Distributed Sequential Filtering for Nonlinear Systems With Heavy‐Tailed Noise Under Binary Sensor Networks: A Variational Bayesian Approach

ABSTRACT In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian heavy‐tailed noises through binary sensor networks. Since only one bit of output data is valid for binary sensors, a novel Gaussian tail function is pr...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 35; no. 14; pp. 5979 - 5989
Main Authors Zhang, Jiayi, Wei, Guoliang, Ding, Derui, Chen, Han
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 25.09.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1049-8923
1099-1239
DOI10.1002/rnc.8032

Cover

Abstract ABSTRACT In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian heavy‐tailed noises through binary sensor networks. Since only one bit of output data is valid for binary sensors, a novel Gaussian tail function is proposed to gather valuable information from binary sensors for filtering purposes. Furthermore, a unified distributed sequential filtering framework for handling non‐Gaussian heavy‐tail noise with inaccurate statistics is developed by a variational Bayesian (VB) strategy combined with cubature Kalman filtering (CKF), which is according to the spherical‐radial cubature rule. To be more specific, the posterior distribution functions of system states together with the noise covariance (NC) and the auxiliary variable are jointly estimated under such a framework. In addition, the distributed sequential filter is received by Metropolis weights and arithmetic average fusion. Finally, an example of target tracking is utilized to reveal the effectiveness and applicability of the proposed distributed filtering algorithm.
AbstractList ABSTRACT In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian heavy‐tailed noises through binary sensor networks. Since only one bit of output data is valid for binary sensors, a novel Gaussian tail function is proposed to gather valuable information from binary sensors for filtering purposes. Furthermore, a unified distributed sequential filtering framework for handling non‐Gaussian heavy‐tail noise with inaccurate statistics is developed by a variational Bayesian (VB) strategy combined with cubature Kalman filtering (CKF), which is according to the spherical‐radial cubature rule. To be more specific, the posterior distribution functions of system states together with the noise covariance (NC) and the auxiliary variable are jointly estimated under such a framework. In addition, the distributed sequential filter is received by Metropolis weights and arithmetic average fusion. Finally, an example of target tracking is utilized to reveal the effectiveness and applicability of the proposed distributed filtering algorithm.
In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian heavy‐tailed noises through binary sensor networks. Since only one bit of output data is valid for binary sensors, a novel Gaussian tail function is proposed to gather valuable information from binary sensors for filtering purposes. Furthermore, a unified distributed sequential filtering framework for handling non‐Gaussian heavy‐tail noise with inaccurate statistics is developed by a variational Bayesian (VB) strategy combined with cubature Kalman filtering (CKF), which is according to the spherical‐radial cubature rule. To be more specific, the posterior distribution functions of system states together with the noise covariance (NC) and the auxiliary variable are jointly estimated under such a framework. In addition, the distributed sequential filter is received by Metropolis weights and arithmetic average fusion. Finally, an example of target tracking is utilized to reveal the effectiveness and applicability of the proposed distributed filtering algorithm.
Author Zhang, Jiayi
Ding, Derui
Wei, Guoliang
Chen, Han
Author_xml – sequence: 1
  givenname: Jiayi
  surname: Zhang
  fullname: Zhang, Jiayi
  organization: University of Shanghai for Science and Technology
– sequence: 2
  givenname: Guoliang
  orcidid: 0000-0003-4957-3267
  surname: Wei
  fullname: Wei, Guoliang
  email: guoliang.wei@usst.edu.cn
  organization: University of Shanghai for Science and Technology
– sequence: 3
  givenname: Derui
  orcidid: 0000-0001-7402-6682
  surname: Ding
  fullname: Ding, Derui
  organization: University of Shanghai for Science and Technology
– sequence: 4
  givenname: Han
  surname: Chen
  fullname: Chen, Han
  organization: University of Shanghai for Science and Technology
BookMark eNp1kE1OwzAQhS0EEqUgcQRLbNik2I6d1uxKoYBUFYnfZeQmE-oS7GK7VNlxAsQZOQkOZctqRppv3sx7e2jbWAMIHVLSo4SwE2eK3oCkbAt1KJEyoSyV223PZTKQLN1Fe94vCIkzxjvo81z74PRsFaDEd_C2AhO0qvFY1wGcNs-4sg5Pram1AeXwXeMDvHr8pMMcX4F6b74_vu6VruP61GoP-MGU4PCZNso1UdH4dh_C2roXf4qH-FE5rYK2Jl45Uw14rQweLpfOqmK-j3YqVXs4-Ktd9DC-uB9dJZOby-vRcJIUTGQsoUKUfUa5TFMmCGSCcwqQDZiQJZ2VrIB-1WcZr2ZCFJT0s7JKiSrKUvAZ55CmXXS00Y1no2cf8oVdufiSz1tFKTMmWKSON1ThrPcOqnzp9Gv0lVOSt2nnMe28TTuiyQZdxyiaf7n8djr65X8ABu-EhA
Cites_doi 10.1109/TAES.2017.2651684
10.1109/TAC.2017.2704442
10.1109/TNNLS.2021.3103979
10.1016/j.sigpro.2020.107775
10.1109/LSP.2013.2289975
10.1016/j.sigpro.2012.03.009
10.1137/060678324
10.1109/TSMC.2020.3041121
10.1016/j.automatica.2016.01.071
10.1109/JAS.2021.1004015
10.1016/j.automatica.2013.08.011
10.1016/j.automatica.2022.110158
10.1016/j.sigpro.2018.06.014
10.1109/TAC.2017.2730480
10.1016/j.automatica.2020.109039
10.1016/j.automatica.2020.108861
10.1109/TNNLS.2020.3030638
10.1109/TCYB.2019.2924450
10.1016/j.automatica.2013.01.012
10.1016/j.automatica.2013.11.042
10.1109/LSP.2019.2950588
10.1109/TAC.2008.2008348
10.1016/j.automatica.2017.07.035
10.1016/j.automatica.2012.02.014
10.1109/TAC.2020.2995674
10.1109/TNNLS.2022.3149540
10.1109/LSP.2020.2983552
10.1109/TCYB.2019.2894392
10.1109/LSP.2016.2533543
10.1109/TCYB.2020.3021556
10.1109/TAC.2019.2942569
10.1109/TAC.2009.2037467
10.1007/s11432-023-4038-3
10.1109/TSP.2018.2865434
10.1109/TSP.2019.2916755
10.1109/TAC.2011.2161836
10.1109/TSP.2012.2208106
10.1109/TCYB.2020.3016093
10.1109/TAC.2009.2019800
10.1109/9.855552
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.8032
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 5989
ExternalDocumentID 10_1002_rnc_8032
RNC8032
Genre article
GrantInformation_xml – fundername: the Natural Science Foundation of China
  funderid: 62273239
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2562-155d7214933250e65441ee68259d1bd2ce7f7264fb55c1076df30acdd54b44e33
IEDL.DBID DR2
ISSN 1049-8923
IngestDate Tue Sep 16 10:40:39 EDT 2025
Wed Oct 01 05:22:53 EDT 2025
Tue Sep 16 09:40:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2562-155d7214933250e65441ee68259d1bd2ce7f7264fb55c1076df30acdd54b44e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7402-6682
0000-0003-4957-3267
PQID 3250996252
PQPubID 1026344
PageCount 16
ParticipantIDs proquest_journals_3250996252
crossref_primary_10_1002_rnc_8032
wiley_primary_10_1002_rnc_8032_RNC8032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 September 2025
2025-09-25
20250925
PublicationDateYYYYMMDD 2025-09-25
PublicationDate_xml – month: 09
  year: 2025
  text: 25 September 2025
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 62
2021; 8
2012; 60
2010; 55
2017; 85
2023; 34
2013; 49
2021; 66
2022; 71
2013; 21
2000; 45
2022; 68
2018; 63
2005
2011; 56
2006; 1
2020; 33
2018; 66
2021; 51
2022; 138
2009; 48
2018; 152
2012; 92
2017; 53
2009; 54
2021; 179
2020; 52
2021; 178
2015; 62
2020; 50
2019; 67
2019; 26
2022; 34
2020; 115
2020; 27
2020; 118
2022; 52
2024; 67
2020; 65
2012; 48
2014; 50
2016; 68
2016; 23
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Lv X. (e_1_2_9_34_1) 2022; 68
Xiao L. (e_1_2_9_43_1) 2005
Hu Z. (e_1_2_9_17_1) 2022; 71
Dong X. (e_1_2_9_30_1) 2021; 179
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Xiao L. (e_1_2_9_42_1) 2006; 1
e_1_2_9_9_1
Yin S. (e_1_2_9_28_1) 2015; 62
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 34
  start-page: 8337
  issue: 11
  year: 2022
  end-page: 8348
  article-title: Adaptive Set‐Membership State Estimation for Nonlinear Systems Under Bit Rate Allocation Mechanism: A Neural‐Network‐Based Approach
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 66
  start-page: 1786
  issue: 4
  year: 2021
  end-page: 1793
  article-title: Variational Adaptive Kalman Filter With Gaussian‐Inverse‐Wishart Mixture Distribution
  publication-title: Transactions on Automatic Control
– volume: 52
  start-page: 3733
  issue: 5
  year: 2022
  end-page: 3744
  article-title: Distributed Maximum Correntropy Filtering for Stochastic Nonlinear Systems Under Deception Attacks
  publication-title: IEEE Transactions on Cybernetics
– volume: 71
  start-page: 1
  issue: 9503111
  year: 2022
  end-page: 11
  article-title: Kalman‐Like Filter Under Binary Sensors
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 50
  start-page: 2462
  issue: 6
  year: 2020
  end-page: 2474
  article-title: Network‐Based Modeling and Proportional–Integral Control for Direct‐Drive‐Wheel Systems in Wireless Network Environments
  publication-title: IEEE Transactions on Cybernetics
– volume: 45
  start-page: 910
  issue: 5
  year: 2000
  end-page: 927
  article-title: Gaussian Filters for Nonlinear Filtering Problems
  publication-title: IEEE Transactions on Automatic Control
– volume: 48
  start-page: 978
  issue: 5
  year: 2012
  end-page: 981
  article-title: Stochastic Stability of Unscented Kalman Filter With Intermittent Observations
  publication-title: Automatica
– volume: 67
  start-page: 162206
  issue: 6
  year: 2024
  article-title: Accumulated‐State‐Error‐Based Event‐Triggered Sampling Scheme and Its Application to control of Sampled‐Data Systems
  publication-title: SCIENCE CHINA Information Sciences
– volume: 179
  start-page: 1
  issue: 107837
  year: 2021
  end-page: 15
  article-title: An Adaptive Variational Bayesian Filter for Nonlinear Multi‐Sensor Systems With Unknown Noise Statistics
  publication-title: Signal Processing
– volume: 8
  start-page: 1107
  issue: 6
  year: 2021
  end-page: 1118
  article-title: An Ellipsoidal Set‐Membership Approach to Distributed Joint State and Sensor Fault Estimation of Autonomous Ground Vehicles
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 60
  start-page: 5024
  issue: 10
  year: 2012
  end-page: 5037
  article-title: Approximate Inference in State‐Space Models With Heavy‐Tailed Noise
  publication-title: IEEE Transactions on Signal Processing
– volume: 54
  start-page: 1254
  issue: 6
  year: 2009
  end-page: 1269
  article-title: Cubature Kalman Filters
  publication-title: IEEE Transactions on Automatic Control
– volume: 48
  start-page: 33
  issue: 1
  year: 2009
  end-page: 55
  article-title: Convergence Speed in Distributed Consensus and Averaging
  publication-title: SIAM Journal on Control and Optimization
– volume: 152
  start-page: 331
  issue: 11
  year: 2018
  end-page: 339
  article-title: Student't Mixture Labeled Multi‐Bernoulli Filter for Multi‐Target Tracking With Heavy‐Tailed Noise
  publication-title: Signal Processing
– volume: 50
  start-page: 707
  year: 2014
  end-page: 718
  article-title: Kullback‐Leibler Average, Consensus on Probability Densities, and Distributed State Estimation With Guaranteed Stability
  publication-title: Automatica
– volume: 26
  start-page: 1812
  issue: 12
  year: 2019
  end-page: 1816
  article-title: Distributed Bernoulli Filtering for Target Detection and Tracking Based on Arithmetic Average Fusion
  publication-title: IEEE Signal Processing Letters
– volume: 67
  start-page: 3606
  issue: 13
  year: 2019
  end-page: 3620
  article-title: A Novel Robust Gaussian‐Student's t Mixture Distribution Based Kalman Filter
  publication-title: IEEE Transactions on Signal Processing
– volume: 66
  start-page: 5618
  issue: 21
  year: 2018
  end-page: 5633
  article-title: Skew‐t Filter and Smoother With Improved Covariance Matrix Approximation
  publication-title: IEEE Transactions on Signal Processing
– volume: 56
  start-page: 2991
  issue: 12
  year: 2011
  end-page: 2996
  article-title: Adaptive Tracking Control of a Class of First‐Order Systems With Binary‐Valued Observations and Time‐Varying Thresholds
  publication-title: IEEE Transactions on Automatic Control
– volume: 55
  start-page: 514
  issue: 2
  year: 2010
  end-page: 518
  article-title: Stochastic Stability of the Extended Kalman Filter With Intermittent Observations
  publication-title: IEEE Transactions on Automatic Control
– volume: 52
  start-page: 3333
  issue: 5
  year: 2020
  end-page: 3341
  article-title: Resilient State Estimation for Discrete‐Time Stochastic Delayed Memristive Neural Networks: A Dynamic Event‐Triggered Mechanism
  publication-title: IEEE Transactions on Cybernetics
– volume: 115
  year: 2020
  article-title: Fusion Estimation Under Binary Sensors
  publication-title: Automatica
– volume: 92
  start-page: 2464
  issue: 10
  year: 2012
  end-page: 2470
  article-title: Distributed Consensus Filtering for Discrete‐Time Nonlinear Systems With Non‐Gaussian Noise
  publication-title: Signal Processing
– volume: 23
  start-page: 468
  issue: 4
  year: 2016
  end-page: 472
  article-title: A Robust Gaussian Approximate Fixed‐Interval Smoother for Nonlinear Systems With Heavy‐Tailed Process and Measurement Noises
  publication-title: IEEE Signal Processing Letters
– volume: 27
  start-page: 700
  year: 2020
  end-page: 704
  article-title: A New Robust Kalman Filter With Adaptive Estimate of Time‐Varying Measurement Bias
  publication-title: IEEE Signal Processing Letters
– volume: 1
  start-page: 1
  year: 2006
  end-page: 4
  article-title: Distributed Average Consensus With Time‐Varying Metropolis Weights
  publication-title: Automatica
– volume: 51
  start-page: 176
  issue: 1
  year: 2021
  end-page: 190
  article-title: Secure State Estimation and Control of Cyber‐Physical Systems: A Survey
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 49
  start-page: 3396
  year: 2013
  end-page: 3401
  article-title: Recursive Projection Algorithm on FIR System Identification With Binary‐Valued Observations
  publication-title: Automatica
– volume: 138
  year: 2022
  article-title: Identification and Adaptation With Binary‐Valued Observations Under Non‐Persistent Excitation Condition
  publication-title: Automatica
– volume: 54
  start-page: 596
  issue: 3
  year: 2009
  end-page: 600
  article-title: Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations
  publication-title: IEEE Transactions on Automatic Control
– volume: 62
  start-page: 6051
  issue: 11
  year: 2017
  end-page: 6057
  article-title: Variational Bayesian Adaptive Cubature Information Filter Based on Wishart Distribution
  publication-title: IEEE Transactions on Automatic Control
– volume: 21
  start-page: 30
  issue: 1
  year: 2013
  end-page: 34
  article-title: A Robust Particle Filtering Algorithm With Non‐Gaussian Measurement Noise Using Student‐t Distribution
  publication-title: IEEE Signal Processing Letters
– volume: 68
  start-page: 169
  year: 2016
  end-page: 178
  article-title: Stability of Consensus Extended Kalman Filter for Distributed State Estimation
  publication-title: Automatica
– volume: 118
  year: 2020
  article-title: Event‐Triggered Distributed State Estimation Over Wireless Sensor Networks
  publication-title: Automatica
– volume: 68
  start-page: 4321
  issue: 7
  year: 2022
  end-page: 4328
  article-title: Stochastic Event‐Triggered Variational Bayesian Filtering
  publication-title: IEEE Transactions on Automatic Control
– volume: 49
  start-page: 976
  issue: 4
  year: 2013
  end-page: 986
  article-title: Gaussian Filter for Nonlinear Systems With One‐Step Randomly Delayed Measurements
  publication-title: Automatica
– volume: 63
  start-page: 594
  issue: 2
  year: 2018
  end-page: 601
  article-title: A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices
  publication-title: Transactions on Automatic Control
– volume: 62
  start-page: 3852
  issue: 6
  year: 2015
  end-page: 3861
  article-title: Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 33
  start-page: 952
  issue: 3
  year: 2020
  end-page: 961
  article-title: Event‐Triggered Output Feedback Synchronization of Master–Slave Neural Networks Under Deception Attacks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 65
  start-page: 2675
  issue: 6
  year: 2020
  end-page: 2678
  article-title: Consensus of Multi‐Agent Systems Under Binary‐Valued Measurements and Recursive Projection Algorithm
  publication-title: IEEE Transactions on Automatic Control
– volume: 178
  year: 2021
  article-title: Variational Inference Based Distributed Noise Adaptive Bayesian Filter
  publication-title: Signal Processing
– volume: 53
  start-page: 1545
  issue: 3
  year: 2017
  end-page: 1554
  article-title: A Novel Robust Student's t‐Based Kalman Filter
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– volume: 34
  start-page: 1074
  issue: 2
  year: 2023
  end-page: 1079
  article-title: Proportional‐Integral State Estimator for Quaternion‐Valued Neural Networks With Time‐Varying Delays
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 63
  year: 2005
  end-page: 70
– volume: 51
  start-page: 462
  issue: 1
  year: 2021
  end-page: 472
  article-title: Distributed State Estimator Design for Time‐Delay Periodic Systems Over Scheduling Sensor Networks
  publication-title: IEEE Transactions on Cybernetics
– volume: 85
  start-page: 374
  year: 2017
  end-page: 385
  article-title: Moving Horizon Estimation for Discrete‐Time Linear Systems With Binary Sensors: Algorithms and Stability Results
  publication-title: Automatica
– ident: e_1_2_9_38_1
  doi: 10.1109/TAES.2017.2651684
– ident: e_1_2_9_36_1
  doi: 10.1109/TAC.2017.2704442
– ident: e_1_2_9_6_1
  doi: 10.1109/TNNLS.2021.3103979
– ident: e_1_2_9_31_1
  doi: 10.1016/j.sigpro.2020.107775
– ident: e_1_2_9_22_1
  doi: 10.1109/LSP.2013.2289975
– ident: e_1_2_9_26_1
  doi: 10.1016/j.sigpro.2012.03.009
– volume: 179
  start-page: 1
  issue: 107837
  year: 2021
  ident: e_1_2_9_30_1
  article-title: An Adaptive Variational Bayesian Filter for Nonlinear Multi‐Sensor Systems With Unknown Noise Statistics
  publication-title: Signal Processing
– ident: e_1_2_9_44_1
  doi: 10.1137/060678324
– ident: e_1_2_9_3_1
  doi: 10.1109/TSMC.2020.3041121
– ident: e_1_2_9_24_1
  doi: 10.1016/j.automatica.2016.01.071
– ident: e_1_2_9_5_1
  doi: 10.1109/JAS.2021.1004015
– ident: e_1_2_9_12_1
  doi: 10.1016/j.automatica.2013.08.011
– ident: e_1_2_9_14_1
  doi: 10.1016/j.automatica.2022.110158
– ident: e_1_2_9_23_1
  doi: 10.1016/j.sigpro.2018.06.014
– ident: e_1_2_9_32_1
  doi: 10.1109/TAC.2017.2730480
– volume: 68
  start-page: 4321
  issue: 7
  year: 2022
  ident: e_1_2_9_34_1
  article-title: Stochastic Event‐Triggered Variational Bayesian Filtering
  publication-title: IEEE Transactions on Automatic Control
– ident: e_1_2_9_10_1
  doi: 10.1016/j.automatica.2020.109039
– ident: e_1_2_9_15_1
  doi: 10.1016/j.automatica.2020.108861
– ident: e_1_2_9_46_1
  doi: 10.1109/TNNLS.2020.3030638
– ident: e_1_2_9_2_1
  doi: 10.1109/TCYB.2019.2924450
– ident: e_1_2_9_37_1
  doi: 10.1016/j.automatica.2013.01.012
– ident: e_1_2_9_41_1
  doi: 10.1016/j.automatica.2013.11.042
– ident: e_1_2_9_40_1
  doi: 10.1109/LSP.2019.2950588
– ident: e_1_2_9_35_1
  doi: 10.1109/TAC.2008.2008348
– ident: e_1_2_9_16_1
  doi: 10.1016/j.automatica.2017.07.035
– ident: e_1_2_9_27_1
  doi: 10.1016/j.automatica.2012.02.014
– ident: e_1_2_9_33_1
  doi: 10.1109/TAC.2020.2995674
– volume: 1
  start-page: 1
  year: 2006
  ident: e_1_2_9_42_1
  article-title: Distributed Average Consensus With Time‐Varying Metropolis Weights
  publication-title: Automatica
– volume: 62
  start-page: 3852
  issue: 6
  year: 2015
  ident: e_1_2_9_28_1
  article-title: Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System
  publication-title: IEEE Transactions on Industrial Electronics
– ident: e_1_2_9_7_1
  doi: 10.1109/TNNLS.2022.3149540
– ident: e_1_2_9_18_1
  doi: 10.1109/LSP.2020.2983552
– start-page: 63
  volume-title: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks
  year: 2005
  ident: e_1_2_9_43_1
– ident: e_1_2_9_8_1
  doi: 10.1109/TCYB.2019.2894392
– ident: e_1_2_9_19_1
  doi: 10.1109/LSP.2016.2533543
– ident: e_1_2_9_4_1
  doi: 10.1109/TCYB.2020.3021556
– ident: e_1_2_9_13_1
  doi: 10.1109/TAC.2019.2942569
– ident: e_1_2_9_25_1
  doi: 10.1109/TAC.2009.2037467
– volume: 71
  start-page: 1
  issue: 9503111
  year: 2022
  ident: e_1_2_9_17_1
  article-title: Kalman‐Like Filter Under Binary Sensors
  publication-title: IEEE Transactions on Instrumentation and Measurement
– ident: e_1_2_9_47_1
  doi: 10.1007/s11432-023-4038-3
– ident: e_1_2_9_45_1
  doi: 10.1109/TSP.2018.2865434
– ident: e_1_2_9_20_1
  doi: 10.1109/TSP.2019.2916755
– ident: e_1_2_9_11_1
  doi: 10.1109/TAC.2011.2161836
– ident: e_1_2_9_21_1
  doi: 10.1109/TSP.2012.2208106
– ident: e_1_2_9_9_1
  doi: 10.1109/TCYB.2020.3016093
– ident: e_1_2_9_29_1
  doi: 10.1109/TAC.2009.2019800
– ident: e_1_2_9_39_1
  doi: 10.1109/9.855552
SSID ssj0009924
Score 2.4437075
Snippet ABSTRACT In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian...
In this article, the distributed sequential filtering problem is investigated for a class of nonlinear systems (NS) subject to non‐Gaussian heavy‐tailed noises...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 5979
SubjectTerms arithmetic average fusion
Bayesian analysis
binary sensor networks
distributed sequential filtering
Distribution functions
heavy‐tailed noises
Kalman filters
Noise
Nonlinear systems
Sensors
Tracking
variational Bayesian approaches
Title Distributed Sequential Filtering for Nonlinear Systems With Heavy‐Tailed Noise Under Binary Sensor Networks: A Variational Bayesian Approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.8032
https://www.proquest.com/docview/3250996252
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1049-8923
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009924
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78FqdTIoi3bm2TtKu3bTqG4A5z04GHkq_iUKqsmzBP_gXi3-hf4ks_3BQE8dRD89okLy_5veTl9xA6ZrYmzCfU8oiKLMD_wuJ1Zlu-57kOlY4k3JzoXna9zoBeDNkwj6o0d2EyfoivDTdjGel8bQyci6Q2Jw0dg_3UbWKmX4d4qTfVmzNHBUGWzxYAsFUHEFPwztpurRD8vhLN4eUiSE1XmfYaui3qlwWX3FenE1GVLz-oG__XgHW0moNP3MhGywZa0vEmWlmgJNxCb2eGSdckwdIKX6Vx1jAHPOD2yByrQxEMKBd3s__zMc4Zz_HNaHKHO5o_zz5e3_scKqSg1CjROM2shJvpvV_4YpwY-Sz4PDnFDXwN3nq-I4mbfKbNrU7cyKnOt9Ggfd5vdaw8Z4MlATy5FsATBU4lDQgBcKU9k-JMaw_80EA5QrlS-5EPICwSjElwPT0VEZtLpRgVlGpCdlApfoz1LsK2EwVCUWUrxql0_UBQWNA1KDuyJZWsjI4K_YVPGTVHmJEwuyH0bWj6towqhWLD3DiT0NQM3DyXweuTVEO_yoe9bss89_5acB8tuyZDsDm3YhVUmoyn-gBgy0QcpgP0E4C368A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqOAAHdkShgJEQt7RJvKSBU1uoytZDaYEDUpTYjqhABbUpUjnxBYhv5EsYZ6EFCQlxyiGeaGJ7xm9szxuE9pipCHMINTiRoQH4PzD8MjMNh3PbosISxNcnuhdN3ujQ0xt2k0OHWS5Mwg_xteGmLSP219rA9YZ0acwa2gcDKpsE_O805RCmaETUGnNHuW5S0RYgsFEGGJMxz5p2KZP8vhaNAeYkTI3XmfoCus00TK6X3BeHUVAULz_IG__5C4toPsWfuJJMmCWUU71lNDfBSriC3o40ma6ug6UkvoyvWoMbeMD1rj5ZhyYYgC5uJgr4fZySnuPrbnSHG8p_Hn28vrd90EhCq-5A4bi4Eq7Gqb_wxd5Ayyf3zwcHuIKvIGBPNyVx1R8pndiJKynb-Srq1I_btYaRlm0wBOAn2wCEIiGupC4hgK8U11XOlOIQirrSCqQtlBM6gMPCgDEB0SeXITF9ISWjAaWKkDU01XvsqXWETSt0A0mlKZlPhe24AYU1XVmEh6agguXRbjaA3lPCzuElPMy2B33r6b7No0I2sl5qnwNPawaRns3g9X48RL_Ke61mTT83_tpwB8002hfn3vlJ82wTzdq6YLA-xmIFNBX1h2oLUEwUbMez9RM-_O_h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DQfTBuzidGkF869Y2Sbvq0y6OeRsyN92DUNokxaHMsXXCfPIXiL_RX-JJL24KgvjUhyblNMlJvpNzzncQOmC6JMwmVLOICDTA_77mFZmu2ZZlGpQbnHjKo3vZsOptetZhnQw6TnNhYn6Irws3pRnRfq0UXPZFUJiwhg5AgYo6gf13ljKnqOL5qs0Jd5TjxBVtAQJrRYAxKfOsbhbSnt_PognAnIap0TlTW0J3qYRxeMlDfhT6ef7yg7zxn7-wjBYT_IlL8YJZQRnZW0ULU6yEa-itqsh0VR0sKfB1FGoN28AjrnWVZx2aYAC6uBEL4A1wQnqOb7vhPa5L73n88fre8kAiAa26Q4mj4kq4HKX-whd7Q9U_jj8fHuESvgGDPbmUxGVvLFViJy4lbOfrqF07aVXqWlK2QeOAn0wNEIoAu5I6hAC-kpaqcialBaaoIwxfmFzagQ04LPAZ42B9WiIguseFYNSnVBKygWZ6Tz25ibBuBI4vqNAF8yg3bcencKZLg1iBzilnWbSfTqDbj9k53JiH2XRhbF01tlmUS2fWTfRz6CrJwNIzGbw-jKbo1_5us1FRz62_NtxDc1fVmntx2jjfRvOmqhesvFgsh2bCwUjuAIgJ_d1osX4C_eDvZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Sequential+Filtering+for+Nonlinear+Systems+With+Heavy%E2%80%90Tailed+Noise+Under+Binary+Sensor+Networks%3A+A+Variational+Bayesian+Approach&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Zhang%2C+Jiayi&rft.au=Wei%2C+Guoliang&rft.au=Ding%2C+Derui&rft.au=Chen%2C+Han&rft.date=2025-09-25&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=35&rft.issue=14&rft.spage=5979&rft.epage=5989&rft_id=info:doi/10.1002%2Frnc.8032&rft.externalDBID=10.1002%252Frnc.8032&rft.externalDocID=RNC8032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon