An Efficient Feature Selection Approach for Intrusion Detection System using Decision Tree

The intrusion detection system has been widely studied and deployed by researchers for providing better security to computer networks. The increasing volume of attacks, com-bined with the rapid improvement of machine learning (ML) has made the collaboration of intrusion detection techniques with mac...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 13; no. 2
Main Authors Das, Abhijit, -, Pramod, S, Sunitha B
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 01.01.2022
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
2156-5570
DOI10.14569/IJACSA.2022.0130276

Cover

Abstract The intrusion detection system has been widely studied and deployed by researchers for providing better security to computer networks. The increasing volume of attacks, com-bined with the rapid improvement of machine learning (ML) has made the collaboration of intrusion detection techniques with machine learning and deep learnings are a popular subject and a feasible approach for cyber threat protection. Machine learning usually involves the training process using huge sample data. Since the huge input data may cause a negative effect on the training and detection performance of the machine learning model, feature selection becomes a crucial technique to rule out the irrelevant and redundant features from the dataset. This study applied a feature selection approach for intrusion detection that incorporated state-of-the-art feature selection algorithms with attack characteristic feature to produce an optimized set of features for the machine learning algorithms, which was then used to train the machine learning model. CSECIC- IDS2018 dataset, the most recent benchmark dataset with a wide attack diversity and features have been used to create the efficient feature subset. The result of the experiment was produced using machine learning models with a decision tree classifier and analyzed with respect to the accuracy, precision, recall, and f1 score.
AbstractList The intrusion detection system has been widely studied and deployed by researchers for providing better security to computer networks. The increasing volume of attacks, com-bined with the rapid improvement of machine learning (ML) has made the collaboration of intrusion detection techniques with machine learning and deep learnings are a popular subject and a feasible approach for cyber threat protection. Machine learning usually involves the training process using huge sample data. Since the huge input data may cause a negative effect on the training and detection performance of the machine learning model, feature selection becomes a crucial technique to rule out the irrelevant and redundant features from the dataset. This study applied a feature selection approach for intrusion detection that incorporated state-of-the-art feature selection algorithms with attack characteristic feature to produce an optimized set of features for the machine learning algorithms, which was then used to train the machine learning model. CSECIC- IDS2018 dataset, the most recent benchmark dataset with a wide attack diversity and features have been used to create the efficient feature subset. The result of the experiment was produced using machine learning models with a decision tree classifier and analyzed with respect to the accuracy, precision, recall, and f1 score.
Author Das, Abhijit
Pramod
S, Sunitha B
Author_xml – sequence: 1
  givenname: Abhijit
  surname: Das
  fullname: Das, Abhijit
– sequence: 2
  givenname: Pramod
  surname: -
  fullname: -, Pramod
– sequence: 3
  givenname: Sunitha B
  surname: S
  fullname: S, Sunitha B
BookMark eNptUV1LwzAUDTLBOfcPfCj43JmkTdv4VqbTycCHTRBfQprdaEeX1iRF9u_t1oEwzcu9nHvO_Ti5RANTG0DomuAJiVnCb-fP-XSZTyimdIJJhGmanKEhJSwJGUvx4JBnIcHp2wUaO7fB3Ys4TbJoiN5zEzxoXaoSjA9mIH1rIVhCBcqXtQnyprG1VJ-Brm0wN962bg_fgz8SljvnYRt0sPnoYFUe6isLcIXOtawcjI9xhF5nD6vpU7h4eZxP80WoKGM-1KCLLM1YvC7WUiYk0pxAoXScciJVwWUWM0KKLklBMcWzVOFoLTHwRNOM62iEWN-3NY3cfcuqEo0tt9LuBMHi4JEoN1I5KfYeiaNHne6m13UXfrXgvNjUrTXdqoImjPII8yzqWHc9S9naOQtaqNLL_eneyrL6HdF_w-mI-ET8Z7P_ZD_CRozR
CitedBy_id crossref_primary_10_3390_app12178601
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.14569/IJACSA.2022.0130276
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10.14569/ijacsa.2022.0130276
10_14569_IJACSA_2022_0130276
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c255t-fefb87854dbdaa613f91ebcf4791acb9a84511bb9a7ec5c987c03da0e96f289f3
IEDL.DBID UNPAY
ISSN 2158-107X
2156-5570
IngestDate Tue Aug 19 16:40:18 EDT 2025
Fri Jul 25 02:34:17 EDT 2025
Thu Apr 24 23:12:36 EDT 2025
Wed Oct 01 01:54:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-fefb87854dbdaa613f91ebcf4791acb9a84511bb9a7ec5c987c03da0e96f289f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=http://thesai.org/Downloads/Volume13No2/Paper_76-An_Efficient_Feature_Selection_Approach_for_Intrusion_Detection_System.pdf
PQID 2652930983
PQPubID 5444811
ParticipantIDs unpaywall_primary_10_14569_ijacsa_2022_0130276
proquest_journals_2652930983
crossref_citationtrail_10_14569_IJACSA_2022_0130276
crossref_primary_10_14569_IJACSA_2022_0130276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2022
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.2008672
Snippet The intrusion detection system has been widely studied and deployed by researchers for providing better security to computer networks. The increasing volume of...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Computer networks
Datasets
Decision analysis
Decision trees
Feature selection
Intrusion detection systems
Machine learning
Training
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDI5gHODCGzFeyoFroK-l7QlVY-MhwQWQJi5VHi4CTd3YQ4h_j91mGwgJblWU5mA7-Wwn_szYKYIyoJq10L5VIjKhEYlSUiiwfqiLWIKl1MDdvbx-im57rZ5LuI3ds8rZmVgd1HZgKEd-HsgWIpOXJuHF8F1Q1yi6XXUtNJbZih-gJVGlePdqnmPxEPxlxcSJwEYspnHPVc-h25Ce39xm7YcMY8QgOKsv8ORPdFq4nKvTcqg-P1S__w19upts3bmNPKv1vMWWoNxmG7OWDNzt0B32nJW8U7FCIJhw8u-mI-APVbMb1ADPHIU4R1-V35RUcUHDlzBxE2oGc07P4V9wuG7Awx9HALvsqdt5bF8L1z5BGIwTJqKAQidx0oqstih-PyxSH7Qpojj1ldGpSoibTONHDKZl0iQ2XmiVB6ksMAwrwj3WKAcl7DMeg_RV4Kk0shhRUXErILJ5kFiNavFkk4UzseXGcYtTi4t-TjEGCTuvhZ2TsHMn7CYT87-GNbfGP_OPZhrJ3U4b5wu7aLKzuZZ-r_f6psxY_Vjv4O_1Dtkaza7zLUesgSqBY_RAJvqkMrMv2rPWrg
  priority: 102
  providerName: ProQuest
Title An Efficient Feature Selection Approach for Intrusion Detection System using Decision Tree
URI https://www.proquest.com/docview/2652930983
http://thesai.org/Downloads/Volume13No2/Paper_76-An_Efficient_Feature_Selection_Approach_for_Intrusion_Detection_System.pdf
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1LbxMxEB61yQEuLU8RKJEPXL3ZV7y7x6VNaCsRRbRBgYvl1xZotImaRAj4K_xYPLF3oeoBceLmtWzP7vqzPWN7vgF4ZRdlY7tZUhlpQVOVKJoLwagwOkpklTGjcWvg7YSdztLz-XC-Bz-aC7KfzFq4E_wTJItfCr0evN-N0yiZLOPBVKys7Z4xWtZ8tCNZwGC0qC5tbwy_2MWOsR_ES8_Iza3qx89qdGDA7BOz8QUcIXiw0tU-dBmeTnWgO5tMyw8Yjs5aNRTJqVwaCVCzuXe8sxpHMfj8Rag10hbFceDO_tjthe23tnpvW6_Et69isfhj4Rofws_G_cfdV7kOthsZqO932SD_xz95AAdeISalQ_BD2DP1Izhsgk0QP_c8ho9lTVqxxIslrVjSiCVWLGnFklYscWIJXvS_stkutBC5vDHmCczGo8vjU-oDQ1BlLaANrUwl8ywfplpqC6woqYrISFWlWREJJQuRI-uatInMqKEq8kyFiRahKVhlDcwqeQqdelmbZ0AywyIRh6JItbUV0W3X2DU7NLmWbBiHrAdJ06tcedZ0DN6x4Gg9IRb42Xl5fFFyxAL3WOgBbWutHGvIX8ofNYDhfg5Z89i-QJGERZ70IGhBdLc9h8Vb7T3_1wov4D4-ur2lI-jYTjIvrba1kX3Yz8dv-tB9PZpM3_X9GPkFOxczxQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ReqAX6FNNS9s9tEeD7XXW9gFVFpAmvC4EKerF3ce4AkUmkCDEn-pv7Iy9DkWV2hM3a-UdWTPjnW92d74B-ExBGcnMJjCR00FipQ0yrVWg0UXSVKlCx1sDxydqeJYcTPqTFfjV1cLwtcpuTWwWandpeY98O1Z9ikxhnsmvs6uAu0bx6WrXQqN1i0O8u6WUbb4z2iP7fonjwf54dxj4rgKBJfi8CCqsTJZm_cQZR18VySqP0NgqSfNIW5PrjCm7DD2kaPuWcnIbSqdDzFVF2UklSe4TeJpIKZmrPxt8W-7phAQ2VMP8SYGUWVPTia_WI5iSb48Oit3TgnLSON5qDwzVw2h4D3HXbuqZvrvV0-kf0W7wHNY9TBVF61cvYAXrl7DRtYAQfkV4Bd-LWuw3LBQUvATjyZtrFKdNcx2yuCg8ZbkgbCxGNVd48PAeLvwLLWO64Ov3P2m4bfgjxteIr-HsURT7BlbryxrfgkhRRToOdZ44yuC4mBYpkoaYOUNuEKoeyE5tpfVc5txSY1pyTsPKLltll6zs0iu7B8Fy1qzl8vjP-5udRUr_Z8_Lez_swdbSSn_LO7_Qdq4fyHv3b3mfYG04Pj4qj0Ynh-_hGc9s93o2YZXMgx8I_SzMx8blBPx4bB__DaY7FdE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lb9QwELbK9gAXylNsKcgHrs4mcdaJj1EfaiuxqtQuWrhYfkx4rbKr7q4q4K_wY_GsnUDVA-LEzbFsTxJ_tmdszzeEvPGLMvhuNsxkTrPCcssqrQXT4DJumlKAw62BtxNxOi3OZ-PZDvnRXZD9BCsdTvCPkCx-od1q9G47TjM-WeSjC730tnspWN2q4y3JAgajRXVpcw3qchs7xn-QqiMjt_Kqnzpr0YEBs49gHQsEQvBk6Zp7ZFfg6dSA7E4nF_V7DEfnrRqG5FQhjQSo5Sw63nmNQ44-f9F2hbRFeZ6Esz9xe2H7ra3e37RL_e1Gz-d_LFwne-Rn5_4T7qt8TTZrk9jvd9kg_8c_eUQeRoWY1gHBj8kOtE_IXhdsgsa55yn5ULe0F0ujWNqLpZ1Y6sXSXiztxdIgluJF_48-O4QWolfXAM_I9OT46vCUxcAQzHoLaM0aaExVVuPCGeeBlfFGZmBsU5Qy09ZIXSHrmvGJEuzYyqq0KXc6BSkab2A2_DkZtIsWXhBagsh0nmpZOG8rotsu-DU7hcoZMc5TMSS861VlI2s6Bu-YK7SeEAvq7Lw-vKwVYkFFLAwJ62stA2vIX8ofdIBRcQ5Zqdy_gOSprPiQJD2I7rYXsHirvf1_rfCSPMDHsLd0QAa-k-CV17bW5nUcFb8AfhExRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Feature+Selection+Approach+for+Intrusion+Detection+System+using+Decision+Tree&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Das%2C+Abhijit&rft.au=-%2C+Pramod&rft.au=S%2C+Sunitha+B&rft.date=2022-01-01&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=13&rft.issue=2&rft_id=info:doi/10.14569%2FIJACSA.2022.0130276&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2022_0130276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon