Discrete gradient-zeroing neural network algorithm for solving future Sylvester equation aided with left–right four-step rule as well as robot arm inverse kinematics

The temporal-variant Sylvester equation (TVSE) occupies a significant position in applied mathematics, particularly in the realms of optimal control theory and matrix optimization engineering applications. Within the framework of prediction modeling systems, the future Sylvester equation (FSE) emerg...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 233; pp. 475 - 501
Main Authors Guo, Pengfei, Zhang, Yunong, Yao, Zheng-an
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2025
Subjects
Online AccessGet full text
ISSN0378-4754
DOI10.1016/j.matcom.2025.02.009

Cover

Abstract The temporal-variant Sylvester equation (TVSE) occupies a significant position in applied mathematics, particularly in the realms of optimal control theory and matrix optimization engineering applications. Within the framework of prediction modeling systems, the future Sylvester equation (FSE) emerges as the discrete manifestation of TVSE, characterized by unknown future information. Leveraging a novel left and right four-step (LRFS) rule, we propose a novel discrete gradient-zeroing neural network (DGZNN) algorithm with order-5 precision, which is developed from the continuous gradient-zeroing neural network (GZNN) model, for solving the FSE problem. The proposed algorithm is named as LRFS-DGZNN algorithm, which stands out as an inverse-less neurodynamic algorithm. Additionally, the convergence properties of the GZNN model in solving the TVSE problem are elucidated through Lyapunov stability theory and matrix spectral theory. Furthermore, the LRFS-DGZNN algorithm’s error pattern property in solving the FSE problem is established and proven using stability theory of linear multi-step methods and ordinary differential equation numerical approximation theory. Three numerical experiments are conducted to evaluate the performance of the proposed GZNN model for solving the TVSE problem and the LRFS-DGZNN algorithm for solving the FSE problem. Moreover, the study showcases the inverse-kinematics solutions and simulations involving planar robot arm with 2 degrees of freedom (DOFs), the Kinova Jaco2 robot arm with 6 DOFs, and the Franka Emika Panda robot arm with 7 DOFs, illustrating the high efficiency of the LRFS-DGZNN algorithm.
AbstractList The temporal-variant Sylvester equation (TVSE) occupies a significant position in applied mathematics, particularly in the realms of optimal control theory and matrix optimization engineering applications. Within the framework of prediction modeling systems, the future Sylvester equation (FSE) emerges as the discrete manifestation of TVSE, characterized by unknown future information. Leveraging a novel left and right four-step (LRFS) rule, we propose a novel discrete gradient-zeroing neural network (DGZNN) algorithm with order-5 precision, which is developed from the continuous gradient-zeroing neural network (GZNN) model, for solving the FSE problem. The proposed algorithm is named as LRFS-DGZNN algorithm, which stands out as an inverse-less neurodynamic algorithm. Additionally, the convergence properties of the GZNN model in solving the TVSE problem are elucidated through Lyapunov stability theory and matrix spectral theory. Furthermore, the LRFS-DGZNN algorithm’s error pattern property in solving the FSE problem is established and proven using stability theory of linear multi-step methods and ordinary differential equation numerical approximation theory. Three numerical experiments are conducted to evaluate the performance of the proposed GZNN model for solving the TVSE problem and the LRFS-DGZNN algorithm for solving the FSE problem. Moreover, the study showcases the inverse-kinematics solutions and simulations involving planar robot arm with 2 degrees of freedom (DOFs), the Kinova Jaco2 robot arm with 6 DOFs, and the Franka Emika Panda robot arm with 7 DOFs, illustrating the high efficiency of the LRFS-DGZNN algorithm.
Author Yao, Zheng-an
Guo, Pengfei
Zhang, Yunong
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Guo
  fullname: Guo, Pengfei
  email: pfguo@zhku.edu.cn
  organization: School of Mathematics and Data Science, Zhongkai University of Agriculture and Engineering, Guangzhou, 510240, China
– sequence: 2
  givenname: Yunong
  surname: Zhang
  fullname: Zhang, Yunong
  email: zhynong@mail.sysu.edu.cn
  organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 518107, China
– sequence: 3
  givenname: Zheng-an
  surname: Yao
  fullname: Yao, Zheng-an
  email: mcsyao@mail.sysu.edu.cn
  organization: School of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China
BookMark eNp9kE1u2zAQRrlwgMZub9AFLyBlJFOWtClQ5B8w0EWTNUGRI4c2JSZDyka66h1yiNyrJykNZ53VN4t5H2benM1GPyJj3wvICyhWF9t8UFH7IS-hrHIoc4B2xs5hWTeZqCvxhc1D2AJAmqtz9n5lgyaMyDekjMUxZn-QvB03fMSJlEsRD552XLmNJxufBt574sG7_XGpn-JEyH-_uj2GiMTxZVLR-pEra9DwQyK4wz7--_tGdvMUEz1RllafOU0OuQr8gM4dk3znI1c0cDvukQLynR0xvWN1-MrOeuUCfvvIBXu8uX64vMvWv27vL3-uM11WVcy0EXVn2m7ZGV2LpsSuNY0SUPSi1QXWXYUNmBU0bV0r0WEF0Cgt9Epg2wmzXC6YOPVq8iEQ9vKZ7KDoVRYgj4LlVp4Ey6NgCaVMghP244Rhum1vkWTQSaZGYwl1lMbbzwv-AyHGkVI
Cites_doi 10.1109/JAS.2024.124425
10.1109/TII.2017.2766455
10.1016/j.jfranklin.2022.09.049
10.1073/pnas.79.8.2554
10.1016/j.cam.2017.09.048
10.1109/TNN.2002.1031938
10.1016/j.matcom.2020.06.014
10.1109/TCYB.2013.2285166
10.1016/j.jfranklin.2022.10.022
10.1016/0024-3795(92)90031-5
10.1016/j.cam.2021.113826
10.1109/TNNLS.2020.3028136
10.1016/j.knosys.2019.02.035
10.1137/S0036142902406326
10.1109/ACCESS.2022.3222372
10.1016/j.neucom.2023.126696
10.1109/TAC.1978.1101681
10.1016/j.sysconle.2004.07.002
10.1016/j.matcom.2020.12.030
10.1016/j.automatica.2015.07.011
10.1016/j.neucom.2019.12.019
10.1016/j.ipl.2016.03.004
10.1016/j.matcom.2024.05.006
10.1016/j.asoc.2022.109703
10.1016/j.engappai.2023.106301
10.1109/TCYB.2020.3009110
10.1016/j.matcom.2015.07.002
10.1109/TII.2021.3111816
10.1016/j.jfranklin.2020.06.029
10.1016/j.cam.2014.05.027
10.1016/j.neucom.2023.01.008
10.1109/TII.2021.3109426
10.1016/j.matcom.2021.03.014
10.1109/TCYB.2017.2760883
10.2478/acss-2024-0004
10.1016/j.matcom.2013.04.019
10.1016/j.cam.2017.06.017
10.1016/j.matcom.2023.01.012
10.1016/j.neucom.2021.01.093
10.1109/ICICIP53388.2021.9642177
10.1088/2631-8695/ad81cc
10.23919/ChiCC.2019.8866594
10.1016/j.jfranklin.2022.05.023
10.1016/j.neucom.2022.10.029
10.1016/j.cam.2018.08.017
10.1007/s11063-012-9241-1
10.1109/TSMC.2019.2930646
10.1016/j.neucom.2023.126883
10.1016/j.neucom.2023.127113
10.3934/naco.2024026
10.1109/TII.2020.2966544
10.1016/j.jfranklin.2023.09.022
10.1016/j.jfranklin.2022.09.028
10.1016/j.neucom.2020.09.024
10.1109/TII.2020.3032158
10.1016/j.camwa.2022.01.027
10.1016/j.cam.2012.09.011
10.1109/TCYB.2021.3104138
ContentType Journal Article
Copyright 2025 International Association for Mathematics and Computers in Simulation (IMACS)
Copyright_xml – notice: 2025 International Association for Mathematics and Computers in Simulation (IMACS)
DBID AAYXX
CITATION
DOI 10.1016/j.matcom.2025.02.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 501
ExternalDocumentID 10_1016_j_matcom_2025_02_009
S0378475425000461
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSH
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c255t-cd47bd9b3bdc7482eb9d8a401f49c1e7b5e80d608977a4be5008ac4c64e9b4d33
IEDL.DBID .~1
ISSN 0378-4754
IngestDate Wed Oct 01 06:33:56 EDT 2025
Sat Apr 05 15:41:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Temporal-variant Sylvester equation
Future Sylvester equation
Discrete gradient-zeroing neural network
Left and right four-step rule
Robot arm inverse kinematics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-cd47bd9b3bdc7482eb9d8a401f49c1e7b5e80d608977a4be5008ac4c64e9b4d33
PageCount 27
ParticipantIDs crossref_primary_10_1016_j_matcom_2025_02_009
elsevier_sciencedirect_doi_10_1016_j_matcom_2025_02_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gerontitis, Tzekis (b39) 2024
Yi, Zhang, Guo (b18) 2013; 92
Dai, Tan, Xiao, Jia, Luo (b31) 2023; 557
Mandal, Chekroun, Samanta, Chattopadhyay (b22) 2021; 187
Zhao, Jin, Gong (b23) 2021; 185
Yang, Zhang, Tan, Hu (b44) 2023; 53
Chen (b33) 2016; 116
Guo, Tan, Zhang (b47) 2023; 515
Jian, Xiao, Li, Zuo, Zhang (b35) 2020; 357
Zhang, Jiang, Wang (b1) 2002; 13
Li, Yang, Yu (b5) 2021; 422
Zhang, He, Hu, Guo, Li, Shi (b42) 2019; 347
Yang, Zhang, Tan, Hu (b46) 2022; 18
Tan, Yu (b55) 2021; 438
Li, Chen, Liu (b3) 2013; 37
Zhang, Zhai, Chen, Jin, Hu (b19) 2016; 120
Zhang, Zheng, Weng, Mao, Lu, Xiao (b34) 2018; 48
Tang, Zhang (b48) 2023; 561
Xiao, Li, Tao, Li (b26) 2023; 526
Hu, Li, Zheng, Lu, Yu (b15) 2020; 383
Hopfield (b16) 1982; 79
Guo, Zhang, Yao (b59) 2023; 360
Stanimirović, Srivastava, Gupta (b20) 2018; 331
Shafiei, Hajarian (b7) 2022; 359
Li, Mao, Uhlig, Zhang (b21) 2018; 327
Süli, Mayers (b62) 2003
Jin, Chen, Qiu, Zhu, Liu (b25) 2023; 207
Lei, Luo, Chen, Ding, Liao, Xia, Dai (b29) 2022; 10
Qiu, Guo, Li, Zhang (b43) 2021; 17
Xiao, Zhang, Dai, Li, Li (b36) 2021; 51
Chen, Zhang, Li (b63) 2018; 14
He, Xiao, Sun, Wang (b24) 2022; 130
Zhang, Jin, Guo, Yin, Chou (b41) 2015; 273
Wang, Chen, Shu, Zhang, Li (b9) 2024; 570
Qian, Pang (b14) 2015; 60
Chu, Metcalf (b60) 1967; 18
Gao, Tang, Ke, Stanimirović (b27) 2024; 225
Xiao, Yi, Zuo, He (b28) 2020; 178
Hundsdorfer, Ruuth, Spiteri (b61) 2003; 41
Wagaa, Kallel, Mellouli (b56) 2023; 123
Bouzid, Narayan, Gritli (b57) 2024; 6
Liu, Zhang, Ferreira, Zhang (b13) 2022; 109
Gerontitis, Behera, Tzekis, Stanimirović (b37) 2022; 403
Shi, Jin, Li, Li, Qiang, Gerontitis (b52) 2022; 33
Xiao, Tao, Li (b4) 2022; 18
Castelan, da Silva (b2) 2005; 54
Kleinman, Rao (b10) 1978; 23
Qiu, Guo, Li, Zhang, Zhang (b45) 2022; 52
Hu, Reichel (b11) 1992; 172
Li, Li (b32) 2014; 44
Wang, Wang, Huang, Du (b8) 2019; 174
Hu, Zheng (b30) 2022
Bouzid, Gritli, Narayan (b54) 2024; 29
Lv, Chen, Zhang, Zhang (b17) 2022; 359
Chen, Chen (b12) 2022; 359
Y. Shi, G. Liu, J. Wang, J. Zhang, J. Li, D.K. Gerontitis, Advanced discrete generalized-neurodynamic model applied to solve discrete time-variant augmented Sylvester equation with perturbation suppression, in: International Conference on Intelligent Control and Information Processing, 2021, pp. 422–427.
Sowmya, Shankar, Thangavel (b38) 2023; 360
Shi, Ding, Li, Li, Sun (b53) 2022
Zhang, Chou, Chen, Zhang, Xiao (b40) 2013; 239
Qi, Jin, Li, Li, Liu (b50) 2020; 16
Li, Zhu, Zheng, Liu, Li, Guo, Kong, Zhao (b6) 2022
Lian, Xiao, Zhang, Jin, Yu, Sun (b58) 2024; 11
Y. Zhang, X. Liu, Y. Shi, M. Mao, N. Tan, Discrete-time zeroing dynamics model for solving generalized Sylvester future matrix system, in: Chinese Control Conference, 2019, pp. 29–34.
Yang (10.1016/j.matcom.2025.02.009_b44) 2023; 53
Lei (10.1016/j.matcom.2025.02.009_b29) 2022; 10
Shi (10.1016/j.matcom.2025.02.009_b53) 2022
Li (10.1016/j.matcom.2025.02.009_b6) 2022
Xiao (10.1016/j.matcom.2025.02.009_b28) 2020; 178
10.1016/j.matcom.2025.02.009_b51
Liu (10.1016/j.matcom.2025.02.009_b13) 2022; 109
Lian (10.1016/j.matcom.2025.02.009_b58) 2024; 11
Tang (10.1016/j.matcom.2025.02.009_b48) 2023; 561
Gao (10.1016/j.matcom.2025.02.009_b27) 2024; 225
Shafiei (10.1016/j.matcom.2025.02.009_b7) 2022; 359
Qiu (10.1016/j.matcom.2025.02.009_b45) 2022; 52
Jian (10.1016/j.matcom.2025.02.009_b35) 2020; 357
Xiao (10.1016/j.matcom.2025.02.009_b26) 2023; 526
Hu (10.1016/j.matcom.2025.02.009_b11) 1992; 172
Lv (10.1016/j.matcom.2025.02.009_b17) 2022; 359
10.1016/j.matcom.2025.02.009_b49
Gerontitis (10.1016/j.matcom.2025.02.009_b39) 2024
Guo (10.1016/j.matcom.2025.02.009_b59) 2023; 360
Wagaa (10.1016/j.matcom.2025.02.009_b56) 2023; 123
Chen (10.1016/j.matcom.2025.02.009_b12) 2022; 359
Zhang (10.1016/j.matcom.2025.02.009_b42) 2019; 347
Li (10.1016/j.matcom.2025.02.009_b21) 2018; 327
Tan (10.1016/j.matcom.2025.02.009_b55) 2021; 438
Castelan (10.1016/j.matcom.2025.02.009_b2) 2005; 54
Mandal (10.1016/j.matcom.2025.02.009_b22) 2021; 187
Hu (10.1016/j.matcom.2025.02.009_b15) 2020; 383
Li (10.1016/j.matcom.2025.02.009_b3) 2013; 37
Zhang (10.1016/j.matcom.2025.02.009_b40) 2013; 239
Qiu (10.1016/j.matcom.2025.02.009_b43) 2021; 17
Wang (10.1016/j.matcom.2025.02.009_b9) 2024; 570
Xiao (10.1016/j.matcom.2025.02.009_b36) 2021; 51
Qi (10.1016/j.matcom.2025.02.009_b50) 2020; 16
Qian (10.1016/j.matcom.2025.02.009_b14) 2015; 60
Wang (10.1016/j.matcom.2025.02.009_b8) 2019; 174
Sowmya (10.1016/j.matcom.2025.02.009_b38) 2023; 360
Bouzid (10.1016/j.matcom.2025.02.009_b57) 2024; 6
Jin (10.1016/j.matcom.2025.02.009_b25) 2023; 207
Süli (10.1016/j.matcom.2025.02.009_b62) 2003
Zhang (10.1016/j.matcom.2025.02.009_b19) 2016; 120
Yang (10.1016/j.matcom.2025.02.009_b46) 2022; 18
Kleinman (10.1016/j.matcom.2025.02.009_b10) 1978; 23
Zhang (10.1016/j.matcom.2025.02.009_b1) 2002; 13
He (10.1016/j.matcom.2025.02.009_b24) 2022; 130
Zhang (10.1016/j.matcom.2025.02.009_b41) 2015; 273
Guo (10.1016/j.matcom.2025.02.009_b47) 2023; 515
Hopfield (10.1016/j.matcom.2025.02.009_b16) 1982; 79
Zhang (10.1016/j.matcom.2025.02.009_b34) 2018; 48
Shi (10.1016/j.matcom.2025.02.009_b52) 2022; 33
Hundsdorfer (10.1016/j.matcom.2025.02.009_b61) 2003; 41
Stanimirović (10.1016/j.matcom.2025.02.009_b20) 2018; 331
Li (10.1016/j.matcom.2025.02.009_b32) 2014; 44
Dai (10.1016/j.matcom.2025.02.009_b31) 2023; 557
Gerontitis (10.1016/j.matcom.2025.02.009_b37) 2022; 403
Bouzid (10.1016/j.matcom.2025.02.009_b54) 2024; 29
Li (10.1016/j.matcom.2025.02.009_b5) 2021; 422
Chu (10.1016/j.matcom.2025.02.009_b60) 1967; 18
Zhao (10.1016/j.matcom.2025.02.009_b23) 2021; 185
Hu (10.1016/j.matcom.2025.02.009_b30) 2022
Xiao (10.1016/j.matcom.2025.02.009_b4) 2022; 18
Yi (10.1016/j.matcom.2025.02.009_b18) 2013; 92
Chen (10.1016/j.matcom.2025.02.009_b63) 2018; 14
Chen (10.1016/j.matcom.2025.02.009_b33) 2016; 116
References_xml – volume: 557
  year: 2023
  ident: b31
  article-title: Design, analysis, and application of fixed-time convergence fuzzy ZNN model realized by dynamic fuzzy logic system for time-varying Sylvester equation
  publication-title: Neurocomputing
– volume: 92
  start-page: 40
  year: 2013
  end-page: 52
  ident: b18
  article-title: A new type of recurrent neural networks for real-time solution of Lyapunov equation with time-varying coefficient matrices
  publication-title: Math. Comput. Simulation
– volume: 6
  year: 2024
  ident: b57
  article-title: Exploring artificial neural networks for the forward kinematics of a SCARA robotic manipulator using varied datasets and training optimizers
  publication-title: Eng. Res. Express
– volume: 225
  start-page: 1
  year: 2024
  end-page: 12
  ident: b27
  article-title: New activation functions and Zhangians in zeroing neural network and applications to time-varying matrix pseudoinversion
  publication-title: Math. Comput. Simulation
– volume: 561
  year: 2023
  ident: b48
  article-title: Continuous and discrete gradient-Zhang neuronet (GZN) with analyses for time-variant overdetermined linear equation system solving as well as mobile localization applications
  publication-title: Neurocomputing
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: b16
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci.
– volume: 53
  start-page: 1133
  year: 2023
  end-page: 1143
  ident: b44
  article-title: Explicit linear left-and-right 5-step formulas with zeroing neural network for time-varying applications
  publication-title: IEEE Trans. Cybern.
– volume: 11
  start-page: 1605
  year: 2024
  end-page: 1620
  ident: b58
  article-title: Neural dynamics for cooperative motion control of omnidirectional mobile manipulators in the presence of noises: A distributed approach
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 357
  start-page: 9909
  year: 2020
  end-page: 9929
  ident: b35
  article-title: Adaptive coefficient designs for nonlinear activation function and its application to zeroing neural network for solving time-varying Sylvester equation
  publication-title: J. Franklin Inst.
– volume: 422
  start-page: 62
  year: 2021
  end-page: 84
  ident: b5
  article-title: Joint image fusion and super-resolution for enhanced visualization via semi-coupled discriminative dictionary learning and advantage embedding
  publication-title: Neurocomputing
– volume: 109
  start-page: 30
  year: 2022
  end-page: 43
  ident: b13
  article-title: On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations
  publication-title: Comput. Math. Appl.
– year: 2024
  ident: b39
  article-title: Solving the generalized Sylvester equation with a novel fast extended neurodynamics
  publication-title: Numer. Algebra Control Optim.
– volume: 18
  start-page: 3651
  year: 2022
  end-page: 3660
  ident: b4
  article-title: An arctan-type varying-parameter ZNN for solving time-varying complex Sylvester equations in finite time
  publication-title: IEEE Trans. Ind. Inform.
– volume: 360
  start-page: 11995
  year: 2023
  end-page: 12029
  ident: b59
  article-title: Discrete gradient-zeroing neural network algorithms for handling future quadratic program as well as robot arm via ten-instant formula
  publication-title: J. Franklin Inst.
– year: 2003
  ident: b62
  article-title: An Introduction To Numerical Analysis
– volume: 130
  year: 2022
  ident: b24
  article-title: A variable-parameter ZNN with predefined-time convergence for dynamic complex-valued Lyapunov equation and its application to AOA positioning
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 85
  year: 1978
  end-page: 87
  ident: b10
  article-title: Extensions to the Bartels-Stewart algorithm for linear matrix equations
  publication-title: IEEE Trans. Autom. Control
– volume: 123
  year: 2023
  ident: b56
  article-title: Analytical and deep learning approaches for solving the inverse kinematic problem of a high degrees of freedom robotic arm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 48
  start-page: 3135
  year: 2018
  end-page: 3148
  ident: b34
  article-title: A new varying-parameter recurrent neural-network for online solution of time-varying Sylvester equation
  publication-title: IEEE Trans. Cybern.
– volume: 41
  start-page: 605
  year: 2003
  end-page: 623
  ident: b61
  article-title: Monotonicity-preserving linear multistep methods
  publication-title: SIAM J. Numer. Anal.
– volume: 438
  start-page: 44
  year: 2021
  end-page: 54
  ident: b55
  article-title: Robust model-free control for redundant robotic manipulators based on zeroing neural networks activated by nonlinear functions
  publication-title: Neurocomputing
– volume: 187
  start-page: 468
  year: 2021
  end-page: 488
  ident: b22
  article-title: A mathematical study of a crop-pest natural enemy model with Z-type control
  publication-title: Math. Comput. Simulation
– volume: 331
  start-page: 133
  year: 2018
  end-page: 155
  ident: b20
  article-title: From Zhang neural network to scaled hyperpower iterations
  publication-title: J. Comput. Appl. Math.
– reference: Y. Zhang, X. Liu, Y. Shi, M. Mao, N. Tan, Discrete-time zeroing dynamics model for solving generalized Sylvester future matrix system, in: Chinese Control Conference, 2019, pp. 29–34.
– volume: 60
  start-page: 245
  year: 2015
  end-page: 250
  ident: b14
  article-title: An implicit sequential algorithm for solving coupled Lyapunov equations of continuous-time Markovian jump systems
  publication-title: Automatica
– volume: 359
  start-page: 8991
  year: 2022
  end-page: 9005
  ident: b7
  article-title: Developing Kaczmarz method for solving Sylvester matrix equations
  publication-title: J. Franklin Inst.
– volume: 239
  start-page: 406
  year: 2013
  end-page: 414
  ident: b40
  article-title: Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas
  publication-title: J. Comput. Appl. Math.
– volume: 29
  start-page: 24
  year: 2024
  end-page: 34
  ident: b54
  article-title: ANN approach for SCARA robot inverse kinematics solutions with diverse datasets and optimisers
  publication-title: Appl. Comput. Syst.
– volume: 51
  start-page: 3629
  year: 2021
  end-page: 3640
  ident: b36
  article-title: New noise-tolerant ZNN models with predefined-time convergence for time-variant Sylvester equation solving
  publication-title: IEEE Trans. Syst. Man, Cybern.: Syst.
– volume: 13
  start-page: 1053
  year: 2002
  end-page: 1063
  ident: b1
  article-title: A recurrent neural network for solving Sylvester equation with time-varying coefficients
  publication-title: IEEE Trans. Neural Netw.
– volume: 10
  start-page: 121520
  year: 2022
  end-page: 121530
  ident: b29
  article-title: Nonlinearly activated IEZNN model for solving time-varying Sylvester equation
  publication-title: IEEE Access
– start-page: 1
  year: 2022
  end-page: 12
  ident: b6
  article-title: Sylvester equation induced collaborative representation learning for recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 33
  start-page: 587
  year: 2022
  end-page: 599
  ident: b52
  article-title: Novel discrete-time recurrent neural networks handling discrete-form time-variant multi-augmented Sylvester matrix problems and manipulator application
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 120
  start-page: 104
  year: 2016
  end-page: 119
  ident: b19
  article-title: Challenging simulation practice (failure and success) on implicit tracking control of double-integrator system via Zhang-gradient method
  publication-title: Math. Comput. Simulation
– volume: 185
  start-page: 289
  year: 2021
  end-page: 307
  ident: b23
  article-title: Robust zeroing neural network for fixed-time kinematic control of wheeled mobile robot in noise-polluted environment
  publication-title: Math. Comput. Simulation
– start-page: 1
  year: 2022
  end-page: 10
  ident: b30
  article-title: An efficient Takagi–Sugeno fuzzy zeroing neural network for solving time-varying Sylvester equation
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 17
  start-page: 5164
  year: 2021
  end-page: 5174
  ident: b43
  article-title: New discretized zeroing neural network models for solving future system of bounded inequalities and nonlinear equations aided with general explicit linear four-step rule
  publication-title: IEEE Trans. Ind. Inform.
– volume: 44
  start-page: 1397
  year: 2014
  end-page: 1407
  ident: b32
  article-title: Nonlinearly activated neural network for solving time-varying complex Sylvester equation
  publication-title: IEEE Trans. Cybern.
– volume: 570
  year: 2024
  ident: b9
  article-title: Supervised adaptive similarity consistent latent representation hashing
  publication-title: Neurocomputing
– volume: 526
  start-page: 158
  year: 2023
  end-page: 168
  ident: b26
  article-title: A predefined-time and anti-noise varying-parameter ZNN model for solving time-varying complex Stein equations
  publication-title: Neurocomputing
– volume: 273
  start-page: 29
  year: 2015
  end-page: 40
  ident: b41
  article-title: Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization
  publication-title: J. Comput. Appl. Math.
– volume: 18
  start-page: 3193
  year: 2022
  end-page: 3202
  ident: b46
  article-title: Concise discrete ZNN controllers for end-effector tracking and obstacle avoidance of redundant manipulators
  publication-title: IEEE Trans. Ind. Inform.
– volume: 54
  start-page: 109
  year: 2005
  end-page: 117
  ident: b2
  article-title: On the solution of a Sylvester equation appearing in descriptor systems control theory
  publication-title: Systems Control Lett.
– start-page: 1
  year: 2022
  end-page: 22
  ident: b53
  article-title: Discrete generalized-Sylvester matrix equation solved by RNN with a novel direct discretization numerical method
  publication-title: Numer. Algorithms
– volume: 403
  year: 2022
  ident: b37
  article-title: A family of varying-parameter finite-time zeroing neural networks for solving time-varying Sylvester equation and its application
  publication-title: J. Comput. Appl. Math.
– volume: 116
  start-page: 455
  year: 2016
  end-page: 459
  ident: b33
  article-title: Improved neural dynamics for online Sylvester equations solving
  publication-title: Inform. Process. Lett.
– volume: 207
  start-page: 482
  year: 2023
  end-page: 498
  ident: b25
  article-title: A noise tolerant parameter-variable zeroing neural network and its applications
  publication-title: Math. Comput. Simulation
– volume: 359
  start-page: 10849
  year: 2022
  end-page: 10866
  ident: b17
  article-title: Gradient-based neural networks for solving periodic Sylvester matrix equations
  publication-title: J. Franklin Inst.
– volume: 327
  start-page: 155
  year: 2018
  end-page: 166
  ident: b21
  article-title: Z-type neural-dynamics for time-varying nonlinear optimization under a linear equality constraint with robot application
  publication-title: J. Comput. Appl. Math.
– volume: 360
  start-page: 1344
  year: 2023
  end-page: 1377
  ident: b38
  article-title: A novel finite-time complex-valued zeoring neural network for solving time-varying complex-valued Sylvester equation
  publication-title: J. Franklin Inst.
– volume: 347
  start-page: 314
  year: 2019
  end-page: 329
  ident: b42
  article-title: General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization
  publication-title: J. Comput. Appl. Math.
– volume: 52
  start-page: 3539
  year: 2022
  end-page: 3552
  ident: b45
  article-title: Discrete-time advanced zeroing neurodynamic algorithm applied to future equality-constrained nonlinear optimization with various noises
  publication-title: IEEE Trans. Cybern.
– volume: 18
  start-page: 439
  year: 1967
  end-page: 440
  ident: b60
  article-title: On Grönwall’s inequality
  publication-title: Proc. Amer. Math. Soc.
– volume: 174
  start-page: 87
  year: 2019
  end-page: 102
  ident: b8
  article-title: Structure regularized sparse coding for data representation
  publication-title: Knowl.-Based Syst.
– volume: 359
  start-page: 9925
  year: 2022
  end-page: 9951
  ident: b12
  article-title: Conjugate gradient-based iterative algorithm for solving generalized periodic coupled Sylvester matrix equations
  publication-title: J. Franklin Inst.
– volume: 383
  start-page: 380
  year: 2020
  end-page: 395
  ident: b15
  article-title: Robust sequential subspace clustering via
  publication-title: Neurocomputing
– reference: Y. Shi, G. Liu, J. Wang, J. Zhang, J. Li, D.K. Gerontitis, Advanced discrete generalized-neurodynamic model applied to solve discrete time-variant augmented Sylvester equation with perturbation suppression, in: International Conference on Intelligent Control and Information Processing, 2021, pp. 422–427.
– volume: 14
  start-page: 3044
  year: 2018
  end-page: 3053
  ident: b63
  article-title: Tracking control of robot manipulators with unknown models: A Jacobian-matrix-adaption method
  publication-title: IEEE Trans. Ind. Inform.
– volume: 178
  start-page: 246
  year: 2020
  end-page: 258
  ident: b28
  article-title: Improved finite-time zeroing neural networks for time-varying complex Sylvester equation solving
  publication-title: Math. Comput. Simulation
– volume: 16
  start-page: 6231
  year: 2020
  end-page: 6241
  ident: b50
  article-title: Discrete computational neural dynamics models for solving time-dependent Sylvester equation with applications to robotics and MIMO systems
  publication-title: IEEE Trans. Ind. Inform.
– volume: 172
  start-page: 283
  year: 1992
  end-page: 313
  ident: b11
  article-title: Krylov-subspace methods for the Sylvester equation
  publication-title: Linear Algebra Appl.
– volume: 515
  start-page: 145
  year: 2023
  end-page: 156
  ident: b47
  article-title: General ELLRFS-DAZN algorithm for solving future linear equation system under various noises
  publication-title: Neurocomputing
– volume: 37
  start-page: 189
  year: 2013
  end-page: 205
  ident: b3
  article-title: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function
  publication-title: Neural Process. Lett.
– volume: 11
  start-page: 1605
  issue: 7
  year: 2024
  ident: 10.1016/j.matcom.2025.02.009_b58
  article-title: Neural dynamics for cooperative motion control of omnidirectional mobile manipulators in the presence of noises: A distributed approach
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2024.124425
– volume: 14
  start-page: 3044
  issue: 7
  year: 2018
  ident: 10.1016/j.matcom.2025.02.009_b63
  article-title: Tracking control of robot manipulators with unknown models: A Jacobian-matrix-adaption method
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2766455
– volume: 359
  start-page: 9925
  issue: 17
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b12
  article-title: Conjugate gradient-based iterative algorithm for solving generalized periodic coupled Sylvester matrix equations
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2022.09.049
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 10.1016/j.matcom.2025.02.009_b16
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.79.8.2554
– volume: 331
  start-page: 133
  year: 2018
  ident: 10.1016/j.matcom.2025.02.009_b20
  article-title: From Zhang neural network to scaled hyperpower iterations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.09.048
– volume: 13
  start-page: 1053
  issue: 5
  year: 2002
  ident: 10.1016/j.matcom.2025.02.009_b1
  article-title: A recurrent neural network for solving Sylvester equation with time-varying coefficients
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.1031938
– start-page: 1
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b53
  article-title: Discrete generalized-Sylvester matrix equation solved by RNN with a novel direct discretization numerical method
  publication-title: Numer. Algorithms
– volume: 178
  start-page: 246
  year: 2020
  ident: 10.1016/j.matcom.2025.02.009_b28
  article-title: Improved finite-time zeroing neural networks for time-varying complex Sylvester equation solving
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2020.06.014
– volume: 44
  start-page: 1397
  issue: 8
  year: 2014
  ident: 10.1016/j.matcom.2025.02.009_b32
  article-title: Nonlinearly activated neural network for solving time-varying complex Sylvester equation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2285166
– year: 2003
  ident: 10.1016/j.matcom.2025.02.009_b62
– volume: 360
  start-page: 1344
  issue: 2
  year: 2023
  ident: 10.1016/j.matcom.2025.02.009_b38
  article-title: A novel finite-time complex-valued zeoring neural network for solving time-varying complex-valued Sylvester equation
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2022.10.022
– volume: 172
  start-page: 283
  year: 1992
  ident: 10.1016/j.matcom.2025.02.009_b11
  article-title: Krylov-subspace methods for the Sylvester equation
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(92)90031-5
– volume: 403
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b37
  article-title: A family of varying-parameter finite-time zeroing neural networks for solving time-varying Sylvester equation and its application
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2021.113826
– volume: 33
  start-page: 587
  issue: 2
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b52
  article-title: Novel discrete-time recurrent neural networks handling discrete-form time-variant multi-augmented Sylvester matrix problems and manipulator application
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3028136
– volume: 174
  start-page: 87
  year: 2019
  ident: 10.1016/j.matcom.2025.02.009_b8
  article-title: Structure regularized sparse coding for data representation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.02.035
– volume: 41
  start-page: 605
  issue: 2
  year: 2003
  ident: 10.1016/j.matcom.2025.02.009_b61
  article-title: Monotonicity-preserving linear multistep methods
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142902406326
– volume: 10
  start-page: 121520
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b29
  article-title: Nonlinearly activated IEZNN model for solving time-varying Sylvester equation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3222372
– volume: 557
  year: 2023
  ident: 10.1016/j.matcom.2025.02.009_b31
  article-title: Design, analysis, and application of fixed-time convergence fuzzy ZNN model realized by dynamic fuzzy logic system for time-varying Sylvester equation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126696
– volume: 23
  start-page: 85
  issue: 1
  year: 1978
  ident: 10.1016/j.matcom.2025.02.009_b10
  article-title: Extensions to the Bartels-Stewart algorithm for linear matrix equations
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1978.1101681
– volume: 54
  start-page: 109
  issue: 2
  year: 2005
  ident: 10.1016/j.matcom.2025.02.009_b2
  article-title: On the solution of a Sylvester equation appearing in descriptor systems control theory
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2004.07.002
– volume: 185
  start-page: 289
  year: 2021
  ident: 10.1016/j.matcom.2025.02.009_b23
  article-title: Robust zeroing neural network for fixed-time kinematic control of wheeled mobile robot in noise-polluted environment
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2020.12.030
– volume: 60
  start-page: 245
  year: 2015
  ident: 10.1016/j.matcom.2025.02.009_b14
  article-title: An implicit sequential algorithm for solving coupled Lyapunov equations of continuous-time Markovian jump systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.07.011
– volume: 383
  start-page: 380
  year: 2020
  ident: 10.1016/j.matcom.2025.02.009_b15
  article-title: Robust sequential subspace clustering via l1-norm temporal graph
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.019
– volume: 116
  start-page: 455
  issue: 7
  year: 2016
  ident: 10.1016/j.matcom.2025.02.009_b33
  article-title: Improved neural dynamics for online Sylvester equations solving
  publication-title: Inform. Process. Lett.
  doi: 10.1016/j.ipl.2016.03.004
– volume: 225
  start-page: 1
  year: 2024
  ident: 10.1016/j.matcom.2025.02.009_b27
  article-title: New activation functions and Zhangians in zeroing neural network and applications to time-varying matrix pseudoinversion
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2024.05.006
– volume: 130
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b24
  article-title: A variable-parameter ZNN with predefined-time convergence for dynamic complex-valued Lyapunov equation and its application to AOA positioning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109703
– volume: 123
  year: 2023
  ident: 10.1016/j.matcom.2025.02.009_b56
  article-title: Analytical and deep learning approaches for solving the inverse kinematic problem of a high degrees of freedom robotic arm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106301
– volume: 52
  start-page: 3539
  issue: 5
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b45
  article-title: Discrete-time advanced zeroing neurodynamic algorithm applied to future equality-constrained nonlinear optimization with various noises
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3009110
– volume: 120
  start-page: 104
  year: 2016
  ident: 10.1016/j.matcom.2025.02.009_b19
  article-title: Challenging simulation practice (failure and success) on implicit tracking control of double-integrator system via Zhang-gradient method
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2015.07.002
– volume: 18
  start-page: 3651
  issue: 6
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b4
  article-title: An arctan-type varying-parameter ZNN for solving time-varying complex Sylvester equations in finite time
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3111816
– volume: 357
  start-page: 9909
  issue: 14
  year: 2020
  ident: 10.1016/j.matcom.2025.02.009_b35
  article-title: Adaptive coefficient designs for nonlinear activation function and its application to zeroing neural network for solving time-varying Sylvester equation
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.06.029
– volume: 273
  start-page: 29
  year: 2015
  ident: 10.1016/j.matcom.2025.02.009_b41
  article-title: Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.05.027
– volume: 526
  start-page: 158
  year: 2023
  ident: 10.1016/j.matcom.2025.02.009_b26
  article-title: A predefined-time and anti-noise varying-parameter ZNN model for solving time-varying complex Stein equations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.01.008
– volume: 18
  start-page: 3193
  issue: 5
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b46
  article-title: Concise discrete ZNN controllers for end-effector tracking and obstacle avoidance of redundant manipulators
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3109426
– volume: 187
  start-page: 468
  year: 2021
  ident: 10.1016/j.matcom.2025.02.009_b22
  article-title: A mathematical study of a crop-pest natural enemy model with Z-type control
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2021.03.014
– volume: 48
  start-page: 3135
  issue: 11
  year: 2018
  ident: 10.1016/j.matcom.2025.02.009_b34
  article-title: A new varying-parameter recurrent neural-network for online solution of time-varying Sylvester equation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2760883
– volume: 29
  start-page: 24
  issue: 1
  year: 2024
  ident: 10.1016/j.matcom.2025.02.009_b54
  article-title: ANN approach for SCARA robot inverse kinematics solutions with diverse datasets and optimisers
  publication-title: Appl. Comput. Syst.
  doi: 10.2478/acss-2024-0004
– volume: 92
  start-page: 40
  year: 2013
  ident: 10.1016/j.matcom.2025.02.009_b18
  article-title: A new type of recurrent neural networks for real-time solution of Lyapunov equation with time-varying coefficient matrices
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2013.04.019
– volume: 327
  start-page: 155
  year: 2018
  ident: 10.1016/j.matcom.2025.02.009_b21
  article-title: Z-type neural-dynamics for time-varying nonlinear optimization under a linear equality constraint with robot application
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.06.017
– volume: 207
  start-page: 482
  year: 2023
  ident: 10.1016/j.matcom.2025.02.009_b25
  article-title: A noise tolerant parameter-variable zeroing neural network and its applications
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2023.01.012
– volume: 438
  start-page: 44
  year: 2021
  ident: 10.1016/j.matcom.2025.02.009_b55
  article-title: Robust model-free control for redundant robotic manipulators based on zeroing neural networks activated by nonlinear functions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.01.093
– volume: 18
  start-page: 439
  issue: 3
  year: 1967
  ident: 10.1016/j.matcom.2025.02.009_b60
  article-title: On Grönwall’s inequality
  publication-title: Proc. Amer. Math. Soc.
– ident: 10.1016/j.matcom.2025.02.009_b51
  doi: 10.1109/ICICIP53388.2021.9642177
– volume: 6
  issue: 4
  year: 2024
  ident: 10.1016/j.matcom.2025.02.009_b57
  article-title: Exploring artificial neural networks for the forward kinematics of a SCARA robotic manipulator using varied datasets and training optimizers
  publication-title: Eng. Res. Express
  doi: 10.1088/2631-8695/ad81cc
– ident: 10.1016/j.matcom.2025.02.009_b49
  doi: 10.23919/ChiCC.2019.8866594
– volume: 359
  start-page: 10849
  issue: 18
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b17
  article-title: Gradient-based neural networks for solving periodic Sylvester matrix equations
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2022.05.023
– volume: 515
  start-page: 145
  year: 2023
  ident: 10.1016/j.matcom.2025.02.009_b47
  article-title: General ELLRFS-DAZN algorithm for solving future linear equation system under various noises
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.029
– volume: 347
  start-page: 314
  year: 2019
  ident: 10.1016/j.matcom.2025.02.009_b42
  article-title: General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.08.017
– volume: 37
  start-page: 189
  issue: 2
  year: 2013
  ident: 10.1016/j.matcom.2025.02.009_b3
  article-title: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-012-9241-1
– volume: 51
  start-page: 3629
  issue: 6
  year: 2021
  ident: 10.1016/j.matcom.2025.02.009_b36
  article-title: New noise-tolerant ZNN models with predefined-time convergence for time-variant Sylvester equation solving
  publication-title: IEEE Trans. Syst. Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2019.2930646
– volume: 561
  year: 2023
  ident: 10.1016/j.matcom.2025.02.009_b48
  article-title: Continuous and discrete gradient-Zhang neuronet (GZN) with analyses for time-variant overdetermined linear equation system solving as well as mobile localization applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126883
– start-page: 1
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b30
  article-title: An efficient Takagi–Sugeno fuzzy zeroing neural network for solving time-varying Sylvester equation
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 570
  year: 2024
  ident: 10.1016/j.matcom.2025.02.009_b9
  article-title: Supervised adaptive similarity consistent latent representation hashing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.127113
– year: 2024
  ident: 10.1016/j.matcom.2025.02.009_b39
  article-title: Solving the generalized Sylvester equation with a novel fast extended neurodynamics
  publication-title: Numer. Algebra Control Optim.
  doi: 10.3934/naco.2024026
– volume: 16
  start-page: 6231
  issue: 10
  year: 2020
  ident: 10.1016/j.matcom.2025.02.009_b50
  article-title: Discrete computational neural dynamics models for solving time-dependent Sylvester equation with applications to robotics and MIMO systems
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2966544
– volume: 360
  start-page: 11995
  issue: 16
  year: 2023
  ident: 10.1016/j.matcom.2025.02.009_b59
  article-title: Discrete gradient-zeroing neural network algorithms for handling future quadratic program as well as robot arm via ten-instant formula
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2023.09.022
– volume: 359
  start-page: 8991
  issue: 16
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b7
  article-title: Developing Kaczmarz method for solving Sylvester matrix equations
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2022.09.028
– volume: 422
  start-page: 62
  year: 2021
  ident: 10.1016/j.matcom.2025.02.009_b5
  article-title: Joint image fusion and super-resolution for enhanced visualization via semi-coupled discriminative dictionary learning and advantage embedding
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.024
– volume: 17
  start-page: 5164
  issue: 8
  year: 2021
  ident: 10.1016/j.matcom.2025.02.009_b43
  article-title: New discretized zeroing neural network models for solving future system of bounded inequalities and nonlinear equations aided with general explicit linear four-step rule
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3032158
– volume: 109
  start-page: 30
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b13
  article-title: On circulant and skew-circulant splitting algorithms for (continuous) Sylvester equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2022.01.027
– volume: 239
  start-page: 406
  year: 2013
  ident: 10.1016/j.matcom.2025.02.009_b40
  article-title: Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.09.011
– start-page: 1
  year: 2022
  ident: 10.1016/j.matcom.2025.02.009_b6
  article-title: Sylvester equation induced collaborative representation learning for recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 53
  start-page: 1133
  issue: 2
  year: 2023
  ident: 10.1016/j.matcom.2025.02.009_b44
  article-title: Explicit linear left-and-right 5-step formulas with zeroing neural network for time-varying applications
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3104138
SSID ssj0007545
Score 2.4163349
Snippet The temporal-variant Sylvester equation (TVSE) occupies a significant position in applied mathematics, particularly in the realms of optimal control theory and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 475
SubjectTerms Discrete gradient-zeroing neural network
Future Sylvester equation
Left and right four-step rule
Robot arm inverse kinematics
Temporal-variant Sylvester equation
Title Discrete gradient-zeroing neural network algorithm for solving future Sylvester equation aided with left–right four-step rule as well as robot arm inverse kinematics
URI https://dx.doi.org/10.1016/j.matcom.2025.02.009
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0378-4754
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007545
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0378-4754
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007545
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0378-4754
  databaseCode: ACRLP
  dateStart: 19950501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007545
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0378-4754
  databaseCode: AIKHN
  dateStart: 19950501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007545
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0378-4754
  databaseCode: AKRWK
  dateStart: 19930201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaq7oULsMBqd1mqOXA1TWsnTo5VoSogeimVeovs2ClZ2qSkKRIcVrzDPsS-F0_C2E7EIiEOnKJEYyvyjOfH-uYzIS8lC4xkTNNI6IhyyROquMqpZpHC6Jyw0LHzf1hE8xV_tw7XPTLtemEsrLL1_d6nO2_dfhm2qzncF8VwGTCBrjVEo3MtkK6DnQt7i8Grm98wDxRwMEYUpla6a59zGC9MCi1mZIyB3zN3Jn8PT_dCzuwxedjmijDxv3NKeqZ8Qh519zBAuy2fkrvXBW5-zH5hUzsEV0O_m7rCoASWrhKnKD3YG-R2U9VF82kHmKsCmp09TgDPKwLLb9uvjjcBzBdPAA6WP1KDPauFrcmbnz9uXTGPo481RdE91MetAXkAewZon3WlqgZkvYOitIgPA58xj3W8sIdnZDV783E6p-0FDDTDSqOhmeZC6UQxpTPB47FRiY4lVmQ5T7KRESo0caCjIMYkUnJlUBGxzHgWcZMorhk7I_2yKs05gTDXIsvjnKNv5SOJZZLSMsT5gkDnQusLQrt1T_eeZyPtAGjXqddTavWUBuMU9XRBRKec9A97STEU_HPk5X-PfE4e2DcP1r0i_aY-mheYkjRq4GxuQE4mb9_PF78ATknoFg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUQXcCGlpeglHIX3ZoJYydOlhUPDc8NILGz7NiB0CGZhgxSu6j6D3xE_6tf0ms7UUFCLFhFSq6tyPf6vnR8TMgXxSKrGDM0ESahXPGMaq4LaliiMTpnLPbs_KdnyeiSH13FVzNktz8L42CVne8PPt176-7NoFvNwaQsB-cRE-haYzQ6fwQSS6B3PB4KV4Ft__qP80AJj2NEaerE-_NzHuSFWaEDjQwx8gfqzuzl-PQk5hx8IAtdsghfw_8skhlbLZH3_UUM0O3LZfJnr8Tdj-kvXDcewtXSn7apMSqB46vEKaqA9gY1vq6bsr25A0xWAe3O9RMgEIvA-Y_xgydOAPs9MICDI5A04Jq1MLZF-_f3o6_mcfS0oSg6gWY6tqDuwTUB3bOpdd2Cau6grBzkw8I3TGQ9Mez9Crk82L_YHdHuBgaaY6nR0txwoU2mmTa54OnQ6sykCkuygmf5jhU6tmlkkijFLFJxbVETqcp5nnCbaW4YWyWzVV3ZNQJxYURepAVH58p3FNZJ2qgY54siUwhj1gnt111OAtGG7BFotzLoSTo9yWgoUU_rRPTKkc8MRmIseHXkxzeP3CJzo4vTE3lyeHa8Qebdl4Dc_URm22ZqNzE_afVnb3__ALgC6as
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+gradient-zeroing+neural+network+algorithm+for+solving+future+Sylvester+equation+aided+with+left%E2%80%93right+four-step+rule+as+well+as+robot+arm+inverse+kinematics&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Guo%2C+Pengfei&rft.au=Zhang%2C+Yunong&rft.au=Yao%2C+Zheng-an&rft.date=2025-07-01&rft.issn=0378-4754&rft.volume=233&rft.spage=475&rft.epage=501&rft_id=info:doi/10.1016%2Fj.matcom.2025.02.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2025_02_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon