Distributed Sequential Filtering for Nonlinear Systems With Heavy‐Tailed Noise Under Binary Sensor Networks: A Variational Bayesian Approach
ABSTRACT In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian heavy‐tailed noises through binary sensor networks. Since only one bit of output data is valid for binary sensors, a novel Gaussian tail function is pr...
Saved in:
| Published in | International journal of robust and nonlinear control Vol. 35; no. 14; pp. 5979 - 5989 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
25.09.2025
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1049-8923 1099-1239 |
| DOI | 10.1002/rnc.8032 |
Cover
| Abstract | ABSTRACT
In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian heavy‐tailed noises through binary sensor networks. Since only one bit of output data is valid for binary sensors, a novel Gaussian tail function is proposed to gather valuable information from binary sensors for filtering purposes. Furthermore, a unified distributed sequential filtering framework for handling non‐Gaussian heavy‐tail noise with inaccurate statistics is developed by a variational Bayesian (VB) strategy combined with cubature Kalman filtering (CKF), which is according to the spherical‐radial cubature rule. To be more specific, the posterior distribution functions of system states together with the noise covariance (NC) and the auxiliary variable are jointly estimated under such a framework. In addition, the distributed sequential filter is received by Metropolis weights and arithmetic average fusion. Finally, an example of target tracking is utilized to reveal the effectiveness and applicability of the proposed distributed filtering algorithm. |
|---|---|
| AbstractList | ABSTRACT
In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian heavy‐tailed noises through binary sensor networks. Since only one bit of output data is valid for binary sensors, a novel Gaussian tail function is proposed to gather valuable information from binary sensors for filtering purposes. Furthermore, a unified distributed sequential filtering framework for handling non‐Gaussian heavy‐tail noise with inaccurate statistics is developed by a variational Bayesian (VB) strategy combined with cubature Kalman filtering (CKF), which is according to the spherical‐radial cubature rule. To be more specific, the posterior distribution functions of system states together with the noise covariance (NC) and the auxiliary variable are jointly estimated under such a framework. In addition, the distributed sequential filter is received by Metropolis weights and arithmetic average fusion. Finally, an example of target tracking is utilized to reveal the effectiveness and applicability of the proposed distributed filtering algorithm. In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian heavy‐tailed noises through binary sensor networks. Since only one bit of output data is valid for binary sensors, a novel Gaussian tail function is proposed to gather valuable information from binary sensors for filtering purposes. Furthermore, a unified distributed sequential filtering framework for handling non‐Gaussian heavy‐tail noise with inaccurate statistics is developed by a variational Bayesian (VB) strategy combined with cubature Kalman filtering (CKF), which is according to the spherical‐radial cubature rule. To be more specific, the posterior distribution functions of system states together with the noise covariance (NC) and the auxiliary variable are jointly estimated under such a framework. In addition, the distributed sequential filter is received by Metropolis weights and arithmetic average fusion. Finally, an example of target tracking is utilized to reveal the effectiveness and applicability of the proposed distributed filtering algorithm. |
| Author | Zhang, Jiayi Ding, Derui Wei, Guoliang Chen, Han |
| Author_xml | – sequence: 1 givenname: Jiayi surname: Zhang fullname: Zhang, Jiayi organization: University of Shanghai for Science and Technology – sequence: 2 givenname: Guoliang orcidid: 0000-0003-4957-3267 surname: Wei fullname: Wei, Guoliang email: guoliang.wei@usst.edu.cn organization: University of Shanghai for Science and Technology – sequence: 3 givenname: Derui orcidid: 0000-0001-7402-6682 surname: Ding fullname: Ding, Derui organization: University of Shanghai for Science and Technology – sequence: 4 givenname: Han surname: Chen fullname: Chen, Han organization: University of Shanghai for Science and Technology |
| BookMark | eNp1kE1OwzAQhS0EEqUgcQRLbNik2I6d1uxKoYBUFYnfZeQmE-oS7GK7VNlxAsQZOQkOZctqRppv3sx7e2jbWAMIHVLSo4SwE2eK3oCkbAt1KJEyoSyV223PZTKQLN1Fe94vCIkzxjvo81z74PRsFaDEd_C2AhO0qvFY1wGcNs-4sg5Pram1AeXwXeMDvHr8pMMcX4F6b74_vu6VruP61GoP-MGU4PCZNso1UdH4dh_C2roXf4qH-FE5rYK2Jl45Uw14rQweLpfOqmK-j3YqVXs4-Ktd9DC-uB9dJZOby-vRcJIUTGQsoUKUfUa5TFMmCGSCcwqQDZiQJZ2VrIB-1WcZr2ZCFJT0s7JKiSrKUvAZ55CmXXS00Y1no2cf8oVdufiSz1tFKTMmWKSON1ThrPcOqnzp9Gv0lVOSt2nnMe28TTuiyQZdxyiaf7n8djr65X8ABu-EhA |
| Cites_doi | 10.1109/TAES.2017.2651684 10.1109/TAC.2017.2704442 10.1109/TNNLS.2021.3103979 10.1016/j.sigpro.2020.107775 10.1109/LSP.2013.2289975 10.1016/j.sigpro.2012.03.009 10.1137/060678324 10.1109/TSMC.2020.3041121 10.1016/j.automatica.2016.01.071 10.1109/JAS.2021.1004015 10.1016/j.automatica.2013.08.011 10.1016/j.automatica.2022.110158 10.1016/j.sigpro.2018.06.014 10.1109/TAC.2017.2730480 10.1016/j.automatica.2020.109039 10.1016/j.automatica.2020.108861 10.1109/TNNLS.2020.3030638 10.1109/TCYB.2019.2924450 10.1016/j.automatica.2013.01.012 10.1016/j.automatica.2013.11.042 10.1109/LSP.2019.2950588 10.1109/TAC.2008.2008348 10.1016/j.automatica.2017.07.035 10.1016/j.automatica.2012.02.014 10.1109/TAC.2020.2995674 10.1109/TNNLS.2022.3149540 10.1109/LSP.2020.2983552 10.1109/TCYB.2019.2894392 10.1109/LSP.2016.2533543 10.1109/TCYB.2020.3021556 10.1109/TAC.2019.2942569 10.1109/TAC.2009.2037467 10.1007/s11432-023-4038-3 10.1109/TSP.2018.2865434 10.1109/TSP.2019.2916755 10.1109/TAC.2011.2161836 10.1109/TSP.2012.2208106 10.1109/TCYB.2020.3016093 10.1109/TAC.2009.2019800 10.1109/9.855552 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1002/rnc.8032 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1239 |
| EndPage | 5989 |
| ExternalDocumentID | 10_1002_rnc_8032 RNC8032 |
| Genre | article |
| GrantInformation_xml | – fundername: the Natural Science Foundation of China funderid: 62273239 |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2562-155d7214933250e65441ee68259d1bd2ce7f7264fb55c1076df30acdd54b44e33 |
| IEDL.DBID | DR2 |
| ISSN | 1049-8923 |
| IngestDate | Tue Sep 16 10:40:39 EDT 2025 Wed Oct 01 05:22:53 EDT 2025 Tue Sep 16 09:40:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2562-155d7214933250e65441ee68259d1bd2ce7f7264fb55c1076df30acdd54b44e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7402-6682 0000-0003-4957-3267 |
| PQID | 3250996252 |
| PQPubID | 1026344 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3250996252 crossref_primary_10_1002_rnc_8032 wiley_primary_10_1002_rnc_8032_RNC8032 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 25 September 2025 2025-09-25 20250925 |
| PublicationDateYYYYMMDD | 2025-09-25 |
| PublicationDate_xml | – month: 09 year: 2025 text: 25 September 2025 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Bognor Regis |
| PublicationTitle | International journal of robust and nonlinear control |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2017; 62 2021; 8 2012; 60 2010; 55 2017; 85 2023; 34 2013; 49 2021; 66 2022; 71 2013; 21 2000; 45 2022; 68 2018; 63 2005 2011; 56 2006; 1 2020; 33 2018; 66 2021; 51 2022; 138 2009; 48 2018; 152 2012; 92 2017; 53 2009; 54 2021; 179 2020; 52 2021; 178 2015; 62 2020; 50 2019; 67 2019; 26 2022; 34 2020; 115 2020; 27 2020; 118 2022; 52 2024; 67 2020; 65 2012; 48 2014; 50 2016; 68 2016; 23 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Lv X. (e_1_2_9_34_1) 2022; 68 Xiao L. (e_1_2_9_43_1) 2005 Hu Z. (e_1_2_9_17_1) 2022; 71 Dong X. (e_1_2_9_30_1) 2021; 179 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Xiao L. (e_1_2_9_42_1) 2006; 1 e_1_2_9_9_1 Yin S. (e_1_2_9_28_1) 2015; 62 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 34 start-page: 8337 issue: 11 year: 2022 end-page: 8348 article-title: Adaptive Set‐Membership State Estimation for Nonlinear Systems Under Bit Rate Allocation Mechanism: A Neural‐Network‐Based Approach publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 66 start-page: 1786 issue: 4 year: 2021 end-page: 1793 article-title: Variational Adaptive Kalman Filter With Gaussian‐Inverse‐Wishart Mixture Distribution publication-title: Transactions on Automatic Control – volume: 52 start-page: 3733 issue: 5 year: 2022 end-page: 3744 article-title: Distributed Maximum Correntropy Filtering for Stochastic Nonlinear Systems Under Deception Attacks publication-title: IEEE Transactions on Cybernetics – volume: 71 start-page: 1 issue: 9503111 year: 2022 end-page: 11 article-title: Kalman‐Like Filter Under Binary Sensors publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 50 start-page: 2462 issue: 6 year: 2020 end-page: 2474 article-title: Network‐Based Modeling and Proportional–Integral Control for Direct‐Drive‐Wheel Systems in Wireless Network Environments publication-title: IEEE Transactions on Cybernetics – volume: 45 start-page: 910 issue: 5 year: 2000 end-page: 927 article-title: Gaussian Filters for Nonlinear Filtering Problems publication-title: IEEE Transactions on Automatic Control – volume: 48 start-page: 978 issue: 5 year: 2012 end-page: 981 article-title: Stochastic Stability of Unscented Kalman Filter With Intermittent Observations publication-title: Automatica – volume: 67 start-page: 162206 issue: 6 year: 2024 article-title: Accumulated‐State‐Error‐Based Event‐Triggered Sampling Scheme and Its Application to control of Sampled‐Data Systems publication-title: SCIENCE CHINA Information Sciences – volume: 179 start-page: 1 issue: 107837 year: 2021 end-page: 15 article-title: An Adaptive Variational Bayesian Filter for Nonlinear Multi‐Sensor Systems With Unknown Noise Statistics publication-title: Signal Processing – volume: 8 start-page: 1107 issue: 6 year: 2021 end-page: 1118 article-title: An Ellipsoidal Set‐Membership Approach to Distributed Joint State and Sensor Fault Estimation of Autonomous Ground Vehicles publication-title: IEEE/CAA Journal of Automatica Sinica – volume: 60 start-page: 5024 issue: 10 year: 2012 end-page: 5037 article-title: Approximate Inference in State‐Space Models With Heavy‐Tailed Noise publication-title: IEEE Transactions on Signal Processing – volume: 54 start-page: 1254 issue: 6 year: 2009 end-page: 1269 article-title: Cubature Kalman Filters publication-title: IEEE Transactions on Automatic Control – volume: 48 start-page: 33 issue: 1 year: 2009 end-page: 55 article-title: Convergence Speed in Distributed Consensus and Averaging publication-title: SIAM Journal on Control and Optimization – volume: 152 start-page: 331 issue: 11 year: 2018 end-page: 339 article-title: Student't Mixture Labeled Multi‐Bernoulli Filter for Multi‐Target Tracking With Heavy‐Tailed Noise publication-title: Signal Processing – volume: 50 start-page: 707 year: 2014 end-page: 718 article-title: Kullback‐Leibler Average, Consensus on Probability Densities, and Distributed State Estimation With Guaranteed Stability publication-title: Automatica – volume: 26 start-page: 1812 issue: 12 year: 2019 end-page: 1816 article-title: Distributed Bernoulli Filtering for Target Detection and Tracking Based on Arithmetic Average Fusion publication-title: IEEE Signal Processing Letters – volume: 67 start-page: 3606 issue: 13 year: 2019 end-page: 3620 article-title: A Novel Robust Gaussian‐Student's t Mixture Distribution Based Kalman Filter publication-title: IEEE Transactions on Signal Processing – volume: 66 start-page: 5618 issue: 21 year: 2018 end-page: 5633 article-title: Skew‐t Filter and Smoother With Improved Covariance Matrix Approximation publication-title: IEEE Transactions on Signal Processing – volume: 56 start-page: 2991 issue: 12 year: 2011 end-page: 2996 article-title: Adaptive Tracking Control of a Class of First‐Order Systems With Binary‐Valued Observations and Time‐Varying Thresholds publication-title: IEEE Transactions on Automatic Control – volume: 55 start-page: 514 issue: 2 year: 2010 end-page: 518 article-title: Stochastic Stability of the Extended Kalman Filter With Intermittent Observations publication-title: IEEE Transactions on Automatic Control – volume: 52 start-page: 3333 issue: 5 year: 2020 end-page: 3341 article-title: Resilient State Estimation for Discrete‐Time Stochastic Delayed Memristive Neural Networks: A Dynamic Event‐Triggered Mechanism publication-title: IEEE Transactions on Cybernetics – volume: 115 year: 2020 article-title: Fusion Estimation Under Binary Sensors publication-title: Automatica – volume: 92 start-page: 2464 issue: 10 year: 2012 end-page: 2470 article-title: Distributed Consensus Filtering for Discrete‐Time Nonlinear Systems With Non‐Gaussian Noise publication-title: Signal Processing – volume: 23 start-page: 468 issue: 4 year: 2016 end-page: 472 article-title: A Robust Gaussian Approximate Fixed‐Interval Smoother for Nonlinear Systems With Heavy‐Tailed Process and Measurement Noises publication-title: IEEE Signal Processing Letters – volume: 27 start-page: 700 year: 2020 end-page: 704 article-title: A New Robust Kalman Filter With Adaptive Estimate of Time‐Varying Measurement Bias publication-title: IEEE Signal Processing Letters – volume: 1 start-page: 1 year: 2006 end-page: 4 article-title: Distributed Average Consensus With Time‐Varying Metropolis Weights publication-title: Automatica – volume: 51 start-page: 176 issue: 1 year: 2021 end-page: 190 article-title: Secure State Estimation and Control of Cyber‐Physical Systems: A Survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 49 start-page: 3396 year: 2013 end-page: 3401 article-title: Recursive Projection Algorithm on FIR System Identification With Binary‐Valued Observations publication-title: Automatica – volume: 138 year: 2022 article-title: Identification and Adaptation With Binary‐Valued Observations Under Non‐Persistent Excitation Condition publication-title: Automatica – volume: 54 start-page: 596 issue: 3 year: 2009 end-page: 600 article-title: Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations publication-title: IEEE Transactions on Automatic Control – volume: 62 start-page: 6051 issue: 11 year: 2017 end-page: 6057 article-title: Variational Bayesian Adaptive Cubature Information Filter Based on Wishart Distribution publication-title: IEEE Transactions on Automatic Control – volume: 21 start-page: 30 issue: 1 year: 2013 end-page: 34 article-title: A Robust Particle Filtering Algorithm With Non‐Gaussian Measurement Noise Using Student‐t Distribution publication-title: IEEE Signal Processing Letters – volume: 68 start-page: 169 year: 2016 end-page: 178 article-title: Stability of Consensus Extended Kalman Filter for Distributed State Estimation publication-title: Automatica – volume: 118 year: 2020 article-title: Event‐Triggered Distributed State Estimation Over Wireless Sensor Networks publication-title: Automatica – volume: 68 start-page: 4321 issue: 7 year: 2022 end-page: 4328 article-title: Stochastic Event‐Triggered Variational Bayesian Filtering publication-title: IEEE Transactions on Automatic Control – volume: 49 start-page: 976 issue: 4 year: 2013 end-page: 986 article-title: Gaussian Filter for Nonlinear Systems With One‐Step Randomly Delayed Measurements publication-title: Automatica – volume: 63 start-page: 594 issue: 2 year: 2018 end-page: 601 article-title: A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices publication-title: Transactions on Automatic Control – volume: 62 start-page: 3852 issue: 6 year: 2015 end-page: 3861 article-title: Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System publication-title: IEEE Transactions on Industrial Electronics – volume: 33 start-page: 952 issue: 3 year: 2020 end-page: 961 article-title: Event‐Triggered Output Feedback Synchronization of Master–Slave Neural Networks Under Deception Attacks publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 65 start-page: 2675 issue: 6 year: 2020 end-page: 2678 article-title: Consensus of Multi‐Agent Systems Under Binary‐Valued Measurements and Recursive Projection Algorithm publication-title: IEEE Transactions on Automatic Control – volume: 178 year: 2021 article-title: Variational Inference Based Distributed Noise Adaptive Bayesian Filter publication-title: Signal Processing – volume: 53 start-page: 1545 issue: 3 year: 2017 end-page: 1554 article-title: A Novel Robust Student's t‐Based Kalman Filter publication-title: IEEE Transactions on Aerospace and Electronic Systems – volume: 34 start-page: 1074 issue: 2 year: 2023 end-page: 1079 article-title: Proportional‐Integral State Estimator for Quaternion‐Valued Neural Networks With Time‐Varying Delays publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 63 year: 2005 end-page: 70 – volume: 51 start-page: 462 issue: 1 year: 2021 end-page: 472 article-title: Distributed State Estimator Design for Time‐Delay Periodic Systems Over Scheduling Sensor Networks publication-title: IEEE Transactions on Cybernetics – volume: 85 start-page: 374 year: 2017 end-page: 385 article-title: Moving Horizon Estimation for Discrete‐Time Linear Systems With Binary Sensors: Algorithms and Stability Results publication-title: Automatica – ident: e_1_2_9_38_1 doi: 10.1109/TAES.2017.2651684 – ident: e_1_2_9_36_1 doi: 10.1109/TAC.2017.2704442 – ident: e_1_2_9_6_1 doi: 10.1109/TNNLS.2021.3103979 – ident: e_1_2_9_31_1 doi: 10.1016/j.sigpro.2020.107775 – ident: e_1_2_9_22_1 doi: 10.1109/LSP.2013.2289975 – ident: e_1_2_9_26_1 doi: 10.1016/j.sigpro.2012.03.009 – volume: 179 start-page: 1 issue: 107837 year: 2021 ident: e_1_2_9_30_1 article-title: An Adaptive Variational Bayesian Filter for Nonlinear Multi‐Sensor Systems With Unknown Noise Statistics publication-title: Signal Processing – ident: e_1_2_9_44_1 doi: 10.1137/060678324 – ident: e_1_2_9_3_1 doi: 10.1109/TSMC.2020.3041121 – ident: e_1_2_9_24_1 doi: 10.1016/j.automatica.2016.01.071 – ident: e_1_2_9_5_1 doi: 10.1109/JAS.2021.1004015 – ident: e_1_2_9_12_1 doi: 10.1016/j.automatica.2013.08.011 – ident: e_1_2_9_14_1 doi: 10.1016/j.automatica.2022.110158 – ident: e_1_2_9_23_1 doi: 10.1016/j.sigpro.2018.06.014 – ident: e_1_2_9_32_1 doi: 10.1109/TAC.2017.2730480 – volume: 68 start-page: 4321 issue: 7 year: 2022 ident: e_1_2_9_34_1 article-title: Stochastic Event‐Triggered Variational Bayesian Filtering publication-title: IEEE Transactions on Automatic Control – ident: e_1_2_9_10_1 doi: 10.1016/j.automatica.2020.109039 – ident: e_1_2_9_15_1 doi: 10.1016/j.automatica.2020.108861 – ident: e_1_2_9_46_1 doi: 10.1109/TNNLS.2020.3030638 – ident: e_1_2_9_2_1 doi: 10.1109/TCYB.2019.2924450 – ident: e_1_2_9_37_1 doi: 10.1016/j.automatica.2013.01.012 – ident: e_1_2_9_41_1 doi: 10.1016/j.automatica.2013.11.042 – ident: e_1_2_9_40_1 doi: 10.1109/LSP.2019.2950588 – ident: e_1_2_9_35_1 doi: 10.1109/TAC.2008.2008348 – ident: e_1_2_9_16_1 doi: 10.1016/j.automatica.2017.07.035 – ident: e_1_2_9_27_1 doi: 10.1016/j.automatica.2012.02.014 – ident: e_1_2_9_33_1 doi: 10.1109/TAC.2020.2995674 – volume: 1 start-page: 1 year: 2006 ident: e_1_2_9_42_1 article-title: Distributed Average Consensus With Time‐Varying Metropolis Weights publication-title: Automatica – volume: 62 start-page: 3852 issue: 6 year: 2015 ident: e_1_2_9_28_1 article-title: Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System publication-title: IEEE Transactions on Industrial Electronics – ident: e_1_2_9_7_1 doi: 10.1109/TNNLS.2022.3149540 – ident: e_1_2_9_18_1 doi: 10.1109/LSP.2020.2983552 – start-page: 63 volume-title: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks year: 2005 ident: e_1_2_9_43_1 – ident: e_1_2_9_8_1 doi: 10.1109/TCYB.2019.2894392 – ident: e_1_2_9_19_1 doi: 10.1109/LSP.2016.2533543 – ident: e_1_2_9_4_1 doi: 10.1109/TCYB.2020.3021556 – ident: e_1_2_9_13_1 doi: 10.1109/TAC.2019.2942569 – ident: e_1_2_9_25_1 doi: 10.1109/TAC.2009.2037467 – volume: 71 start-page: 1 issue: 9503111 year: 2022 ident: e_1_2_9_17_1 article-title: Kalman‐Like Filter Under Binary Sensors publication-title: IEEE Transactions on Instrumentation and Measurement – ident: e_1_2_9_47_1 doi: 10.1007/s11432-023-4038-3 – ident: e_1_2_9_45_1 doi: 10.1109/TSP.2018.2865434 – ident: e_1_2_9_20_1 doi: 10.1109/TSP.2019.2916755 – ident: e_1_2_9_11_1 doi: 10.1109/TAC.2011.2161836 – ident: e_1_2_9_21_1 doi: 10.1109/TSP.2012.2208106 – ident: e_1_2_9_9_1 doi: 10.1109/TCYB.2020.3016093 – ident: e_1_2_9_29_1 doi: 10.1109/TAC.2009.2019800 – ident: e_1_2_9_39_1 doi: 10.1109/9.855552 |
| SSID | ssj0009924 |
| Score | 2.4437075 |
| Snippet | ABSTRACT
In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian... In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian heavy‐tailed noises... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5979 |
| SubjectTerms | arithmetic average fusion Bayesian analysis binary sensor networks distributed sequential filtering Distribution functions heavy‐tailed noises Kalman filters Noise Nonlinear systems Sensors Tracking variational Bayesian approaches |
| Title | Distributed Sequential Filtering for Nonlinear Systems With Heavy‐Tailed Noise Under Binary Sensor Networks: A Variational Bayesian Approach |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.8032 https://www.proquest.com/docview/3250996252 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1049-8923 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1239 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009924 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78FqdTIoi3bm2TtKu3bTqG4A5z04GHkq_iUKqsmzBP_gXi3-hf4ks_3BQE8dRD89okLy_5veTl9xA6ZrYmzCfU8oiKLMD_wuJ1Zlu-57kOlY4k3JzoXna9zoBeDNkwj6o0d2EyfoivDTdjGel8bQyci6Q2Jw0dg_3UbWKmX4d4qTfVmzNHBUGWzxYAsFUHEFPwztpurRD8vhLN4eUiSE1XmfYaui3qlwWX3FenE1GVLz-oG__XgHW0moNP3MhGywZa0vEmWlmgJNxCb2eGSdckwdIKX6Vx1jAHPOD2yByrQxEMKBd3s__zMc4Zz_HNaHKHO5o_zz5e3_scKqSg1CjROM2shJvpvV_4YpwY-Sz4PDnFDXwN3nq-I4mbfKbNrU7cyKnOt9Ggfd5vdaw8Z4MlATy5FsATBU4lDQgBcKU9k-JMaw_80EA5QrlS-5EPICwSjElwPT0VEZtLpRgVlGpCdlApfoz1LsK2EwVCUWUrxql0_UBQWNA1KDuyJZWsjI4K_YVPGTVHmJEwuyH0bWj6towqhWLD3DiT0NQM3DyXweuTVEO_yoe9bss89_5acB8tuyZDsDm3YhVUmoyn-gBgy0QcpgP0E4C368A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqOAAHdkShgJEQt7RJvKSBU1uoytZDaYEDUpTYjqhABbUpUjnxBYhv5EsYZ6EFCQlxyiGeaGJ7xm9szxuE9pipCHMINTiRoQH4PzD8MjMNh3PbosISxNcnuhdN3ujQ0xt2k0OHWS5Mwg_xteGmLSP219rA9YZ0acwa2gcDKpsE_O805RCmaETUGnNHuW5S0RYgsFEGGJMxz5p2KZP8vhaNAeYkTI3XmfoCus00TK6X3BeHUVAULz_IG__5C4toPsWfuJJMmCWUU71lNDfBSriC3o40ma6ug6UkvoyvWoMbeMD1rj5ZhyYYgC5uJgr4fZySnuPrbnSHG8p_Hn28vrd90EhCq-5A4bi4Eq7Gqb_wxd5Ayyf3zwcHuIKvIGBPNyVx1R8pndiJKynb-Srq1I_btYaRlm0wBOAn2wCEIiGupC4hgK8U11XOlOIQirrSCqQtlBM6gMPCgDEB0SeXITF9ISWjAaWKkDU01XvsqXWETSt0A0mlKZlPhe24AYU1XVmEh6agguXRbjaA3lPCzuElPMy2B33r6b7No0I2sl5qnwNPawaRns3g9X48RL_Ke61mTT83_tpwB8002hfn3vlJ82wTzdq6YLA-xmIFNBX1h2oLUEwUbMez9RM-_O_h |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DQfTBuzidGkF869Y2Sbvq0y6OeRsyN92DUNokxaHMsXXCfPIXiL_RX-JJL24KgvjUhyblNMlJvpNzzncQOmC6JMwmVLOICDTA_77mFZmu2ZZlGpQbnHjKo3vZsOptetZhnQw6TnNhYn6Irws3pRnRfq0UXPZFUJiwhg5AgYo6gf13ljKnqOL5qs0Jd5TjxBVtAQJrRYAxKfOsbhbSnt_PognAnIap0TlTW0J3qYRxeMlDfhT6ef7yg7zxn7-wjBYT_IlL8YJZQRnZW0ULU6yEa-itqsh0VR0sKfB1FGoN28AjrnWVZx2aYAC6uBEL4A1wQnqOb7vhPa5L73n88fre8kAiAa26Q4mj4kq4HKX-whd7Q9U_jj8fHuESvgGDPbmUxGVvLFViJy4lbOfrqF07aVXqWlK2QeOAn0wNEIoAu5I6hAC-kpaqcialBaaoIwxfmFzagQ04LPAZ42B9WiIguseFYNSnVBKygWZ6Tz25ibBuBI4vqNAF8yg3bcencKZLg1iBzilnWbSfTqDbj9k53JiH2XRhbF01tlmUS2fWTfRz6CrJwNIzGbw-jKbo1_5us1FRz62_NtxDc1fVmntx2jjfRvOmqhesvFgsh2bCwUjuAIgJ_d1osX4C_eDvZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Sequential+Filtering+for+Nonlinear+Systems+With+Heavy%E2%80%90Tailed+Noise+Under+Binary+Sensor+Networks%3A+A+Variational+Bayesian+Approach&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Zhang%2C+Jiayi&rft.au=Wei%2C+Guoliang&rft.au=Ding%2C+Derui&rft.au=Chen%2C+Han&rft.date=2025-09-25&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=35&rft.issue=14&rft.spage=5979&rft.epage=5989&rft_id=info:doi/10.1002%2Frnc.8032&rft.externalDBID=10.1002%252Frnc.8032&rft.externalDocID=RNC8032 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |