A multitask SHM algorithm to identify damage with random severity and location in IPE beams using EMI technique

Existing electromechanical impedance (EMI) damage identification algorithms often face challenges in terms of generalizability. This paper presents a robust algorithm that can simultaneously estimate the region and severity of damage with random damage scenarios across a surface and any severity, ra...

Full description

Saved in:
Bibliographic Details
Published inStructures (Oxford) Vol. 70; p. 107659
Main Authors Zamanian, Mehrab, Sepehry, Naserodin, Zahrai, Seyed Mehdi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2024
Subjects
Online AccessGet full text
ISSN2352-0124
2352-0124
DOI10.1016/j.istruc.2024.107659

Cover

Abstract Existing electromechanical impedance (EMI) damage identification algorithms often face challenges in terms of generalizability. This paper presents a robust algorithm that can simultaneously estimate the region and severity of damage with random damage scenarios across a surface and any severity, rather than being limited to specific points and severities. The host structure was an I-beam. Simulated damage was introduced as a subtle added mass to evaluate the algorithm's effectiveness in early-stage damage identification. Initially, various EMI tests with different damage specifications were conducted, and validated through numerical simulation. Damage-sensitive features were extracted and were input into three ML models: support vector machine, random forest, and multilayer perceptron. An ensemble learning approach was employed to combine the individual predictions from these models. The algorithm achieved classification accuracies of 97.3 % and 94.4 % on the validation and test sets, respectively, for identifying damaged regions. The algorithm also quantifies damage severity, achieving R-squared values of 92 % and 88 % on the validation and test sets, respectively.
AbstractList Existing electromechanical impedance (EMI) damage identification algorithms often face challenges in terms of generalizability. This paper presents a robust algorithm that can simultaneously estimate the region and severity of damage with random damage scenarios across a surface and any severity, rather than being limited to specific points and severities. The host structure was an I-beam. Simulated damage was introduced as a subtle added mass to evaluate the algorithm's effectiveness in early-stage damage identification. Initially, various EMI tests with different damage specifications were conducted, and validated through numerical simulation. Damage-sensitive features were extracted and were input into three ML models: support vector machine, random forest, and multilayer perceptron. An ensemble learning approach was employed to combine the individual predictions from these models. The algorithm achieved classification accuracies of 97.3 % and 94.4 % on the validation and test sets, respectively, for identifying damaged regions. The algorithm also quantifies damage severity, achieving R-squared values of 92 % and 88 % on the validation and test sets, respectively.
ArticleNumber 107659
Author Zahrai, Seyed Mehdi
Zamanian, Mehrab
Sepehry, Naserodin
Author_xml – sequence: 1
  givenname: Mehrab
  surname: Zamanian
  fullname: Zamanian, Mehrab
  email: mehrab.zamanian@ut.ac.ir
  organization: School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Naserodin
  surname: Sepehry
  fullname: Sepehry, Naserodin
  email: naser.sepehry@shahroodut.ac.ir
  organization: Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
– sequence: 3
  givenname: Seyed Mehdi
  surname: Zahrai
  fullname: Zahrai, Seyed Mehdi
  email: mzahrai@ut.ac.ir
  organization: School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
BookMark eNp9kM1OAjEUhRujiYi8gYv7AoOd6fzQjQkhKCQQTdR102nvQJFpte1geHuH4MKVq_t3zsnNd0MurbNIyF1KxylNy_vd2IToOzXOaJb3q6os-AUZZKzIEppm-eWf_pqMQthRSrM079XVgLgptN0-mijDB7wu1iD3G-dN3LYQHRiNNprmCFq2coPw3R_AS6tdCwEP2AuP0I-wd0pG4ywYC8uXOdQo2wBdMHYD8_USIqqtNV8d3pKrRu4Djn7rkLw_zt9mi2T1_LScTVeJyooiJnpClZaKpVXeTBjjyFShNGe6lmVZ87JhrCopsgKxoqziWGdFw2WZc8kZryQbkvycq7wLwWMjPr1ppT-KlIoTN7ETZ27ixE2cufW2h7MN-98OBr0IyqBVqI1HFYV25v-AHxMleug
Cites_doi 10.1177/1475921710388338
10.1088/0964-1726/23/7/075007
10.1177/14759217221123976
10.1007/978-1-4757-2440-0
10.1016/j.istruc.2023.01.144
10.1038/323533a0
10.1177/14759217211049720
10.1007/978-3-030-01620-3_5
10.1088/0964-1726/11/3/301
10.1023/A:1010933404324
10.1177/1045389X221077440
10.1088/2631-8695/abb568
10.1002/9781118443118
10.1007/s41062-023-01217-3
10.1007/s12205-023-0458-5
10.1016/j.istruc.2022.07.056
10.1016/j.compscitech.2013.08.019
10.1007/s13349-018-0307-2
10.1109/JSEN.2021.3132943
10.1117/12.316923
10.1177/1045389X211014951
10.1016/j.istruc.2021.01.007
10.1088/1361-665X/abdc07
10.1016/j.istruc.2023.03.171
10.1177/1045389X17689931
10.1016/j.engstruct.2013.05.025
10.1080/15376494.2021.1937757
10.1177/1045389X11421814
10.1016/j.conbuildmat.2017.05.079
10.1177/1045389X20919973
10.3390/s24020386
10.1177/1045389X9400500102
10.1016/j.istruc.2021.07.026
10.1177/1045389X211041166
10.1088/1361-665X/acfa7e
ContentType Journal Article
Copyright 2024 Institution of Structural Engineers
Copyright_xml – notice: 2024 Institution of Structural Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.istruc.2024.107659
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-0124
ExternalDocumentID 10_1016_j_istruc_2024_107659
S2352012424018125
GroupedDBID --M
0R~
4.4
457
AACTN
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADEZE
AEBSH
AEIPS
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SST
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c255t-d80cdac3174f8339e3c5cd93dba66b96f33760e35ee70379eb25f9a649a9397a3
IEDL.DBID AIKHN
ISSN 2352-0124
IngestDate Wed Oct 01 03:29:48 EDT 2025
Sat Feb 08 15:51:38 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Multitask learning
Electromechanical impedance
Damage identification
Structural health monitoring
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-d80cdac3174f8339e3c5cd93dba66b96f33760e35ee70379eb25f9a649a9397a3
ParticipantIDs crossref_primary_10_1016_j_istruc_2024_107659
elsevier_sciencedirect_doi_10_1016_j_istruc_2024_107659
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Structures (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Selva, Cherrier, Budinger, Lachaud, Morlier (bib28) 2013; 56
de Oliveira, Monteiro, Filho (bib29) 2018; 18
Sepehry, Bakhtiari-Nejad, Shamshirsaz (bib39) 2017; 28
Zhang, Wang, Hou, Xu, Yan (bib33) 2022; 21
Abadi, Agarwal, Barham, Brevdo, Chen, Citro (bib54) 2016
Singh, Fakih, Malinowski (bib14) 2023; 32
Khayatazad, Deschodt, Loccufier, Backer, De Waele (bib23) 2020
Ai, Mo, Yang, Zhu (bib30) 2022; 33
Vapnik (bib49) 1995
Gómez-Martínez, Sánchez-García, Escobar-Sánchez, Arenas-García, Mendoza-Salas, Rosales-González (bib7) 2021; 33
Zhu, Yu, Yang, Dong, Ren, Zhang (bib58) 2023; 51
Kumari, Kumar, Mittal (bib55) 2021; 2
Nguyen, Tuong Vy Phan, Ho, Man Singh Pradhan, Huynh (bib31) 2022; 259
de Rezende, de Moura, Neto, Gallo, Steffen (bib36) 2020; 2
Naik, Rangwala (bib53) 2018; 75
Jiang, Ye, Feng, Jiang (bib18) 2021; 0123456789
Du, Wu, Xu, Yang, Su (bib37) 2023; 23
Ai, Du, Li, Zhu (bib40) 2022; 192
Rumelhart, Hinton, Williams (bib52) 1986; 323
Aslam, Park, Lee (bib5) 2023; 49
Alazzawi, Wang (bib34) 2024; 33
Liu, Feng (bib11) 2021; 32
Zhang, Wang, Yan, Vipulanandan, Song (bib42) 2020; 31
Anand, Goyal, Reddy (bib10) 2022; 43
Singh, Sikdar, Malinowski (bib21) 2021; 30
Prem, Verma, Ambily (bib3) 2021; 30
Ai, Cheng (bib26) 2023; 183
Zhu, François, Poon, Dai (bib45) 2017; 148
.
Samantaray, Mittal, Mahapatra, Kumar (bib22) 2018; 8
Sapidis, Kansizoglou, Naoum, Papadopoulos, Chalioris (bib35) 2024; 24
Katam, Pasupuleti, Kalapatapu (bib2) 2023; 8
Zhu, Yang, Yu, Xiao, Xu (bib57) 2023; 27
Lan, Wang, Wang, Fu, Li, Luo (bib43) 2024; 35
Breiman (bib50) 2001; 45
Li, Ai, Zhu, Luo (bib16) 2021; 152
Sepehry, Shamshirsaz, Bastani (bib38) 2011; 10
Tseng, Naidu (bib12) 2002; 11
Giurgiutiu, Rogers (bib47) 1997
Meher, Sunny (bib13) 2022; 29
Dreisbach, Yokaribas, Dietrich, Sahm, Pak, Fritzen (bib15) 2023; 22
Sharif-Khodaei, Aliabadi (bib44) 2014; 23
Yao, Si, Liu, Ni, Gao (bib4) 2024; 63
Liang, Sun, Rogers (bib8) 1994; 5
Farrar C.R., Worden K. Structural Health Monitoring: A Machine Learning Perspective. Structural Health Monitoring: A Machine Learning Perspective. 2012.
Ai, Zhang (bib17) 2023; 296
Thoriya, Vora, Jadeja, Ali Abdelrahman Ali, Patel (bib19) 2024; 226
Giurgiutiu V., Rogers C.A. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE. In: Regelbrugge ME, editor. Smart Structures and Materials 1998: Smart Structures and Integrated Systems [Internet]. 1998. p. 536–547. Available from
Strang (bib48) 2016
Ai, Mo, Cheng, Du (bib27) 2023; 385
Tekkalmaz, Er, Çakir, Bozkurt (bib20) 2022; 33
Yessoufou, Zhu (bib6) 2023; 52
Alazzawi, Wang (bib32) 2021; 0123456789
Zhu, Ren, Yu, Tang, Xu, Xu (bib46) 2024; 87
Moharana, Sevugaperumal Arun (bib41) 2022; 33
Sepehry, Shamshirsaz, Abdollahi (bib24) 2011; 22
Na, Lee (bib25) 2013; 88
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (bib51) 2011; 12
Wu, Lin, Weng (bib56) 2004; 5
Giurgiutiu (10.1016/j.istruc.2024.107659_bib47) 1997
Sepehry (10.1016/j.istruc.2024.107659_bib38) 2011; 10
Anand (10.1016/j.istruc.2024.107659_bib10) 2022; 43
Ai (10.1016/j.istruc.2024.107659_bib40) 2022; 192
Katam (10.1016/j.istruc.2024.107659_bib2) 2023; 8
Zhu (10.1016/j.istruc.2024.107659_bib46) 2024; 87
Yessoufou (10.1016/j.istruc.2024.107659_bib6) 2023; 52
Tseng (10.1016/j.istruc.2024.107659_bib12) 2002; 11
Zhu (10.1016/j.istruc.2024.107659_bib58) 2023; 51
Ai (10.1016/j.istruc.2024.107659_bib27) 2023; 385
Khayatazad (10.1016/j.istruc.2024.107659_bib23) 2020
Vapnik (10.1016/j.istruc.2024.107659_bib49) 1995
Jiang (10.1016/j.istruc.2024.107659_bib18) 2021; 0123456789
Breiman (10.1016/j.istruc.2024.107659_bib50) 2001; 45
Ai (10.1016/j.istruc.2024.107659_bib17) 2023; 296
Zhang (10.1016/j.istruc.2024.107659_bib42) 2020; 31
Pedregosa (10.1016/j.istruc.2024.107659_bib51) 2011; 12
Strang (10.1016/j.istruc.2024.107659_bib48) 2016
Gómez-Martínez (10.1016/j.istruc.2024.107659_bib7) 2021; 33
Du (10.1016/j.istruc.2024.107659_bib37) 2023; 23
Tekkalmaz (10.1016/j.istruc.2024.107659_bib20) 2022; 33
de Rezende (10.1016/j.istruc.2024.107659_bib36) 2020; 2
Alazzawi (10.1016/j.istruc.2024.107659_bib32) 2021; 0123456789
Naik (10.1016/j.istruc.2024.107659_bib53) 2018; 75
Prem (10.1016/j.istruc.2024.107659_bib3) 2021; 30
10.1016/j.istruc.2024.107659_bib9
Selva (10.1016/j.istruc.2024.107659_bib28) 2013; 56
Rumelhart (10.1016/j.istruc.2024.107659_bib52) 1986; 323
Yao (10.1016/j.istruc.2024.107659_bib4) 2024; 63
Sapidis (10.1016/j.istruc.2024.107659_bib35) 2024; 24
Na (10.1016/j.istruc.2024.107659_bib25) 2013; 88
Liang (10.1016/j.istruc.2024.107659_bib8) 1994; 5
Thoriya (10.1016/j.istruc.2024.107659_bib19) 2024; 226
Zhu (10.1016/j.istruc.2024.107659_bib45) 2017; 148
Aslam (10.1016/j.istruc.2024.107659_bib5) 2023; 49
Sepehry (10.1016/j.istruc.2024.107659_bib24) 2011; 22
Nguyen (10.1016/j.istruc.2024.107659_bib31) 2022; 259
Lan (10.1016/j.istruc.2024.107659_bib43) 2024; 35
Samantaray (10.1016/j.istruc.2024.107659_bib22) 2018; 8
Sepehry (10.1016/j.istruc.2024.107659_bib39) 2017; 28
de Oliveira (10.1016/j.istruc.2024.107659_bib29) 2018; 18
10.1016/j.istruc.2024.107659_bib1
Wu (10.1016/j.istruc.2024.107659_bib56) 2004; 5
Abadi (10.1016/j.istruc.2024.107659_bib54) 2016
Liu (10.1016/j.istruc.2024.107659_bib11) 2021; 32
Li (10.1016/j.istruc.2024.107659_bib16) 2021; 152
Kumari (10.1016/j.istruc.2024.107659_bib55) 2021; 2
Ai (10.1016/j.istruc.2024.107659_bib26) 2023; 183
Sharif-Khodaei (10.1016/j.istruc.2024.107659_bib44) 2014; 23
Zhu (10.1016/j.istruc.2024.107659_bib57) 2023; 27
Dreisbach (10.1016/j.istruc.2024.107659_bib15) 2023; 22
Moharana (10.1016/j.istruc.2024.107659_bib41) 2022; 33
Zhang (10.1016/j.istruc.2024.107659_bib33) 2022; 21
Singh (10.1016/j.istruc.2024.107659_bib21) 2021; 30
Meher (10.1016/j.istruc.2024.107659_bib13) 2022; 29
Alazzawi (10.1016/j.istruc.2024.107659_bib34) 2024; 33
Singh (10.1016/j.istruc.2024.107659_bib14) 2023; 32
Ai (10.1016/j.istruc.2024.107659_bib30) 2022; 33
References_xml – volume: 152
  year: 2021
  ident: bib16
  article-title: Integrated electromechanical impedance technique with convolutional neural network for concrete structural damage quantification under varied temperatures
  publication-title: Mech Syst Signal Process [Internet]
– volume: 52
  start-page: 752
  year: 2023
  end-page: 767
  ident: bib6
  article-title: Deep autoencoder model for direct monitoring of bridges subjected to a moving vehicle load under varying temperature conditions
  publication-title: Struct [Internet]
– volume: 56
  start-page: 794
  year: 2013
  end-page: 804
  ident: bib28
  article-title: Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks
  publication-title: Eng Struct [Internet]
– volume: 10
  start-page: 573
  year: 2011
  end-page: 585
  ident: bib38
  article-title: Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature
  publication-title: Struct Heal Monit
– volume: 63
  year: 2024
  ident: bib4
  article-title: Experimental study and acoustic emission monitoring on damage mechanism of stud shear connectors
  publication-title: Struct [Internet]
– volume: 8
  start-page: 248
  year: 2023
  ident: bib2
  article-title: A review on structural health monitoring: past to present
  publication-title: Innov Infrastruct Solut [Internet]
– volume: 5
  start-page: 975
  year: 2004
  end-page: 1005
  ident: bib56
  publication-title: Probability Estimates for Multi-class Classification by Pairwise Coupling
– volume: 27
  start-page: 2621
  year: 2023
  end-page: 2628
  ident: bib57
  article-title: Impact of defects in steel-concrete interface on the corrosion-induced cracking propagation of the reinforced concrete
  publication-title: KSCE J Civ Eng [Internet]
– volume: 33
  start-page: 342
  year: 2022
  end-page: 351
  ident: bib20
  article-title: A new approach to monitor wear tracks propagation on-site with electromechanical impedance technique
  publication-title: J Intell Mater Syst Struct [Internet]
– volume: 2
  year: 2020
  ident: bib36
  article-title: Convolutional neural network and impedance-based SHM applied to damage detection
  publication-title: Eng Res Express
– year: 1995
  ident: bib49
  article-title: The Nature of Statistical Learning Theory
  publication-title: Nat Stat Learn Theory
– volume: 5
  start-page: 12
  year: 1994
  end-page: 20
  ident: bib8
  article-title: Coupled electro-mechanical analysis of adaptive material systems — determination of the actuator power consumption and system energy transfer
  publication-title: J Intell Mater Syst Struct
– volume: 2
  start-page: 40
  year: 2021
  end-page: 46
  ident: bib55
  article-title: An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier
  publication-title: Int J Cogn Comput Eng [Internet]
– volume: 49
  start-page: 666
  year: 2023
  end-page: 677
  ident: bib5
  article-title: Microcrack inspection in a functionally graded plate structure using nonlinear guided waves
  publication-title: Struct [Internet]
– volume: 88
  start-page: 62
  year: 2013
  end-page: 68
  ident: bib25
  article-title: Neural network approach for damaged area location prediction of a composite plate using electromechanical impedance technique
  publication-title: Compos Sci Technol
– volume: 22
  start-page: 1975
  year: 2011
  end-page: 1982
  ident: bib24
  article-title: Temperature variation effect compensation in impedance-based structural health monitoring using neural networks
  publication-title: J Intell Mater Syst Struct
– volume: 32
  year: 2023
  ident: bib14
  article-title: Damage detection and localization based on different types of actuators using the electromechanical impedance method in 3D-printed material
  publication-title: Smart Mater Struct
– volume: 87
  year: 2024
  ident: bib46
  article-title: Characteristics of the non-uniform corrosion of the steel bars extracted from the marine transportation infrastructures
  publication-title: J Build Eng [Internet]
– volume: 0123456789
  year: 2021
  ident: bib18
  article-title: Monitoring bond strength of adhesively planted rebars in concrete using electro ‑ mechanical impedance ( EMI
  publication-title: J Civ Struct Heal Monit [Internet]
– volume: 385
  year: 2023
  ident: bib27
  article-title: Deep learning of electromechanical impedance for concrete structural damage identification using 1-D convolutional neural networks
  publication-title: Constr Build Mater
– volume: 148
  start-page: 297
  year: 2017
  end-page: 306
  ident: bib45
  article-title: Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement
  publication-title: Constr Build Mater [Internet]
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib51
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res [Internet]
– volume: 183
  year: 2023
  ident: bib26
  article-title: A deep learning approach for electromechanical impedance based concrete structural damage quantification using two-dimensional convolutional neural network
  publication-title: Mech Syst Signal Process [Internet]
– volume: 21
  start-page: 1992
  year: 2022
  end-page: 2009
  ident: bib33
  article-title: 1D-CNN-based damage identification method based on piezoelectric impedance using adjustable inductive shunt circuitry for data enrichment
  publication-title: Struct Heal Monit [Internet]
– volume: 29
  start-page: 4738
  year: 2022
  end-page: 4758
  ident: bib13
  article-title: Detection of multiple structural damages from drive point and cross electro-mechanical impedance signatures
  publication-title: Mech Adv Mater Struct [Internet]
– reference: Giurgiutiu V., Rogers C.A. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE. In: Regelbrugge ME, editor. Smart Structures and Materials 1998: Smart Structures and Integrated Systems [Internet]. 1998. p. 536–547. Available from:
– volume: 75
  start-page: 75
  year: 2018
  end-page: 88
  ident: bib53
  publication-title: Springe Comput Sci
– reference: Farrar C.R., Worden K. Structural Health Monitoring: A Machine Learning Perspective. Structural Health Monitoring: A Machine Learning Perspective. 2012.
– volume: 8
  start-page: 809
  year: 2018
  end-page: 822
  ident: bib22
  article-title: An impedance-based structural health monitoring approach for looseness identification in bolted joint structure
  publication-title: J Civ Struct Heal Monit [Internet]
– volume: 11
  start-page: 317
  year: 2002
  end-page: 329
  ident: bib12
  article-title: Non-parametric damage detection and characterization using smart piezoceramic material
  publication-title: Smart Mater Struct
– volume: 18
  year: 2018
  ident: bib29
  article-title: A new structural health monitoring strategy based on PZT sensors and convolutional neural network
  publication-title: Sens (Switz)
– volume: 33
  start-page: 2241
  year: 2022
  end-page: 2256
  ident: bib30
  article-title: Electromechanical impedance-based concrete structural damage detection using principal component analysis incorporated with neural network
  publication-title: J Intell Mater Syst Struct
– volume: 23
  start-page: 4556
  year: 2023
  end-page: 4567
  ident: bib37
  article-title: Electromechanical impedance temperature compensation and bolt loosening monitoring based on modified unet and multitask learning
  publication-title: IEEE Sens J
– start-page: 151
  year: 2020
  end-page: 160
  ident: bib23
  article-title: Experimental and Numerical Study of Rmsd - a Damage Index of Electro-Mechanical Impedance-Based Structural Health Monitoring
  publication-title: IRF2020 7th Int Conf Integr-Reliab-Fail
– volume: 226
  year: 2024
  ident: bib19
  article-title: Application of wavelet transform techniques for corrosion assessment of embedded rebars in RC elements using electromechanical impedance
  publication-title: Meas [Internet]
– volume: 51
  year: 2023
  ident: bib58
  article-title: Spatial distribution of corrosion products influenced by the initial defects and corrosion-induced cracking of the concrete
  publication-title: J Test Eval [Internet]
– volume: 43
  start-page: 1342
  year: 2022
  end-page: 1355
  ident: bib10
  article-title: Long-term viable SF immobilized bacterial cells as sustainable solution for crack healing in concrete
  publication-title: Struct [Internet]
– volume: 28
  start-page: 2473
  year: 2017
  end-page: 2488
  ident: bib39
  article-title: Discrete singular convolution and spectral finite element method for predicting electromechanical impedance applied on rectangular plates
  publication-title: J Intell Mater Syst Struct
– volume: 32
  year: 2021
  ident: bib11
  article-title: Monitoring corrosion-induced thickness loss of stainless steel plates using the electromechanical impedance technique
  publication-title: Meas Sci Technol [Internet]
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib50
  article-title: Random Forests
  publication-title: Mach Learn [Internet]
– volume: 35
  year: 2024
  ident: bib43
  article-title: Performance study of novel metal corrosion probes based on the adjust method of series and parallel connections
  publication-title: Meas Sci Technol [Internet]
– volume: 30
  year: 2021
  ident: bib21
  article-title: An optimized data fusion strategy for structural damage assessment using electromechanical impedance
  publication-title: Smart Mater Struct
– volume: 33
  start-page: 4344
  year: 2021
  end-page: 4358
  ident: bib7
  article-title: Monitoring two cable-stayed bridges during load tests with fiber optics
  publication-title: Struct [Internet]
– volume: 0123456789
  year: 2021
  ident: bib32
  article-title: Damage identification using the PZT impedance signals and residual learning algorithm
  publication-title: J Civ Struct Heal Monit [Internet]
– year: 1997
  ident: bib47
  article-title: Electro-Mechanical (E/M) impedance method for structural health monitoring and non-destructive evaluation
  publication-title: Int Work Struct Heal Monit
– volume: 33
  year: 2024
  ident: bib34
  article-title: Health monitoring of an assembly-type structure using raw time-domain EMI signals and a novel hybrid deep learning algorithm
  publication-title: Smart Mater Struct [Internet]
– volume: 259
  year: 2022
  ident: bib31
  article-title: Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring
  publication-title: Eng Struct [Internet]
– volume: 33
  start-page: 1056
  year: 2022
  end-page: 1071
  ident: bib41
  article-title: Piezo impedance-based monitoring of loosening of bolts: experimental and numerical study
  publication-title: J Intell Mater Syst Struct [Internet]
– year: 2016
  ident: bib48
  publication-title: Introduction to Linear Algebra
– volume: 30
  start-page: 174
  year: 2021
  end-page: 187
  ident: bib3
  article-title: Damage characterization of reinforced concrete beams under different failure modes using acoustic emission
  publication-title: Struct [Internet]
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib52
  article-title: Learning representations by back-propagating errors
  publication-title: Nat [Internet]
– reference: .
– volume: 22
  start-page: 3270
  year: 2023
  end-page: 3285
  ident: bib15
  article-title: A novel data-based approach for monitoring fatigue crack propagation in welded joints under varying ambient temperature using the electromechanical admittance
  publication-title: Struct Heal Monit
– volume: 296
  year: 2023
  ident: bib17
  article-title: Deep learning of electromechanical admittance data augmented by generative adversarial networks for flexural performance evaluation of RC beam structure
  publication-title: Eng Struct [Internet]
– volume: 192
  year: 2022
  ident: bib40
  article-title: Corrosion damage identification for reinforced concrete beam using embedded piezoelectric transducer: numerical simulation
  publication-title: Meas [Internet]
– volume: 31
  start-page: 1477
  year: 2020
  end-page: 1494
  ident: bib42
  article-title: A novel method to monitor soft soil strength development in artificial ground freezing projects based on electromechanical impedance technique: Theoretical modeling and experimental validation
  publication-title: J Intell Mater Syst Struct [Internet]
– year: 2016
  ident: bib54
  publication-title: Tensor: Large-Scale Mach Learn Heterog Distrib Syst
– volume: 23
  year: 2014
  ident: bib44
  article-title: Assessment of delay-and-sum algorithms for damage detection in aluminium and composite plates
  publication-title: Smart Mater Struct
– volume: 24
  start-page: 386
  year: 2024
  ident: bib35
  article-title: A deep learning approach for autonomous compression damage identification in fiber-reinforced concrete using piezoelectric lead zirconate titanate transducers
  publication-title: Sens [Internet]
– volume: 10
  start-page: 573
  issue: 6
  year: 2011
  ident: 10.1016/j.istruc.2024.107659_bib38
  article-title: Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature
  publication-title: Struct Heal Monit
  doi: 10.1177/1475921710388338
– volume: 2
  start-page: 40
  year: 2021
  ident: 10.1016/j.istruc.2024.107659_bib55
  article-title: An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier
  publication-title: Int J Cogn Comput Eng [Internet]
– volume: 23
  issue: 7
  year: 2014
  ident: 10.1016/j.istruc.2024.107659_bib44
  article-title: Assessment of delay-and-sum algorithms for damage detection in aluminium and composite plates
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/23/7/075007
– volume: 22
  start-page: 3270
  issue: 5
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib15
  article-title: A novel data-based approach for monitoring fatigue crack propagation in welded joints under varying ambient temperature using the electromechanical admittance
  publication-title: Struct Heal Monit
  doi: 10.1177/14759217221123976
– year: 1995
  ident: 10.1016/j.istruc.2024.107659_bib49
  article-title: The Nature of Statistical Learning Theory
  publication-title: Nat Stat Learn Theory
  doi: 10.1007/978-1-4757-2440-0
– volume: 63
  year: 2024
  ident: 10.1016/j.istruc.2024.107659_bib4
  article-title: Experimental study and acoustic emission monitoring on damage mechanism of stud shear connectors
  publication-title: Struct [Internet]
– volume: 49
  start-page: 666
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib5
  article-title: Microcrack inspection in a functionally graded plate structure using nonlinear guided waves
  publication-title: Struct [Internet]
  doi: 10.1016/j.istruc.2023.01.144
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.istruc.2024.107659_bib52
  article-title: Learning representations by back-propagating errors
  publication-title: Nat [Internet]
  doi: 10.1038/323533a0
– volume: 21
  start-page: 1992
  issue: 5
  year: 2022
  ident: 10.1016/j.istruc.2024.107659_bib33
  article-title: 1D-CNN-based damage identification method based on piezoelectric impedance using adjustable inductive shunt circuitry for data enrichment
  publication-title: Struct Heal Monit [Internet]
  doi: 10.1177/14759217211049720
– volume: 75
  start-page: 75
  year: 2018
  ident: 10.1016/j.istruc.2024.107659_bib53
  publication-title: Springe Comput Sci
  doi: 10.1007/978-3-030-01620-3_5
– volume: 0123456789
  year: 2021
  ident: 10.1016/j.istruc.2024.107659_bib32
  article-title: Damage identification using the PZT impedance signals and residual learning algorithm
  publication-title: J Civ Struct Heal Monit [Internet]
– volume: 11
  start-page: 317
  issue: 3
  year: 2002
  ident: 10.1016/j.istruc.2024.107659_bib12
  article-title: Non-parametric damage detection and characterization using smart piezoceramic material
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/11/3/301
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.istruc.2024.107659_bib50
  article-title: Random Forests
  publication-title: Mach Learn [Internet]
  doi: 10.1023/A:1010933404324
– volume: 33
  start-page: 2241
  issue: 17
  year: 2022
  ident: 10.1016/j.istruc.2024.107659_bib30
  article-title: Electromechanical impedance-based concrete structural damage detection using principal component analysis incorporated with neural network
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X221077440
– volume: 32
  issue: 2
  year: 2021
  ident: 10.1016/j.istruc.2024.107659_bib11
  article-title: Monitoring corrosion-induced thickness loss of stainless steel plates using the electromechanical impedance technique
  publication-title: Meas Sci Technol [Internet]
– volume: 35
  issue: 9
  year: 2024
  ident: 10.1016/j.istruc.2024.107659_bib43
  article-title: Performance study of novel metal corrosion probes based on the adjust method of series and parallel connections
  publication-title: Meas Sci Technol [Internet]
– volume: 18
  issue: 9
  year: 2018
  ident: 10.1016/j.istruc.2024.107659_bib29
  article-title: A new structural health monitoring strategy based on PZT sensors and convolutional neural network
  publication-title: Sens (Switz)
– volume: 5
  start-page: 975
  year: 2004
  ident: 10.1016/j.istruc.2024.107659_bib56
– volume: 385
  issue: April
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib27
  article-title: Deep learning of electromechanical impedance for concrete structural damage identification using 1-D convolutional neural networks
  publication-title: Constr Build Mater
– volume: 2
  issue: 3
  year: 2020
  ident: 10.1016/j.istruc.2024.107659_bib36
  article-title: Convolutional neural network and impedance-based SHM applied to damage detection
  publication-title: Eng Res Express
  doi: 10.1088/2631-8695/abb568
– ident: 10.1016/j.istruc.2024.107659_bib1
  doi: 10.1002/9781118443118
– volume: 8
  start-page: 248
  issue: 9
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib2
  article-title: A review on structural health monitoring: past to present
  publication-title: Innov Infrastruct Solut [Internet]
  doi: 10.1007/s41062-023-01217-3
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: 10.1016/j.istruc.2024.107659_bib51
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res [Internet]
– volume: 27
  start-page: 2621
  issue: 6
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib57
  article-title: Impact of defects in steel-concrete interface on the corrosion-induced cracking propagation of the reinforced concrete
  publication-title: KSCE J Civ Eng [Internet]
  doi: 10.1007/s12205-023-0458-5
– year: 1997
  ident: 10.1016/j.istruc.2024.107659_bib47
  article-title: Electro-Mechanical (E/M) impedance method for structural health monitoring and non-destructive evaluation
  publication-title: Int Work Struct Heal Monit
– volume: 43
  start-page: 1342
  year: 2022
  ident: 10.1016/j.istruc.2024.107659_bib10
  article-title: Long-term viable SF immobilized bacterial cells as sustainable solution for crack healing in concrete
  publication-title: Struct [Internet]
  doi: 10.1016/j.istruc.2022.07.056
– volume: 88
  start-page: 62
  year: 2013
  ident: 10.1016/j.istruc.2024.107659_bib25
  article-title: Neural network approach for damaged area location prediction of a composite plate using electromechanical impedance technique
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2013.08.019
– volume: 8
  start-page: 809
  issue: 5
  year: 2018
  ident: 10.1016/j.istruc.2024.107659_bib22
  article-title: An impedance-based structural health monitoring approach for looseness identification in bolted joint structure
  publication-title: J Civ Struct Heal Monit [Internet]
  doi: 10.1007/s13349-018-0307-2
– volume: 23
  start-page: 4556
  issue: 5
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib37
  article-title: Electromechanical impedance temperature compensation and bolt loosening monitoring based on modified unet and multitask learning
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3132943
– year: 2016
  ident: 10.1016/j.istruc.2024.107659_bib48
– ident: 10.1016/j.istruc.2024.107659_bib9
  doi: 10.1117/12.316923
– volume: 33
  start-page: 342
  issue: 2
  year: 2022
  ident: 10.1016/j.istruc.2024.107659_bib20
  article-title: A new approach to monitor wear tracks propagation on-site with electromechanical impedance technique
  publication-title: J Intell Mater Syst Struct [Internet]
  doi: 10.1177/1045389X211014951
– volume: 30
  start-page: 174
  year: 2021
  ident: 10.1016/j.istruc.2024.107659_bib3
  article-title: Damage characterization of reinforced concrete beams under different failure modes using acoustic emission
  publication-title: Struct [Internet]
  doi: 10.1016/j.istruc.2021.01.007
– volume: 30
  issue: 3
  year: 2021
  ident: 10.1016/j.istruc.2024.107659_bib21
  article-title: An optimized data fusion strategy for structural damage assessment using electromechanical impedance
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/abdc07
– volume: 183
  issue: August 2021
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib26
  article-title: A deep learning approach for electromechanical impedance based concrete structural damage quantification using two-dimensional convolutional neural network
  publication-title: Mech Syst Signal Process [Internet]
– volume: 52
  start-page: 752
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib6
  article-title: Deep autoencoder model for direct monitoring of bridges subjected to a moving vehicle load under varying temperature conditions
  publication-title: Struct [Internet]
  doi: 10.1016/j.istruc.2023.03.171
– volume: 28
  start-page: 2473
  issue: 18
  year: 2017
  ident: 10.1016/j.istruc.2024.107659_bib39
  article-title: Discrete singular convolution and spectral finite element method for predicting electromechanical impedance applied on rectangular plates
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X17689931
– start-page: 151
  year: 2020
  ident: 10.1016/j.istruc.2024.107659_bib23
  article-title: Experimental and Numerical Study of Rmsd - a Damage Index of Electro-Mechanical Impedance-Based Structural Health Monitoring
  publication-title: IRF2020 7th Int Conf Integr-Reliab-Fail
– volume: 56
  start-page: 794
  year: 2013
  ident: 10.1016/j.istruc.2024.107659_bib28
  article-title: Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks
  publication-title: Eng Struct [Internet]
  doi: 10.1016/j.engstruct.2013.05.025
– volume: 33
  issue: 2
  year: 2024
  ident: 10.1016/j.istruc.2024.107659_bib34
  article-title: Health monitoring of an assembly-type structure using raw time-domain EMI signals and a novel hybrid deep learning algorithm
  publication-title: Smart Mater Struct [Internet]
– volume: 29
  start-page: 4738
  issue: 26
  year: 2022
  ident: 10.1016/j.istruc.2024.107659_bib13
  article-title: Detection of multiple structural damages from drive point and cross electro-mechanical impedance signatures
  publication-title: Mech Adv Mater Struct [Internet]
  doi: 10.1080/15376494.2021.1937757
– volume: 22
  start-page: 1975
  issue: 17
  year: 2011
  ident: 10.1016/j.istruc.2024.107659_bib24
  article-title: Temperature variation effect compensation in impedance-based structural health monitoring using neural networks
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X11421814
– volume: 148
  start-page: 297
  year: 2017
  ident: 10.1016/j.istruc.2024.107659_bib45
  article-title: Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement
  publication-title: Constr Build Mater [Internet]
  doi: 10.1016/j.conbuildmat.2017.05.079
– volume: 259
  issue: March 2021
  year: 2022
  ident: 10.1016/j.istruc.2024.107659_bib31
  article-title: Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring
  publication-title: Eng Struct [Internet]
– volume: 192
  year: 2022
  ident: 10.1016/j.istruc.2024.107659_bib40
  article-title: Corrosion damage identification for reinforced concrete beam using embedded piezoelectric transducer: numerical simulation
  publication-title: Meas [Internet]
– volume: 31
  start-page: 1477
  issue: 12
  year: 2020
  ident: 10.1016/j.istruc.2024.107659_bib42
  article-title: A novel method to monitor soft soil strength development in artificial ground freezing projects based on electromechanical impedance technique: Theoretical modeling and experimental validation
  publication-title: J Intell Mater Syst Struct [Internet]
  doi: 10.1177/1045389X20919973
– volume: 24
  start-page: 386
  issue: 2
  year: 2024
  ident: 10.1016/j.istruc.2024.107659_bib35
  article-title: A deep learning approach for autonomous compression damage identification in fiber-reinforced concrete using piezoelectric lead zirconate titanate transducers
  publication-title: Sens [Internet]
  doi: 10.3390/s24020386
– volume: 5
  start-page: 12
  issue: 1
  year: 1994
  ident: 10.1016/j.istruc.2024.107659_bib8
  article-title: Coupled electro-mechanical analysis of adaptive material systems — determination of the actuator power consumption and system energy transfer
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X9400500102
– volume: 296
  issue: September)
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib17
  article-title: Deep learning of electromechanical admittance data augmented by generative adversarial networks for flexural performance evaluation of RC beam structure
  publication-title: Eng Struct [Internet]
– volume: 226
  year: 2024
  ident: 10.1016/j.istruc.2024.107659_bib19
  article-title: Application of wavelet transform techniques for corrosion assessment of embedded rebars in RC elements using electromechanical impedance
  publication-title: Meas [Internet]
– volume: 87
  year: 2024
  ident: 10.1016/j.istruc.2024.107659_bib46
  article-title: Characteristics of the non-uniform corrosion of the steel bars extracted from the marine transportation infrastructures
  publication-title: J Build Eng [Internet]
– year: 2016
  ident: 10.1016/j.istruc.2024.107659_bib54
  publication-title: Tensor: Large-Scale Mach Learn Heterog Distrib Syst
– volume: 0123456789
  year: 2021
  ident: 10.1016/j.istruc.2024.107659_bib18
  article-title: Monitoring bond strength of adhesively planted rebars in concrete using electro ‑ mechanical impedance ( EMI
  publication-title: J Civ Struct Heal Monit [Internet]
– volume: 33
  start-page: 4344
  year: 2021
  ident: 10.1016/j.istruc.2024.107659_bib7
  article-title: Monitoring two cable-stayed bridges during load tests with fiber optics
  publication-title: Struct [Internet]
  doi: 10.1016/j.istruc.2021.07.026
– volume: 51
  issue: 4
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib58
  article-title: Spatial distribution of corrosion products influenced by the initial defects and corrosion-induced cracking of the concrete
  publication-title: J Test Eval [Internet]
– volume: 152
  year: 2021
  ident: 10.1016/j.istruc.2024.107659_bib16
  article-title: Integrated electromechanical impedance technique with convolutional neural network for concrete structural damage quantification under varied temperatures
  publication-title: Mech Syst Signal Process [Internet]
– volume: 33
  start-page: 1056
  issue: 8
  year: 2022
  ident: 10.1016/j.istruc.2024.107659_bib41
  article-title: Piezo impedance-based monitoring of loosening of bolts: experimental and numerical study
  publication-title: J Intell Mater Syst Struct [Internet]
  doi: 10.1177/1045389X211041166
– volume: 32
  issue: 11
  year: 2023
  ident: 10.1016/j.istruc.2024.107659_bib14
  article-title: Damage detection and localization based on different types of actuators using the electromechanical impedance method in 3D-printed material
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/acfa7e
SSID ssj0002140247
Score 2.3057294
Snippet Existing electromechanical impedance (EMI) damage identification algorithms often face challenges in terms of generalizability. This paper presents a robust...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 107659
SubjectTerms Damage identification
Electromechanical impedance
Machine learning
Multitask learning
Structural health monitoring
Title A multitask SHM algorithm to identify damage with random severity and location in IPE beams using EMI technique
URI https://dx.doi.org/10.1016/j.istruc.2024.107659
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: ACRLP
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: AIKHN
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: AKRWK
  dateStart: 20150201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBZpsrRD6ZOmL27oKtJYtiyNISQkLQmFNJDNyJKcum3sQLL03_fkR0ihdOgomcPmznzfnfjuRMhDqJAF4q5Hk27MqZ8oRuPET2goYi2YlrZrXYPzZMpHc_9pESwapF_3wjhZZYX9JaYXaF3tdCpvdtZp2pl5mDsgvPrISY6mggPSQv4RoklavfHzaLo7avGwiPCKq8acCXU2dRNdofRKi1GtWCt6Pm6F3M0t_Y2k9ohneEKOq4wReuVHnZKGzc7I0d4cwXOS96AQBm7V5gNmowmoz2WOVf_bCrY5pEUvbvIFRq0QPcAdvQJSlMlXgK-07vo6wCU4XnNxgjSD8csAYqtWG3DK-CVguGA37_WCzIeD1_6IVjcpUI0lw5Ya8aiN0pgr-IlgTFqmA20kM7HiPJY8YU4bY1lgLSJAKLHcDhKpuC-VxIRFsUvSzPLMXhEQmB8YLgOjdeBb3VVcCGuEKjI9BI82obXronU5MCOqlWTvUenqyLk6Kl3dJmHt3-hH4CPE9D8tr_9teUMO3apUpdySJj63d5hbbOP76t_5BmcIzcQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKHYAB8RRvbmC1SmPHiccKgVL6EFKLxBY5tlMCpKnULvx7znlUICEGxjg-JTon33dnfXcm5CZQyAJJ16NpNxGUp4rRJOUpDcJEh0xL27WuwHk0FtEzf3zxX1rkrqmFcbLKGvsrTC_Ruh7p1N7sLLKsM_EwdkB45chJjqb8DdLmPgvw72z3-oNovN5q8TCJ8MqjxpwJdTZNEV2p9MrKVq2YK3ochwLh-pb-RlLfiOdhj-zWESP0qpfaJy07PyA73_oIHpKiB6UwcKWW7zCJRqA-ZgVm_a85rArIylrc9BOMyhE9wG29AlKUKXLAR1p3fB3gJThec-sE2Rz6T_eQWJUvwSnjZ4DLBet-r0fk-eF-ehfR-iQFqjFlWFET3mqjNMYKPA0Zk5ZpXxvJTKKESKRImdPGWOZbiwgQSEy3_VQqwaWSGLAodkw258XcnhAIMT4wQvpGa59b3VUiDK0JVRnpIXicEtq4Ll5UDTPiRkn2Fleujp2r48rVpyRo_Bv_WPgYMf1Py7N_W16TrWg6GsbD_nhwTrbdnUqhckE2ca69xDhjlVzV39EXGALQpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multitask+SHM+algorithm+to+identify+damage+with+random+severity+and+location+in+IPE+beams+using+EMI+technique&rft.jtitle=Structures+%28Oxford%29&rft.au=Zamanian%2C+Mehrab&rft.au=Sepehry%2C+Naserodin&rft.au=Zahrai%2C+Seyed+Mehdi&rft.date=2024-12-01&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=70&rft.spage=107659&rft_id=info:doi/10.1016%2Fj.istruc.2024.107659&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_istruc_2024_107659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon