A multitask SHM algorithm to identify damage with random severity and location in IPE beams using EMI technique
Existing electromechanical impedance (EMI) damage identification algorithms often face challenges in terms of generalizability. This paper presents a robust algorithm that can simultaneously estimate the region and severity of damage with random damage scenarios across a surface and any severity, ra...
        Saved in:
      
    
          | Published in | Structures (Oxford) Vol. 70; p. 107659 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.12.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2352-0124 2352-0124  | 
| DOI | 10.1016/j.istruc.2024.107659 | 
Cover
| Abstract | Existing electromechanical impedance (EMI) damage identification algorithms often face challenges in terms of generalizability. This paper presents a robust algorithm that can simultaneously estimate the region and severity of damage with random damage scenarios across a surface and any severity, rather than being limited to specific points and severities. The host structure was an I-beam. Simulated damage was introduced as a subtle added mass to evaluate the algorithm's effectiveness in early-stage damage identification. Initially, various EMI tests with different damage specifications were conducted, and validated through numerical simulation. Damage-sensitive features were extracted and were input into three ML models: support vector machine, random forest, and multilayer perceptron. An ensemble learning approach was employed to combine the individual predictions from these models. The algorithm achieved classification accuracies of 97.3 % and 94.4 % on the validation and test sets, respectively, for identifying damaged regions. The algorithm also quantifies damage severity, achieving R-squared values of 92 % and 88 % on the validation and test sets, respectively. | 
    
|---|---|
| AbstractList | Existing electromechanical impedance (EMI) damage identification algorithms often face challenges in terms of generalizability. This paper presents a robust algorithm that can simultaneously estimate the region and severity of damage with random damage scenarios across a surface and any severity, rather than being limited to specific points and severities. The host structure was an I-beam. Simulated damage was introduced as a subtle added mass to evaluate the algorithm's effectiveness in early-stage damage identification. Initially, various EMI tests with different damage specifications were conducted, and validated through numerical simulation. Damage-sensitive features were extracted and were input into three ML models: support vector machine, random forest, and multilayer perceptron. An ensemble learning approach was employed to combine the individual predictions from these models. The algorithm achieved classification accuracies of 97.3 % and 94.4 % on the validation and test sets, respectively, for identifying damaged regions. The algorithm also quantifies damage severity, achieving R-squared values of 92 % and 88 % on the validation and test sets, respectively. | 
    
| ArticleNumber | 107659 | 
    
| Author | Zahrai, Seyed Mehdi Zamanian, Mehrab Sepehry, Naserodin  | 
    
| Author_xml | – sequence: 1 givenname: Mehrab surname: Zamanian fullname: Zamanian, Mehrab email: mehrab.zamanian@ut.ac.ir organization: School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 2 givenname: Naserodin surname: Sepehry fullname: Sepehry, Naserodin email: naser.sepehry@shahroodut.ac.ir organization: Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran – sequence: 3 givenname: Seyed Mehdi surname: Zahrai fullname: Zahrai, Seyed Mehdi email: mzahrai@ut.ac.ir organization: School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran  | 
    
| BookMark | eNp9kM1OAjEUhRujiYi8gYv7AoOd6fzQjQkhKCQQTdR102nvQJFpte1geHuH4MKVq_t3zsnNd0MurbNIyF1KxylNy_vd2IToOzXOaJb3q6os-AUZZKzIEppm-eWf_pqMQthRSrM079XVgLgptN0-mijDB7wu1iD3G-dN3LYQHRiNNprmCFq2coPw3R_AS6tdCwEP2AuP0I-wd0pG4ywYC8uXOdQo2wBdMHYD8_USIqqtNV8d3pKrRu4Djn7rkLw_zt9mi2T1_LScTVeJyooiJnpClZaKpVXeTBjjyFShNGe6lmVZ87JhrCopsgKxoqziWGdFw2WZc8kZryQbkvycq7wLwWMjPr1ppT-KlIoTN7ETZ27ixE2cufW2h7MN-98OBr0IyqBVqI1HFYV25v-AHxMleug | 
    
| Cites_doi | 10.1177/1475921710388338 10.1088/0964-1726/23/7/075007 10.1177/14759217221123976 10.1007/978-1-4757-2440-0 10.1016/j.istruc.2023.01.144 10.1038/323533a0 10.1177/14759217211049720 10.1007/978-3-030-01620-3_5 10.1088/0964-1726/11/3/301 10.1023/A:1010933404324 10.1177/1045389X221077440 10.1088/2631-8695/abb568 10.1002/9781118443118 10.1007/s41062-023-01217-3 10.1007/s12205-023-0458-5 10.1016/j.istruc.2022.07.056 10.1016/j.compscitech.2013.08.019 10.1007/s13349-018-0307-2 10.1109/JSEN.2021.3132943 10.1117/12.316923 10.1177/1045389X211014951 10.1016/j.istruc.2021.01.007 10.1088/1361-665X/abdc07 10.1016/j.istruc.2023.03.171 10.1177/1045389X17689931 10.1016/j.engstruct.2013.05.025 10.1080/15376494.2021.1937757 10.1177/1045389X11421814 10.1016/j.conbuildmat.2017.05.079 10.1177/1045389X20919973 10.3390/s24020386 10.1177/1045389X9400500102 10.1016/j.istruc.2021.07.026 10.1177/1045389X211041166 10.1088/1361-665X/acfa7e  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Institution of Structural Engineers | 
    
| Copyright_xml | – notice: 2024 Institution of Structural Engineers | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.istruc.2024.107659 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2352-0124 | 
    
| ExternalDocumentID | 10_1016_j_istruc_2024_107659 S2352012424018125  | 
    
| GroupedDBID | --M 0R~ 4.4 457 AACTN AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADEZE AEBSH AEIPS AFJKZ AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC EBS EFJIC EJD FDB FIRID FYGXN KOM M41 O9- OAUVE RIG ROL SPC SPCBC SST SSZ T5K ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG  | 
    
| ID | FETCH-LOGICAL-c255t-d80cdac3174f8339e3c5cd93dba66b96f33760e35ee70379eb25f9a649a9397a3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 2352-0124 | 
    
| IngestDate | Wed Oct 01 03:29:48 EDT 2025 Sat Feb 08 15:51:38 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Multitask learning Electromechanical impedance Damage identification Structural health monitoring Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c255t-d80cdac3174f8339e3c5cd93dba66b96f33760e35ee70379eb25f9a649a9397a3 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_istruc_2024_107659 elsevier_sciencedirect_doi_10_1016_j_istruc_2024_107659  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2024 2024-12-00  | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Structures (Oxford) | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Selva, Cherrier, Budinger, Lachaud, Morlier (bib28) 2013; 56 de Oliveira, Monteiro, Filho (bib29) 2018; 18 Sepehry, Bakhtiari-Nejad, Shamshirsaz (bib39) 2017; 28 Zhang, Wang, Hou, Xu, Yan (bib33) 2022; 21 Abadi, Agarwal, Barham, Brevdo, Chen, Citro (bib54) 2016 Singh, Fakih, Malinowski (bib14) 2023; 32 Khayatazad, Deschodt, Loccufier, Backer, De Waele (bib23) 2020 Ai, Mo, Yang, Zhu (bib30) 2022; 33 Vapnik (bib49) 1995 Gómez-Martínez, Sánchez-García, Escobar-Sánchez, Arenas-García, Mendoza-Salas, Rosales-González (bib7) 2021; 33 Zhu, Yu, Yang, Dong, Ren, Zhang (bib58) 2023; 51 Kumari, Kumar, Mittal (bib55) 2021; 2 Nguyen, Tuong Vy Phan, Ho, Man Singh Pradhan, Huynh (bib31) 2022; 259 de Rezende, de Moura, Neto, Gallo, Steffen (bib36) 2020; 2 Naik, Rangwala (bib53) 2018; 75 Jiang, Ye, Feng, Jiang (bib18) 2021; 0123456789 Du, Wu, Xu, Yang, Su (bib37) 2023; 23 Ai, Du, Li, Zhu (bib40) 2022; 192 Rumelhart, Hinton, Williams (bib52) 1986; 323 Aslam, Park, Lee (bib5) 2023; 49 Alazzawi, Wang (bib34) 2024; 33 Liu, Feng (bib11) 2021; 32 Zhang, Wang, Yan, Vipulanandan, Song (bib42) 2020; 31 Anand, Goyal, Reddy (bib10) 2022; 43 Singh, Sikdar, Malinowski (bib21) 2021; 30 Prem, Verma, Ambily (bib3) 2021; 30 Ai, Cheng (bib26) 2023; 183 Zhu, François, Poon, Dai (bib45) 2017; 148 . Samantaray, Mittal, Mahapatra, Kumar (bib22) 2018; 8 Sapidis, Kansizoglou, Naoum, Papadopoulos, Chalioris (bib35) 2024; 24 Katam, Pasupuleti, Kalapatapu (bib2) 2023; 8 Zhu, Yang, Yu, Xiao, Xu (bib57) 2023; 27 Lan, Wang, Wang, Fu, Li, Luo (bib43) 2024; 35 Breiman (bib50) 2001; 45 Li, Ai, Zhu, Luo (bib16) 2021; 152 Sepehry, Shamshirsaz, Bastani (bib38) 2011; 10 Tseng, Naidu (bib12) 2002; 11 Giurgiutiu, Rogers (bib47) 1997 Meher, Sunny (bib13) 2022; 29 Dreisbach, Yokaribas, Dietrich, Sahm, Pak, Fritzen (bib15) 2023; 22 Sharif-Khodaei, Aliabadi (bib44) 2014; 23 Yao, Si, Liu, Ni, Gao (bib4) 2024; 63 Liang, Sun, Rogers (bib8) 1994; 5 Farrar C.R., Worden K. Structural Health Monitoring: A Machine Learning Perspective. Structural Health Monitoring: A Machine Learning Perspective. 2012. Ai, Zhang (bib17) 2023; 296 Thoriya, Vora, Jadeja, Ali Abdelrahman Ali, Patel (bib19) 2024; 226 Giurgiutiu V., Rogers C.A. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE. In: Regelbrugge ME, editor. Smart Structures and Materials 1998: Smart Structures and Integrated Systems [Internet]. 1998. p. 536–547. Available from Strang (bib48) 2016 Ai, Mo, Cheng, Du (bib27) 2023; 385 Tekkalmaz, Er, Çakir, Bozkurt (bib20) 2022; 33 Yessoufou, Zhu (bib6) 2023; 52 Alazzawi, Wang (bib32) 2021; 0123456789 Zhu, Ren, Yu, Tang, Xu, Xu (bib46) 2024; 87 Moharana, Sevugaperumal Arun (bib41) 2022; 33 Sepehry, Shamshirsaz, Abdollahi (bib24) 2011; 22 Na, Lee (bib25) 2013; 88 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (bib51) 2011; 12 Wu, Lin, Weng (bib56) 2004; 5 Giurgiutiu (10.1016/j.istruc.2024.107659_bib47) 1997 Sepehry (10.1016/j.istruc.2024.107659_bib38) 2011; 10 Anand (10.1016/j.istruc.2024.107659_bib10) 2022; 43 Ai (10.1016/j.istruc.2024.107659_bib40) 2022; 192 Katam (10.1016/j.istruc.2024.107659_bib2) 2023; 8 Zhu (10.1016/j.istruc.2024.107659_bib46) 2024; 87 Yessoufou (10.1016/j.istruc.2024.107659_bib6) 2023; 52 Tseng (10.1016/j.istruc.2024.107659_bib12) 2002; 11 Zhu (10.1016/j.istruc.2024.107659_bib58) 2023; 51 Ai (10.1016/j.istruc.2024.107659_bib27) 2023; 385 Khayatazad (10.1016/j.istruc.2024.107659_bib23) 2020 Vapnik (10.1016/j.istruc.2024.107659_bib49) 1995 Jiang (10.1016/j.istruc.2024.107659_bib18) 2021; 0123456789 Breiman (10.1016/j.istruc.2024.107659_bib50) 2001; 45 Ai (10.1016/j.istruc.2024.107659_bib17) 2023; 296 Zhang (10.1016/j.istruc.2024.107659_bib42) 2020; 31 Pedregosa (10.1016/j.istruc.2024.107659_bib51) 2011; 12 Strang (10.1016/j.istruc.2024.107659_bib48) 2016 Gómez-Martínez (10.1016/j.istruc.2024.107659_bib7) 2021; 33 Du (10.1016/j.istruc.2024.107659_bib37) 2023; 23 Tekkalmaz (10.1016/j.istruc.2024.107659_bib20) 2022; 33 de Rezende (10.1016/j.istruc.2024.107659_bib36) 2020; 2 Alazzawi (10.1016/j.istruc.2024.107659_bib32) 2021; 0123456789 Naik (10.1016/j.istruc.2024.107659_bib53) 2018; 75 Prem (10.1016/j.istruc.2024.107659_bib3) 2021; 30 10.1016/j.istruc.2024.107659_bib9 Selva (10.1016/j.istruc.2024.107659_bib28) 2013; 56 Rumelhart (10.1016/j.istruc.2024.107659_bib52) 1986; 323 Yao (10.1016/j.istruc.2024.107659_bib4) 2024; 63 Sapidis (10.1016/j.istruc.2024.107659_bib35) 2024; 24 Na (10.1016/j.istruc.2024.107659_bib25) 2013; 88 Liang (10.1016/j.istruc.2024.107659_bib8) 1994; 5 Thoriya (10.1016/j.istruc.2024.107659_bib19) 2024; 226 Zhu (10.1016/j.istruc.2024.107659_bib45) 2017; 148 Aslam (10.1016/j.istruc.2024.107659_bib5) 2023; 49 Sepehry (10.1016/j.istruc.2024.107659_bib24) 2011; 22 Nguyen (10.1016/j.istruc.2024.107659_bib31) 2022; 259 Lan (10.1016/j.istruc.2024.107659_bib43) 2024; 35 Samantaray (10.1016/j.istruc.2024.107659_bib22) 2018; 8 Sepehry (10.1016/j.istruc.2024.107659_bib39) 2017; 28 de Oliveira (10.1016/j.istruc.2024.107659_bib29) 2018; 18 10.1016/j.istruc.2024.107659_bib1 Wu (10.1016/j.istruc.2024.107659_bib56) 2004; 5 Abadi (10.1016/j.istruc.2024.107659_bib54) 2016 Liu (10.1016/j.istruc.2024.107659_bib11) 2021; 32 Li (10.1016/j.istruc.2024.107659_bib16) 2021; 152 Kumari (10.1016/j.istruc.2024.107659_bib55) 2021; 2 Ai (10.1016/j.istruc.2024.107659_bib26) 2023; 183 Sharif-Khodaei (10.1016/j.istruc.2024.107659_bib44) 2014; 23 Zhu (10.1016/j.istruc.2024.107659_bib57) 2023; 27 Dreisbach (10.1016/j.istruc.2024.107659_bib15) 2023; 22 Moharana (10.1016/j.istruc.2024.107659_bib41) 2022; 33 Zhang (10.1016/j.istruc.2024.107659_bib33) 2022; 21 Singh (10.1016/j.istruc.2024.107659_bib21) 2021; 30 Meher (10.1016/j.istruc.2024.107659_bib13) 2022; 29 Alazzawi (10.1016/j.istruc.2024.107659_bib34) 2024; 33 Singh (10.1016/j.istruc.2024.107659_bib14) 2023; 32 Ai (10.1016/j.istruc.2024.107659_bib30) 2022; 33  | 
    
| References_xml | – volume: 152 year: 2021 ident: bib16 article-title: Integrated electromechanical impedance technique with convolutional neural network for concrete structural damage quantification under varied temperatures publication-title: Mech Syst Signal Process [Internet] – volume: 52 start-page: 752 year: 2023 end-page: 767 ident: bib6 article-title: Deep autoencoder model for direct monitoring of bridges subjected to a moving vehicle load under varying temperature conditions publication-title: Struct [Internet] – volume: 56 start-page: 794 year: 2013 end-page: 804 ident: bib28 article-title: Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks publication-title: Eng Struct [Internet] – volume: 10 start-page: 573 year: 2011 end-page: 585 ident: bib38 article-title: Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature publication-title: Struct Heal Monit – volume: 63 year: 2024 ident: bib4 article-title: Experimental study and acoustic emission monitoring on damage mechanism of stud shear connectors publication-title: Struct [Internet] – volume: 8 start-page: 248 year: 2023 ident: bib2 article-title: A review on structural health monitoring: past to present publication-title: Innov Infrastruct Solut [Internet] – volume: 5 start-page: 975 year: 2004 end-page: 1005 ident: bib56 publication-title: Probability Estimates for Multi-class Classification by Pairwise Coupling – volume: 27 start-page: 2621 year: 2023 end-page: 2628 ident: bib57 article-title: Impact of defects in steel-concrete interface on the corrosion-induced cracking propagation of the reinforced concrete publication-title: KSCE J Civ Eng [Internet] – volume: 33 start-page: 342 year: 2022 end-page: 351 ident: bib20 article-title: A new approach to monitor wear tracks propagation on-site with electromechanical impedance technique publication-title: J Intell Mater Syst Struct [Internet] – volume: 2 year: 2020 ident: bib36 article-title: Convolutional neural network and impedance-based SHM applied to damage detection publication-title: Eng Res Express – year: 1995 ident: bib49 article-title: The Nature of Statistical Learning Theory publication-title: Nat Stat Learn Theory – volume: 5 start-page: 12 year: 1994 end-page: 20 ident: bib8 article-title: Coupled electro-mechanical analysis of adaptive material systems — determination of the actuator power consumption and system energy transfer publication-title: J Intell Mater Syst Struct – volume: 2 start-page: 40 year: 2021 end-page: 46 ident: bib55 article-title: An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier publication-title: Int J Cogn Comput Eng [Internet] – volume: 49 start-page: 666 year: 2023 end-page: 677 ident: bib5 article-title: Microcrack inspection in a functionally graded plate structure using nonlinear guided waves publication-title: Struct [Internet] – volume: 88 start-page: 62 year: 2013 end-page: 68 ident: bib25 article-title: Neural network approach for damaged area location prediction of a composite plate using electromechanical impedance technique publication-title: Compos Sci Technol – volume: 22 start-page: 1975 year: 2011 end-page: 1982 ident: bib24 article-title: Temperature variation effect compensation in impedance-based structural health monitoring using neural networks publication-title: J Intell Mater Syst Struct – volume: 32 year: 2023 ident: bib14 article-title: Damage detection and localization based on different types of actuators using the electromechanical impedance method in 3D-printed material publication-title: Smart Mater Struct – volume: 87 year: 2024 ident: bib46 article-title: Characteristics of the non-uniform corrosion of the steel bars extracted from the marine transportation infrastructures publication-title: J Build Eng [Internet] – volume: 0123456789 year: 2021 ident: bib18 article-title: Monitoring bond strength of adhesively planted rebars in concrete using electro ‑ mechanical impedance ( EMI publication-title: J Civ Struct Heal Monit [Internet] – volume: 385 year: 2023 ident: bib27 article-title: Deep learning of electromechanical impedance for concrete structural damage identification using 1-D convolutional neural networks publication-title: Constr Build Mater – volume: 148 start-page: 297 year: 2017 end-page: 306 ident: bib45 article-title: Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement publication-title: Constr Build Mater [Internet] – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib51 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res [Internet] – volume: 183 year: 2023 ident: bib26 article-title: A deep learning approach for electromechanical impedance based concrete structural damage quantification using two-dimensional convolutional neural network publication-title: Mech Syst Signal Process [Internet] – volume: 21 start-page: 1992 year: 2022 end-page: 2009 ident: bib33 article-title: 1D-CNN-based damage identification method based on piezoelectric impedance using adjustable inductive shunt circuitry for data enrichment publication-title: Struct Heal Monit [Internet] – volume: 29 start-page: 4738 year: 2022 end-page: 4758 ident: bib13 article-title: Detection of multiple structural damages from drive point and cross electro-mechanical impedance signatures publication-title: Mech Adv Mater Struct [Internet] – reference: Giurgiutiu V., Rogers C.A. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE. In: Regelbrugge ME, editor. Smart Structures and Materials 1998: Smart Structures and Integrated Systems [Internet]. 1998. p. 536–547. Available from: – volume: 75 start-page: 75 year: 2018 end-page: 88 ident: bib53 publication-title: Springe Comput Sci – reference: Farrar C.R., Worden K. Structural Health Monitoring: A Machine Learning Perspective. Structural Health Monitoring: A Machine Learning Perspective. 2012. – volume: 8 start-page: 809 year: 2018 end-page: 822 ident: bib22 article-title: An impedance-based structural health monitoring approach for looseness identification in bolted joint structure publication-title: J Civ Struct Heal Monit [Internet] – volume: 11 start-page: 317 year: 2002 end-page: 329 ident: bib12 article-title: Non-parametric damage detection and characterization using smart piezoceramic material publication-title: Smart Mater Struct – volume: 18 year: 2018 ident: bib29 article-title: A new structural health monitoring strategy based on PZT sensors and convolutional neural network publication-title: Sens (Switz) – volume: 33 start-page: 2241 year: 2022 end-page: 2256 ident: bib30 article-title: Electromechanical impedance-based concrete structural damage detection using principal component analysis incorporated with neural network publication-title: J Intell Mater Syst Struct – volume: 23 start-page: 4556 year: 2023 end-page: 4567 ident: bib37 article-title: Electromechanical impedance temperature compensation and bolt loosening monitoring based on modified unet and multitask learning publication-title: IEEE Sens J – start-page: 151 year: 2020 end-page: 160 ident: bib23 article-title: Experimental and Numerical Study of Rmsd - a Damage Index of Electro-Mechanical Impedance-Based Structural Health Monitoring publication-title: IRF2020 7th Int Conf Integr-Reliab-Fail – volume: 226 year: 2024 ident: bib19 article-title: Application of wavelet transform techniques for corrosion assessment of embedded rebars in RC elements using electromechanical impedance publication-title: Meas [Internet] – volume: 51 year: 2023 ident: bib58 article-title: Spatial distribution of corrosion products influenced by the initial defects and corrosion-induced cracking of the concrete publication-title: J Test Eval [Internet] – volume: 43 start-page: 1342 year: 2022 end-page: 1355 ident: bib10 article-title: Long-term viable SF immobilized bacterial cells as sustainable solution for crack healing in concrete publication-title: Struct [Internet] – volume: 28 start-page: 2473 year: 2017 end-page: 2488 ident: bib39 article-title: Discrete singular convolution and spectral finite element method for predicting electromechanical impedance applied on rectangular plates publication-title: J Intell Mater Syst Struct – volume: 32 year: 2021 ident: bib11 article-title: Monitoring corrosion-induced thickness loss of stainless steel plates using the electromechanical impedance technique publication-title: Meas Sci Technol [Internet] – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib50 article-title: Random Forests publication-title: Mach Learn [Internet] – volume: 35 year: 2024 ident: bib43 article-title: Performance study of novel metal corrosion probes based on the adjust method of series and parallel connections publication-title: Meas Sci Technol [Internet] – volume: 30 year: 2021 ident: bib21 article-title: An optimized data fusion strategy for structural damage assessment using electromechanical impedance publication-title: Smart Mater Struct – volume: 33 start-page: 4344 year: 2021 end-page: 4358 ident: bib7 article-title: Monitoring two cable-stayed bridges during load tests with fiber optics publication-title: Struct [Internet] – volume: 0123456789 year: 2021 ident: bib32 article-title: Damage identification using the PZT impedance signals and residual learning algorithm publication-title: J Civ Struct Heal Monit [Internet] – year: 1997 ident: bib47 article-title: Electro-Mechanical (E/M) impedance method for structural health monitoring and non-destructive evaluation publication-title: Int Work Struct Heal Monit – volume: 33 year: 2024 ident: bib34 article-title: Health monitoring of an assembly-type structure using raw time-domain EMI signals and a novel hybrid deep learning algorithm publication-title: Smart Mater Struct [Internet] – volume: 259 year: 2022 ident: bib31 article-title: Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring publication-title: Eng Struct [Internet] – volume: 33 start-page: 1056 year: 2022 end-page: 1071 ident: bib41 article-title: Piezo impedance-based monitoring of loosening of bolts: experimental and numerical study publication-title: J Intell Mater Syst Struct [Internet] – year: 2016 ident: bib48 publication-title: Introduction to Linear Algebra – volume: 30 start-page: 174 year: 2021 end-page: 187 ident: bib3 article-title: Damage characterization of reinforced concrete beams under different failure modes using acoustic emission publication-title: Struct [Internet] – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib52 article-title: Learning representations by back-propagating errors publication-title: Nat [Internet] – reference: . – volume: 22 start-page: 3270 year: 2023 end-page: 3285 ident: bib15 article-title: A novel data-based approach for monitoring fatigue crack propagation in welded joints under varying ambient temperature using the electromechanical admittance publication-title: Struct Heal Monit – volume: 296 year: 2023 ident: bib17 article-title: Deep learning of electromechanical admittance data augmented by generative adversarial networks for flexural performance evaluation of RC beam structure publication-title: Eng Struct [Internet] – volume: 192 year: 2022 ident: bib40 article-title: Corrosion damage identification for reinforced concrete beam using embedded piezoelectric transducer: numerical simulation publication-title: Meas [Internet] – volume: 31 start-page: 1477 year: 2020 end-page: 1494 ident: bib42 article-title: A novel method to monitor soft soil strength development in artificial ground freezing projects based on electromechanical impedance technique: Theoretical modeling and experimental validation publication-title: J Intell Mater Syst Struct [Internet] – year: 2016 ident: bib54 publication-title: Tensor: Large-Scale Mach Learn Heterog Distrib Syst – volume: 23 year: 2014 ident: bib44 article-title: Assessment of delay-and-sum algorithms for damage detection in aluminium and composite plates publication-title: Smart Mater Struct – volume: 24 start-page: 386 year: 2024 ident: bib35 article-title: A deep learning approach for autonomous compression damage identification in fiber-reinforced concrete using piezoelectric lead zirconate titanate transducers publication-title: Sens [Internet] – volume: 10 start-page: 573 issue: 6 year: 2011 ident: 10.1016/j.istruc.2024.107659_bib38 article-title: Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature publication-title: Struct Heal Monit doi: 10.1177/1475921710388338 – volume: 2 start-page: 40 year: 2021 ident: 10.1016/j.istruc.2024.107659_bib55 article-title: An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier publication-title: Int J Cogn Comput Eng [Internet] – volume: 23 issue: 7 year: 2014 ident: 10.1016/j.istruc.2024.107659_bib44 article-title: Assessment of delay-and-sum algorithms for damage detection in aluminium and composite plates publication-title: Smart Mater Struct doi: 10.1088/0964-1726/23/7/075007 – volume: 22 start-page: 3270 issue: 5 year: 2023 ident: 10.1016/j.istruc.2024.107659_bib15 article-title: A novel data-based approach for monitoring fatigue crack propagation in welded joints under varying ambient temperature using the electromechanical admittance publication-title: Struct Heal Monit doi: 10.1177/14759217221123976 – year: 1995 ident: 10.1016/j.istruc.2024.107659_bib49 article-title: The Nature of Statistical Learning Theory publication-title: Nat Stat Learn Theory doi: 10.1007/978-1-4757-2440-0 – volume: 63 year: 2024 ident: 10.1016/j.istruc.2024.107659_bib4 article-title: Experimental study and acoustic emission monitoring on damage mechanism of stud shear connectors publication-title: Struct [Internet] – volume: 49 start-page: 666 year: 2023 ident: 10.1016/j.istruc.2024.107659_bib5 article-title: Microcrack inspection in a functionally graded plate structure using nonlinear guided waves publication-title: Struct [Internet] doi: 10.1016/j.istruc.2023.01.144 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.istruc.2024.107659_bib52 article-title: Learning representations by back-propagating errors publication-title: Nat [Internet] doi: 10.1038/323533a0 – volume: 21 start-page: 1992 issue: 5 year: 2022 ident: 10.1016/j.istruc.2024.107659_bib33 article-title: 1D-CNN-based damage identification method based on piezoelectric impedance using adjustable inductive shunt circuitry for data enrichment publication-title: Struct Heal Monit [Internet] doi: 10.1177/14759217211049720 – volume: 75 start-page: 75 year: 2018 ident: 10.1016/j.istruc.2024.107659_bib53 publication-title: Springe Comput Sci doi: 10.1007/978-3-030-01620-3_5 – volume: 0123456789 year: 2021 ident: 10.1016/j.istruc.2024.107659_bib32 article-title: Damage identification using the PZT impedance signals and residual learning algorithm publication-title: J Civ Struct Heal Monit [Internet] – volume: 11 start-page: 317 issue: 3 year: 2002 ident: 10.1016/j.istruc.2024.107659_bib12 article-title: Non-parametric damage detection and characterization using smart piezoceramic material publication-title: Smart Mater Struct doi: 10.1088/0964-1726/11/3/301 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.istruc.2024.107659_bib50 article-title: Random Forests publication-title: Mach Learn [Internet] doi: 10.1023/A:1010933404324 – volume: 33 start-page: 2241 issue: 17 year: 2022 ident: 10.1016/j.istruc.2024.107659_bib30 article-title: Electromechanical impedance-based concrete structural damage detection using principal component analysis incorporated with neural network publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X221077440 – volume: 32 issue: 2 year: 2021 ident: 10.1016/j.istruc.2024.107659_bib11 article-title: Monitoring corrosion-induced thickness loss of stainless steel plates using the electromechanical impedance technique publication-title: Meas Sci Technol [Internet] – volume: 35 issue: 9 year: 2024 ident: 10.1016/j.istruc.2024.107659_bib43 article-title: Performance study of novel metal corrosion probes based on the adjust method of series and parallel connections publication-title: Meas Sci Technol [Internet] – volume: 18 issue: 9 year: 2018 ident: 10.1016/j.istruc.2024.107659_bib29 article-title: A new structural health monitoring strategy based on PZT sensors and convolutional neural network publication-title: Sens (Switz) – volume: 5 start-page: 975 year: 2004 ident: 10.1016/j.istruc.2024.107659_bib56 – volume: 385 issue: April year: 2023 ident: 10.1016/j.istruc.2024.107659_bib27 article-title: Deep learning of electromechanical impedance for concrete structural damage identification using 1-D convolutional neural networks publication-title: Constr Build Mater – volume: 2 issue: 3 year: 2020 ident: 10.1016/j.istruc.2024.107659_bib36 article-title: Convolutional neural network and impedance-based SHM applied to damage detection publication-title: Eng Res Express doi: 10.1088/2631-8695/abb568 – ident: 10.1016/j.istruc.2024.107659_bib1 doi: 10.1002/9781118443118 – volume: 8 start-page: 248 issue: 9 year: 2023 ident: 10.1016/j.istruc.2024.107659_bib2 article-title: A review on structural health monitoring: past to present publication-title: Innov Infrastruct Solut [Internet] doi: 10.1007/s41062-023-01217-3 – volume: 12 start-page: 2825 issue: 85 year: 2011 ident: 10.1016/j.istruc.2024.107659_bib51 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res [Internet] – volume: 27 start-page: 2621 issue: 6 year: 2023 ident: 10.1016/j.istruc.2024.107659_bib57 article-title: Impact of defects in steel-concrete interface on the corrosion-induced cracking propagation of the reinforced concrete publication-title: KSCE J Civ Eng [Internet] doi: 10.1007/s12205-023-0458-5 – year: 1997 ident: 10.1016/j.istruc.2024.107659_bib47 article-title: Electro-Mechanical (E/M) impedance method for structural health monitoring and non-destructive evaluation publication-title: Int Work Struct Heal Monit – volume: 43 start-page: 1342 year: 2022 ident: 10.1016/j.istruc.2024.107659_bib10 article-title: Long-term viable SF immobilized bacterial cells as sustainable solution for crack healing in concrete publication-title: Struct [Internet] doi: 10.1016/j.istruc.2022.07.056 – volume: 88 start-page: 62 year: 2013 ident: 10.1016/j.istruc.2024.107659_bib25 article-title: Neural network approach for damaged area location prediction of a composite plate using electromechanical impedance technique publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2013.08.019 – volume: 8 start-page: 809 issue: 5 year: 2018 ident: 10.1016/j.istruc.2024.107659_bib22 article-title: An impedance-based structural health monitoring approach for looseness identification in bolted joint structure publication-title: J Civ Struct Heal Monit [Internet] doi: 10.1007/s13349-018-0307-2 – volume: 23 start-page: 4556 issue: 5 year: 2023 ident: 10.1016/j.istruc.2024.107659_bib37 article-title: Electromechanical impedance temperature compensation and bolt loosening monitoring based on modified unet and multitask learning publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3132943 – year: 2016 ident: 10.1016/j.istruc.2024.107659_bib48 – ident: 10.1016/j.istruc.2024.107659_bib9 doi: 10.1117/12.316923 – volume: 33 start-page: 342 issue: 2 year: 2022 ident: 10.1016/j.istruc.2024.107659_bib20 article-title: A new approach to monitor wear tracks propagation on-site with electromechanical impedance technique publication-title: J Intell Mater Syst Struct [Internet] doi: 10.1177/1045389X211014951 – volume: 30 start-page: 174 year: 2021 ident: 10.1016/j.istruc.2024.107659_bib3 article-title: Damage characterization of reinforced concrete beams under different failure modes using acoustic emission publication-title: Struct [Internet] doi: 10.1016/j.istruc.2021.01.007 – volume: 30 issue: 3 year: 2021 ident: 10.1016/j.istruc.2024.107659_bib21 article-title: An optimized data fusion strategy for structural damage assessment using electromechanical impedance publication-title: Smart Mater Struct doi: 10.1088/1361-665X/abdc07 – volume: 183 issue: August 2021 year: 2023 ident: 10.1016/j.istruc.2024.107659_bib26 article-title: A deep learning approach for electromechanical impedance based concrete structural damage quantification using two-dimensional convolutional neural network publication-title: Mech Syst Signal Process [Internet] – volume: 52 start-page: 752 year: 2023 ident: 10.1016/j.istruc.2024.107659_bib6 article-title: Deep autoencoder model for direct monitoring of bridges subjected to a moving vehicle load under varying temperature conditions publication-title: Struct [Internet] doi: 10.1016/j.istruc.2023.03.171 – volume: 28 start-page: 2473 issue: 18 year: 2017 ident: 10.1016/j.istruc.2024.107659_bib39 article-title: Discrete singular convolution and spectral finite element method for predicting electromechanical impedance applied on rectangular plates publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X17689931 – start-page: 151 year: 2020 ident: 10.1016/j.istruc.2024.107659_bib23 article-title: Experimental and Numerical Study of Rmsd - a Damage Index of Electro-Mechanical Impedance-Based Structural Health Monitoring publication-title: IRF2020 7th Int Conf Integr-Reliab-Fail – volume: 56 start-page: 794 year: 2013 ident: 10.1016/j.istruc.2024.107659_bib28 article-title: Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks publication-title: Eng Struct [Internet] doi: 10.1016/j.engstruct.2013.05.025 – volume: 33 issue: 2 year: 2024 ident: 10.1016/j.istruc.2024.107659_bib34 article-title: Health monitoring of an assembly-type structure using raw time-domain EMI signals and a novel hybrid deep learning algorithm publication-title: Smart Mater Struct [Internet] – volume: 29 start-page: 4738 issue: 26 year: 2022 ident: 10.1016/j.istruc.2024.107659_bib13 article-title: Detection of multiple structural damages from drive point and cross electro-mechanical impedance signatures publication-title: Mech Adv Mater Struct [Internet] doi: 10.1080/15376494.2021.1937757 – volume: 22 start-page: 1975 issue: 17 year: 2011 ident: 10.1016/j.istruc.2024.107659_bib24 article-title: Temperature variation effect compensation in impedance-based structural health monitoring using neural networks publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X11421814 – volume: 148 start-page: 297 year: 2017 ident: 10.1016/j.istruc.2024.107659_bib45 article-title: Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement publication-title: Constr Build Mater [Internet] doi: 10.1016/j.conbuildmat.2017.05.079 – volume: 259 issue: March 2021 year: 2022 ident: 10.1016/j.istruc.2024.107659_bib31 article-title: Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring publication-title: Eng Struct [Internet] – volume: 192 year: 2022 ident: 10.1016/j.istruc.2024.107659_bib40 article-title: Corrosion damage identification for reinforced concrete beam using embedded piezoelectric transducer: numerical simulation publication-title: Meas [Internet] – volume: 31 start-page: 1477 issue: 12 year: 2020 ident: 10.1016/j.istruc.2024.107659_bib42 article-title: A novel method to monitor soft soil strength development in artificial ground freezing projects based on electromechanical impedance technique: Theoretical modeling and experimental validation publication-title: J Intell Mater Syst Struct [Internet] doi: 10.1177/1045389X20919973 – volume: 24 start-page: 386 issue: 2 year: 2024 ident: 10.1016/j.istruc.2024.107659_bib35 article-title: A deep learning approach for autonomous compression damage identification in fiber-reinforced concrete using piezoelectric lead zirconate titanate transducers publication-title: Sens [Internet] doi: 10.3390/s24020386 – volume: 5 start-page: 12 issue: 1 year: 1994 ident: 10.1016/j.istruc.2024.107659_bib8 article-title: Coupled electro-mechanical analysis of adaptive material systems — determination of the actuator power consumption and system energy transfer publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X9400500102 – volume: 296 issue: September) year: 2023 ident: 10.1016/j.istruc.2024.107659_bib17 article-title: Deep learning of electromechanical admittance data augmented by generative adversarial networks for flexural performance evaluation of RC beam structure publication-title: Eng Struct [Internet] – volume: 226 year: 2024 ident: 10.1016/j.istruc.2024.107659_bib19 article-title: Application of wavelet transform techniques for corrosion assessment of embedded rebars in RC elements using electromechanical impedance publication-title: Meas [Internet] – volume: 87 year: 2024 ident: 10.1016/j.istruc.2024.107659_bib46 article-title: Characteristics of the non-uniform corrosion of the steel bars extracted from the marine transportation infrastructures publication-title: J Build Eng [Internet] – year: 2016 ident: 10.1016/j.istruc.2024.107659_bib54 publication-title: Tensor: Large-Scale Mach Learn Heterog Distrib Syst – volume: 0123456789 year: 2021 ident: 10.1016/j.istruc.2024.107659_bib18 article-title: Monitoring bond strength of adhesively planted rebars in concrete using electro ‑ mechanical impedance ( EMI publication-title: J Civ Struct Heal Monit [Internet] – volume: 33 start-page: 4344 year: 2021 ident: 10.1016/j.istruc.2024.107659_bib7 article-title: Monitoring two cable-stayed bridges during load tests with fiber optics publication-title: Struct [Internet] doi: 10.1016/j.istruc.2021.07.026 – volume: 51 issue: 4 year: 2023 ident: 10.1016/j.istruc.2024.107659_bib58 article-title: Spatial distribution of corrosion products influenced by the initial defects and corrosion-induced cracking of the concrete publication-title: J Test Eval [Internet] – volume: 152 year: 2021 ident: 10.1016/j.istruc.2024.107659_bib16 article-title: Integrated electromechanical impedance technique with convolutional neural network for concrete structural damage quantification under varied temperatures publication-title: Mech Syst Signal Process [Internet] – volume: 33 start-page: 1056 issue: 8 year: 2022 ident: 10.1016/j.istruc.2024.107659_bib41 article-title: Piezo impedance-based monitoring of loosening of bolts: experimental and numerical study publication-title: J Intell Mater Syst Struct [Internet] doi: 10.1177/1045389X211041166 – volume: 32 issue: 11 year: 2023 ident: 10.1016/j.istruc.2024.107659_bib14 article-title: Damage detection and localization based on different types of actuators using the electromechanical impedance method in 3D-printed material publication-title: Smart Mater Struct doi: 10.1088/1361-665X/acfa7e  | 
    
| SSID | ssj0002140247 | 
    
| Score | 2.3057294 | 
    
| Snippet | Existing electromechanical impedance (EMI) damage identification algorithms often face challenges in terms of generalizability. This paper presents a robust... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 107659 | 
    
| SubjectTerms | Damage identification Electromechanical impedance Machine learning Multitask learning Structural health monitoring  | 
    
| Title | A multitask SHM algorithm to identify damage with random severity and location in IPE beams using EMI technique | 
    
| URI | https://dx.doi.org/10.1016/j.istruc.2024.107659 | 
    
| Volume | 70 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: ACRLP dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: AIKHN dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: AKRWK dateStart: 20150201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBZpsrRD6ZOmL27oKtJYtiyNISQkLQmFNJDNyJKcum3sQLL03_fkR0ihdOgomcPmznzfnfjuRMhDqJAF4q5Hk27MqZ8oRuPET2goYi2YlrZrXYPzZMpHc_9pESwapF_3wjhZZYX9JaYXaF3tdCpvdtZp2pl5mDsgvPrISY6mggPSQv4RoklavfHzaLo7avGwiPCKq8acCXU2dRNdofRKi1GtWCt6Pm6F3M0t_Y2k9ohneEKOq4wReuVHnZKGzc7I0d4cwXOS96AQBm7V5gNmowmoz2WOVf_bCrY5pEUvbvIFRq0QPcAdvQJSlMlXgK-07vo6wCU4XnNxgjSD8csAYqtWG3DK-CVguGA37_WCzIeD1_6IVjcpUI0lw5Ya8aiN0pgr-IlgTFqmA20kM7HiPJY8YU4bY1lgLSJAKLHcDhKpuC-VxIRFsUvSzPLMXhEQmB8YLgOjdeBb3VVcCGuEKjI9BI82obXronU5MCOqlWTvUenqyLk6Kl3dJmHt3-hH4CPE9D8tr_9teUMO3apUpdySJj63d5hbbOP76t_5BmcIzcQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKHYAB8RRvbmC1SmPHiccKgVL6EFKLxBY5tlMCpKnULvx7znlUICEGxjg-JTon33dnfXcm5CZQyAJJ16NpNxGUp4rRJOUpDcJEh0xL27WuwHk0FtEzf3zxX1rkrqmFcbLKGvsrTC_Ruh7p1N7sLLKsM_EwdkB45chJjqb8DdLmPgvw72z3-oNovN5q8TCJ8MqjxpwJdTZNEV2p9MrKVq2YK3ochwLh-pb-RlLfiOdhj-zWESP0qpfaJy07PyA73_oIHpKiB6UwcKWW7zCJRqA-ZgVm_a85rArIylrc9BOMyhE9wG29AlKUKXLAR1p3fB3gJThec-sE2Rz6T_eQWJUvwSnjZ4DLBet-r0fk-eF-ehfR-iQFqjFlWFET3mqjNMYKPA0Zk5ZpXxvJTKKESKRImdPGWOZbiwgQSEy3_VQqwaWSGLAodkw258XcnhAIMT4wQvpGa59b3VUiDK0JVRnpIXicEtq4Ll5UDTPiRkn2Fleujp2r48rVpyRo_Bv_WPgYMf1Py7N_W16TrWg6GsbD_nhwTrbdnUqhckE2ca69xDhjlVzV39EXGALQpQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multitask+SHM+algorithm+to+identify+damage+with+random+severity+and+location+in+IPE+beams+using+EMI+technique&rft.jtitle=Structures+%28Oxford%29&rft.au=Zamanian%2C+Mehrab&rft.au=Sepehry%2C+Naserodin&rft.au=Zahrai%2C+Seyed+Mehdi&rft.date=2024-12-01&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=70&rft.spage=107659&rft_id=info:doi/10.1016%2Fj.istruc.2024.107659&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_istruc_2024_107659 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon |