Reliability Modeling and Switching Decision Optimization for Standby Systems with Switching Time Redundancy
ABSTRACT Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online operating unit, requiring the standby unit to activate within a designated random time interval to ensure operational continuity. This p...
Saved in:
| Published in | Quality and reliability engineering international Vol. 41; no. 7; pp. 2751 - 2764 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bognor Regis
Wiley Subscription Services, Inc
01.11.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0748-8017 1099-1638 |
| DOI | 10.1002/qre.3819 |
Cover
| Abstract | ABSTRACT
Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online operating unit, requiring the standby unit to activate within a designated random time interval to ensure operational continuity. This paper examines a two‐unit warm standby system that integrates switching time redundancy. System failure can occur due to simultaneous failures of both units or failure of the standby unit's activation within the allowed redundancy period. The proposed warm standby system model with switching time redundancy is especially pertinent in critical applications, such as hospitals, where backup generators are vital for maintaining a continuous power supply to life‐support systems and other essential functions. Our primary aim is to identify the optimal switching timing for the standby unit's transition to the online mode, striking a balance between key trade‐offs: early activation may lead to excessive wear and increased operational costs, whereas delayed activation could result in detrimental downtime. We propose switching strategies aimed at (a) maximizing expected system lifetime and (b) maximizing expected operational profit. Numerical examples illustrate the practical applicability of these strategies and offer valuable guidance for effective operations management within warm standby systems. |
|---|---|
| AbstractList | ABSTRACT
Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online operating unit, requiring the standby unit to activate within a designated random time interval to ensure operational continuity. This paper examines a two‐unit warm standby system that integrates switching time redundancy. System failure can occur due to simultaneous failures of both units or failure of the standby unit's activation within the allowed redundancy period. The proposed warm standby system model with switching time redundancy is especially pertinent in critical applications, such as hospitals, where backup generators are vital for maintaining a continuous power supply to life‐support systems and other essential functions. Our primary aim is to identify the optimal switching timing for the standby unit's transition to the online mode, striking a balance between key trade‐offs: early activation may lead to excessive wear and increased operational costs, whereas delayed activation could result in detrimental downtime. We propose switching strategies aimed at (a) maximizing expected system lifetime and (b) maximizing expected operational profit. Numerical examples illustrate the practical applicability of these strategies and offer valuable guidance for effective operations management within warm standby systems. Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online operating unit, requiring the standby unit to activate within a designated random time interval to ensure operational continuity. This paper examines a two‐unit warm standby system that integrates switching time redundancy. System failure can occur due to simultaneous failures of both units or failure of the standby unit's activation within the allowed redundancy period. The proposed warm standby system model with switching time redundancy is especially pertinent in critical applications, such as hospitals, where backup generators are vital for maintaining a continuous power supply to life‐support systems and other essential functions. Our primary aim is to identify the optimal switching timing for the standby unit's transition to the online mode, striking a balance between key trade‐offs: early activation may lead to excessive wear and increased operational costs, whereas delayed activation could result in detrimental downtime. We propose switching strategies aimed at (a) maximizing expected system lifetime and (b) maximizing expected operational profit. Numerical examples illustrate the practical applicability of these strategies and offer valuable guidance for effective operations management within warm standby systems. Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online operating unit, requiring the standby unit to activate within a designated random time interval to ensure operational continuity. This paper examines a two‐unit warm standby system that integrates switching time redundancy. System failure can occur due to simultaneous failures of both units or failure of the standby unit's activation within the allowed redundancy period. The proposed warm standby system model with switching time redundancy is especially pertinent in critical applications, such as hospitals, where backup generators are vital for maintaining a continuous power supply to life‐support systems and other essential functions. Our primary aim is to identify the optimal switching timing for the standby unit's transition to the online mode, striking a balance between key trade‐offs: early activation may lead to excessive wear and increased operational costs, whereas delayed activation could result in detrimental downtime. We propose switching strategies aimed at (a) maximizing expected system lifetime and (b) maximizing expected operational profit. Numerical examples illustrate the practical applicability of these strategies and offer valuable guidance for effective operations management within warm standby systems. |
| Author | Zhao, Xian Sun, Rongchi Pei, Cuicui Qiu, Qingan Liu, Bosen |
| Author_xml | – sequence: 1 givenname: Qingan orcidid: 0000-0001-8741-0536 surname: Qiu fullname: Qiu, Qingan organization: Beijing Institute of Technology – sequence: 2 givenname: Rongchi surname: Sun fullname: Sun, Rongchi organization: Beijing Institute of Technology – sequence: 3 givenname: Bosen surname: Liu fullname: Liu, Bosen organization: Beijing Institute of Technology – sequence: 4 givenname: Cuicui surname: Pei fullname: Pei, Cuicui organization: Beijing Institute of Technology – sequence: 5 givenname: Xian surname: Zhao fullname: Zhao, Xian email: zhaoxian@bit.edu.cn organization: Digital Economy and Policy Intelligentization Key Laboratory of Ministry of Industry and Information Technology |
| BookMark | eNp10MtKAzEUBuAgFWyr4CME3LiZmstckqXUeoFKsa3rMMlkbOpMpk2mlPHpzVgXblzl_PCdE_hHYGAbqwG4xmiCESJ3e6cnlGF-BoYYcR7hlLIBGKIsZhFDOLsAI--3CAXM2RB8LnVlcmkq03bwtSlCsh8wtwVcHU2rNn160Mp401i42LWmNl9524eycXDVBik7uOp8q2sPw8rmz-La1BoudXGwRW5VdwnOy7zy-ur3HYP3x9l6-hzNF08v0_t5pEiS8oiWrKAyy0hBEY4TFAbMUSapShmjmjBOmY4Zz6nSmeRJghQtCZFlgomUaUzH4OZ0d-ea_UH7Vmybg7PhS0FJknCGYtqr25NSrvHe6VLsnKlz1wmMRF-lCFWKvspAoxM9mkp3_zrxtpz9-G92kHcW |
| Cites_doi | 10.1007/s42524-024-0140-8 10.1109/TR.2015.2500369 10.1109/TSMC.2015.2399472 10.1016/j.cie.2020.106348 10.2307/3214319 10.1016/S0951-8320(99)00023-X 10.1016/j.ejor.2013.10.051 10.1016/j.ress.2018.08.004 10.1016/j.ress.2023.109581 10.1016/j.ress.2010.03.004 10.17531/ein.2021.2.10 10.1016/j.ress.2023.109373 10.1016/j.apm.2020.11.001 10.1016/j.ejor.2017.11.002 10.1109/QRS-C51114.2020.00056 10.1109/TII.2024.3409439 10.1080/03610926.2024.2309981 10.1016/j.ress.2020.107351 10.1016/B978-0-12-823323-8.00008-8 10.1177/1748006X211012792 10.1016/j.ress.2024.110509 10.1080/16843703.2018.1465228 10.1016/j.ress.2023.109330 10.1002/qre.3550 10.1002/qre.3614 10.1016/j.ress.2020.107227 10.1016/j.ejor.2017.10.055 10.1016/j.ress.2016.10.030 10.1016/j.ress.2022.108612 10.1016/j.ress.2025.110853 10.1016/j.ress.2024.110017 10.1016/j.ress.2021.107641 10.1002/qre.3534 10.1002/qre.3389 10.1007/s00184-013-0441-0 10.1109/TR.2020.3044596 10.1016/j.ress.2021.108266 10.1016/j.ress.2024.110524 10.1109/TSMC.2017.2672999 10.1109/TII.2020.2998102 10.1016/j.ress.2021.108132 10.1080/03610926.2017.1417430 10.1109/TR.2022.3225273 10.1111/risa.17696 10.1016/j.ress.2020.107135 10.1007/s42524-024-4130-7 10.1109/TR.2021.3111651 10.1016/j.ress.2013.07.013 10.1002/qre.3342 10.1109/TR.2012.2192587 10.1080/0740817X.2016.1146424 10.1016/j.ejor.2024.09.014 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7TB 8FD FR3 |
| DOI | 10.1002/qre.3819 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1638 |
| EndPage | 2764 |
| ExternalDocumentID | 10_1002_qre_3819 QRE3819 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 72131002; 72371030; 71971026; 72001026 – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars funderid: XSQD‐6120220141 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADMLS ADNMO ADOZA ADXAS AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION 7TB 8FD FR3 |
| ID | FETCH-LOGICAL-c2569-3f8d3b772d30145072d1907b3c6883e28938e489a3ce7b9550c3f22bf512bb643 |
| IEDL.DBID | DR2 |
| ISSN | 0748-8017 |
| IngestDate | Wed Oct 01 09:54:37 EDT 2025 Thu Oct 09 00:17:07 EDT 2025 Wed Oct 01 10:06:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2569-3f8d3b772d30145072d1907b3c6883e28938e489a3ce7b9550c3f22bf512bb643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8741-0536 |
| PQID | 3255980434 |
| PQPubID | 1016437 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3255980434 crossref_primary_10_1002_qre_3819 wiley_primary_10_1002_qre_3819_QRE3819 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 2025-11-00 20251101 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | Quality and reliability engineering international |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2012; 61 2025; 257 2021; 23 2025; 253 2023; 39 2017; 48 2022; 71 2023; 240 2020; 142 2021; 205 2018; 266 2021; 207 2020; 17 2020; 204 2019; 16 1999; 66 2024; 11 2024; 245 2025 1989; 26 2022; 218 2022; 219 2025; 12 2021; 71 2025; 54 2017; 159 2021; 92 2014; 234 2015; 45 2025; 321 2021; 212 2021 2021; 235 2020 2015; 66 2019; 48 2024; 40 2023; 237 2024; 20 2009; 5 2014; 121 2018; 180 2016; 48 2022; 225 2010; 95 2014; 77 2023; 72 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Hu J. (e_1_2_9_52_1) 2025 Xing L. (e_1_2_9_46_1) 2009; 5 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 20 start-page: 11565 year: 2024 end-page: 11574 article-title: Joint Optimization of Mode Switching, Loading Level, and Maintenance for Production Systems With Dynamic Tasks publication-title: IEEE Transactions on Industrial Informatics – start-page: 1 year: 2025 end-page: 15 article-title: Controlling Mission Hazards Through Integrated Abort and Spare Support Optimization publication-title: Risk Analysis – volume: 237 year: 2023 article-title: Integrated Selective Maintenance and Task Assignment Optimization for Multi‐State Systems Executing Multiple Missions publication-title: Reliability Engineering & System Safety – volume: 159 start-page: 134 year: 2017 end-page: 142 article-title: Reliability Analysis of Markov History‐Dependent Repairable Systems With Neglected Failures publication-title: Reliability Engineering & System Safety – volume: 39 start-page: 1533 issue: 5 year: 2023 end-page: 1547 article-title: A Copula‐Based Reliability Model for Phased Mission Systems With Dependent Components: PMS With Dependent Components publication-title: Quality and Reliability Engineering International – volume: 180 start-page: 394 year: 2018 end-page: 402 article-title: Redundancy Optimization of Cold‐Standby Systems Under Periodic Inspection and Maintenance publication-title: Reliability Engineering & System Safety – volume: 225 year: 2022 article-title: Joint Optimization of Mission Aborts and Allocation of Standby Components Considering Mission Loss publication-title: Reliability Engineering & System Safety – volume: 77 start-page: 349 issue: 3 year: 2014 end-page: 359 article-title: A Study on Reliability of Coherent Systems Equipped With a Cold Standby Component publication-title: Metrika – volume: 40 start-page: 261 issue: 1 year: 2024 end-page: 276 article-title: Joint Optimization of Bi‐Level Imperfect Maintenance and Spare Parts Inventory Considering Order Quantity publication-title: Quality and Reliability Engineering International – volume: 40 start-page: 2423 issue: 5 year: 2024 end-page: 2443 article-title: Optimal Maintenance Policy Considering Imperfect Switching for a Multi‐State Warm Standby System publication-title: Quality and Reliability Engineering International – volume: 253 year: 2025 article-title: Reliability Modeling of Multi‐State Phased Mission Systems With Random Phase Durations and Dynamic Combined Phases publication-title: Reliability Engineering & System Safety – volume: 95 start-page: 880 issue: 8 year: 2010 end-page: 886 article-title: Optimal Design of a General Warm Standby System publication-title: Reliability Engineering & System Safety – volume: 40 start-page: 2292 issue: 5 year: 2024 end-page: 2304 article-title: Dynamic Modeling and Reliability Analysis of Satellite Antenna Deployment Mechanism Based on Parameter Uncertainty publication-title: Quality and Reliability Engineering International – volume: 5 start-page: 419 issue: 5 year: 2009 article-title: Fault‐Tolerance and Reliability Analysis for Wireless Sensor Networks publication-title: International Journal of Performability Engineering – start-page: 1 year: 2025 end-page: 10 article-title: Mission Abort Policy Considering Imperfect Alarms and Two Abort Options publication-title: Naval Research Logistics (NRL) – volume: 45 start-page: 1336 issue: 10 year: 2015 end-page: 1344 article-title: Optimal Design of Hybrid Redundant Systems With Delayed Failure‐Driven Standby Mode Transfer publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 245 year: 2024 article-title: 1‐Out‐of‐ Standby Systems With Storages and Activation Moment‐Dependent Component Operation Time Limit publication-title: Reliability Engineering & System Safety – volume: 92 start-page: 176 year: 2021 end-page: 195 article-title: Reliability Modeling of Two‐Unit Cold Standby Systems: A Periodic Switching Approach publication-title: Applied Mathematical Modelling – volume: 61 start-page: 526 issue: 2 year: 2012 end-page: 532 article-title: Reliability Analysis of ‐Out‐of‐ Systems With Single Cold Standby Using Pearson Distributions publication-title: IEEE Transactions on Reliability – volume: 72 start-page: 964 issue: 3 year: 2023 end-page: 974 article-title: Sequential Bayesian Planning for Accelerated Degradation Tests Considering Sensor Degradation publication-title: IEEE Transactions on Reliability – volume: 207 year: 2021 article-title: Optimization of Cyclic Preventive Replacement in Homogeneous Warm‐Standby System With Reusable Elements Exposed to Shocks publication-title: Reliability Engineering & System Safety – volume: 218 year: 2022 article-title: Reliability Evaluation of Demand‐Based Warm Standby Systems With Capacity Storage publication-title: Reliability Engineering & System Safety – volume: 205 year: 2021 article-title: Optimizing Preventive Replacement Schedule in Standby Systems With Time Consuming Task Transfers publication-title: Reliability Engineering & System Safety – volume: 219 year: 2022 article-title: Optimal Preventive Switching of Components in Degrading Systems publication-title: Reliability Engineering & System Safety – volume: 66 start-page: 771 issue: 3 year: 2015 end-page: 782 article-title: Preventive Replacements in Real‐Time Standby Systems With Periodic Backups publication-title: IEEE Transactions on Reliability – volume: 17 start-page: 2653 issue: 4 year: 2020 end-page: 2663 article-title: Remaining Useful Life Prediction by Fusing Expert Knowledge and Condition Monitoring Information publication-title: IEEE Transactions on Industrial Informatics – volume: 11 start-page: 568 issue: 3 year: 2024 end-page: 575 article-title: Multi‐State System Reliability: An Emerging Paradigm for Sophisticated Engineered Systems publication-title: Frontiers of Engineering Management – volume: 16 start-page: 478 issue: 4 year: 2019 end-page: 495 article-title: Availability Analysis and Maintenance Modelling for Inspected Markov Systems With Down Time Threshold publication-title: Quality Technology & Quantitative Management – volume: 40 start-page: 3988 issue: 7 year: 2024 end-page: 4003 article-title: A Modular Model for Reliability Analysis Model of PMS With Multiple K/N Subsystems and Mixed Shocks publication-title: Quality and Reliability Engineering International – volume: 240 year: 2023 article-title: Maintenance Optimization for Dependent Two‐Component Degrading Systems Subject to Imperfect Repair publication-title: Reliability Engineering & System Safety – volume: 142 year: 2020 article-title: A Multi‐State Warm Standby System With Preventive Maintenance, Loss of Units and an Indeterminate Multiple Number of Repairpersons publication-title: Computers & Industrial Engineering – volume: 66 start-page: 235 issue: 3 year: 1999 end-page: 242 article-title: Wearing‐Out of Components in a Variable Environment publication-title: Reliability Engineering & System Safety – volume: 23 start-page: 308 issue: 2 year: 2021 end-page: 314 article-title: Reliability Assessment of Wind Turbine Generators by Fuzzy Universal Generating Function publication-title: Eksploatacja i Niezawodność – volume: 48 start-page: 1505 issue: 9 year: 2017 end-page: 1520 article-title: Optimizing Computational Mission Operation by Periodic Backups and Preventive Replacements publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 253 year: 2025 article-title: Standby and Inspection Policy Optimization in Systems Exposed to Common and Operational Shock Processes publication-title: Reliability Engineering & System Safety – volume: 266 start-page: 1189 issue: 3 year: 2018 end-page: 1197 article-title: Heterogeneous Standby Systems With Shocks‐Driven Preventive Replacements publication-title: European Journal of Operational Research – start-page: 287 year: 2020 end-page: 290 – volume: 71 start-page: 484 issue: 1 year: 2021 end-page: 499 article-title: A Deep Reinforcement Learning Approach to Dynamic Loading Strategy of Repairable Multistate Systems publication-title: IEEE Transactions on Reliability – volume: 71 start-page: 1488 issue: 4 year: 2022 end-page: 1500 article-title: Replacement and Repair Optimization for Production Systems Under Random Production Waits publication-title: IEEE Transactions on Reliability – volume: 12 start-page: 330 year: 2025 end-page: 342 article-title: Condition‐Based Maintenance via Markov Decision Processes: A Review publication-title: Frontiers of Engineering Management – volume: 257 year: 2025 article-title: Is our Mission Profitable: the Cost‐Effectiveness Curve With a Possibility of a Mission Abort publication-title: Reliability Engineering & System Safety – volume: 71 start-page: 484 issue: 1 year: 2022 end-page: 499 article-title: A Deep Reinforcement Learning Approach to Dynamic Loading Strategy of Repairable Multistate Systems publication-title: IEEE Transactions on Reliability – volume: 48 start-page: 736 issue: 8 year: 2016 end-page: 746 article-title: Reliability Analysis and Optimal Structure of Series‐Parallel Phased‐Mission Systems Subject to Fault‐Level Coverage publication-title: Iie Transactions – volume: 54 start-page: 324 issue: 2 year: 2025 end-page: 351 article-title: A Study on Utilization of Two Cold Standby Components to Increase Reliability of a Coherent System publication-title: Communications in Statistics‐Theory and Methods – volume: 234 start-page: 155 issue: 1 year: 2014 end-page: 162 article-title: Cold vs. Hot Standby Mission Operation Cost Minimization for 1‐Out‐of‐n Systems publication-title: European Journal of Operational Research – volume: 235 start-page: 982 issue: 6 year: 2021 end-page: 997 article-title: Availability Analysis and Maintenance Optimization for Multiple Failure Mode Systems Considering Imperfect Repair publication-title: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability – start-page: 31 year: 2021 end-page: 42 – volume: 121 start-page: 18 year: 2014 end-page: 25 article-title: Reliability of Demand‐Based Phased‐Mission Systems Subject to Fault Level Coverage publication-title: Reliability Engineering & System Safety – volume: 204 year: 2020 article-title: Optimal Preventive Replacement Policy for Homogeneous Cold Standby Systems With Reusable Elements publication-title: Reliability Engineering & System Safety – volume: 212 year: 2021 article-title: Joint Optimization of Mission Abort and Component Switching Policies for Multistate Warm Standby Systems publication-title: Reliability Engineering & System Safety – volume: 266 start-page: 963 issue: 3 year: 2018 end-page: 975 article-title: Sensitivity of Optimal Replacement Policies to Lifetime Parameter Estimates publication-title: European Journal of Operational Research – volume: 237 year: 2023 article-title: Reliability Analysis and Optimization of Multi‐Phased Spaceflight With Backup Missions and Mixed Redundancy Strategy publication-title: Reliability Engineering & System Safety – volume: 48 start-page: 628 issue: 3 year: 2019 end-page: 647 article-title: Availability Analysis for General Repairable Systems With Repair Time Threshold publication-title: Communications in Statistics‐Theory and Methods – volume: 321 start-page: 565 issue: 2 year: 2025 end-page: 585 article-title: Condition‐Based Switching, Loading, and Age‐Based Maintenance Policies for Standby Systems publication-title: European Journal of Operational Research – volume: 26 start-page: 89 issue: 1 year: 1989 end-page: 102 article-title: Some Results for Repairable Systems With General Repair publication-title: Journal of Applied Probability – ident: e_1_2_9_3_1 doi: 10.1007/s42524-024-0140-8 – ident: e_1_2_9_29_1 doi: 10.1109/TR.2015.2500369 – ident: e_1_2_9_13_1 doi: 10.1109/TSMC.2015.2399472 – ident: e_1_2_9_41_1 doi: 10.1016/j.cie.2020.106348 – ident: e_1_2_9_48_1 doi: 10.2307/3214319 – ident: e_1_2_9_49_1 doi: 10.1016/S0951-8320(99)00023-X – ident: e_1_2_9_15_1 doi: 10.1016/j.ejor.2013.10.051 – ident: e_1_2_9_39_1 doi: 10.1016/j.ress.2018.08.004 – ident: e_1_2_9_35_1 doi: 10.1016/j.ress.2023.109581 – ident: e_1_2_9_11_1 doi: 10.1016/j.ress.2010.03.004 – ident: e_1_2_9_2_1 doi: 10.17531/ein.2021.2.10 – ident: e_1_2_9_20_1 doi: 10.1016/j.ress.2023.109373 – ident: e_1_2_9_40_1 doi: 10.1016/j.apm.2020.11.001 – ident: e_1_2_9_28_1 doi: 10.1016/j.ejor.2017.11.002 – ident: e_1_2_9_42_1 doi: 10.1109/QRS-C51114.2020.00056 – ident: e_1_2_9_19_1 doi: 10.1109/TII.2024.3409439 – ident: e_1_2_9_23_1 doi: 10.1080/03610926.2024.2309981 – ident: e_1_2_9_25_1 doi: 10.1016/j.ress.2020.107351 – volume: 5 start-page: 419 issue: 5 year: 2009 ident: e_1_2_9_46_1 article-title: Fault‐Tolerance and Reliability Analysis for Wireless Sensor Networks publication-title: International Journal of Performability Engineering – ident: e_1_2_9_7_1 doi: 10.1016/B978-0-12-823323-8.00008-8 – ident: e_1_2_9_22_1 doi: 10.1177/1748006X211012792 – ident: e_1_2_9_38_1 doi: 10.1016/j.ress.2024.110509 – ident: e_1_2_9_43_1 doi: 10.1080/16843703.2018.1465228 – ident: e_1_2_9_50_1 doi: 10.1016/j.ress.2023.109330 – ident: e_1_2_9_5_1 doi: 10.1002/qre.3550 – ident: e_1_2_9_12_1 doi: 10.1002/qre.3614 – ident: e_1_2_9_26_1 doi: 10.1016/j.ress.2020.107227 – ident: e_1_2_9_31_1 doi: 10.1016/j.ejor.2017.10.055 – ident: e_1_2_9_45_1 doi: 10.1016/j.ress.2016.10.030 – ident: e_1_2_9_14_1 doi: 10.1016/j.ress.2022.108612 – ident: e_1_2_9_51_1 doi: 10.1016/j.ress.2025.110853 – ident: e_1_2_9_17_1 doi: 10.1016/j.ress.2024.110017 – ident: e_1_2_9_24_1 doi: 10.1016/j.ress.2021.107641 – ident: e_1_2_9_9_1 doi: 10.1002/qre.3534 – ident: e_1_2_9_37_1 doi: 10.1002/qre.3389 – ident: e_1_2_9_18_1 doi: 10.1007/s00184-013-0441-0 – ident: e_1_2_9_55_1 doi: 10.1109/TR.2020.3044596 – ident: e_1_2_9_33_1 doi: 10.1016/j.ress.2021.108266 – ident: e_1_2_9_53_1 doi: 10.1016/j.ress.2024.110524 – ident: e_1_2_9_30_1 doi: 10.1109/TSMC.2017.2672999 – ident: e_1_2_9_10_1 doi: 10.1109/TII.2020.2998102 – ident: e_1_2_9_54_1 doi: 10.1016/j.ress.2021.108132 – ident: e_1_2_9_44_1 doi: 10.1080/03610926.2017.1417430 – ident: e_1_2_9_47_1 doi: 10.1109/TR.2022.3225273 – start-page: 1 year: 2025 ident: e_1_2_9_52_1 article-title: Mission Abort Policy Considering Imperfect Alarms and Two Abort Options publication-title: Naval Research Logistics (NRL) – ident: e_1_2_9_21_1 doi: 10.1111/risa.17696 – ident: e_1_2_9_27_1 doi: 10.1016/j.ress.2020.107135 – ident: e_1_2_9_34_1 doi: 10.1007/s42524-024-4130-7 – ident: e_1_2_9_32_1 doi: 10.1109/TR.2021.3111651 – ident: e_1_2_9_56_1 doi: 10.1109/TR.2020.3044596 – ident: e_1_2_9_8_1 doi: 10.1016/j.ress.2013.07.013 – ident: e_1_2_9_6_1 doi: 10.1002/qre.3342 – ident: e_1_2_9_16_1 doi: 10.1109/TR.2012.2192587 – ident: e_1_2_9_4_1 doi: 10.1080/0740817X.2016.1146424 – ident: e_1_2_9_36_1 doi: 10.1016/j.ejor.2024.09.014 |
| SSID | ssj0010098 |
| Score | 2.4051259 |
| Snippet | ABSTRACT
Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the... Switching time redundancy is crucial for optimizing the performance of standby systems, where a redundancy period commences upon the failure of the online... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 2751 |
| SubjectTerms | Downtime Failure Maximization Operations management Optimization Redundancy Reliability analysis standby systems Support systems switching decision switching time redundancy |
| Title | Reliability Modeling and Switching Decision Optimization for Standby Systems with Switching Time Redundancy |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.3819 https://www.proquest.com/docview/3255980434 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0748-8017 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010098 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kJz34LVarrCDe0ja7abI5irYUQcVqoeAhZL9AilHbFKm_3plNUqsgiKdcspDMzsy-t8y8IeS0Y20MLFnj1ADlBUxCSCkde36YsiDVQkUW7yGvb8L-MLgadUZlVSX2whT6EIsLN4wMl68xwFM5bX2Jhr5NTBPpBqRfn4eOTQ0WylE-6mQWCpwCk3BU6c62Wata-P0k-oKXyyDVnTK9DfJYfV9RXDJuznLZVB8_pBv_9wObZL0En_S88JYtsmKybbK2JEm4Q8ZYo1xod88pDkrDdnWaZprevz_lrvCSXpZzeegt5JvnspGTAvqlOJNYyzktddAp3vIuLcR-Ezow2LiGSX2XDHvdh4u-Vw5k8BQgo9jjVmguAY9rJGKAJJkGPBFJrkIhuAHuxoUJRJxyZSIZA_lR3DImLaAKKQH77JFa9pKZfUJTqSMehNa2Q_AJlQoGXFypOBRSAKrz6-Sk2pzktdDdSAqFZZaA4RI0XJ00ql1LysibJtxJzrcDHtTJmTP_r-uTu0EXnwd_ffGQrDIc_-taERuklk9m5ggwSS6Pnfd9AoP33o8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58HNSDb7FadQXxltrupskGT6KVqq1itdCDELK7WZBifFVEf70zebRVEMRTLllIZmdmv2_Y-QZgr25tgCzZ0NQA7bhcYUhpEzg1L-JuZKT2LdUh25des-ue9-q9CTgsemEyfYhhwY0iI83XFOBUkD4YqYY-v8QV4huTMO16SFMIEXWG2lE1UsrMNDglpWG_UJ6t8oNi5fezaAQwx2Fqes6cLsBd8YXZ9ZJ-5W2gKvrzh3jjP39hEeZz_MmOModZgok4WYa5MVXCFejTNeVMvvuD0aw06lhnUWLYzfv9IL17yU7y0TzsClPOQ97LyRAAMxpLbNQHy6XQGRV6xxZSywnrxNS7Rnl9FbqnjdvjppPPZHA0gqPAEVYaoRCSG-JiCCa5QUjhK6E9KUWM9E3I2JVBJHTsqwD5jxaWc2URWCiF8GcNppLHJF4HFinjC9eztuqhW-hIcqTjWgeeVBKBXa0Eu8XuhE-Z9EaYiSzzEA0XkuFKUC62LcyD7zUUqep81RVuCfZT-_-6PrzuNOi58dcXd2Cmedtuha2zy4tNmOU0DTjtTCzD1ODlLd5CiDJQ26krfgF8beKw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZS8NAEMeHqiD64C3WcwXxLbXdTZMNPolt8axaFXwQQvYCKdarIvrpnclRqyCIT3nJQrK7M_ufZeY3AFt15yKMkg11DdCezxWalDaRVwsS7idG6tDRPeRpOzi49o9u6jcl2C1qYTI-xODCjSwj9ddk4PbRuJ0vaujTs61QvDECY349kpTP1-gM2FE1ImVmDE5JbjgsyLNVvlOM_H4WfQnMYZmanjOtabgtvjBLL-lWXvuqoj9-wBv_-QszMJXrT7aXbZhZKNneHEwOUQnnoUtpyhm--51RrzSqWGdJz7DLt7t-mnvJGnlrHnaGLuc-r-VkKIAZtSU26p3lKHRGF71DA6nkhHUs1a6RX1-A61bzav_Ay3syeBrFUeQJJ41QKMkNxWIoJrlBSREqoQMphcXwTUjryygR2oYqwvhHC8e5cigslEL5swijvYeeXQKWKBMKP3CuGuC20InkGI5rHQVSSRR2tTJsFqsTP2bojTiDLPMYJy6miSvDarFscW58L7FIqfNVX_hl2E7n_9fx8UWnSc_lv764AePnjVZ8ctg-XoEJTs2A08LEVRjtP7_aNVQofbWe7sRPTOTiNA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+Modeling+and+Switching+Decision+Optimization+for+Standby+Systems+with+Switching+Time+Redundancy&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Qiu%2C+Qingan&rft.au=Sun%2C+Rongchi&rft.au=Liu%2C+Bosen&rft.au=Pei%2C+Cuicui&rft.date=2025-11-01&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=41&rft.issue=7&rft.spage=2751&rft.epage=2764&rft_id=info:doi/10.1002%2Fqre.3819&rft.externalDBID=10.1002%252Fqre.3819&rft.externalDocID=QRE3819 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon |