001-8741-0536
  surname: Qiu
  fullname: Qiu, Qingan
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Rongchi
  surname: Sun
  fullname: Sun, Rongchi
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Bosen
  surname: Liu
  fullname: Liu, Bosen
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Cuicui
  surname: Pei
  fullname: Pei, Cuicui
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Xian
  surname: Zhao
  fullname: Zhao, Xian
  email: zhaoxian@bit.edu.cn
  organization: Digital Economy and Policy Intelligentization Key Laboratory of Ministry of Industry and Information Technology
BookMark eNp10MtKAzEUBuAgFWyr4CME3LiZmstckqXUeoFKsa3rMMlkbOpMpk2mlPHpzVgXblzl_PCdE_hHYGAbqwG4xmiCESJ3e6cnlGF-BoYYcR7hlLIBGKIsZhFDOLsAI--3CAXM2RB8LnVlcmkq03bwtSlCsh8wtwVcHU2rNn160Mp401i42LWmNl9524eycXDVBik7uOp8q2sPw8rmz-La1BoudXGwRW5VdwnOy7zy-ur3HYP3x9l6-hzNF08v0_t5pEiS8oiWrKAyy0hBEY4TFAbMUSapShmjmjBOmY4Zz6nSmeRJghQtCZFlgomUaUzH4OZ0d-ea_UH7Vmybg7PhS0FJknCGYtqr25NSrvHe6VLsnKlz1wmMRF-lCFWKvspAoxM9mkp3_zrxtpz9-G92kHcW
Cites_doi 10.1007/s42524-024-0140-8
10.1109/TR.2015.2500369
10.1109/TSMC.2015.2399472
10.1016/j.cie.2020.106348
10.2307/3214319
10.1016/S0951-8320(99)00023-X
10.1016/j.ejor.2013.10.051
10.1016/j.ress.2018.08.004
10.1016/j.ress.2023.109581
10.1016/j.ress.2010.03.004
10.17531/ein.2021.2.10
10.1016/j.ress.2023.109373
10.1016/j.apm.2020.11.001
10.1016/j.ejor.2017.11.002
10.1109/QRS-C51114.2020.00056
10.1109/TII.2024.3409439
10.1080/03610926.2024.2309981
10.1016/j.ress.2020.107351
10.1016/B978-0-12-823323-8.00008-8
10.1177/1748006X211012792
10.1016/j.ress.2024.110509
10.1080/16843703.2018.1465228
10.1016/j.ress.2023.109330
10.1002/qre.3550
10.1002/qre.3614
10.1016/j.ress.2020.107227
10.1016/j.ejor.2017.10.055
10.1016/j.ress.2016.10.030
10.1016/j.ress.2022.108612
10.1016/j.ress.2025.110853
10.1016/j.ress.2024.110017
10.1016/j.ress.2021.107641
10.1002/qre.3534
10.1002/qre.3389
10.1007/s00184-013-0441-0
10.1109/TR.2020.3044596
10.1016/j.ress.2021.108266
10.1016/j.ress.2024.110524
10.1109/TSMC.2017.2672999
10.1109/TII.2020.2998102
10.1016/j.ress.2021.108132
10.1080/03610926.2017.1417430
10.1109/TR.2022.3225273
10.1111/risa.17696
10.1016/j.ress.2020.107135
10.1007/s42524-024-4130-7
10.1109/TR.2021.3111651
10.1016/j.ress.2013.07.013
10.1002/qre.3342
10.1109/TR.2012.2192587
10.1080/0740817X.2016.1146424
10.1016/j.ejor.2024.09.014
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1002/qre.3819
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1638
EndPage 2764
ExternalDocumentID 10_1002_qre_3819
QRE3819
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 72131002; 72371030; 71971026; 72001026
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
  funderid: XSQD‐6120220141
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7TB
8FD
FR3
ID FETCH-LOGICAL-c2569-3f8d3b772d30145072d1907b3c6883e28938e489a3ce7b9550c3f22bf512bb643
IEDL.DBID DR2
ISSN 0748-8017
IngestDate Wed Oct 01 09:54:37 EDT 2025
Thu Oct 09 00:17:07 EDT 2025
Wed Oct 01 10:06:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2569-3f8d3b772d30145072d1907b3c6883e28938e489a3ce7b9550c3f22bf512bb643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8741-0536
PQID 3255980434
PQPubID 1016437
PageCount 14
ParticipantIDs proquest_journals_3255980434
crossref_primary_10_1002_qre_3819
wiley_primary_10_1002_qre_3819_QRE3819
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
20251101
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Quality and reliability engineering international
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 61
2025; 257
2021; 23
2025; 253
2023; 39
2017; 48
2022; 71
2023; 240
2020; 142
2021; 205
2018; 266
2021; 207
2020; 17
2020; 204
2019; 16
1999; 66
2024; 11
2024; 245
2025
1989; 26
2022; 218
2022; 219
2025; 12
2021; 71
2025; 54
2017; 159
2021; 92
2014; 234
2015; 45
2025; 321
2021; 212
2021
2021; 235
2020
2015; 66
2019; 48
2024; 40
2023; 237
2024; 20
2009; 5
2014; 121
2018; 180
2016; 48
2022; 225
2010; 95
2014; 77
2023; 72
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Hu J. (e_1_2_9_52_1) 2025
Xing L. (e_1_2_9_46_1) 2009; 5
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 20
  start-page: 11565
  year: 2024
  end-page: 11574
  article-title: Joint Optimization of Mode Switching, Loading Level, and Maintenance for Production Systems With Dynamic Tasks
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 1
  year: 2025
  end-page: 15
  article-title: Controlling Mission Hazards Through Integrated Abort and Spare Support Optimization
  publication-title: Risk Analysis
– volume: 237
  year: 2023
  article-title: Integrated Selective Maintenance and Task Assignment Optimization for Multi‐State Systems Executing Multiple Missions
  publication-title: Reliability Engineering & System Safety
– volume: 159
  start-page: 134
  year: 2017
  end-page: 142
  article-title: Reliability Analysis of Markov History‐Dependent Repairable Systems With Neglected Failures
  publication-title: Reliability Engineering & System Safety
– volume: 39
  start-page: 1533
  issue: 5
  year: 2023
  end-page: 1547
  article-title: A Copula‐Based Reliability Model for Phased Mission Systems With Dependent Components: PMS With Dependent Components
  publication-title: Quality and Reliability Engineering International
– volume: 180
  start-page: 394
  year: 2018
  end-page: 402
  article-title: Redundancy Optimization of Cold‐Standby Systems Under Periodic Inspection and Maintenance
  publication-title: Reliability Engineering & System Safety
– volume: 225
  year: 2022
  article-title: Joint Optimization of Mission Aborts and Allocation of Standby Components Considering Mission Loss
  publication-title: Reliability Engineering & System Safety
– volume: 77
  start-page: 349
  issue: 3
  year: 2014
  end-page: 359
  article-title: A Study on Reliability of Coherent Systems Equipped With a Cold Standby Component
  publication-title: Metrika
– volume: 40
  start-page: 261
  issue: 1
  year: 2024
  end-page: 276
  article-title: Joint Optimization of Bi‐Level Imperfect Maintenance and Spare Parts Inventory Considering Order Quantity
  publication-title: Quality and Reliability Engineering International
– volume: 40
  start-page: 2423
  issue: 5
  year: 2024
  end-page: 2443
  article-title: Optimal Maintenance Policy Considering Imperfect Switching for a Multi‐State Warm Standby System
  publication-title: Quality and Reliability Engineering International
– volume: 253
  year: 2025
  article-title: Reliability Modeling of Multi‐State Phased Mission Systems With Random Phase Durations and Dynamic Combined Phases
  publication-title: Reliability Engineering & System Safety
– volume: 95
  start-page: 880
  issue: 8
  year: 2010
  end-page: 886
  article-title: Optimal Design of a General Warm Standby System
  publication-title: Reliability Engineering & System Safety
– volume: 40
  start-page: 2292
  issue: 5
  year: 2024
  end-page: 2304
  article-title: Dynamic Modeling and Reliability Analysis of Satellite Antenna Deployment Mechanism Based on Parameter Uncertainty
  publication-title: Quality and Reliability Engineering International
– volume: 5
  start-page: 419
  issue: 5
  year: 2009
  article-title: Fault‐Tolerance and Reliability Analysis for Wireless Sensor Networks
  publication-title: International Journal of Performability Engineering
– start-page: 1
  year: 2025
  end-page: 10
  article-title: Mission Abort Policy Considering Imperfect Alarms and Two Abort Options
  publication-title: Naval Research Logistics (NRL)
– volume: 45
  start-page: 1336
  issue: 10
  year: 2015
  end-page: 1344
  article-title: Optimal Design of Hybrid Redundant Systems With Delayed Failure‐Driven Standby Mode Transfer
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 245
  year: 2024
  article-title: 1‐Out‐of‐ Standby Systems With Storages and Activation Moment‐Dependent Component Operation Time Limit
  publication-title: Reliability Engineering & System Safety
– volume: 92
  start-page: 176
  year: 2021
  end-page: 195
  article-title: Reliability Modeling of Two‐Unit Cold Standby Systems: A Periodic Switching Approach
  publication-title: Applied Mathematical Modelling
– volume: 61
  start-page: 526
  issue: 2
  year: 2012
  end-page: 532
  article-title: Reliability Analysis of ‐Out‐of‐ Systems With Single Cold Standby Using Pearson Distributions
  publication-title: IEEE Transactions on Reliability
– volume: 72
  start-page: 964
  issue: 3
  year: 2023
  end-page: 974
  article-title: Sequential Bayesian Planning for Accelerated Degradation Tests Considering Sensor Degradation
  publication-title: IEEE Transactions on Reliability
– volume: 207
  year: 2021
  article-title: Optimization of Cyclic Preventive Replacement in Homogeneous Warm‐Standby System With Reusable Elements Exposed to Shocks
  publication-title: Reliability Engineering & System Safety
– volume: 218
  year: 2022
  article-title: Reliability Evaluation of Demand‐Based Warm Standby Systems With Capacity Storage
  publication-title: Reliability Engineering & System Safety
– volume: 205
  year: 2021
  article-title: Optimizing Preventive Replacement Schedule in Standby Systems With Time Consuming Task Transfers
  publication-title: Reliability Engineering & System Safety
– volume: 219
  year: 2022
  article-title: Optimal Preventive Switching of Components in Degrading Systems
  publication-title: Reliability Engineering & System Safety
– volume: 66
  start-page: 771
  issue: 3
  year: 2015
  end-page: 782
  article-title: Preventive Replacements in Real‐Time Standby Systems With Periodic Backups
  publication-title: IEEE Transactions on Reliability
– volume: 17
  start-page: 2653
  issue: 4
  year: 2020
  end-page: 2663
  article-title: Remaining Useful Life Prediction by Fusing Expert Knowledge and Condition Monitoring Information
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 11
  start-page: 568
  issue: 3
  year: 2024
  end-page: 575
  article-title: Multi‐State System Reliability: An Emerging Paradigm for Sophisticated Engineered Systems
  publication-title: Frontiers of Engineering Management
– volume: 16
  start-page: 478
  issue: 4
  year: 2019
  end-page: 495
  article-title: Availability Analysis and Maintenance Modelling for Inspected Markov Systems With Down Time Threshold
  publication-title: Quality Technology & Quantitative Management
– volume: 40
  start-page: 3988
  issue: 7
  year: 2024
  end-page: 4003
  article-title: A Modular Model for Reliability Analysis Model of PMS With Multiple K/N Subsystems and Mixed Shocks
  publication-title: Quality and Reliability Engineering International
– volume: 240
  year: 2023
  article-title: Maintenance Optimization for Dependent Two‐Component Degrading Systems Subject to Imperfect Repair
  publication-title: Reliability Engineering & System Safety
– volume: 142
  year: 2020
  article-title: A Multi‐State Warm Standby System With Preventive Maintenance, Loss of Units and an Indeterminate Multiple Number of Repairpersons
  publication-title: Computers & Industrial Engineering
– volume: 66
  start-page: 235
  issue: 3
  year: 1999
  end-page: 242
  article-title: Wearing‐Out of Components in a Variable Environment
  publication-title: Reliability Engineering & System Safety
– volume: 23
  start-page: 308
  issue: 2
  year: 2021
  end-page: 314
  article-title: Reliability Assessment of Wind Turbine Generators by Fuzzy Universal Generating Function
  publication-title: Eksploatacja i Niezawodność
– volume: 48
  start-page: 1505
  issue: 9
  year: 2017
  end-page: 1520
  article-title: Optimizing Computational Mission Operation by Periodic Backups and Preventive Replacements
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 253
  year: 2025
  article-title: Standby and Inspection Policy Optimization in Systems Exposed to Common and Operational Shock Processes
  publication-title: Reliability Engineering & System Safety
– volume: 266
  start-page: 1189
  issue: 3
  year: 2018
  end-page: 1197
  article-title: Heterogeneous Standby Systems With Shocks‐Driven Preventive Replacements
  publication-title: European Journal of Operational Research
– start-page: 287
  year: 2020
  end-page: 290
– volume: 71
  start-page: 484
  issue: 1
  year: 2021
  end-page: 499
  article-title: A Deep Reinforcement Learning Approach to Dynamic Loading Strategy of Repairable Multistate Systems
  publication-title: IEEE Transactions on Reliability
– volume: 71
  start-page: 1488
  issue: 4
  year: 2022
  end-page: 1500
  article-title: Replacement and Repair Optimization for Production Systems Under Random Production Waits
  publication-title: IEEE Transactions on Reliability
– volume: 12
  start-page: 330
  year: 2025
  end-page: 342
  article-title: Condition‐Based Maintenance via Markov Decision Processes: A Review
  publication-title: Frontiers of Engineering Management
– volume: 257
  year: 2025
  article-title: Is our Mission Profitable: the Cost‐Effectiveness Curve With a Possibility of a Mission Abort
  publication-title: Reliability Engineering & System Safety
– volume: 71
  start-page: 484
  issue: 1
  year: 2022
  end-page: 499
  article-title: A Deep Reinforcement Learning Approach to Dynamic Loading Strategy of Repairable Multistate Systems
  publication-title: IEEE Transactions on Reliability
– volume: 48
  start-page: 736
  issue: 8
  year: 2016
  end-page: 746
  article-title: Reliability Analysis and Optimal Structure of Series‐Parallel Phased‐Mission Systems Subject to Fault‐Level Coverage
  publication-title: Iie Transactions
– volume: 54
  start-page: 324
  issue: 2
  year: 2025
  end-page: 351
  article-title: A Study on Utilization of Two Cold Standby Components to Increase Reliability of a Coherent System
  publication-title: Communications in Statistics‐Theory and Methods
– volume: 234
  start-page: 155
  issue: 1
  year: 2014
  end-page: 162
  article-title: Cold vs. Hot Standby Mission Operation Cost Minimization for 1‐Out‐of‐n Systems
  publication-title: European Journal of Operational Research
– volume: 235
  start-page: 982
  issue: 6
  year: 2021
  end-page: 997
  article-title: Availability Analysis and Maintenance Optimization for Multiple Failure Mode Systems Considering Imperfect Repair
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
– start-page: 31
  year: 2021
  end-page: 42
– volume: 121
  start-page: 18
  year: 2014
  end-page: 25
  article-title: Reliability of Demand‐Based Phased‐Mission Systems Subject to Fault Level Coverage
  publication-title: Reliability Engineering & System Safety
– volume: 204
  year: 2020
  article-title: Optimal Preventive Replacement Policy for Homogeneous Cold Standby Systems With Reusable Elements
  publication-title: Reliability Engineering & System Safety
– volume: 212
  year: 2021
  article-title: Joint Optimization of Mission Abort and Component Switching Policies for Multistate Warm Standby Systems
  publication-title: Reliability Engineering & System Safety
– volume: 266
  start-page: 963
  issue: 3
  year: 2018
  end-page: 975
  article-title: Sensitivity of Optimal Replacement Policies to Lifetime Parameter Estimates
  publication-title: European Journal of Operational Research
– volume: 237
  year: 2023
  article-title: Reliability Analysis and Optimization of Multi‐Phased Spaceflight With Backup Missions and Mixed Redundancy Strategy
  publication-title: Reliability Engineering & System Safety
– volume: 48
  start-page: 628
  issue: 3
  year: 2019
  end-page: 647
  article-title: Availability Analysis for General Repairable Systems With Repair Time Threshold
  publication-title: Communications in Statistics‐Theory and Methods
– volume: 321
  start-page: 565
  issue: 2
  year: 2025
  end-page: 585
  article-title: Condition‐Based Switching, Loading, and Age‐Based Maintenance Policies for Standby Systems
  publication-title: European Journal of Operational Research
– volume: 26
  start-page: 89
  issue: 1
  year: 1989
  end-page: 102
  article-title: Some Results for Repairable Systems With General Repair
  publication-title: Journal of Applied Probability
– ident: e_1_2_9_3_1
  doi: 10.1007/s42524-024-0140-8
– ident: e_1_2_9_29_1
  doi: 10.1109/TR.2015.2500369
– ident: e_1_2_9_13_1
  doi: 10.1109/TSMC.2015.2399472
– ident: e_1_2_9_41_1
  doi: 10.1016/j.cie.2020.106348
– ident: e_1_2_9_48_1
  doi: 10.2307/3214319
– ident: e_1_2_9_49_1
  doi: 10.1016/S0951-8320(99)00023-X
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ejor.2013.10.051
– ident: e_1_2_9_39_1
  doi: 10.1016/j.ress.2018.08.004
– ident: e_1_2_9_35_1
  doi: 10.1016/j.ress.2023.109581
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ress.2010.03.004
– ident: e_1_2_9_2_1
  doi: 10.17531/ein.2021.2.10
– ident: e_1_2_9_20_1
  doi: 10.1016/j.ress.2023.109373
– ident: e_1_2_9_40_1
  doi: 10.1016/j.apm.2020.11.001
– ident: e_1_2_9_28_1
  doi: 10.1016/j.ejor.2017.11.002
– ident: e_1_2_9_42_1
  doi: 10.1109/QRS-C51114.2020.00056
– ident: e_1_2_9_19_1
  doi: 10.1109/TII.2024.3409439
– ident: e_1_2_9_23_1
  doi: 10.1080/03610926.2024.2309981
– ident: e_1_2_9_25_1
  doi: 10.1016/j.ress.2020.107351
– volume: 5
  start-page: 419
  issue: 5
  year: 2009
  ident: e_1_2_9_46_1
  article-title: Fault‐Tolerance and Reliability Analysis for Wireless Sensor Networks
  publication-title: International Journal of Performability Engineering
– ident: e_1_2_9_7_1
  doi: 10.1016/B978-0-12-823323-8.00008-8
– ident: e_1_2_9_22_1
  doi: 10.1177/1748006X211012792
– ident: e_1_2_9_38_1
  doi: 10.1016/j.ress.2024.110509
– ident: e_1_2_9_43_1
  doi: 10.1080/16843703.2018.1465228
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ress.2023.109330
– ident: e_1_2_9_5_1
  doi: 10.1002/qre.3550
– ident: e_1_2_9_12_1
  doi: 10.1002/qre.3614
– ident: e_1_2_9_26_1
  doi: 10.1016/j.ress.2020.107227
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ejor.2017.10.055
– ident: e_1_2_9_45_1
  doi: 10.1016/j.ress.2016.10.030
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ress.2022.108612
– ident: e_1_2_9_51_1
  doi: 10.1016/j.ress.2025.110853
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ress.2024.110017
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ress.2021.107641
– ident: e_1_2_9_9_1
  doi: 10.1002/qre.3534
– ident: e_1_2_9_37_1
  doi: 10.1002/qre.3389
– ident: e_1_2_9_18_1
  doi: 10.1007/s00184-013-0441-0
– ident: e_1_2_9_55_1
  doi: 10.1109/TR.2020.3044596
– ident: e_1_2_9_33_1
  doi: 10.1016/j.ress.2021.108266
– ident: e_1_2_9_53_1
  doi: 10.1016/j.ress.2024.110524
– ident: e_1_2_9_30_1
  doi: 10.1109/TSMC.2017.2672999
– ident: e_1_2_9_10_1
  doi: 10.1109/TII.2020.2998102
– ident: e_1_2_9_54_1
  doi: 10.1016/j.ress.2021.108132
– ident: e_1_2_9_44_1
  doi: 10.1080/03610926.2017.1417430
– ident: e_1_2_9_47_1
  doi: 10.1109/TR.2022.3225273
– start-page: 1
  year: 2025
  ident: e_1_2_9_52_1
  article-title: Mission Abort Policy Considering Imperfect Alarms and Two Abort Options
  publication-title: Naval Research Logistics (NRL)
– ident: e_1_2_9_21_1
  doi: 10.1111/risa.17696
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ress.2020.107135
– ident: e_1_2_9_34_1
  doi: 10.1007/s42524-024-4130-7
– ident: e_1_2_9_32_1
  doi: 10.1109/TR.2021.3111651
– ident: e_1_2_9_56_1
  doi: 10.1109/TR.2020.3044596
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ress.2013.07.013
– ident: e_1_2_9_6_1
  doi: 10.1002/qre.3342
– ident: e_1_2_9_16_1
  doi: 10.1109/TR.2012.2192587
– ident: e_1_2_9_4_1
  doi: 10.1080/0740817X.2016.1146424
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ejor.2024.09.014
SSID ssj0010098
Score 2.4051259
Snippet ABSTRACT Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the...
Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2751
SubjectTerms Downtime
Failure
Maximization
Operations management
Optimization
Redundancy
Reliability analysis
standby systems
Support systems
switching decision
switching time redundancy
Title Reliability Modeling and Switching Decision Optimization for Standby Systems with Switching Time Redundancy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.3819
https://www.proquest.com/docview/3255980434
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0748-8017
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010098
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kJz34LVarrCDe0ja7abI5irYUQcVqoeAhZL9AilHbFKm_3plNUqsgiKdcspDMzsy-t8y8IeS0Y20MLFnj1ADlBUxCSCkde36YsiDVQkUW7yGvb8L-MLgadUZlVSX2whT6EIsLN4wMl68xwFM5bX2Jhr5NTBPpBqRfn4eOTQ0WylE-6mQWCpwCk3BU6c62Wata-P0k-oKXyyDVnTK9DfJYfV9RXDJuznLZVB8_pBv_9wObZL0En_S88JYtsmKybbK2JEm4Q8ZYo1xod88pDkrDdnWaZprevz_lrvCSXpZzeegt5JvnspGTAvqlOJNYyzktddAp3vIuLcR-Ezow2LiGSX2XDHvdh4u-Vw5k8BQgo9jjVmguAY9rJGKAJJkGPBFJrkIhuAHuxoUJRJxyZSIZA_lR3DImLaAKKQH77JFa9pKZfUJTqSMehNa2Q_AJlQoGXFypOBRSAKrz6-Sk2pzktdDdSAqFZZaA4RI0XJ00ql1LysibJtxJzrcDHtTJmTP_r-uTu0EXnwd_ffGQrDIc_-taERuklk9m5ggwSS6Pnfd9AoP33o8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58HNSDb7FadQXxltrupskGT6KVqq1itdCDELK7WZBifFVEf70zebRVEMRTLllIZmdmv2_Y-QZgr25tgCzZ0NQA7bhcYUhpEzg1L-JuZKT2LdUh25des-ue9-q9CTgsemEyfYhhwY0iI83XFOBUkD4YqYY-v8QV4huTMO16SFMIEXWG2lE1UsrMNDglpWG_UJ6t8oNi5fezaAQwx2Fqes6cLsBd8YXZ9ZJ-5W2gKvrzh3jjP39hEeZz_MmOModZgok4WYa5MVXCFejTNeVMvvuD0aw06lhnUWLYzfv9IL17yU7y0TzsClPOQ97LyRAAMxpLbNQHy6XQGRV6xxZSywnrxNS7Rnl9FbqnjdvjppPPZHA0gqPAEVYaoRCSG-JiCCa5QUjhK6E9KUWM9E3I2JVBJHTsqwD5jxaWc2URWCiF8GcNppLHJF4HFinjC9eztuqhW-hIcqTjWgeeVBKBXa0Eu8XuhE-Z9EaYiSzzEA0XkuFKUC62LcyD7zUUqep81RVuCfZT-_-6PrzuNOi58dcXd2Cmedtuha2zy4tNmOU0DTjtTCzD1ODlLd5CiDJQ26krfgF8beKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZS8NAEMeHqiD64C3WcwXxLbXdTZMNPolt8axaFXwQQvYCKdarIvrpnclRqyCIT3nJQrK7M_ufZeY3AFt15yKMkg11DdCezxWalDaRVwsS7idG6tDRPeRpOzi49o9u6jcl2C1qYTI-xODCjSwj9ddk4PbRuJ0vaujTs61QvDECY349kpTP1-gM2FE1ImVmDE5JbjgsyLNVvlOM_H4WfQnMYZmanjOtabgtvjBLL-lWXvuqoj9-wBv_-QszMJXrT7aXbZhZKNneHEwOUQnnoUtpyhm--51RrzSqWGdJz7DLt7t-mnvJGnlrHnaGLuc-r-VkKIAZtSU26p3lKHRGF71DA6nkhHUs1a6RX1-A61bzav_Ay3syeBrFUeQJJ41QKMkNxWIoJrlBSREqoQMphcXwTUjryygR2oYqwvhHC8e5cigslEL5swijvYeeXQKWKBMKP3CuGuC20InkGI5rHQVSSRR2tTJsFqsTP2bojTiDLPMYJy6miSvDarFscW58L7FIqfNVX_hl2E7n_9fx8UWnSc_lv764AePnjVZ8ctg-XoEJTs2A08LEVRjtP7_aNVQofbWe7sRPTOTiNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+Modeling+and+Switching+Decision+Optimization+for+Standby+Systems+with+Switching+Time+Redundancy&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Qiu%2C+Qingan&rft.au=Sun%2C+Rongchi&rft.au=Liu%2C+Bosen&rft.au=Pei%2C+Cuicui&rft.date=2025-11-01&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=41&rft.issue=7&rft.spage=2751&rft.epage=2764&rft_id=info:doi/10.1002%2Fqre.3819&rft.externalDBID=10.1002%252Fqre.3819&rft.externalDocID=QRE3819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon