Discrete gradient-zeroing neural network algorithm for solving future Sylvester equation aided with left–right four-step rule as well as robot arm inverse kinematics
The temporal-variant Sylvester equation (TVSE) occupies a significant position in applied mathematics, particularly in the realms of optimal control theory and matrix optimization engineering applications. Within the framework of prediction modeling systems, the future Sylvester equation (FSE) emerg...
Saved in:
| Published in | Mathematics and computers in simulation Vol. 233; pp. 475 - 501 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0378-4754 |
| DOI | 10.1016/j.matcom.2025.02.009 |
Cover
| Abstract | The temporal-variant Sylvester equation (TVSE) occupies a significant position in applied mathematics, particularly in the realms of optimal control theory and matrix optimization engineering applications. Within the framework of prediction modeling systems, the future Sylvester equation (FSE) emerges as the discrete manifestation of TVSE, characterized by unknown future information. Leveraging a novel left and right four-step (LRFS) rule, we propose a novel discrete gradient-zeroing neural network (DGZNN) algorithm with order-5 precision, which is developed from the continuous gradient-zeroing neural network (GZNN) model, for solving the FSE problem. The proposed algorithm is named as LRFS-DGZNN algorithm, which stands out as an inverse-less neurodynamic algorithm. Additionally, the convergence properties of the GZNN model in solving the TVSE problem are elucidated through Lyapunov stability theory and matrix spectral theory. Furthermore, the LRFS-DGZNN algorithm’s error pattern property in solving the FSE problem is established and proven using stability theory of linear multi-step methods and ordinary differential equation numerical approximation theory. Three numerical experiments are conducted to evaluate the performance of the proposed GZNN model for solving the TVSE problem and the LRFS-DGZNN algorithm for solving the FSE problem. Moreover, the study showcases the inverse-kinematics solutions and simulations involving planar robot arm with 2 degrees of freedom (DOFs), the Kinova Jaco2 robot arm with 6 DOFs, and the Franka Emika Panda robot arm with 7 DOFs, illustrating the high efficiency of the LRFS-DGZNN algorithm. |
|---|---|
| AbstractList | The temporal-variant Sylvester equation (TVSE) occupies a significant position in applied mathematics, particularly in the realms of optimal control theory and matrix optimization engineering applications. Within the framework of prediction modeling systems, the future Sylvester equation (FSE) emerges as the discrete manifestation of TVSE, characterized by unknown future information. Leveraging a novel left and right four-step (LRFS) rule, we propose a novel discrete gradient-zeroing neural network (DGZNN) algorithm with order-5 precision, which is developed from the continuous gradient-zeroing neural network (GZNN) model, for solving the FSE problem. The proposed algorithm is named as LRFS-DGZNN algorithm, which stands out as an inverse-less neurodynamic algorithm. Additionally, the convergence properties of the GZNN model in solving the TVSE problem are elucidated through Lyapunov stability theory and matrix spectral theory. Furthermore, the LRFS-DGZNN algorithm’s error pattern property in solving the FSE problem is established and proven using stability theory of linear multi-step methods and ordinary differential equation numerical approximation theory. Three numerical experiments are conducted to evaluate the performance of the proposed GZNN model for solving the TVSE problem and the LRFS-DGZNN algorithm for solving the FSE problem. Moreover, the study showcases the inverse-kinematics solutions and simulations involving planar robot arm with 2 degrees of freedom (DOFs), the Kinova Jaco2 robot arm with 6 DOFs, and the Franka Emika Panda robot arm with 7 DOFs, illustrating the high efficiency of the LRFS-DGZNN algorithm. |
| Author | Yao, Zheng-an Guo, Pengfei Zhang, Yunong |
| Author_xml | – sequence: 1 givenname: Pengfei surname: Guo fullname: Guo, Pengfei email: pfguo@zhku.edu.cn organization: School of Mathematics and Data Science, Zhongkai University of Agriculture and Engineering, Guangzhou, 510240, China – sequence: 2 givenname: Yunong surname: Zhang fullname: Zhang, Yunong email: zhynong@mail.sysu.edu.cn organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 518107, China – sequence: 3 givenname: Zheng-an surname: Yao fullname: Yao, Zheng-an email: mcsyao@mail.sysu.edu.cn organization: School of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China |
| BookMark | eNp9kE1u2zAQRrlwgMZub9AFLyBlJFOWtClQ5B8w0EWTNUGRI4c2JSZDyka66h1yiNyrJykNZ53VN4t5H2benM1GPyJj3wvICyhWF9t8UFH7IS-hrHIoc4B2xs5hWTeZqCvxhc1D2AJAmqtz9n5lgyaMyDekjMUxZn-QvB03fMSJlEsRD552XLmNJxufBt574sG7_XGpn-JEyH-_uj2GiMTxZVLR-pEra9DwQyK4wz7--_tGdvMUEz1RllafOU0OuQr8gM4dk3znI1c0cDvukQLynR0xvWN1-MrOeuUCfvvIBXu8uX64vMvWv27vL3-uM11WVcy0EXVn2m7ZGV2LpsSuNY0SUPSi1QXWXYUNmBU0bV0r0WEF0Cgt9Epg2wmzXC6YOPVq8iEQ9vKZ7KDoVRYgj4LlVp4Ey6NgCaVMghP244Rhum1vkWTQSaZGYwl1lMbbzwv-AyHGkVI |
| Cites_doi | 10.1109/JAS.2024.124425 10.1109/TII.2017.2766455 10.1016/j.jfranklin.2022.09.049 10.1073/pnas.79.8.2554 10.1016/j.cam.2017.09.048 10.1109/TNN.2002.1031938 10.1016/j.matcom.2020.06.014 10.1109/TCYB.2013.2285166 10.1016/j.jfranklin.2022.10.022 10.1016/0024-3795(92)90031-5 10.1016/j.cam.2021.113826 10.1109/TNNLS.2020.3028136 10.1016/j.knosys.2019.02.035 10.1137/S0036142902406326 10.1109/ACCESS.2022.3222372 10.1016/j.neucom.2023.126696 10.1109/TAC.1978.1101681 10.1016/j.sysconle.2004.07.002 10.1016/j.matcom.2020.12.030 10.1016/j.automatica.2015.07.011 10.1016/j.neucom.2019.12.019 10.1016/j.ipl.2016.03.004 10.1016/j.matcom.2024.05.006 10.1016/j.asoc.2022.109703 10.1016/j.engappai.2023.106301 10.1109/TCYB.2020.3009110 10.1016/j.matcom.2015.07.002 10.1109/TII.2021.3111816 10.1016/j.jfranklin.2020.06.029 10.1016/j.cam.2014.05.027 10.1016/j.neucom.2023.01.008 10.1109/TII.2021.3109426 10.1016/j.matcom.2021.03.014 10.1109/TCYB.2017.2760883 10.2478/acss-2024-0004 10.1016/j.matcom.2013.04.019 10.1016/j.cam.2017.06.017 10.1016/j.matcom.2023.01.012 10.1016/j.neucom.2021.01.093 10.1109/ICICIP53388.2021.9642177 10.1088/2631-8695/ad81cc 10.23919/ChiCC.2019.8866594 10.1016/j.jfranklin.2022.05.023 10.1016/j.neucom.2022.10.029 10.1016/j.cam.2018.08.017 10.1007/s11063-012-9241-1 10.1109/TSMC.2019.2930646 10.1016/j.neucom.2023.126883 10.1016/j.neucom.2023.127113 10.3934/naco.2024026 10.1109/TII.2020.2966544 10.1016/j.jfranklin.2023.09.022 10.1016/j.jfranklin.2022.09.028 10.1016/j.neucom.2020.09.024 10.1109/TII.2020.3032158 10.1016/j.camwa.2022.01.027 10.1016/j.cam.2012.09.011 10.1109/TCYB.2021.3104138 |
| ContentType | Journal Article |
| Copyright | 2025 International Association for Mathematics and Computers in Simulation (IMACS) |
| Copyright_xml | – notice: 2025 International Association for Mathematics and Computers in Simulation (IMACS) |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.matcom.2025.02.009 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 501 |
| ExternalDocumentID | 10_1016_j_matcom_2025_02_009 S0378475425000461 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SSH SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c255t-cd47bd9b3bdc7482eb9d8a401f49c1e7b5e80d608977a4be5008ac4c64e9b4d33 |
| IEDL.DBID | .~1 |
| ISSN | 0378-4754 |
| IngestDate | Wed Oct 01 06:33:56 EDT 2025 Sat Apr 05 15:41:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Temporal-variant Sylvester equation Future Sylvester equation Discrete gradient-zeroing neural network Left and right four-step rule Robot arm inverse kinematics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c255t-cd47bd9b3bdc7482eb9d8a401f49c1e7b5e80d608977a4be5008ac4c64e9b4d33 |
| PageCount | 27 |
| ParticipantIDs | crossref_primary_10_1016_j_matcom_2025_02_009 elsevier_sciencedirect_doi_10_1016_j_matcom_2025_02_009 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2025 2025-07-00 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematics and computers in simulation |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Gerontitis, Tzekis (b39) 2024 Yi, Zhang, Guo (b18) 2013; 92 Dai, Tan, Xiao, Jia, Luo (b31) 2023; 557 Mandal, Chekroun, Samanta, Chattopadhyay (b22) 2021; 187 Zhao, Jin, Gong (b23) 2021; 185 Yang, Zhang, Tan, Hu (b44) 2023; 53 Chen (b33) 2016; 116 Guo, Tan, Zhang (b47) 2023; 515 Jian, Xiao, Li, Zuo, Zhang (b35) 2020; 357 Zhang, Jiang, Wang (b1) 2002; 13 Li, Yang, Yu (b5) 2021; 422 Zhang, He, Hu, Guo, Li, Shi (b42) 2019; 347 Yang, Zhang, Tan, Hu (b46) 2022; 18 Tan, Yu (b55) 2021; 438 Li, Chen, Liu (b3) 2013; 37 Zhang, Zhai, Chen, Jin, Hu (b19) 2016; 120 Zhang, Zheng, Weng, Mao, Lu, Xiao (b34) 2018; 48 Tang, Zhang (b48) 2023; 561 Xiao, Li, Tao, Li (b26) 2023; 526 Hu, Li, Zheng, Lu, Yu (b15) 2020; 383 Hopfield (b16) 1982; 79 Guo, Zhang, Yao (b59) 2023; 360 Stanimirović, Srivastava, Gupta (b20) 2018; 331 Shafiei, Hajarian (b7) 2022; 359 Li, Mao, Uhlig, Zhang (b21) 2018; 327 Süli, Mayers (b62) 2003 Jin, Chen, Qiu, Zhu, Liu (b25) 2023; 207 Lei, Luo, Chen, Ding, Liao, Xia, Dai (b29) 2022; 10 Qiu, Guo, Li, Zhang (b43) 2021; 17 Xiao, Zhang, Dai, Li, Li (b36) 2021; 51 Chen, Zhang, Li (b63) 2018; 14 He, Xiao, Sun, Wang (b24) 2022; 130 Zhang, Jin, Guo, Yin, Chou (b41) 2015; 273 Wang, Chen, Shu, Zhang, Li (b9) 2024; 570 Qian, Pang (b14) 2015; 60 Chu, Metcalf (b60) 1967; 18 Gao, Tang, Ke, Stanimirović (b27) 2024; 225 Xiao, Yi, Zuo, He (b28) 2020; 178 Hundsdorfer, Ruuth, Spiteri (b61) 2003; 41 Wagaa, Kallel, Mellouli (b56) 2023; 123 Bouzid, Narayan, Gritli (b57) 2024; 6 Liu, Zhang, Ferreira, Zhang (b13) 2022; 109 Gerontitis, Behera, Tzekis, Stanimirović (b37) 2022; 403 Shi, Jin, Li, Li, Qiang, Gerontitis (b52) 2022; 33 Xiao, Tao, Li (b4) 2022; 18 Castelan, da Silva (b2) 2005; 54 Kleinman, Rao (b10) 1978; 23 Qiu, Guo, Li, Zhang, Zhang (b45) 2022; 52 Hu, Reichel (b11) 1992; 172 Li, Li (b32) 2014; 44 Wang, Wang, Huang, Du (b8) 2019; 174 Hu, Zheng (b30) 2022 Bouzid, Gritli, Narayan (b54) 2024; 29 Lv, Chen, Zhang, Zhang (b17) 2022; 359 Chen, Chen (b12) 2022; 359 Y. Shi, G. Liu, J. Wang, J. Zhang, J. Li, D.K. Gerontitis, Advanced discrete generalized-neurodynamic model applied to solve discrete time-variant augmented Sylvester equation with perturbation suppression, in: International Conference on Intelligent Control and Information Processing, 2021, pp. 422–427. Sowmya, Shankar, Thangavel (b38) 2023; 360 Shi, Ding, Li, Li, Sun (b53) 2022 Zhang, Chou, Chen, Zhang, Xiao (b40) 2013; 239 Qi, Jin, Li, Li, Liu (b50) 2020; 16 Li, Zhu, Zheng, Liu, Li, Guo, Kong, Zhao (b6) 2022 Lian, Xiao, Zhang, Jin, Yu, Sun (b58) 2024; 11 Y. Zhang, X. Liu, Y. Shi, M. Mao, N. Tan, Discrete-time zeroing dynamics model for solving generalized Sylvester future matrix system, in: Chinese Control Conference, 2019, pp. 29–34. Yang (10.1016/j.matcom.2025.02.009_b44) 2023; 53 Lei (10.1016/j.matcom.2025.02.009_b29) 2022; 10 Shi (10.1016/j.matcom.2025.02.009_b53) 2022 Li (10.1016/j.matcom.2025.02.009_b6) 2022 Xiao (10.1016/j.matcom.2025.02.009_b28) 2020; 178 10.1016/j.matcom.2025.02.009_b51 Liu (10.1016/j.matcom.2025.02.009_b13) 2022; 109 Lian (10.1016/j.matcom.2025.02.009_b58) 2024; 11 Tang (10.1016/j.matcom.2025.02.009_b48) 2023; 561 Gao (10.1016/j.matcom.2025.02.009_b27) 2024; 225 Shafiei (10.1016/j.matcom.2025.02.009_b7) 2022; 359 Qiu (10.1016/j.matcom.2025.02.009_b45) 2022; 52 Jian (10.1016/j.matcom.2025.02.009_b35) 2020; 357 Xiao (10.1016/j.matcom.2025.02.009_b26) 2023; 526 Hu (10.1016/j.matcom.2025.02.009_b11) 1992; 172 Lv (10.1016/j.matcom.2025.02.009_b17) 2022; 359 10.1016/j.matcom.2025.02.009_b49 Gerontitis (10.1016/j.matcom.2025.02.009_b39) 2024 Guo (10.1016/j.matcom.2025.02.009_b59) 2023; 360 Wagaa (10.1016/j.matcom.2025.02.009_b56) 2023; 123 Chen (10.1016/j.matcom.2025.02.009_b12) 2022; 359 Zhang (10.1016/j.matcom.2025.02.009_b42) 2019; 347 Li (10.1016/j.matcom.2025.02.009_b21) 2018; 327 Tan (10.1016/j.matcom.2025.02.009_b55) 2021; 438 Castelan (10.1016/j.matcom.2025.02.009_b2) 2005; 54 Mandal (10.1016/j.matcom.2025.02.009_b22) 2021; 187 Hu (10.1016/j.matcom.2025.02.009_b15) 2020; 383 Li (10.1016/j.matcom.2025.02.009_b3) 2013; 37 Zhang (10.1016/j.matcom.2025.02.009_b40) 2013; 239 Qiu (10.1016/j.matcom.2025.02.009_b43) 2021; 17 Wang (10.1016/j.matcom.2025.02.009_b9) 2024; 570 Xiao (10.1016/j.matcom.2025.02.009_b36) 2021; 51 Qi (10.1016/j.matcom.2025.02.009_b50) 2020; 16 Qian (10.1016/j.matcom.2025.02.009_b14) 2015; 60 Wang (10.1016/j.matcom.2025.02.009_b8) 2019; 174 Sowmya (10.1016/j.matcom.2025.02.009_b38) 2023; 360 Bouzid (10.1016/j.matcom.2025.02.009_b57) 2024; 6 Jin (10.1016/j.matcom.2025.02.009_b25) 2023; 207 Süli (10.1016/j.matcom.2025.02.009_b62) 2003 Zhang (10.1016/j.matcom.2025.02.009_b19) 2016; 120 Yang (10.1016/j.matcom.2025.02.009_b46) 2022; 18 Kleinman (10.1016/j.matcom.2025.02.009_b10) 1978; 23 Zhang (10.1016/j.matcom.2025.02.009_b1) 2002; 13 He (10.1016/j.matcom.2025.02.009_b24) 2022; 130 Zhang (10.1016/j.matcom.2025.02.009_b41) 2015; 273 Guo (10.1016/j.matcom.2025.02.009_b47) 2023; 515 Hopfield (10.1016/j.matcom.2025.02.009_b16) 1982; 79 Zhang (10.1016/j.matcom.2025.02.009_b34) 2018; 48 Shi (10.1016/j.matcom.2025.02.009_b52) 2022; 33 Hundsdorfer (10.1016/j.matcom.2025.02.009_b61) 2003; 41 Stanimirović (10.1016/j.matcom.2025.02.009_b20) 2018; 331 Li (10.1016/j.matcom.2025.02.009_b32) 2014; 44 Dai (10.1016/j.matcom.2025.02.009_b31) 2023; 557 Gerontitis (10.1016/j.matcom.2025.02.009_b37) 2022; 403 Bouzid (10.1016/j.matcom.2025.02.009_b54) 2024; 29 Li (10.1016/j.matcom.2025.02.009_b5) 2021; 422 Chu (10.1016/j.matcom.2025.02.009_b60) 1967; 18 Zhao (10.1016/j.matcom.2025.02.009_b23) 2021; 185 Hu (10.1016/j.matcom.2025.02.009_b30) 2022 Xiao (10.1016/j.matcom.2025.02.009_b4) 2022; 18 Yi (10.1016/j.matcom.2025.02.009_b18) 2013; 92 Chen (10.1016/j.matcom.2025.02.009_b63) 2018; 14 Chen (10.1016/j.matcom.2025.02.009_b33) 2016; 116 |
| References_xml | – volume: 557 year: 2023 ident: b31 article-title: Design, analysis, and application of fixed-time convergence fuzzy ZNN model realized by dynamic fuzzy logic system for time-varying Sylvester equation publication-title: Neurocomputing – volume: 92 start-page: 40 year: 2013 end-page: 52 ident: b18 article-title: A new type of recurrent neural networks for real-time solution of Lyapunov equation with time-varying coefficient matrices publication-title: Math. Comput. Simulation – volume: 6 year: 2024 ident: b57 article-title: Exploring artificial neural networks for the forward kinematics of a SCARA robotic manipulator using varied datasets and training optimizers publication-title: Eng. Res. Express – volume: 225 start-page: 1 year: 2024 end-page: 12 ident: b27 article-title: New activation functions and Zhangians in zeroing neural network and applications to time-varying matrix pseudoinversion publication-title: Math. Comput. Simulation – volume: 561 year: 2023 ident: b48 article-title: Continuous and discrete gradient-Zhang neuronet (GZN) with analyses for time-variant overdetermined linear equation system solving as well as mobile localization applications publication-title: Neurocomputing – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: b16 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. – volume: 53 start-page: 1133 year: 2023 end-page: 1143 ident: b44 article-title: Explicit linear left-and-right 5-step formulas with zeroing neural network for time-varying applications publication-title: IEEE Trans. Cybern. – volume: 11 start-page: 1605 year: 2024 end-page: 1620 ident: b58 article-title: Neural dynamics for cooperative motion control of omnidirectional mobile manipulators in the presence of noises: A distributed approach publication-title: IEEE/CAA J. Autom. Sin. – volume: 357 start-page: 9909 year: 2020 end-page: 9929 ident: b35 article-title: Adaptive coefficient designs for nonlinear activation function and its application to zeroing neural network for solving time-varying Sylvester equation publication-title: J. Franklin Inst. – volume: 422 start-page: 62 year: 2021 end-page: 84 ident: b5 article-title: Joint image fusion and super-resolution for enhanced visualization via semi-coupled discriminative dictionary learning and advantage embedding publication-title: Neurocomputing – volume: 109 start-page: 30 year: 2022 end-page: 43 ident: b13 article-title: On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations publication-title: Comput. Math. Appl. – year: 2024 ident: b39 article-title: Solving the generalized Sylvester equation with a novel fast extended neurodynamics publication-title: Numer. Algebra Control Optim. – volume: 18 start-page: 3651 year: 2022 end-page: 3660 ident: b4 article-title: An arctan-type varying-parameter ZNN for solving time-varying complex Sylvester equations in finite time publication-title: IEEE Trans. Ind. Inform. – volume: 360 start-page: 11995 year: 2023 end-page: 12029 ident: b59 article-title: Discrete gradient-zeroing neural network algorithms for handling future quadratic program as well as robot arm via ten-instant formula publication-title: J. Franklin Inst. – year: 2003 ident: b62 article-title: An Introduction To Numerical Analysis – volume: 130 year: 2022 ident: b24 article-title: A variable-parameter ZNN with predefined-time convergence for dynamic complex-valued Lyapunov equation and its application to AOA positioning publication-title: Appl. Soft Comput. – volume: 23 start-page: 85 year: 1978 end-page: 87 ident: b10 article-title: Extensions to the Bartels-Stewart algorithm for linear matrix equations publication-title: IEEE Trans. Autom. Control – volume: 123 year: 2023 ident: b56 article-title: Analytical and deep learning approaches for solving the inverse kinematic problem of a high degrees of freedom robotic arm publication-title: Eng. Appl. Artif. Intell. – volume: 48 start-page: 3135 year: 2018 end-page: 3148 ident: b34 article-title: A new varying-parameter recurrent neural-network for online solution of time-varying Sylvester equation publication-title: IEEE Trans. Cybern. – volume: 41 start-page: 605 year: 2003 end-page: 623 ident: b61 article-title: Monotonicity-preserving linear multistep methods publication-title: SIAM J. Numer. Anal. – volume: 438 start-page: 44 year: 2021 end-page: 54 ident: b55 article-title: Robust model-free control for redundant robotic manipulators based on zeroing neural networks activated by nonlinear functions publication-title: Neurocomputing – volume: 187 start-page: 468 year: 2021 end-page: 488 ident: b22 article-title: A mathematical study of a crop-pest natural enemy model with Z-type control publication-title: Math. Comput. Simulation – volume: 331 start-page: 133 year: 2018 end-page: 155 ident: b20 article-title: From Zhang neural network to scaled hyperpower iterations publication-title: J. Comput. Appl. Math. – reference: Y. Zhang, X. Liu, Y. Shi, M. Mao, N. Tan, Discrete-time zeroing dynamics model for solving generalized Sylvester future matrix system, in: Chinese Control Conference, 2019, pp. 29–34. – volume: 60 start-page: 245 year: 2015 end-page: 250 ident: b14 article-title: An implicit sequential algorithm for solving coupled Lyapunov equations of continuous-time Markovian jump systems publication-title: Automatica – volume: 359 start-page: 8991 year: 2022 end-page: 9005 ident: b7 article-title: Developing Kaczmarz method for solving Sylvester matrix equations publication-title: J. Franklin Inst. – volume: 239 start-page: 406 year: 2013 end-page: 414 ident: b40 article-title: Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas publication-title: J. Comput. Appl. Math. – volume: 29 start-page: 24 year: 2024 end-page: 34 ident: b54 article-title: ANN approach for SCARA robot inverse kinematics solutions with diverse datasets and optimisers publication-title: Appl. Comput. Syst. – volume: 51 start-page: 3629 year: 2021 end-page: 3640 ident: b36 article-title: New noise-tolerant ZNN models with predefined-time convergence for time-variant Sylvester equation solving publication-title: IEEE Trans. Syst. Man, Cybern.: Syst. – volume: 13 start-page: 1053 year: 2002 end-page: 1063 ident: b1 article-title: A recurrent neural network for solving Sylvester equation with time-varying coefficients publication-title: IEEE Trans. Neural Netw. – volume: 10 start-page: 121520 year: 2022 end-page: 121530 ident: b29 article-title: Nonlinearly activated IEZNN model for solving time-varying Sylvester equation publication-title: IEEE Access – start-page: 1 year: 2022 end-page: 12 ident: b6 article-title: Sylvester equation induced collaborative representation learning for recommendation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 33 start-page: 587 year: 2022 end-page: 599 ident: b52 article-title: Novel discrete-time recurrent neural networks handling discrete-form time-variant multi-augmented Sylvester matrix problems and manipulator application publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 120 start-page: 104 year: 2016 end-page: 119 ident: b19 article-title: Challenging simulation practice (failure and success) on implicit tracking control of double-integrator system via Zhang-gradient method publication-title: Math. Comput. Simulation – volume: 185 start-page: 289 year: 2021 end-page: 307 ident: b23 article-title: Robust zeroing neural network for fixed-time kinematic control of wheeled mobile robot in noise-polluted environment publication-title: Math. Comput. Simulation – start-page: 1 year: 2022 end-page: 10 ident: b30 article-title: An efficient Takagi–Sugeno fuzzy zeroing neural network for solving time-varying Sylvester equation publication-title: IEEE Trans. Fuzzy Syst. – volume: 17 start-page: 5164 year: 2021 end-page: 5174 ident: b43 article-title: New discretized zeroing neural network models for solving future system of bounded inequalities and nonlinear equations aided with general explicit linear four-step rule publication-title: IEEE Trans. Ind. Inform. – volume: 44 start-page: 1397 year: 2014 end-page: 1407 ident: b32 article-title: Nonlinearly activated neural network for solving time-varying complex Sylvester equation publication-title: IEEE Trans. Cybern. – volume: 570 year: 2024 ident: b9 article-title: Supervised adaptive similarity consistent latent representation hashing publication-title: Neurocomputing – volume: 526 start-page: 158 year: 2023 end-page: 168 ident: b26 article-title: A predefined-time and anti-noise varying-parameter ZNN model for solving time-varying complex Stein equations publication-title: Neurocomputing – volume: 273 start-page: 29 year: 2015 end-page: 40 ident: b41 article-title: Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization publication-title: J. Comput. Appl. Math. – volume: 18 start-page: 3193 year: 2022 end-page: 3202 ident: b46 article-title: Concise discrete ZNN controllers for end-effector tracking and obstacle avoidance of redundant manipulators publication-title: IEEE Trans. Ind. Inform. – volume: 54 start-page: 109 year: 2005 end-page: 117 ident: b2 article-title: On the solution of a Sylvester equation appearing in descriptor systems control theory publication-title: Systems Control Lett. – start-page: 1 year: 2022 end-page: 22 ident: b53 article-title: Discrete generalized-Sylvester matrix equation solved by RNN with a novel direct discretization numerical method publication-title: Numer. Algorithms – volume: 403 year: 2022 ident: b37 article-title: A family of varying-parameter finite-time zeroing neural networks for solving time-varying Sylvester equation and its application publication-title: J. Comput. Appl. Math. – volume: 116 start-page: 455 year: 2016 end-page: 459 ident: b33 article-title: Improved neural dynamics for online Sylvester equations solving publication-title: Inform. Process. Lett. – volume: 207 start-page: 482 year: 2023 end-page: 498 ident: b25 article-title: A noise tolerant parameter-variable zeroing neural network and its applications publication-title: Math. Comput. Simulation – volume: 359 start-page: 10849 year: 2022 end-page: 10866 ident: b17 article-title: Gradient-based neural networks for solving periodic Sylvester matrix equations publication-title: J. Franklin Inst. – volume: 327 start-page: 155 year: 2018 end-page: 166 ident: b21 article-title: Z-type neural-dynamics for time-varying nonlinear optimization under a linear equality constraint with robot application publication-title: J. Comput. Appl. Math. – volume: 360 start-page: 1344 year: 2023 end-page: 1377 ident: b38 article-title: A novel finite-time complex-valued zeoring neural network for solving time-varying complex-valued Sylvester equation publication-title: J. Franklin Inst. – volume: 347 start-page: 314 year: 2019 end-page: 329 ident: b42 article-title: General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization publication-title: J. Comput. Appl. Math. – volume: 52 start-page: 3539 year: 2022 end-page: 3552 ident: b45 article-title: Discrete-time advanced zeroing neurodynamic algorithm applied to future equality-constrained nonlinear optimization with various noises publication-title: IEEE Trans. Cybern. – volume: 18 start-page: 439 year: 1967 end-page: 440 ident: b60 article-title: On Grönwall’s inequality publication-title: Proc. Amer. Math. Soc. – volume: 174 start-page: 87 year: 2019 end-page: 102 ident: b8 article-title: Structure regularized sparse coding for data representation publication-title: Knowl.-Based Syst. – volume: 359 start-page: 9925 year: 2022 end-page: 9951 ident: b12 article-title: Conjugate gradient-based iterative algorithm for solving generalized periodic coupled Sylvester matrix equations publication-title: J. Franklin Inst. – volume: 383 start-page: 380 year: 2020 end-page: 395 ident: b15 article-title: Robust sequential subspace clustering via publication-title: Neurocomputing – reference: Y. Shi, G. Liu, J. Wang, J. Zhang, J. Li, D.K. Gerontitis, Advanced discrete generalized-neurodynamic model applied to solve discrete time-variant augmented Sylvester equation with perturbation suppression, in: International Conference on Intelligent Control and Information Processing, 2021, pp. 422–427. – volume: 14 start-page: 3044 year: 2018 end-page: 3053 ident: b63 article-title: Tracking control of robot manipulators with unknown models: A Jacobian-matrix-adaption method publication-title: IEEE Trans. Ind. Inform. – volume: 178 start-page: 246 year: 2020 end-page: 258 ident: b28 article-title: Improved finite-time zeroing neural networks for time-varying complex Sylvester equation solving publication-title: Math. Comput. Simulation – volume: 16 start-page: 6231 year: 2020 end-page: 6241 ident: b50 article-title: Discrete computational neural dynamics models for solving time-dependent Sylvester equation with applications to robotics and MIMO systems publication-title: IEEE Trans. Ind. Inform. – volume: 172 start-page: 283 year: 1992 end-page: 313 ident: b11 article-title: Krylov-subspace methods for the Sylvester equation publication-title: Linear Algebra Appl. – volume: 515 start-page: 145 year: 2023 end-page: 156 ident: b47 article-title: General ELLRFS-DAZN algorithm for solving future linear equation system under various noises publication-title: Neurocomputing – volume: 37 start-page: 189 year: 2013 end-page: 205 ident: b3 article-title: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function publication-title: Neural Process. Lett. – volume: 11 start-page: 1605 issue: 7 year: 2024 ident: 10.1016/j.matcom.2025.02.009_b58 article-title: Neural dynamics for cooperative motion control of omnidirectional mobile manipulators in the presence of noises: A distributed approach publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2024.124425 – volume: 14 start-page: 3044 issue: 7 year: 2018 ident: 10.1016/j.matcom.2025.02.009_b63 article-title: Tracking control of robot manipulators with unknown models: A Jacobian-matrix-adaption method publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2766455 – volume: 359 start-page: 9925 issue: 17 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b12 article-title: Conjugate gradient-based iterative algorithm for solving generalized periodic coupled Sylvester matrix equations publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2022.09.049 – volume: 79 start-page: 2554 issue: 8 year: 1982 ident: 10.1016/j.matcom.2025.02.009_b16 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.79.8.2554 – volume: 331 start-page: 133 year: 2018 ident: 10.1016/j.matcom.2025.02.009_b20 article-title: From Zhang neural network to scaled hyperpower iterations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.09.048 – volume: 13 start-page: 1053 issue: 5 year: 2002 ident: 10.1016/j.matcom.2025.02.009_b1 article-title: A recurrent neural network for solving Sylvester equation with time-varying coefficients publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2002.1031938 – start-page: 1 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b53 article-title: Discrete generalized-Sylvester matrix equation solved by RNN with a novel direct discretization numerical method publication-title: Numer. Algorithms – volume: 178 start-page: 246 year: 2020 ident: 10.1016/j.matcom.2025.02.009_b28 article-title: Improved finite-time zeroing neural networks for time-varying complex Sylvester equation solving publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2020.06.014 – volume: 44 start-page: 1397 issue: 8 year: 2014 ident: 10.1016/j.matcom.2025.02.009_b32 article-title: Nonlinearly activated neural network for solving time-varying complex Sylvester equation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2285166 – year: 2003 ident: 10.1016/j.matcom.2025.02.009_b62 – volume: 360 start-page: 1344 issue: 2 year: 2023 ident: 10.1016/j.matcom.2025.02.009_b38 article-title: A novel finite-time complex-valued zeoring neural network for solving time-varying complex-valued Sylvester equation publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2022.10.022 – volume: 172 start-page: 283 year: 1992 ident: 10.1016/j.matcom.2025.02.009_b11 article-title: Krylov-subspace methods for the Sylvester equation publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(92)90031-5 – volume: 403 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b37 article-title: A family of varying-parameter finite-time zeroing neural networks for solving time-varying Sylvester equation and its application publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2021.113826 – volume: 33 start-page: 587 issue: 2 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b52 article-title: Novel discrete-time recurrent neural networks handling discrete-form time-variant multi-augmented Sylvester matrix problems and manipulator application publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3028136 – volume: 174 start-page: 87 year: 2019 ident: 10.1016/j.matcom.2025.02.009_b8 article-title: Structure regularized sparse coding for data representation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.02.035 – volume: 41 start-page: 605 issue: 2 year: 2003 ident: 10.1016/j.matcom.2025.02.009_b61 article-title: Monotonicity-preserving linear multistep methods publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142902406326 – volume: 10 start-page: 121520 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b29 article-title: Nonlinearly activated IEZNN model for solving time-varying Sylvester equation publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3222372 – volume: 557 year: 2023 ident: 10.1016/j.matcom.2025.02.009_b31 article-title: Design, analysis, and application of fixed-time convergence fuzzy ZNN model realized by dynamic fuzzy logic system for time-varying Sylvester equation publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126696 – volume: 23 start-page: 85 issue: 1 year: 1978 ident: 10.1016/j.matcom.2025.02.009_b10 article-title: Extensions to the Bartels-Stewart algorithm for linear matrix equations publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1978.1101681 – volume: 54 start-page: 109 issue: 2 year: 2005 ident: 10.1016/j.matcom.2025.02.009_b2 article-title: On the solution of a Sylvester equation appearing in descriptor systems control theory publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2004.07.002 – volume: 185 start-page: 289 year: 2021 ident: 10.1016/j.matcom.2025.02.009_b23 article-title: Robust zeroing neural network for fixed-time kinematic control of wheeled mobile robot in noise-polluted environment publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2020.12.030 – volume: 60 start-page: 245 year: 2015 ident: 10.1016/j.matcom.2025.02.009_b14 article-title: An implicit sequential algorithm for solving coupled Lyapunov equations of continuous-time Markovian jump systems publication-title: Automatica doi: 10.1016/j.automatica.2015.07.011 – volume: 383 start-page: 380 year: 2020 ident: 10.1016/j.matcom.2025.02.009_b15 article-title: Robust sequential subspace clustering via l1-norm temporal graph publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.019 – volume: 116 start-page: 455 issue: 7 year: 2016 ident: 10.1016/j.matcom.2025.02.009_b33 article-title: Improved neural dynamics for online Sylvester equations solving publication-title: Inform. Process. Lett. doi: 10.1016/j.ipl.2016.03.004 – volume: 225 start-page: 1 year: 2024 ident: 10.1016/j.matcom.2025.02.009_b27 article-title: New activation functions and Zhangians in zeroing neural network and applications to time-varying matrix pseudoinversion publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2024.05.006 – volume: 130 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b24 article-title: A variable-parameter ZNN with predefined-time convergence for dynamic complex-valued Lyapunov equation and its application to AOA positioning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109703 – volume: 123 year: 2023 ident: 10.1016/j.matcom.2025.02.009_b56 article-title: Analytical and deep learning approaches for solving the inverse kinematic problem of a high degrees of freedom robotic arm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106301 – volume: 52 start-page: 3539 issue: 5 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b45 article-title: Discrete-time advanced zeroing neurodynamic algorithm applied to future equality-constrained nonlinear optimization with various noises publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3009110 – volume: 120 start-page: 104 year: 2016 ident: 10.1016/j.matcom.2025.02.009_b19 article-title: Challenging simulation practice (failure and success) on implicit tracking control of double-integrator system via Zhang-gradient method publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2015.07.002 – volume: 18 start-page: 3651 issue: 6 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b4 article-title: An arctan-type varying-parameter ZNN for solving time-varying complex Sylvester equations in finite time publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3111816 – volume: 357 start-page: 9909 issue: 14 year: 2020 ident: 10.1016/j.matcom.2025.02.009_b35 article-title: Adaptive coefficient designs for nonlinear activation function and its application to zeroing neural network for solving time-varying Sylvester equation publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.06.029 – volume: 273 start-page: 29 year: 2015 ident: 10.1016/j.matcom.2025.02.009_b41 article-title: Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.05.027 – volume: 526 start-page: 158 year: 2023 ident: 10.1016/j.matcom.2025.02.009_b26 article-title: A predefined-time and anti-noise varying-parameter ZNN model for solving time-varying complex Stein equations publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.01.008 – volume: 18 start-page: 3193 issue: 5 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b46 article-title: Concise discrete ZNN controllers for end-effector tracking and obstacle avoidance of redundant manipulators publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3109426 – volume: 187 start-page: 468 year: 2021 ident: 10.1016/j.matcom.2025.02.009_b22 article-title: A mathematical study of a crop-pest natural enemy model with Z-type control publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2021.03.014 – volume: 48 start-page: 3135 issue: 11 year: 2018 ident: 10.1016/j.matcom.2025.02.009_b34 article-title: A new varying-parameter recurrent neural-network for online solution of time-varying Sylvester equation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2760883 – volume: 29 start-page: 24 issue: 1 year: 2024 ident: 10.1016/j.matcom.2025.02.009_b54 article-title: ANN approach for SCARA robot inverse kinematics solutions with diverse datasets and optimisers publication-title: Appl. Comput. Syst. doi: 10.2478/acss-2024-0004 – volume: 92 start-page: 40 year: 2013 ident: 10.1016/j.matcom.2025.02.009_b18 article-title: A new type of recurrent neural networks for real-time solution of Lyapunov equation with time-varying coefficient matrices publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2013.04.019 – volume: 327 start-page: 155 year: 2018 ident: 10.1016/j.matcom.2025.02.009_b21 article-title: Z-type neural-dynamics for time-varying nonlinear optimization under a linear equality constraint with robot application publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.06.017 – volume: 207 start-page: 482 year: 2023 ident: 10.1016/j.matcom.2025.02.009_b25 article-title: A noise tolerant parameter-variable zeroing neural network and its applications publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2023.01.012 – volume: 438 start-page: 44 year: 2021 ident: 10.1016/j.matcom.2025.02.009_b55 article-title: Robust model-free control for redundant robotic manipulators based on zeroing neural networks activated by nonlinear functions publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.01.093 – volume: 18 start-page: 439 issue: 3 year: 1967 ident: 10.1016/j.matcom.2025.02.009_b60 article-title: On Grönwall’s inequality publication-title: Proc. Amer. Math. Soc. – ident: 10.1016/j.matcom.2025.02.009_b51 doi: 10.1109/ICICIP53388.2021.9642177 – volume: 6 issue: 4 year: 2024 ident: 10.1016/j.matcom.2025.02.009_b57 article-title: Exploring artificial neural networks for the forward kinematics of a SCARA robotic manipulator using varied datasets and training optimizers publication-title: Eng. Res. Express doi: 10.1088/2631-8695/ad81cc – ident: 10.1016/j.matcom.2025.02.009_b49 doi: 10.23919/ChiCC.2019.8866594 – volume: 359 start-page: 10849 issue: 18 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b17 article-title: Gradient-based neural networks for solving periodic Sylvester matrix equations publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2022.05.023 – volume: 515 start-page: 145 year: 2023 ident: 10.1016/j.matcom.2025.02.009_b47 article-title: General ELLRFS-DAZN algorithm for solving future linear equation system under various noises publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.029 – volume: 347 start-page: 314 year: 2019 ident: 10.1016/j.matcom.2025.02.009_b42 article-title: General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.08.017 – volume: 37 start-page: 189 issue: 2 year: 2013 ident: 10.1016/j.matcom.2025.02.009_b3 article-title: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function publication-title: Neural Process. Lett. doi: 10.1007/s11063-012-9241-1 – volume: 51 start-page: 3629 issue: 6 year: 2021 ident: 10.1016/j.matcom.2025.02.009_b36 article-title: New noise-tolerant ZNN models with predefined-time convergence for time-variant Sylvester equation solving publication-title: IEEE Trans. Syst. Man, Cybern.: Syst. doi: 10.1109/TSMC.2019.2930646 – volume: 561 year: 2023 ident: 10.1016/j.matcom.2025.02.009_b48 article-title: Continuous and discrete gradient-Zhang neuronet (GZN) with analyses for time-variant overdetermined linear equation system solving as well as mobile localization applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126883 – start-page: 1 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b30 article-title: An efficient Takagi–Sugeno fuzzy zeroing neural network for solving time-varying Sylvester equation publication-title: IEEE Trans. Fuzzy Syst. – volume: 570 year: 2024 ident: 10.1016/j.matcom.2025.02.009_b9 article-title: Supervised adaptive similarity consistent latent representation hashing publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.127113 – year: 2024 ident: 10.1016/j.matcom.2025.02.009_b39 article-title: Solving the generalized Sylvester equation with a novel fast extended neurodynamics publication-title: Numer. Algebra Control Optim. doi: 10.3934/naco.2024026 – volume: 16 start-page: 6231 issue: 10 year: 2020 ident: 10.1016/j.matcom.2025.02.009_b50 article-title: Discrete computational neural dynamics models for solving time-dependent Sylvester equation with applications to robotics and MIMO systems publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2966544 – volume: 360 start-page: 11995 issue: 16 year: 2023 ident: 10.1016/j.matcom.2025.02.009_b59 article-title: Discrete gradient-zeroing neural network algorithms for handling future quadratic program as well as robot arm via ten-instant formula publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2023.09.022 – volume: 359 start-page: 8991 issue: 16 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b7 article-title: Developing Kaczmarz method for solving Sylvester matrix equations publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2022.09.028 – volume: 422 start-page: 62 year: 2021 ident: 10.1016/j.matcom.2025.02.009_b5 article-title: Joint image fusion and super-resolution for enhanced visualization via semi-coupled discriminative dictionary learning and advantage embedding publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.024 – volume: 17 start-page: 5164 issue: 8 year: 2021 ident: 10.1016/j.matcom.2025.02.009_b43 article-title: New discretized zeroing neural network models for solving future system of bounded inequalities and nonlinear equations aided with general explicit linear four-step rule publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3032158 – volume: 109 start-page: 30 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b13 article-title: On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2022.01.027 – volume: 239 start-page: 406 year: 2013 ident: 10.1016/j.matcom.2025.02.009_b40 article-title: Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.09.011 – start-page: 1 year: 2022 ident: 10.1016/j.matcom.2025.02.009_b6 article-title: Sylvester equation induced collaborative representation learning for recommendation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 53 start-page: 1133 issue: 2 year: 2023 ident: 10.1016/j.matcom.2025.02.009_b44 article-title: Explicit linear left-and-right 5-step formulas with zeroing neural network for time-varying applications publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3104138 |
| SSID | ssj0007545 |
| Score | 2.4163349 |
| Snippet | The temporal-variant Sylvester equation (TVSE) occupies a significant position in applied mathematics, particularly in the realms of optimal control theory and... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 475 |
| SubjectTerms | Discrete gradient-zeroing neural network Future Sylvester equation Left and right four-step rule Robot arm inverse kinematics Temporal-variant Sylvester equation |
| Title | Discrete gradient-zeroing neural network algorithm for solving future Sylvester equation aided with left–right four-step rule as well as robot arm inverse kinematics |
| URI | https://dx.doi.org/10.1016/j.matcom.2025.02.009 |
| Volume | 233 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0378-4754 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007545 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0378-4754 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007545 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0378-4754 databaseCode: ACRLP dateStart: 19950501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007545 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0378-4754 databaseCode: AIKHN dateStart: 19950501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007545 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0378-4754 databaseCode: AKRWK dateStart: 19930201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaq7oULsMBqd1mqOXA1TWsnTo5VoSogeimVeovs2ClZ2qSkKRIcVrzDPsS-F0_C2E7EIiEOnKJEYyvyjOfH-uYzIS8lC4xkTNNI6IhyyROquMqpZpHC6Jyw0LHzf1hE8xV_tw7XPTLtemEsrLL1_d6nO2_dfhm2qzncF8VwGTCBrjVEo3MtkK6DnQt7i8Grm98wDxRwMEYUpla6a59zGC9MCi1mZIyB3zN3Jn8PT_dCzuwxedjmijDxv3NKeqZ8Qh519zBAuy2fkrvXBW5-zH5hUzsEV0O_m7rCoASWrhKnKD3YG-R2U9VF82kHmKsCmp09TgDPKwLLb9uvjjcBzBdPAA6WP1KDPauFrcmbnz9uXTGPo481RdE91MetAXkAewZon3WlqgZkvYOitIgPA58xj3W8sIdnZDV783E6p-0FDDTDSqOhmeZC6UQxpTPB47FRiY4lVmQ5T7KRESo0caCjIMYkUnJlUBGxzHgWcZMorhk7I_2yKs05gTDXIsvjnKNv5SOJZZLSMsT5gkDnQusLQrt1T_eeZyPtAGjXqddTavWUBuMU9XRBRKec9A97STEU_HPk5X-PfE4e2DcP1r0i_aY-mheYkjRq4GxuQE4mb9_PF78ATknoFg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUQXcCGlpeglHIX3ZoJYydOlhUPDc8NILGz7NiB0CGZhgxSu6j6D3xE_6tf0ms7UUFCLFhFSq6tyPf6vnR8TMgXxSKrGDM0ESahXPGMaq4LaliiMTpnLPbs_KdnyeiSH13FVzNktz8L42CVne8PPt176-7NoFvNwaQsB-cRE-haYzQ6fwQSS6B3PB4KV4Ft__qP80AJj2NEaerE-_NzHuSFWaEDjQwx8gfqzuzl-PQk5hx8IAtdsghfw_8skhlbLZH3_UUM0O3LZfJnr8Tdj-kvXDcewtXSn7apMSqB46vEKaqA9gY1vq6bsr25A0xWAe3O9RMgEIvA-Y_xgydOAPs9MICDI5A04Jq1MLZF-_f3o6_mcfS0oSg6gWY6tqDuwTUB3bOpdd2Cau6grBzkw8I3TGQ9Mez9Crk82L_YHdHuBgaaY6nR0txwoU2mmTa54OnQ6sykCkuygmf5jhU6tmlkkijFLFJxbVETqcp5nnCbaW4YWyWzVV3ZNQJxYURepAVH58p3FNZJ2qgY54siUwhj1gnt111OAtGG7BFotzLoSTo9yWgoUU_rRPTKkc8MRmIseHXkxzeP3CJzo4vTE3lyeHa8Qebdl4Dc_URm22ZqNzE_afVnb3__ALgC6as |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+gradient-zeroing+neural+network+algorithm+for+solving+future+Sylvester+equation+aided+with+left%E2%80%93right+four-step+rule+as+well+as+robot+arm+inverse+kinematics&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Guo%2C+Pengfei&rft.au=Zhang%2C+Yunong&rft.au=Yao%2C+Zheng-an&rft.date=2025-07-01&rft.issn=0378-4754&rft.volume=233&rft.spage=475&rft.epage=501&rft_id=info:doi/10.1016%2Fj.matcom.2025.02.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2025_02_009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |