R5hmCFDV: computational identification of RNA 5-hydroxymethylcytosine based on deep feature fusion and deep voting

Abstract RNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution is very important to reveal its biological function. Previously, high-throughput sequencing was used to identify 5hmC, but it is expensive a...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 5
Main Authors Shi, Hongyan, Zhang, Shengli, Li, Xinjie
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 20.09.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbac341

Cover

Abstract Abstract RNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution is very important to reveal its biological function. Previously, high-throughput sequencing was used to identify 5hmC, but it is expensive and inefficient. Therefore, machine learning is used to identify 5hmC sites. Here, we design a model called R5hmCFDV, which is mainly divided into feature representation, feature fusion and classification. (i) Pseudo dinucleotide composition, dinucleotide binary profile and frequency, natural vector and physicochemical property are used to extract features from four aspects: nucleotide composition, coding, natural language and physical and chemical properties. (ii) To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the attention mechanism is employed to process four single features, stitch them together and feed them to the convolution layer. After that, the output data are processed by BiGRU and BiLSTM, respectively. Finally, the features of these two parts are fused by the multiply function. (iii) We design the deep voting algorithm for classification by imitating the soft voting mechanism in the Python package. The base classifiers contain deep neural network (DNN), convolutional neural network (CNN) and improved gated recurrent unit (GRU). And then using the principle of soft voting, the corresponding weights are assigned to the predicted probabilities of the three classifiers. The predicted probability values are multiplied by the corresponding weights and then summed to obtain the final prediction results. We use 10-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 95.41% and 93.50%, respectively. It demonstrates the stronger competitiveness and generalization performance of our model. In addition, all datasets and source codes can be found at https://github.com/HongyanShi026/R5hmCFDV.
AbstractList RNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution is very important to reveal its biological function. Previously, high-throughput sequencing was used to identify 5hmC, but it is expensive and inefficient. Therefore, machine learning is used to identify 5hmC sites. Here, we design a model called R5hmCFDV, which is mainly divided into feature representation, feature fusion and classification. (i) Pseudo dinucleotide composition, dinucleotide binary profile and frequency, natural vector and physicochemical property are used to extract features from four aspects: nucleotide composition, coding, natural language and physical and chemical properties. (ii) To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the attention mechanism is employed to process four single features, stitch them together and feed them to the convolution layer. After that, the output data are processed by BiGRU and BiLSTM, respectively. Finally, the features of these two parts are fused by the multiply function. (iii) We design the deep voting algorithm for classification by imitating the soft voting mechanism in the Python package. The base classifiers contain deep neural network (DNN), convolutional neural network (CNN) and improved gated recurrent unit (GRU). And then using the principle of soft voting, the corresponding weights are assigned to the predicted probabilities of the three classifiers. The predicted probability values are multiplied by the corresponding weights and then summed to obtain the final prediction results. We use 10-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 95.41% and 93.50%, respectively. It demonstrates the stronger competitiveness and generalization performance of our model. In addition, all datasets and source codes can be found at https://github.com/HongyanShi026/R5hmCFDV.
RNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution is very important to reveal its biological function. Previously, high-throughput sequencing was used to identify 5hmC, but it is expensive and inefficient. Therefore, machine learning is used to identify 5hmC sites. Here, we design a model called R5hmCFDV, which is mainly divided into feature representation, feature fusion and classification. (i) Pseudo dinucleotide composition, dinucleotide binary profile and frequency, natural vector and physicochemical property are used to extract features from four aspects: nucleotide composition, coding, natural language and physical and chemical properties. (ii) To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the attention mechanism is employed to process four single features, stitch them together and feed them to the convolution layer. After that, the output data are processed by BiGRU and BiLSTM, respectively. Finally, the features of these two parts are fused by the multiply function. (iii) We design the deep voting algorithm for classification by imitating the soft voting mechanism in the Python package. The base classifiers contain deep neural network (DNN), convolutional neural network (CNN) and improved gated recurrent unit (GRU). And then using the principle of soft voting, the corresponding weights are assigned to the predicted probabilities of the three classifiers. The predicted probability values are multiplied by the corresponding weights and then summed to obtain the final prediction results. We use 10-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 95.41% and 93.50%, respectively. It demonstrates the stronger competitiveness and generalization performance of our model. In addition, all datasets and source codes can be found at https://github.com/HongyanShi026/R5hmCFDV.RNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution is very important to reveal its biological function. Previously, high-throughput sequencing was used to identify 5hmC, but it is expensive and inefficient. Therefore, machine learning is used to identify 5hmC sites. Here, we design a model called R5hmCFDV, which is mainly divided into feature representation, feature fusion and classification. (i) Pseudo dinucleotide composition, dinucleotide binary profile and frequency, natural vector and physicochemical property are used to extract features from four aspects: nucleotide composition, coding, natural language and physical and chemical properties. (ii) To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the attention mechanism is employed to process four single features, stitch them together and feed them to the convolution layer. After that, the output data are processed by BiGRU and BiLSTM, respectively. Finally, the features of these two parts are fused by the multiply function. (iii) We design the deep voting algorithm for classification by imitating the soft voting mechanism in the Python package. The base classifiers contain deep neural network (DNN), convolutional neural network (CNN) and improved gated recurrent unit (GRU). And then using the principle of soft voting, the corresponding weights are assigned to the predicted probabilities of the three classifiers. The predicted probability values are multiplied by the corresponding weights and then summed to obtain the final prediction results. We use 10-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 95.41% and 93.50%, respectively. It demonstrates the stronger competitiveness and generalization performance of our model. In addition, all datasets and source codes can be found at https://github.com/HongyanShi026/R5hmCFDV.
Abstract RNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution is very important to reveal its biological function. Previously, high-throughput sequencing was used to identify 5hmC, but it is expensive and inefficient. Therefore, machine learning is used to identify 5hmC sites. Here, we design a model called R5hmCFDV, which is mainly divided into feature representation, feature fusion and classification. (i) Pseudo dinucleotide composition, dinucleotide binary profile and frequency, natural vector and physicochemical property are used to extract features from four aspects: nucleotide composition, coding, natural language and physical and chemical properties. (ii) To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the attention mechanism is employed to process four single features, stitch them together and feed them to the convolution layer. After that, the output data are processed by BiGRU and BiLSTM, respectively. Finally, the features of these two parts are fused by the multiply function. (iii) We design the deep voting algorithm for classification by imitating the soft voting mechanism in the Python package. The base classifiers contain deep neural network (DNN), convolutional neural network (CNN) and improved gated recurrent unit (GRU). And then using the principle of soft voting, the corresponding weights are assigned to the predicted probabilities of the three classifiers. The predicted probability values are multiplied by the corresponding weights and then summed to obtain the final prediction results. We use 10-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 95.41% and 93.50%, respectively. It demonstrates the stronger competitiveness and generalization performance of our model. In addition, all datasets and source codes can be found at https://github.com/HongyanShi026/R5hmCFDV.
Author Shi, Hongyan
Li, Xinjie
Zhang, Shengli
Author_xml – sequence: 1
  givenname: Hongyan
  surname: Shi
  fullname: Shi, Hongyan
  email: hyshi_1@stu.xidian.edu.cn
– sequence: 2
  givenname: Shengli
  orcidid: 0000-0001-8786-0940
  surname: Zhang
  fullname: Zhang, Shengli
  email: shengli0201@163.com
– sequence: 3
  givenname: Xinjie
  surname: Li
  fullname: Li, Xinjie
  email: shengli0201@163.com
BookMark eNp90ctKxDAUBuAgI-ioK18gIIgg1STNpXU3jFcYFETdljRNnEjb1CQV-_Z2rCtBVzkcvj-L88_BrHWtBuAQozOM8vS8tOV5WUqVUrwFdjEVIqGI0dlm5iJhlKc7YB7CG0IEiQzvAv_I1s3y-vLlAirXdH2U0bpW1tBWuo3WWPW9gM7Ax_sFZMl6qLz7HBod10OthuiCbTUsZdAVHF2ldQeNlrH3Gpo-bLKyrab9h4u2fd0H20bWQR_8vHvg-frqaXmbrB5u7paLVaIIYzGpaJ6XHBkhEOFElJIKwxivMskJkbnCUmTIcI4ly_I0zSVWRORE5YxQhXiZ7oGT6d_Ou_deh1g0Nihd17LVrg8FEQhxilLCRnr0i7653o9n2CgsUi5YhkeFJ6W8C8FrUyg73St6aesCo2LTQjG2UPy0MGZOf2U6bxvphz_08aRd3_0LvwDyE5ir
CitedBy_id crossref_primary_10_1016_j_future_2025_107801
crossref_primary_10_1038_s41598_024_69419_y
crossref_primary_10_3389_fncel_2022_1058083
crossref_primary_10_1186_s12864_024_10154_z
crossref_primary_10_1093_bib_bbad202
crossref_primary_10_31083_j_fbl2812346
crossref_primary_10_1128_msystems_00183_25
crossref_primary_10_1109_TCBB_2024_3386972
crossref_primary_10_1016_j_compbiomed_2023_107202
crossref_primary_10_1093_bioinformatics_btae142
crossref_primary_10_1016_j_csbj_2023_11_052
crossref_primary_10_1109_TCBB_2024_3418490
crossref_primary_10_3934_mbe_2023428
Cites_doi 10.1016/j.jtbi.2014.04.006
10.1093/bioinformatics/btz734
10.1093/bioinformatics/btz556
10.1261/rna.063503.117
10.1093/bioinformatics/btab551
10.1093/bioinformatics/btz408
10.1093/bioinformatics/bth466
10.1093/nar/gkh954
10.1016/j.cell.2017.05.045
10.1038/s41598-019-47594-7
10.1093/bioinformatics/bty1047
10.1016/j.cmpb.2022.106625
10.1002/cbic.201500013
10.1016/j.jtbi.2014.09.029
10.1016/j.jtbi.2009.11.016
10.1371/journal.pone.0017293
10.1016/j.omtn.2019.08.022
10.3389/fimmu.2018.01695
10.3390/ijms15021746
10.1093/bioinformatics/bty356
10.1007/s10969-011-9120-4
10.1016/j.chemolab.2021.104250
10.1371/journal.pone.0121501
10.1016/j.csbj.2018.10.007
10.1093/bioinformatics/btl561
10.1093/bioinformatics/btz623
10.1039/C9CC00274J
10.1126/science.aac5253
10.1093/nar/gku1019
10.1093/bib/bby124
10.1109/TCBB.2011.117
10.1093/bioinformatics/btz464
10.1093/bioinformatics/bty451
10.1016/j.brainres.2016.04.055
10.1093/bioinformatics/btu602
10.1093/bioinformatics/btab354
10.1002/prot.1035
10.1093/bioinformatics/btaa609
10.1016/j.ab.2014.04.001
10.1016/j.compbiolchem.2021.107583
10.1016/j.compbiomed.2020.103899
10.1073/pnas.83.24.9373
10.1093/bioinformatics/bty748
10.1093/bioinformatics/bty166
10.1038/nmeth.2646
10.1016/j.cmpb.2014.06.007
10.1093/bioinformatics/btl158
10.1021/bi9809425
10.1093/bioinformatics/17.12.1131
10.1093/bioinformatics/btu820
10.1038/s41467-020-18729-6
10.1109/ACCESS.2021.3049146
10.1093/bioinformatics/btaa074
10.3389/fbioe.2020.00227
10.1021/ja505305z
10.1186/gb-2007-8-12-r263
10.1016/j.jtbi.2013.08.037
10.1039/C5CC07354E
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac341
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 10_1093_bib_bbac341
10.1093/bib/bbac341
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c255t-d499b60f7702627ba47f556d8a622a9c1a780f661a589339a1c2792c9524c06b3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Oct 02 07:03:19 EDT 2025
Mon Oct 06 17:07:17 EDT 2025
Wed Oct 01 04:16:07 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
Wed Aug 28 03:18:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep voting
feature fusion
feature representation
RNA 5-hydroxymethylcytosine
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-d499b60f7702627ba47f556d8a622a9c1a780f661a589339a1c2792c9524c06b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8786-0940
PQID 2717367581
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2700640325
proquest_journals_2717367581
crossref_citationtrail_10_1093_bib_bbac341
crossref_primary_10_1093_bib_bbac341
oup_primary_10_1093_bib_bbac341
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Mohammad Beigi (2022092013225886200_ref21) 2011; 12
Mondal (2022092013225886200_ref26) 2014; 356
Chou (2022092013225886200_ref22) 2005; 21
Hajisharifi (2022092013225886200_ref24) 2014; 341
Lv (2022092013225886200_ref13) 2021; 22
Li (2022092013225886200_ref59) 2001; 17
Pian (2022092013225886200_ref4) 2020; 36
Chen (2022092013225886200_ref33) 2015; 31
Zhao (2022092013225886200_ref6) 2019; 9
Lan (2022092013225886200_ref17) 2020; 11
Ali (2022092013225886200_ref10) 2021; 9
Dang (2022092013225886200_ref15) 2018; 34
Wei (2022092013225886200_ref12) 2019; 35
Zhang (2022092013225886200_ref58) 2019; 35
Su (2022092013225886200_ref50) 2020; 21
Chen (2022092013225886200_ref32) 2014; 456
Wei (2022092013225886200_ref60) 2018; 34
Manavalan (2022092013225886200_ref51) 2019; 35
Li (2022092013225886200_ref18) 2006; 22
Hayat (2022092013225886200_ref25) 2014; 116
Liu (2022092013225886200_ref9) 2020; 8
Delatte (2022092013225886200_ref16) 2016; 351
Nanni (2022092013225886200_ref23) 2012; 9
Deng (2022092013225886200_ref37) 2011; 6
Xia (2022092013225886200_ref36) 1998; 37
Khurana (2022092013225886200_ref41) 2018; 34
Huber (2022092013225886200_ref1) 2015; 16
Goñi (2022092013225886200_ref39) 2007; 8
Chen (2022092013225886200_ref5) 2019; 18
Esmaeili (2022092013225886200_ref20) 2010; 263
Wang (2022092013225886200_ref43) 2021; 210
Basith (2022092013225886200_ref52) 2018; 16
Yuan (2022092013225886200_ref7) 2019; 55
Fu (2022092013225886200_ref8) 2014; 136
Freier (2022092013225886200_ref35) 1986; 83
Chou (2022092013225886200_ref19) 2001; 43
Dehzangi (2022092013225886200_ref27) 2015; 364
Qiao (2022092013225886200_ref54) 2022; 215
Miao (2022092013225886200_ref55) 2016; 1642
Roundtree (2022092013225886200_ref2) 2017; 169
Jonkhout (2022092013225886200_ref3) 2017; 23
Pérez (2022092013225886200_ref38) 2004; 32
Huang (2022092013225886200_ref48) 2021; 37
Shi (2022092013225886200_ref46) 2019; 35
Chen (2022092013225886200_ref42) 2020; 123
O’Shea (2022092013225886200_ref57) 2013; 10
Yang (2022092013225886200_ref40) 2021; 37
Qiu (2022092013225886200_ref30) 2014; 15
Chen (2022092013225886200_ref31) 2014; 2014
Oh (2022092013225886200_ref49) 2007; 23
Liu (2022092013225886200_ref29) 2015; 10
Yu (2022092013225886200_ref45) 2020; 36
Zhang (2022092013225886200_ref11) 2021; 95
Kang (2022092013225886200_ref14) 2020; 36
Vangaveti (2022092013225886200_ref44) 2020; 36
Amin (2022092013225886200_ref47) 2020; 36
Zhang (2022092013225886200_ref56) 2016; 52
Liu (2022092013225886200_ref34) 2015; 31
Lin (2022092013225886200_ref28) 2014; 42
Manavalan (2022092013225886200_ref53) 2018; 9
References_xml – volume: 356
  start-page: 30
  year: 2014
  ident: 2022092013225886200_ref26
  article-title: Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2014.04.006
– volume: 36
  start-page: 1074
  issue: 4
  year: 2020
  ident: 2022092013225886200_ref45
  article-title: SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz734
– volume: 36
  start-page: 388
  issue: 2
  year: 2020
  ident: 2022092013225886200_ref4
  article-title: MM-6mAPred: identifying DNA N6-methyladenine sites based on Markov model
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz556
– volume: 23
  start-page: 1754
  issue: 12
  year: 2017
  ident: 2022092013225886200_ref3
  article-title: The RNA modification landscape in human disease
  publication-title: RNA
  doi: 10.1261/rna.063503.117
– volume: 37
  start-page: 4668
  issue: 24
  year: 2021
  ident: 2022092013225886200_ref40
  article-title: PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab551
– volume: 35
  start-page: 4930
  issue: 23
  year: 2019
  ident: 2022092013225886200_ref12
  article-title: Iterative feature representations improve N4-methylcytosine site prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz408
– volume: 21
  start-page: 10
  issue: 1
  year: 2005
  ident: 2022092013225886200_ref22
  article-title: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth466
– volume: 32
  start-page: 6144
  issue: 20
  year: 2004
  ident: 2022092013225886200_ref38
  article-title: The relative flexibility of B-DNA and A-RNA duplexes: database analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh954
– volume: 169
  start-page: 1187
  issue: 7
  year: 2017
  ident: 2022092013225886200_ref2
  article-title: Dynamic RNA modifications in gene expression regulation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.045
– volume: 9
  start-page: 11112
  issue: 1
  year: 2019
  ident: 2022092013225886200_ref6
  article-title: PACES: prediction of N4-acetylcytidine (ac4C) modification sites in mRNA
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-47594-7
– volume: 35
  start-page: 2757
  issue: 16
  year: 2019
  ident: 2022092013225886200_ref51
  article-title: mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1047
– volume: 215
  start-page: 106625
  year: 2022
  ident: 2022092013225886200_ref54
  article-title: iPro-GAN: A novel model based on generative adversarial learning for identifying promoters and their strength
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106625
– volume: 16
  start-page: 752
  issue: 5
  year: 2015
  ident: 2022092013225886200_ref1
  article-title: Formation and abundance of 5-hydroxymethylcytosine in RNA
  publication-title: Chembiochem
  doi: 10.1002/cbic.201500013
– volume: 364
  start-page: 284
  year: 2015
  ident: 2022092013225886200_ref27
  article-title: Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2014.09.029
– volume: 263
  start-page: 203
  issue: 2
  year: 2010
  ident: 2022092013225886200_ref20
  article-title: Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2009.11.016
– volume: 6
  start-page: e17293
  issue: 3
  year: 2011
  ident: 2022092013225886200_ref37
  article-title: A novel method of characterizing genetic sequences: genome space with biological distance and applications
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017293
– volume: 18
  start-page: 269
  year: 2019
  ident: 2022092013225886200_ref5
  article-title: iRNA-m7G: identifying N7-methylguanosine sites by fusing multiple features
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.08.022
– volume: 9
  start-page: 1695
  year: 2018
  ident: 2022092013225886200_ref53
  article-title: iBCE-EL: a new ensemble learning framework for improved linear B-cell epitope prediction
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01695
– volume: 15
  start-page: 1746
  issue: 2
  year: 2014
  ident: 2022092013225886200_ref30
  article-title: iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms15021746
– volume: 34
  start-page: 3539
  issue: 20
  year: 2018
  ident: 2022092013225886200_ref15
  article-title: D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty356
– volume: 12
  start-page: 191
  issue: 4
  year: 2011
  ident: 2022092013225886200_ref21
  article-title: Prediction of metalloproteinase family based on the concept of Chou's pseudo amino acid composition using a machine learning approach
  publication-title: J Struct Funct Genomics
  doi: 10.1007/s10969-011-9120-4
– volume: 210
  start-page: 104250
  year: 2021
  ident: 2022092013225886200_ref43
  article-title: PA-PseU: An incremental passive-aggressive based method for identifying RNA pseudouridine sites via Chou’s 5-steps rule
  publication-title: Chemometr Intell Lab
  doi: 10.1016/j.chemolab.2021.104250
– volume: 10
  start-page: e0121501
  issue: 3
  year: 2015
  ident: 2022092013225886200_ref29
  article-title: Identification of real microRNA precursors with a pseudo structure status composition approach
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0121501
– volume: 16
  start-page: 412
  year: 2018
  ident: 2022092013225886200_ref52
  article-title: iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2018.10.007
– volume: 23
  start-page: 114
  issue: 1
  year: 2007
  ident: 2022092013225886200_ref49
  article-title: Neural network prediction of peptide separation in strong anion exchange chromatography
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl561
– volume: 36
  start-page: 751
  issue: 3
  year: 2020
  ident: 2022092013225886200_ref44
  article-title: Integrating ab initio and template-based algorithms for protein-protein complex structure prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz623
– volume: 55
  start-page: 2328
  issue: 16
  year: 2019
  ident: 2022092013225886200_ref7
  article-title: Bisulfite-free and base-resolution analysis of 5-methylcytidine and 5-hydroxymethylcytidine in RNA with peroxotungstate
  publication-title: Chem Commun (Camb)
  doi: 10.1039/C9CC00274J
– volume: 351
  start-page: 282
  issue: 6270
  year: 2016
  ident: 2022092013225886200_ref16
  article-title: RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine
  publication-title: Science
  doi: 10.1126/science.aac5253
– volume: 42
  start-page: 12961
  issue: 21
  year: 2014
  ident: 2022092013225886200_ref28
  article-title: iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1019
– volume: 22
  issue: 5
  year: 2021
  ident: 2022092013225886200_ref13
  article-title: A sequence-based deep learning approach to predict CTCF-mediated chromatin loop
  publication-title: Brief Bioinform
– volume: 21
  start-page: 408
  issue: 2
  year: 2020
  ident: 2022092013225886200_ref50
  article-title: Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby124
– volume: 9
  start-page: 467
  issue: 2
  year: 2012
  ident: 2022092013225886200_ref23
  article-title: Identifying bacterial virulent proteins by fusing a set of classifiers based on variants of Chou's pseudo amino acid composition and on evolutionary information
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2011.117
– volume: 35
  start-page: 5128
  issue: 24
  year: 2019
  ident: 2022092013225886200_ref46
  article-title: DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz464
– volume: 34
  start-page: 4007
  issue: 23
  year: 2018
  ident: 2022092013225886200_ref60
  article-title: ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty451
– volume: 1642
  start-page: 546
  year: 2016
  ident: 2022092013225886200_ref55
  article-title: 5-Hydroxymethylcytosine is detected in RNA from mouse brain tissues
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2016.04.055
– volume: 31
  start-page: 119
  issue: 1
  year: 2015
  ident: 2022092013225886200_ref33
  article-title: PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu602
– volume: 37
  start-page: 3120
  issue: 19
  year: 2021
  ident: 2022092013225886200_ref48
  article-title: NeuralPolish: a novel nanopore polishing method based on alignment matrix construction and orthogonal Bi-GRU networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab354
– volume: 43
  start-page: 246
  issue: 3
  year: 2001
  ident: 2022092013225886200_ref19
  article-title: Prediction of protein cellular attributes using pseudo-amino acid composition
  publication-title: Proteins
  doi: 10.1002/prot.1035
– volume: 36
  start-page: 4869
  issue: 19
  year: 2020
  ident: 2022092013225886200_ref47
  article-title: iPromoter-BnCNN: a novel branched CNN-based predictor for identifying and classifying sigma promoters
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa609
– volume: 456
  start-page: 53
  year: 2014
  ident: 2022092013225886200_ref32
  article-title: PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2014.04.001
– volume: 95
  start-page: 107583
  year: 2021
  ident: 2022092013225886200_ref11
  article-title: iR5hmcSC: Identifying RNA 5-hydroxymethylcytosine with multiple features based on stacking learning
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2021.107583
– volume: 123
  start-page: 103899
  year: 2020
  ident: 2022092013225886200_ref42
  article-title: Improving protein-protein interactions prediction accuracy using XGBoost feature selection and stacked ensemble classifier
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103899
– volume: 83
  start-page: 9373
  issue: 24
  year: 1986
  ident: 2022092013225886200_ref35
  article-title: Improved free-energy parameters for predictions of RNA duplex stability
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.83.24.9373
– volume: 35
  start-page: 1108
  issue: 7
  year: 2019
  ident: 2022092013225886200_ref58
  article-title: Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty748
– volume: 34
  start-page: 2605
  issue: 15
  year: 2018
  ident: 2022092013225886200_ref41
  article-title: DeepSol: a deep learning framework for sequence-based protein solubility prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty166
– volume: 10
  start-page: 1211
  issue: 12
  year: 2013
  ident: 2022092013225886200_ref57
  article-title: pLogo: a probabilistic approach to visualizing sequence motifs
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2646
– volume: 116
  start-page: 184
  issue: 3
  year: 2014
  ident: 2022092013225886200_ref25
  article-title: Discriminating protein structure classes by incorporating pseudo average chemical shift to Chou's general PseAAC and support vector machine
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2014.06.007
– volume: 22
  start-page: 1658
  issue: 13
  year: 2006
  ident: 2022092013225886200_ref18
  article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
– volume: 37
  start-page: 14719
  issue: 42
  year: 1998
  ident: 2022092013225886200_ref36
  article-title: Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs
  publication-title: Biochemistry
  doi: 10.1021/bi9809425
– volume: 17
  start-page: 1131
  issue: 12
  year: 2001
  ident: 2022092013225886200_ref59
  article-title: Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.12.1131
– volume: 31
  start-page: 1307
  issue: 8
  year: 2015
  ident: 2022092013225886200_ref34
  article-title: repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu820
– volume: 11
  start-page: 4956
  year: 2020
  ident: 2022092013225886200_ref17
  article-title: Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18729-6
– volume: 9
  start-page: 8491
  year: 2021
  ident: 2022092013225886200_ref10
  article-title: Prediction of RNA 5-hydroxyme-thylcytosine modifications using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049146
– volume: 36
  start-page: 2986
  issue: 10
  year: 2020
  ident: 2022092013225886200_ref14
  article-title: PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA-lncRNA interaction prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa074
– volume: 8
  start-page: 227
  year: 2020
  ident: 2022092013225886200_ref9
  article-title: iRNA5hmC: the first predictor to identify RNA 5-hydroxymethylcytosine modifications using machine learning
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00227
– volume: 136
  start-page: 11582
  issue: 33
  year: 2014
  ident: 2022092013225886200_ref8
  article-title: Tet-mediated formation of 5-hydroxymethylcytosine in RNA
  publication-title: J Am Chem Soc
  doi: 10.1021/ja505305z
– volume: 8
  start-page: R263
  issue: 12
  year: 2007
  ident: 2022092013225886200_ref39
  article-title: Determining promoter location based on DNA structure first-principles calculations
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-12-r263
– volume: 2014
  start-page: 1
  year: 2014
  ident: 2022092013225886200_ref31
  article-title: iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition
  publication-title: Biomed Res Int
– volume: 341
  start-page: 34
  year: 2014
  ident: 2022092013225886200_ref24
  article-title: Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2013.08.037
– volume: 52
  start-page: 737
  issue: 4
  year: 2016
  ident: 2022092013225886200_ref56
  article-title: The existence of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA in mammals
  publication-title: Chem Commun
  doi: 10.1039/C5CC07354E
SSID ssj0020781
Score 2.4295166
Snippet Abstract RNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution...
RNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution is very...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial neural networks
Chemical properties
Classification
Classifiers
Competitiveness
Composition
Computer applications
Datasets
Feature extraction
Machine learning
Neural networks
Next-generation sequencing
Nucleotides
Physicochemical properties
RNA modification
Sequences
Voting
Title R5hmCFDV: computational identification of RNA 5-hydroxymethylcytosine based on deep feature fusion and deep voting
URI https://www.proquest.com/docview/2717367581
https://www.proquest.com/docview/2700640325
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1477-4054
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: ABDBF
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Business Source Ultimate (BSU) - EBSCO
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 20241031
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: AKVCP
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 20231031
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 20231031
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: GX1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (PMC)
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: OVEED
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA8iCL6In_gxNYJPQrBLm7bxbUzHEFQQlb2VfOJgtkM3of-9d202UERfkyuFu6Z3v9zd7wg5ty7PdNdz5tMoYYmQkoFf94zrzEdSpV6m2OB8d58On5PbkRiFAtmPX1L4Mr7UY32ptTJx058O7hcHFTw9jJa4Cvlq2iaijCG7e2jD-_HsN8fzrZlt8fdtXMpgk2yEWJD2WuNtkRVXbpO1djpkvUPeH8XrW39w_XJFTTN7Idzb0bENJT7NAq08fbzvUcFea4tFKTgUup6YelZhTTtFP2UpyFnnptS7hsmT-jlek1FV2nb9s8L6513yPLh56g9ZGJHADGCBGbMAWHQa-SwDLMUzrZLMC5HaXKWcK2m6KssjDz5YCQhMYqm6BhkDjRQ8MVGq4z2yWlal2ydUuMhxnucQcsVJHjsFsYfqOrCltBqA8gG5WOivMIE_HMdYTIo2jx0XoOwiKPuAnC-Fpy1txu9ip2CIvyU6CyMV4XR9FBxLBxDpwPbZchvOBSY7VOmqOco0ScqYi8N_X3JE1jl2NWCyKeqQ1dn73B1DrDHTJ82X9gVQONDn
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=R5hmCFDV%3A+computational+identification+of+RNA+5-hydroxymethylcytosine+based+on+deep+feature+fusion+and+deep+voting&rft.jtitle=Briefings+in+bioinformatics&rft.au=Shi%2C+Hongyan&rft.au=Zhang%2C+Shengli&rft.au=Li%2C+Xinjie&rft.date=2022-09-20&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac341&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon