A survey of deep learning techniques for detecting and recognizing objects in complex environments
Object detection has been used extensively in daily life, and in computer vision, this sub-field is highly significant and challenging. The field of object detection has been transformed by deep learning. Deep learning-based methods have shown to be remarkably effective at identifying and localizing...
Saved in:
| Published in | Computer science review Vol. 54; p. 100686 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.11.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1574-0137 |
| DOI | 10.1016/j.cosrev.2024.100686 |
Cover
| Abstract | Object detection has been used extensively in daily life, and in computer vision, this sub-field is highly significant and challenging. The field of object detection has been transformed by deep learning. Deep learning-based methods have shown to be remarkably effective at identifying and localizing objects in images and video streams when it comes to object detection. Deep learning algorithms can precisely locate and localize objects inside photos and videos because of their capacity to learn complex and nonlinear patterns in data. Deep learning models may also be trained on big datasets with minimal human intervention, allowing them to rapidly improve their performance. This makes deep learning models useful for applications such as self-driving cars, recognizing faces, and healthcare diagnosis. The purpose of this study was to gain an in-depth understanding of the primary state of development for the object detection pipeline in complex environments. Initially, this study describes the benchmark datasets and analyzes the typical detection model, and then, the paper systematic approach covers both one-stage and two-stage detectors, giving a thorough overview of object detection techniques in complex environments. We also discuss the new and traditional applications of object detection. In the end, the study reviews how well various topologies perform over a range of parameters. The study has covered a total of 119 articles, of which 27% are related to one-stage detectors, 26% to two-stage detectors, 24% to supporting data related to deep learning, 14% to survey articles, 8% to the datasets covered in the study, and the remaining 1% to the book chapters. |
|---|---|
| AbstractList | Object detection has been used extensively in daily life, and in computer vision, this sub-field is highly significant and challenging. The field of object detection has been transformed by deep learning. Deep learning-based methods have shown to be remarkably effective at identifying and localizing objects in images and video streams when it comes to object detection. Deep learning algorithms can precisely locate and localize objects inside photos and videos because of their capacity to learn complex and nonlinear patterns in data. Deep learning models may also be trained on big datasets with minimal human intervention, allowing them to rapidly improve their performance. This makes deep learning models useful for applications such as self-driving cars, recognizing faces, and healthcare diagnosis. The purpose of this study was to gain an in-depth understanding of the primary state of development for the object detection pipeline in complex environments. Initially, this study describes the benchmark datasets and analyzes the typical detection model, and then, the paper systematic approach covers both one-stage and two-stage detectors, giving a thorough overview of object detection techniques in complex environments. We also discuss the new and traditional applications of object detection. In the end, the study reviews how well various topologies perform over a range of parameters. The study has covered a total of 119 articles, of which 27% are related to one-stage detectors, 26% to two-stage detectors, 24% to supporting data related to deep learning, 14% to survey articles, 8% to the datasets covered in the study, and the remaining 1% to the book chapters. |
| ArticleNumber | 100686 |
| Author | Dogra, Ashish Kumar Sharma, Vipal Sohal, Harsh |
| Author_xml | – sequence: 1 givenname: Ashish Kumar surname: Dogra fullname: Dogra, Ashish Kumar email: er.akdogra@gmail.com organization: Computer Science and Engineering/Information Technology, Jaypee University of Information Technology, Waknaghat, Solan, 173234, Himachal Pradesh, India – sequence: 2 givenname: Vipal surname: Sharma fullname: Sharma, Vipal email: vipul.sharma@juitsolan.in organization: Computer Science and Engineering/Information Technology, Jaypee University of Information Technology, Waknaghat, Solan, 173234, Himachal Pradesh, India – sequence: 3 givenname: Harsh surname: Sohal fullname: Sohal, Harsh email: harsh.sohal@juitsolan.in organization: Electronic and Communication Engineering, Jaypee University of Information Technology, Waknaghat, Solan, 173234, Himachal Pradesh, India |
| BookMark | eNp9kMtOwzAQRb0oEm3hD1j4B1LsxE7SDVJV8ZIqsYG15UzGxVFrFzuNKF-Po7BmNY-rezVzFmTmvENC7jhbccbL-24FPgYcVjnLRVqxsi5nZM5lJTLGi-qaLGLsGKsYk-WcNBsaz2HAC_WGtognekAdnHV72iN8Ovt1xkiND0lMi34UtGtpQPB7Z3_G2TddUiK1joI_ng74TdENNnh3RNfHG3Jl9CHi7V9dko-nx_ftS7Z7e37dbnYZ5FL2GbQcIDct5K1kpeEF1GtTViK1spLrNeeFro0wuqklQFmb8YMKpUathWhYsSRiyoXgY0Jg1CnYow4XxZka2ahOTWzUyEZNbJLtYbJhum2wGFQEiw6wtenJXrXe_h_wC-5xdYY |
| Cites_doi | 10.1109/CVPR.2016.91 10.3390/jcm11185342 10.1109/CVPR.2016.596 10.1109/ACCESS.2019.2939201 10.1109/CVPR.2019.00720 10.3390/s20133646 10.1109/JPROC.2023.3238524 10.1093/comjnl/bxab015 10.1109/TPAMI.2018.2823766 10.1016/j.cag.2020.09.012 10.1109/ICCV.2015.169 10.3390/diagnostics14131359 10.1109/TPAMI.2007.70738 10.1109/ICCV.2015.221 10.1162/neco.1989.1.4.541 10.1080/01431161.2021.1931537 10.3390/en13102509 10.3390/diagnostics12123138 10.1109/ICCV.2017.446 10.1016/j.engappai.2023.107801 10.1007/s11227-022-04670-6 10.1080/01431161.2021.2018146 10.1109/ACCESS.2021.3102399 10.1007/s10462-020-09825-6 10.1109/TIE.2019.2945295 10.1007/s42979-020-00125-y 10.1109/ACCESS.2020.3041951 10.1109/TPAMI.2021.3051099 10.1109/CVPR.2015.7298803 10.3390/app13084793 10.1109/CVPR.2017.106 10.1016/j.comnet.2018.02.026 10.1016/j.dsp.2022.103514 10.1109/TNNLS.2021.3072414 10.1109/TIP.2019.2955239 10.1109/CVPR.2015.7299184 10.1007/s11263-015-0816-y 10.1109/ICCV.2015.425 10.1145/3123266.3123359 10.1016/j.isprsjprs.2016.03.014 10.1109/CVPR.2013.153 10.1109/CVPRW.2014.126 10.1038/nature14539 10.1162/neco_a_00990 10.1016/j.neucom.2020.01.085 10.1109/ICCV.2015.312 10.1109/CVPR.2016.89 10.3390/s22239311 10.1016/j.bspc.2021.102726 10.1016/j.asoc.2018.05.023 10.1016/j.engappai.2022.105461 10.1023/A:1008162616689 10.1177/0278364914549607 10.3390/s23083871 10.1007/s11263-019-01247-4 10.3390/diagnostics12092115 10.1007/s10489-021-03073-z 10.1016/j.engappai.2023.106030 10.1109/CVPR.2016.90 10.3390/electronics11213551 10.3390/sym14050952 10.1109/ICCV.2017.324 10.1016/j.patcog.2021.107846 10.3390/e24040487 10.1109/TITS.2022.3145467 10.1145/2072652.2072656 10.1109/CVPR.2013.407 10.1016/j.neucom.2021.10.068 10.3928/19404921-20140820-01 10.1007/s11263-009-0275-4 10.1093/comjnl/bxac068 10.1109/CVPR.2019.01108 10.1145/3419635.3419678 10.1109/TCYB.2017.2739338 10.1109/ICCV.2017.322 10.1016/j.neucom.2022.10.039 10.1109/TPAMI.2009.167 10.1109/TMM.2021.3075566 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. |
| Copyright_xml | – notice: 2024 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cosrev.2024.100686 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_cosrev_2024_100686 S1574013724000704 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSB SSD SSV SSZ T5K UNMZH ~G- AATTM AAYWO AAYXX ABWVN ACLOT ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c255t-cd1cc2fdc2d506f13c89f6746f157599113a8f4fab85cc68f70057e5aeaa44b03 |
| IEDL.DBID | .~1 |
| ISSN | 1574-0137 |
| IngestDate | Wed Oct 01 02:43:07 EDT 2025 Wed Dec 04 16:47:48 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | One-stage detector Two-stage detector Convolutional neural networks Localization Complex environment Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c255t-cd1cc2fdc2d506f13c89f6746f157599113a8f4fab85cc68f70057e5aeaa44b03 |
| ParticipantIDs | crossref_primary_10_1016_j_cosrev_2024_100686 elsevier_sciencedirect_doi_10_1016_j_cosrev_2024_100686 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2024 2024-11-00 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer science review |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – sequence: 0 name: Elsevier Inc |
| References | Krizhevsky, Sutskever, Hinton (b3) 2012; 25 Hu, Zhao, Zhang (b94) 2020 Moritani, Otsubo, Arinaga (b105) 2018 Chu, Zhang, Yan, Zhang, Ge (b111) 2023; 23 Khan, Sohail, Zahoora, Qureshi (b37) 2020; 53 Rawat, Wang (b43) 2017; 29 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b70) 2015; 115 Yang, Khushi, Shaukat (b22) 2020 Guo, Jiao, Wang, Wang, Liu (b84) 2017; 48 Felzenszwalb, Girshick, McAllester, Ramanan (b4) 2009; 32 Triki, Karray, Ksantini (b110) 2023; 13 Ren, He, Girshick, Sun (b51) 2015; 28 Barz, Rodner, Garcia, Denzler (b115) 2018; 41 Zaidi, Ansari, Aslam, Kanwal, Asghar, Lee (b1) 2022; 126 Shaukat, Luo, Varadharajan, Hameed, Chen, Liu, Li (b8) 2020; 13 Li, Li, Luo, Wang (b33) 2020 Kaushal, Khehra, Sharma (b30) 2018; 70 Li, Yang, Qu (b97) 2019; 67 Alam, Shaukat, Mahboob, Sarwar, Iqbal, Nasir, Hameed, Luo (b14) 2022; 65 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (b58) 2016 Redmon, Farhadi (b56) 2018 J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. Cheng, Han (b101) 2016; 117 Lenz, Lee, Saxena (b6) 2015; 34 Liu, Yuan, Sun, Wang, Zheng, Tang, Shum (b67) 2010; 33 Shao, Cheng, Ma, Wang, Wang, Li (b95) 2021; 24 M. Bagheri, M. Madani, R. Sahba, A. Sahba, Real time object detection using a novel adaptive color thresholding method, in: Proceedings of the 2011 International ACM Workshop on Ubiquitous Meta User Interfaces, 2011, pp. 13–16. Dhawan, RK (b113) 2023 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (b64) 2015; 115 Fu, Liu, Ranga, Tyagi, Berg (b60) 2017 T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117–2125. Alfred Daniel, Chandru Vignesh, Muthu, Senthil Kumar, Sivaparthipan, Marin (b100) 2023 Kumar, Vekkot, Lalitha, Gupta, Govindraj, Shaukat, Alotaibi, Zakariah (b17) 2022; 22 Ma, Chen, Zhang (b98) 2021; vol. 1920 Zhang, Liu, Huo, Xu, Wang, Pan (b86) 2022; 468 Hung, Sahimi, Samma, Almohamad, Lahasan (b93) 2020; 1 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. G. Li, Y. Yu, Visual saliency based on multiscale deep features, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5455–5463. Ren, He, Girshick, Sun (b47) 2015; 28 Khushi, Shaukat, Alam, Hameed, Uddin, Luo, Yang, Reyes (b13) 2021; 9 de Mello, Tabelini, Berriel, Paixao, De Souza, Badue, Sebe, Oliveira-Santos (b26) 2021; 94 Li, Yang, Qu (b96) 2019; 67 Athira., Mithun Haridas, Supriya (b114) 2021; Vol. 1 T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2980–2988. Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the wild, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3730–3738. Zhao, Bian, Hu, Cheng, Glotin (b90) 2017 F. Wang, X. Xiang, J. Cheng, A.L. Yuille, Normface: L2 hypersphere embedding for face verification, in: Proceedings of the 25th ACM International Conference on Multimedia, 2017, pp. 1041–1049. Yeh, Lin, Kang, Huang, Lin, Chang, Wang (b120) 2021; 33 Rahman, Tan, Xue, Lu (b35) 2019; 29 Alam, Shaukat, Hameed, Khan, Sarwar, Iqbal, Luo (b21) 2021; 68 Alam, Shaukat, Khelifi, Aljuaid, Shafqat, Ahmed, Nafees, Luo (b12) 2023; 66 Gu, Si (b108) 2022; 24 Yucel, Bilge, Oguz, Ikizler-Cinbis, Duygulu, Cinbis (b85) 2018 Jiao, Zhang, Liu, Yang, Li, Feng, Qu (b27) 2019; 7 Fu, Liu, Fan, Chen, Fu, Yuan, Zhu, Luo (b73) 2023; 517 Jin, Zhang, Cen, Li, Mladenovic, Voronin (b88) 2021; 115 R. Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448. Jiao, Zhang, Liu, Yang, Li, Feng, Qu (b45) 2019; 7 Wu, Sahoo, Hoi (b77) 2020; 396 Siddique, Shaukat, Jan (b25) 2024; 14 Alsubaie, Luo, Shaukat (b18) 2024; 15 A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detectors with online hard example mining, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769. Ranjan, Castillo, Chellappa (b83) 2017 Gawande, Hajari, Golhar (b87) 2022; 52 Iftikhar, Zhang, Asim, Muthanna, Koucheryavy, Abd El-Latif (b99) 2022; 11 C. Yang, L. Zhang, H. Lu, X. Ruan, M.-H. Yang, Saliency detection via graph-based manifold ranking, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 3166–3173. Papageorgiou, Poggio (b78) 2000; 38 Chen, Liu, Tong, Jiang, Wang, Dong, Zhou (b117) 2020 M.-R. Hsieh, Y.-L. Lin, W.H. Hsu, Drone-based object counting by spatially regularized regional proposal network, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4145–4153. Shaukat, Luo, Varadharajan (b16) 2024; 131 Cao, Song, Peng, Song, Zhang, Shao, Xiao (b91) 2020; 20 Shaukat, Luo, Varadharajan (b15) 2023; 122 Li, Shang, Qin, Chen (b116) 2015 LeCun, Bengio, Hinton (b2) 2015; 521 Szegedy, Toshev, Erhan (b32) 2013; 26 Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, P. Ishwar, CDnet 2014: An expanded change detection benchmark dataset, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 387–394. Li, Peng, Yu, Zhang, Deng, Sun (b42) 2018 Chan, Vasconcelos (b72) 2008; 30 Liu, Liu, Ning, Li (b103) 2022; 43 Min, Liu, He, Han, Wei, Wang (b107) 2022; 23 Madhan, Kannan, Rani, Rani, Anguraj (b119) 2021 K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961–2969. P. Zhu, L. Wen, D. Du, X. Bian, H. Ling, Q. Hu, Q. Nie, H. Cheng, C. Liu, X. Liu, et al., Visdrone-det2018: The vision meets drone object detection in image challenge results, in: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018. Shaukat, Luo, Varadharajan (b10) 2022; 116 Shaukat, Luo, Chen, Liu (b11) 2020 Alam, Shaukat, Khan, Hameed, Almuqren, Raza, Aslam, Luo (b24) 2022; 12 Everingham, Van Gool, Williams, Winn, Zisserman (b63) 2010; 88 Yang, Long, Sangaiah, Zheng, Tong (b106) 2018; 136 Ali, Hayat, Shaukat, Alam, Hameed, Luo, Basheer, Ayadi, Ksibi (b5) 2022; 12 Murthy, Hashmi (b92) 2020 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b65) 2014 S. Yang, P. Luo, C.-C. Loy, X. Tang, Wider face: A face detection benchmark, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5525–5533. Rahman, Tan, Xue, Lu (b44) 2019; 29 B.F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother, A. Mah, A.K. Jain, Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1931–1939. Devnath, Luo, Summons, Wang, Shaukat, Hameed, Alrayes (b19) 2022; 11 LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (b57) 1989; 1 Luo, Shaukat (b7) 2022 Blaschko, Lampert (b62) 2008 Liu, Shi, Li, Zhao (b109) 2022; 14 Shaukat, Luo, Varadharajan, Hameed, Xu (b9) 2020; 8 Powers (b61) 2020 X. Zhang, R. Zhao, Y. Qiao, X. Wang, H. Li, Adacos: Adaptively scaling cosine logits for effectively learning deep face representations, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10823–10832. Zou, Chen, Shi, Guo, Ye (b38) 2023 C. Chen, A. Seff, A. Kornhauser, J. Xiao, Deepdriving: Learning affordance for direct perception in autonomous driving, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2722–2730. Zhao, Zhang, Tian, Zhuo, Zhang (b102) 2021; 42 Hadidi, Cullen, Hall, Lindquist, Buckwalter, Mathews (b31) 2014; 7 Zhang, Lu, Zhu, Wei, Wei (b112) 2023; 79 Srinivas, KS, Zakariah, Alothaibi, Shaukat, Partibane, Awal (b20) 2022; 2022 Z. Kaiyan, L. Xiang, S. Weibo, Underwater object detection using transfer learning with deep learning, in: Proceedings of the 2020 International Conference on Computers, Information Processing and Advanced Education, 2020, pp. 157–160. Liu, Ouyang, Wang, Fieguth, Chen, Liu, Pietikäinen (b39) 2020; 128 G. Ghiasi, T.-Y. Lin, Q.V. Le, Nas-fpn: Learning scalable feature pyramid architecture for object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 7036–7045. Q. Yan, L. Xu, J. Shi, J. Jia, Hierarchical saliency detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1155–1162. Y. Tian, P. Luo, X. Wang, X. Tang, Deep learning strong parts for pedestrian detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1904–1912. Wang, Lai, Fu, Shen, Ling, Yang (b29) 2021; 44 Divvala, Hoiem, Hays, Efros, Hebert (b28) 2009 Singh Chahal, Dey (b34) 2018 Zhang (10.1016/j.cosrev.2024.100686_b112) 2023; 79 Redmon (10.1016/j.cosrev.2024.100686_b56) 2018 10.1016/j.cosrev.2024.100686_b50 10.1016/j.cosrev.2024.100686_b52 Liu (10.1016/j.cosrev.2024.100686_b109) 2022; 14 Yucel (10.1016/j.cosrev.2024.100686_b85) 2018 Guo (10.1016/j.cosrev.2024.100686_b84) 2017; 48 Zhao (10.1016/j.cosrev.2024.100686_b102) 2021; 42 10.1016/j.cosrev.2024.100686_b46 Triki (10.1016/j.cosrev.2024.100686_b110) 2023; 13 10.1016/j.cosrev.2024.100686_b49 10.1016/j.cosrev.2024.100686_b48 Cheng (10.1016/j.cosrev.2024.100686_b101) 2016; 117 Ma (10.1016/j.cosrev.2024.100686_b98) 2021; vol. 1920 Zou (10.1016/j.cosrev.2024.100686_b38) 2023 Devnath (10.1016/j.cosrev.2024.100686_b19) 2022; 11 Iftikhar (10.1016/j.cosrev.2024.100686_b99) 2022; 11 10.1016/j.cosrev.2024.100686_b41 Alam (10.1016/j.cosrev.2024.100686_b12) 2023; 66 de Mello (10.1016/j.cosrev.2024.100686_b26) 2021; 94 10.1016/j.cosrev.2024.100686_b40 Dhawan (10.1016/j.cosrev.2024.100686_b113) 2023 Lin (10.1016/j.cosrev.2024.100686_b65) 2014 Liu (10.1016/j.cosrev.2024.100686_b67) 2010; 33 10.1016/j.cosrev.2024.100686_b36 Moritani (10.1016/j.cosrev.2024.100686_b105) 2018 Liu (10.1016/j.cosrev.2024.100686_b39) 2020; 128 Gawande (10.1016/j.cosrev.2024.100686_b87) 2022; 52 Li (10.1016/j.cosrev.2024.100686_b96) 2019; 67 Fu (10.1016/j.cosrev.2024.100686_b73) 2023; 517 Gu (10.1016/j.cosrev.2024.100686_b108) 2022; 24 Rawat (10.1016/j.cosrev.2024.100686_b43) 2017; 29 Siddique (10.1016/j.cosrev.2024.100686_b25) 2024; 14 Hung (10.1016/j.cosrev.2024.100686_b93) 2020; 1 10.1016/j.cosrev.2024.100686_b23 Blaschko (10.1016/j.cosrev.2024.100686_b62) 2008 Lenz (10.1016/j.cosrev.2024.100686_b6) 2015; 34 Jiao (10.1016/j.cosrev.2024.100686_b27) 2019; 7 Liu (10.1016/j.cosrev.2024.100686_b103) 2022; 43 Srinivas (10.1016/j.cosrev.2024.100686_b20) 2022; 2022 Ali (10.1016/j.cosrev.2024.100686_b5) 2022; 12 Russakovsky (10.1016/j.cosrev.2024.100686_b64) 2015; 115 LeCun (10.1016/j.cosrev.2024.100686_b2) 2015; 521 Shaukat (10.1016/j.cosrev.2024.100686_b10) 2022; 116 Alam (10.1016/j.cosrev.2024.100686_b14) 2022; 65 Chan (10.1016/j.cosrev.2024.100686_b72) 2008; 30 Shaukat (10.1016/j.cosrev.2024.100686_b11) 2020 Zhao (10.1016/j.cosrev.2024.100686_b90) 2017 Wu (10.1016/j.cosrev.2024.100686_b77) 2020; 396 Ranjan (10.1016/j.cosrev.2024.100686_b83) 2017 Chen (10.1016/j.cosrev.2024.100686_b117) 2020 Kumar (10.1016/j.cosrev.2024.100686_b17) 2022; 22 Fu (10.1016/j.cosrev.2024.100686_b60) 2017 Hu (10.1016/j.cosrev.2024.100686_b94) 2020 Athira. (10.1016/j.cosrev.2024.100686_b114) 2021; Vol. 1 Rahman (10.1016/j.cosrev.2024.100686_b44) 2019; 29 10.1016/j.cosrev.2024.100686_b89 Li (10.1016/j.cosrev.2024.100686_b33) 2020 Felzenszwalb (10.1016/j.cosrev.2024.100686_b4) 2009; 32 Ren (10.1016/j.cosrev.2024.100686_b51) 2015; 28 Alfred Daniel (10.1016/j.cosrev.2024.100686_b100) 2023 LeCun (10.1016/j.cosrev.2024.100686_b57) 1989; 1 Zhang (10.1016/j.cosrev.2024.100686_b86) 2022; 468 Li (10.1016/j.cosrev.2024.100686_b97) 2019; 67 Alsubaie (10.1016/j.cosrev.2024.100686_b18) 2024; 15 Russakovsky (10.1016/j.cosrev.2024.100686_b70) 2015; 115 Cao (10.1016/j.cosrev.2024.100686_b91) 2020; 20 Liu (10.1016/j.cosrev.2024.100686_b58) 2016 10.1016/j.cosrev.2024.100686_b81 Khan (10.1016/j.cosrev.2024.100686_b37) 2020; 53 10.1016/j.cosrev.2024.100686_b80 Shaukat (10.1016/j.cosrev.2024.100686_b15) 2023; 122 10.1016/j.cosrev.2024.100686_b82 10.1016/j.cosrev.2024.100686_b76 10.1016/j.cosrev.2024.100686_b75 Barz (10.1016/j.cosrev.2024.100686_b115) 2018; 41 Yang (10.1016/j.cosrev.2024.100686_b106) 2018; 136 10.1016/j.cosrev.2024.100686_b79 Yeh (10.1016/j.cosrev.2024.100686_b120) 2021; 33 Papageorgiou (10.1016/j.cosrev.2024.100686_b78) 2000; 38 Everingham (10.1016/j.cosrev.2024.100686_b63) 2010; 88 Zaidi (10.1016/j.cosrev.2024.100686_b1) 2022; 126 Khushi (10.1016/j.cosrev.2024.100686_b13) 2021; 9 Alam (10.1016/j.cosrev.2024.100686_b24) 2022; 12 Rahman (10.1016/j.cosrev.2024.100686_b35) 2019; 29 10.1016/j.cosrev.2024.100686_b118 Shaukat (10.1016/j.cosrev.2024.100686_b16) 2024; 131 Yang (10.1016/j.cosrev.2024.100686_b22) 2020 10.1016/j.cosrev.2024.100686_b71 10.1016/j.cosrev.2024.100686_b74 Murthy (10.1016/j.cosrev.2024.100686_b92) 2020 Shaukat (10.1016/j.cosrev.2024.100686_b8) 2020; 13 10.1016/j.cosrev.2024.100686_b66 10.1016/j.cosrev.2024.100686_b69 Divvala (10.1016/j.cosrev.2024.100686_b28) 2009 10.1016/j.cosrev.2024.100686_b68 Shaukat (10.1016/j.cosrev.2024.100686_b9) 2020; 8 Alam (10.1016/j.cosrev.2024.100686_b21) 2021; 68 Li (10.1016/j.cosrev.2024.100686_b116) 2015 Jiao (10.1016/j.cosrev.2024.100686_b45) 2019; 7 Hadidi (10.1016/j.cosrev.2024.100686_b31) 2014; 7 Min (10.1016/j.cosrev.2024.100686_b107) 2022; 23 Krizhevsky (10.1016/j.cosrev.2024.100686_b3) 2012; 25 Singh Chahal (10.1016/j.cosrev.2024.100686_b34) 2018 10.1016/j.cosrev.2024.100686_b104 Madhan (10.1016/j.cosrev.2024.100686_b119) 2021 Ren (10.1016/j.cosrev.2024.100686_b47) 2015; 28 Li (10.1016/j.cosrev.2024.100686_b42) 2018 Chu (10.1016/j.cosrev.2024.100686_b111) 2023; 23 Luo (10.1016/j.cosrev.2024.100686_b7) 2022 Wang (10.1016/j.cosrev.2024.100686_b29) 2021; 44 Shao (10.1016/j.cosrev.2024.100686_b95) 2021; 24 10.1016/j.cosrev.2024.100686_b54 Szegedy (10.1016/j.cosrev.2024.100686_b32) 2013; 26 10.1016/j.cosrev.2024.100686_b53 10.1016/j.cosrev.2024.100686_b55 Kaushal (10.1016/j.cosrev.2024.100686_b30) 2018; 70 Powers (10.1016/j.cosrev.2024.100686_b61) 2020 10.1016/j.cosrev.2024.100686_b59 Jin (10.1016/j.cosrev.2024.100686_b88) 2021; 115 |
| References_xml | – volume: 7 start-page: 128837 year: 2019 end-page: 128868 ident: b27 article-title: A survey of deep learning-based object detection publication-title: IEEE Access – volume: 14 start-page: 1359 year: 2024 ident: b25 article-title: An intelligent mechanism to detect multi-factor skin cancer publication-title: Diagnostics – volume: 7 start-page: 128837 year: 2019 end-page: 128868 ident: b45 article-title: A survey of deep learning-based object detection publication-title: IEEE Access – volume: 11 start-page: 5342 year: 2022 ident: b19 article-title: Deep ensemble learning for the automatic detection of pneumoconiosis in coal worker’s chest X-ray radiography publication-title: J. Clin. Med. – reference: B.F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother, A. Mah, A.K. Jain, Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1931–1939. – start-page: 735 year: 2017 end-page: 746 ident: b90 article-title: Pedestrian detection based on fast R-CNN and batch normalization publication-title: Intelligent Computing Theories and Application: 13th International Conference, ICIC 2017, Liverpool, UK, August 7-10, 2017, Proceedings, Part I 13 – reference: M.-R. Hsieh, Y.-L. Lin, W.H. Hsu, Drone-based object counting by spatially regularized regional proposal network, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4145–4153. – volume: 29 start-page: 2947 year: 2019 end-page: 2962 ident: b44 article-title: Notice of violation of IEEE publication principles: Recent advances in 3D object detection in the era of deep neural networks: A survey publication-title: IEEE Trans. Image Process. – volume: 9 start-page: 109960 year: 2021 end-page: 109975 ident: b13 article-title: A comparative performance analysis of data resampling methods on imbalance medical data publication-title: IEEE Access – volume: 53 start-page: 5455 year: 2020 end-page: 5516 ident: b37 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artif. Intell. Rev. – volume: 23 start-page: 3871 year: 2023 ident: b111 article-title: TRD-YOLO: a real-time, high-performance small traffic sign detection algorithm publication-title: Sensors – volume: 12 start-page: 2115 year: 2022 ident: b24 article-title: An efficient deep learning-based skin cancer classifier for an imbalanced dataset publication-title: Diagnostics – start-page: 1 year: 2020 end-page: 6 ident: b11 article-title: Cyber threat detection using machine learning techniques: A performance evaluation perspective publication-title: 2020 International Conference on Cyber Warfare and Security – volume: 23 start-page: 15794 year: 2022 end-page: 15807 ident: b107 article-title: Traffic sign recognition based on semantic scene understanding and structural traffic sign location publication-title: IEEE Trans. Intell. Transp. Syst. – reference: X. Zhang, R. Zhao, Y. Qiao, X. Wang, H. Li, Adacos: Adaptively scaling cosine logits for effectively learning deep face representations, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10823–10832. – volume: 11 start-page: 3551 year: 2022 ident: b99 article-title: Deep learning-based pedestrian detection in autonomous vehicles: Substantial issues and challenges publication-title: Electronics – volume: 48 start-page: 2402 year: 2017 end-page: 2415 ident: b84 article-title: Fuzzy sparse autoencoder framework for single image per person face recognition publication-title: IEEE Trans. Cybern. – reference: G. Ghiasi, T.-Y. Lin, Q.V. Le, Nas-fpn: Learning scalable feature pyramid architecture for object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 7036–7045. – volume: 41 start-page: 1088 year: 2018 end-page: 1101 ident: b115 article-title: Detecting regions of maximal divergence for spatio-temporal anomaly detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2018 ident: b85 article-title: Wildest faces: Face detection and recognition in violent settings – reference: P. Zhu, L. Wen, D. Du, X. Bian, H. Ling, Q. Hu, Q. Nie, H. Cheng, C. Liu, X. Liu, et al., Visdrone-det2018: The vision meets drone object detection in image challenge results, in: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018. – volume: 70 start-page: 423 year: 2018 end-page: 464 ident: b30 article-title: Soft Computing based object detection and tracking approaches: State-of-the-Art survey publication-title: Appl. Soft Comput. – start-page: 21 year: 2016 end-page: 37 ident: b58 article-title: Ssd: Single shot multibox detector publication-title: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, October 11–14, 2016, Proceedings, Part I 14 – reference: Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, P. Ishwar, CDnet 2014: An expanded change detection benchmark dataset, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 387–394. – reference: G. Li, Y. Yu, Visual saliency based on multiscale deep features, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5455–5463. – volume: 7 start-page: 200 year: 2014 end-page: 205 ident: b31 article-title: Functional magnetic resonance imaging as experienced by stroke survivors publication-title: Res. Gerontol. Nurs. – volume: 79 start-page: 2137 year: 2023 end-page: 2152 ident: b112 article-title: Traffic sign detection based on multi-scale feature extraction and cascade feature fusion publication-title: J. Supercomput. – volume: 68 year: 2021 ident: b21 article-title: A novel framework for prognostic factors identification of malignant mesothelioma through association rule mining publication-title: Biomed. Signal Process. Control – volume: 2022 year: 2022 ident: b20 article-title: Deep transfer learning approaches in performance analysis of brain tumor classification using MRI images publication-title: J. Healthc. Eng. – volume: 29 start-page: 2352 year: 2017 end-page: 2449 ident: b43 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Comput. – volume: 116 year: 2022 ident: b10 article-title: A novel method for improving the robustness of deep learning-based malware detectors against adversarial attacks publication-title: Eng. Appl. Artif. Intell. – volume: 468 start-page: 384 year: 2022 end-page: 395 ident: b86 article-title: PSNet: Perspective-sensitive convolutional network for object detection publication-title: Neurocomputing – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – start-page: 1 year: 2015 end-page: 5 ident: b116 article-title: Fast accurate fish detection and recognition of underwater images with fast r-cnn publication-title: OCEANS 2015-MTS/IEEE Washington – start-page: 1 year: 2020 end-page: 6 ident: b22 article-title: Biomarker CA125 feature engineering and class imbalance learning improves ovarian cancer prediction publication-title: 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering – start-page: 2 year: 2008 end-page: 15 ident: b62 article-title: Learning to localize objects with structured output regression publication-title: Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part I 10 – volume: 24 start-page: 487 year: 2022 ident: b108 article-title: A novel lightweight real-time traffic sign detection integration framework based on YOLOv4 publication-title: Entropy – volume: 517 start-page: 243 year: 2023 end-page: 256 ident: b73 article-title: Rethinking general underwater object detection: Datasets, challenges, and solutions publication-title: Neurocomputing – volume: 42 start-page: 5764 year: 2021 end-page: 5783 ident: b102 article-title: Multiscale object detection in high-resolution remote sensing images via rotation invariant deep features driven by channel attention publication-title: Int. J. Remote Sens. – volume: 14 start-page: 952 year: 2022 ident: b109 article-title: M-YOLO: Traffic sign detection algorithm applicable to complex scenarios publication-title: Symmetry – volume: 13 start-page: 4793 year: 2023 ident: b110 article-title: A real-time traffic sign recognition method using a new attention-based deep convolutional neural network for smart vehicles publication-title: Appl. Sci. – year: 2023 ident: b38 article-title: Object detection in 20 years: A survey publication-title: Proc. IEEE – start-page: 1 year: 2021 end-page: 17 ident: b119 article-title: A distributed submerged object detection and classification enhancement with deep learning publication-title: Distrib. Parallel Databases – reference: Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the wild, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3730–3738. – reference: Z. Kaiyan, L. Xiang, S. Weibo, Underwater object detection using transfer learning with deep learning, in: Proceedings of the 2020 International Conference on Computers, Information Processing and Advanced Education, 2020, pp. 157–160. – volume: 126 year: 2022 ident: b1 article-title: A survey of modern deep learning based object detection models publication-title: Digit. Signal Process. – reference: Q. Yan, L. Xu, J. Shi, J. Jia, Hierarchical saliency detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1155–1162. – volume: 44 start-page: 3239 year: 2021 end-page: 3259 ident: b29 article-title: Salient object detection in the deep learning era: An in-depth survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 25 year: 2012 ident: b3 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 22 start-page: 9311 year: 2022 ident: b17 article-title: Dementia detection from speech using machine learning and deep learning architectures publication-title: Sensors – year: 2017 ident: b83 article-title: L2-constrained softmax loss for discriminative face verification – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b64 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – reference: T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117–2125. – start-page: 1808 year: 2020 end-page: 1813 ident: b33 article-title: Deep domain adaptive object detection: A survey publication-title: 2020 IEEE Symposium Series on Computational Intelligence – reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–788. – volume: 30 start-page: 909 year: 2008 end-page: 926 ident: b72 article-title: Ucsd pedestrian dataset publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) – volume: 43 start-page: 270 year: 2022 end-page: 298 ident: b103 article-title: MS-CNN: multiscale recognition of building rooftops from high spatial resolution remote sensing imagery publication-title: Int. J. Remote Sens. – volume: 33 start-page: 6129 year: 2021 end-page: 6143 ident: b120 article-title: Lightweight deep neural network for joint learning of underwater object detection and color conversion publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 115 year: 2021 ident: b88 article-title: Pedestrian detection with super-resolution reconstruction for low-quality image publication-title: Pattern Recognit. – volume: 94 start-page: 76 year: 2021 end-page: 86 ident: b26 article-title: Deep traffic light detection by overlaying synthetic context on arbitrary natural images publication-title: Comput. Graph. – volume: 122 year: 2023 ident: b15 article-title: A novel deep learning-based approach for malware detection publication-title: Eng. Appl. Artif. Intell. – volume: 24 start-page: 2069 year: 2021 end-page: 2083 ident: b95 article-title: Real-time and accurate UAV pedestrian detection for social distancing monitoring in COVID-19 pandemic publication-title: IEEE Trans. Multimed. – year: 2022 ident: b7 article-title: Computational Methods for Medical and Cyber Security – year: 2020 ident: b61 article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation – volume: 66 start-page: 2169 year: 2023 end-page: 2180 ident: b12 article-title: A fuzzy inference-based decision support system for disease diagnosis publication-title: Comput. J. – start-page: 1271 year: 2009 end-page: 1278 ident: b28 article-title: An empirical study of context in object detection publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – volume: 67 start-page: 8889 year: 2019 end-page: 8899 ident: b96 article-title: Deep learning approaches on pedestrian detection in hazy weather publication-title: IEEE Trans. Ind. Electron. – year: 2017 ident: b60 article-title: Dssd: Deconvolutional single shot detector – volume: 88 start-page: 303 year: 2010 end-page: 338 ident: b63 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. – start-page: 1 year: 2020 end-page: 4 ident: b94 article-title: Application of transfer learning in infrared pedestrian detection publication-title: 2020 IEEE 5th International Conference on Image, Vision and Computing – volume: 28 year: 2015 ident: b47 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2020 end-page: 8 ident: b117 article-title: Underwater object detection using Invert Multi-Class Adaboost with deep learning publication-title: 2020 International Joint Conference on Neural Networks – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: b57 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. – start-page: 1 year: 2023 end-page: 16 ident: b113 article-title: Identification of traffic signs for advanced driving assistance systems in smart cities using deep learning publication-title: Multimedia Tools Appl. – volume: 12 start-page: 3138 year: 2022 ident: b5 article-title: A proposed framework for early prediction of schistosomiasis publication-title: Diagnostics – volume: 65 start-page: 1740 year: 2022 end-page: 1751 ident: b14 article-title: A machine learning approach for identification of malignant mesothelioma etiological factors in an imbalanced dataset publication-title: Comput. J. – reference: R. Girshick, Fast r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1440–1448. – start-page: 1 year: 2020 end-page: 5 ident: b92 article-title: Real time pedestrian detection using robust enhanced YOLOv3+ publication-title: 2020 21st International Arab Conference on Information Technology – volume: vol. 1920 year: 2021 ident: b98 article-title: Vehicle and pedestrian detection based on improved YOLOv4-tiny model publication-title: Journal of Physics: Conference Series – volume: 13 start-page: 2509 year: 2020 ident: b8 article-title: Performance comparison and current challenges of using machine learning techniques in cybersecurity publication-title: Energies – volume: 136 start-page: 95 year: 2018 end-page: 104 ident: b106 article-title: Deep detection network for real-life traffic sign in vehicular networks publication-title: Comput. Netw. – start-page: 165 year: 2018 ident: b105 article-title: Traffic sign recognition system – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b2 article-title: Deep learning publication-title: Nature – volume: 38 start-page: 15 year: 2000 end-page: 33 ident: b78 article-title: A trainable system for object detection publication-title: Int. J. Comput. Vis. – volume: 34 start-page: 705 year: 2015 end-page: 724 ident: b6 article-title: Deep learning for detecting robotic grasps publication-title: Int. J. Robot. Res. – start-page: 740 year: 2014 end-page: 755 ident: b65 article-title: Microsoft coco: Common objects in context publication-title: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 – volume: 128 start-page: 261 year: 2020 end-page: 318 ident: b39 article-title: Deep learning for generic object detection: A survey publication-title: Int. J. Comput. Vis. – year: 2018 ident: b56 article-title: Yolov3: An incremental improvement – reference: F. Wang, X. Xiang, J. Cheng, A.L. Yuille, Normface: L2 hypersphere embedding for face verification, in: Proceedings of the 25th ACM International Conference on Multimedia, 2017, pp. 1041–1049. – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b70 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 131 year: 2024 ident: b16 article-title: A novel machine learning approach for detecting first-time-appeared malware publication-title: Eng. Appl. Artif. Intell. – volume: 32 start-page: 1627 year: 2009 end-page: 1645 ident: b4 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 8 start-page: 222310 year: 2020 end-page: 222354 ident: b9 article-title: A survey on machine learning techniques for cyber security in the last decade publication-title: IEEE Access – volume: 29 start-page: 2947 year: 2019 end-page: 2962 ident: b35 article-title: Notice of violation of IEEE publication principles: Recent advances in 3D object detection in the era of deep neural networks: A survey publication-title: IEEE Trans. Image Process. – volume: 26 year: 2013 ident: b32 article-title: Deep neural networks for object detection publication-title: Adv. Neural Inf. Process. Syst. – reference: T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2980–2988. – reference: S. Yang, P. Luo, C.-C. Loy, X. Tang, Wider face: A face detection benchmark, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5525–5533. – volume: 28 year: 2015 ident: b51 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 year: 2024 ident: b18 article-title: ConvADD: Exploring a novel CNN architecture for Alzheimer’s disease detection publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 20 start-page: 3646 year: 2020 ident: b91 article-title: Pedestrian detection algorithm for intelligent vehicles in complex scenarios publication-title: Sensors – volume: Vol. 1 start-page: 40 year: 2021 end-page: 45 ident: b114 article-title: Underwater Object Detection model based on YOLOv3 architecture using Deep Neural Networks publication-title: 2021 7th International Conference on Advanced Computing and Communication Systems – volume: 52 start-page: 10398 year: 2022 end-page: 10416 ident: b87 article-title: SIRA: Scale illumination rotation affine invariant mask R-CNN for pedestrian detection publication-title: Appl. Intell. – reference: M. Bagheri, M. Madani, R. Sahba, A. Sahba, Real time object detection using a novel adaptive color thresholding method, in: Proceedings of the 2011 International ACM Workshop on Ubiquitous Meta User Interfaces, 2011, pp. 13–16. – volume: 67 start-page: 8889 year: 2019 end-page: 8899 ident: b97 article-title: Deep learning approaches on pedestrian detection in hazy weather publication-title: IEEE Trans. Ind. Electron. – reference: Y. Tian, P. Luo, X. Wang, X. Tang, Deep learning strong parts for pedestrian detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1904–1912. – reference: K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961–2969. – year: 2018 ident: b34 article-title: A survey of modern object detection literature using deep learning – year: 2018 ident: b42 article-title: Detnet: A backbone network for object detection – volume: 117 start-page: 11 year: 2016 end-page: 28 ident: b101 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. – reference: C. Yang, L. Zhang, H. Lu, X. Ruan, M.-H. Yang, Saliency detection via graph-based manifold ranking, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 3166–3173. – volume: 1 start-page: 1 year: 2020 end-page: 9 ident: b93 article-title: Faster R-CNN deep learning model for pedestrian detection from drone images publication-title: SN Comput. Sci. – start-page: 1 year: 2023 end-page: 24 ident: b100 article-title: Fully convolutional neural networks for LIDAR–camera fusion for pedestrian detection in autonomous vehicle publication-title: Multimedia Tools Appl. – volume: 396 start-page: 39 year: 2020 end-page: 64 ident: b77 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing – volume: 33 start-page: 353 year: 2010 end-page: 367 ident: b67 article-title: Learning to detect a salient object publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: C. Chen, A. Seff, A. Kornhauser, J. Xiao, Deepdriving: Learning affordance for direct perception in autonomous driving, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2722–2730. – reference: A. Shrivastava, A. Gupta, R. Girshick, Training region-based object detectors with online hard example mining, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769. – ident: 10.1016/j.cosrev.2024.100686_b52 doi: 10.1109/CVPR.2016.91 – volume: 11 start-page: 5342 issue: 18 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b19 article-title: Deep ensemble learning for the automatic detection of pneumoconiosis in coal worker’s chest X-ray radiography publication-title: J. Clin. Med. doi: 10.3390/jcm11185342 – ident: 10.1016/j.cosrev.2024.100686_b76 doi: 10.1109/CVPR.2016.596 – volume: 7 start-page: 128837 year: 2019 ident: 10.1016/j.cosrev.2024.100686_b27 article-title: A survey of deep learning-based object detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939201 – ident: 10.1016/j.cosrev.2024.100686_b54 doi: 10.1109/CVPR.2019.00720 – volume: 20 start-page: 3646 issue: 13 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b91 article-title: Pedestrian detection algorithm for intelligent vehicles in complex scenarios publication-title: Sensors doi: 10.3390/s20133646 – year: 2023 ident: 10.1016/j.cosrev.2024.100686_b38 article-title: Object detection in 20 years: A survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2023.3238524 – volume: 65 start-page: 1740 issue: 7 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b14 article-title: A machine learning approach for identification of malignant mesothelioma etiological factors in an imbalanced dataset publication-title: Comput. J. doi: 10.1093/comjnl/bxab015 – volume: 41 start-page: 1088 issue: 5 year: 2018 ident: 10.1016/j.cosrev.2024.100686_b115 article-title: Detecting regions of maximal divergence for spatio-temporal anomaly detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2823766 – volume: 94 start-page: 76 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b26 article-title: Deep traffic light detection by overlaying synthetic context on arbitrary natural images publication-title: Comput. Graph. doi: 10.1016/j.cag.2020.09.012 – ident: 10.1016/j.cosrev.2024.100686_b46 doi: 10.1109/ICCV.2015.169 – volume: 14 start-page: 1359 issue: 13 year: 2024 ident: 10.1016/j.cosrev.2024.100686_b25 article-title: An intelligent mechanism to detect multi-factor skin cancer publication-title: Diagnostics doi: 10.3390/diagnostics14131359 – volume: 30 start-page: 909 issue: 5 year: 2008 ident: 10.1016/j.cosrev.2024.100686_b72 article-title: Ucsd pedestrian dataset publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) doi: 10.1109/TPAMI.2007.70738 – ident: 10.1016/j.cosrev.2024.100686_b89 doi: 10.1109/ICCV.2015.221 – ident: 10.1016/j.cosrev.2024.100686_b41 doi: 10.1109/CVPR.2016.91 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.cosrev.2024.100686_b57 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 42 start-page: 5764 issue: 15 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b102 article-title: Multiscale object detection in high-resolution remote sensing images via rotation invariant deep features driven by channel attention publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2021.1931537 – volume: 13 start-page: 2509 issue: 10 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b8 article-title: Performance comparison and current challenges of using machine learning techniques in cybersecurity publication-title: Energies doi: 10.3390/en13102509 – start-page: 735 year: 2017 ident: 10.1016/j.cosrev.2024.100686_b90 article-title: Pedestrian detection based on fast R-CNN and batch normalization – volume: 12 start-page: 3138 issue: 12 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b5 article-title: A proposed framework for early prediction of schistosomiasis publication-title: Diagnostics doi: 10.3390/diagnostics12123138 – ident: 10.1016/j.cosrev.2024.100686_b74 doi: 10.1109/ICCV.2017.446 – volume: 131 year: 2024 ident: 10.1016/j.cosrev.2024.100686_b16 article-title: A novel machine learning approach for detecting first-time-appeared malware publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107801 – start-page: 1 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b22 article-title: Biomarker CA125 feature engineering and class imbalance learning improves ovarian cancer prediction – year: 2017 ident: 10.1016/j.cosrev.2024.100686_b83 – volume: 79 start-page: 2137 issue: 2 year: 2023 ident: 10.1016/j.cosrev.2024.100686_b112 article-title: Traffic sign detection based on multi-scale feature extraction and cascade feature fusion publication-title: J. Supercomput. doi: 10.1007/s11227-022-04670-6 – volume: 43 start-page: 270 issue: 1 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b103 article-title: MS-CNN: multiscale recognition of building rooftops from high spatial resolution remote sensing imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2021.2018146 – start-page: 1 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b119 article-title: A distributed submerged object detection and classification enhancement with deep learning publication-title: Distrib. Parallel Databases – volume: 9 start-page: 109960 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b13 article-title: A comparative performance analysis of data resampling methods on imbalance medical data publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3102399 – volume: 53 start-page: 5455 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b37 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09825-6 – volume: 67 start-page: 8889 issue: 10 year: 2019 ident: 10.1016/j.cosrev.2024.100686_b97 article-title: Deep learning approaches on pedestrian detection in hazy weather publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2945295 – volume: 1 start-page: 1 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b93 article-title: Faster R-CNN deep learning model for pedestrian detection from drone images publication-title: SN Comput. Sci. doi: 10.1007/s42979-020-00125-y – year: 2017 ident: 10.1016/j.cosrev.2024.100686_b60 – start-page: 2 year: 2008 ident: 10.1016/j.cosrev.2024.100686_b62 article-title: Learning to localize objects with structured output regression – volume: 8 start-page: 222310 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b9 article-title: A survey on machine learning techniques for cyber security in the last decade publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041951 – start-page: 1 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b117 article-title: Underwater object detection using Invert Multi-Class Adaboost with deep learning – volume: 33 start-page: 353 issue: 2 year: 2010 ident: 10.1016/j.cosrev.2024.100686_b67 article-title: Learning to detect a salient object publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 44 start-page: 3239 issue: 6 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b29 article-title: Salient object detection in the deep learning era: An in-depth survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3051099 – start-page: 1 year: 2023 ident: 10.1016/j.cosrev.2024.100686_b113 article-title: Identification of traffic signs for advanced driving assistance systems in smart cities using deep learning publication-title: Multimedia Tools Appl. – volume: 28 year: 2015 ident: 10.1016/j.cosrev.2024.100686_b51 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.cosrev.2024.100686_b80 doi: 10.1109/CVPR.2015.7298803 – volume: 13 start-page: 4793 issue: 8 year: 2023 ident: 10.1016/j.cosrev.2024.100686_b110 article-title: A real-time traffic sign recognition method using a new attention-based deep convolutional neural network for smart vehicles publication-title: Appl. Sci. doi: 10.3390/app13084793 – ident: 10.1016/j.cosrev.2024.100686_b40 doi: 10.1109/CVPR.2017.106 – volume: 136 start-page: 95 year: 2018 ident: 10.1016/j.cosrev.2024.100686_b106 article-title: Deep detection network for real-life traffic sign in vehicular networks publication-title: Comput. Netw. doi: 10.1016/j.comnet.2018.02.026 – volume: 126 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b1 article-title: A survey of modern deep learning based object detection models publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2022.103514 – volume: 33 start-page: 6129 issue: 11 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b120 article-title: Lightweight deep neural network for joint learning of underwater object detection and color conversion publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3072414 – volume: vol. 1920 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b98 article-title: Vehicle and pedestrian detection based on improved YOLOv4-tiny model – volume: 28 year: 2015 ident: 10.1016/j.cosrev.2024.100686_b47 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 29 start-page: 2947 year: 2019 ident: 10.1016/j.cosrev.2024.100686_b35 article-title: Notice of violation of IEEE publication principles: Recent advances in 3D object detection in the era of deep neural networks: A survey publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2955239 – start-page: 1271 year: 2009 ident: 10.1016/j.cosrev.2024.100686_b28 article-title: An empirical study of context in object detection – start-page: 1 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b92 article-title: Real time pedestrian detection using robust enhanced YOLOv3+ – ident: 10.1016/j.cosrev.2024.100686_b66 doi: 10.1109/CVPR.2015.7299184 – volume: 15 issue: 4 year: 2024 ident: 10.1016/j.cosrev.2024.100686_b18 article-title: ConvADD: Exploring a novel CNN architecture for Alzheimer’s disease detection publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.cosrev.2024.100686_b70 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – start-page: 1 year: 2023 ident: 10.1016/j.cosrev.2024.100686_b100 article-title: Fully convolutional neural networks for LIDAR–camera fusion for pedestrian detection in autonomous vehicle publication-title: Multimedia Tools Appl. – ident: 10.1016/j.cosrev.2024.100686_b36 doi: 10.1109/ICCV.2015.425 – ident: 10.1016/j.cosrev.2024.100686_b82 doi: 10.1145/3123266.3123359 – volume: 117 start-page: 11 year: 2016 ident: 10.1016/j.cosrev.2024.100686_b101 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.014 – ident: 10.1016/j.cosrev.2024.100686_b68 doi: 10.1109/CVPR.2013.153 – ident: 10.1016/j.cosrev.2024.100686_b71 doi: 10.1109/CVPRW.2014.126 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.cosrev.2024.100686_b2 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2018 ident: 10.1016/j.cosrev.2024.100686_b34 – volume: 29 start-page: 2352 issue: 9 year: 2017 ident: 10.1016/j.cosrev.2024.100686_b43 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Comput. doi: 10.1162/neco_a_00990 – volume: 396 start-page: 39 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b77 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.085 – ident: 10.1016/j.cosrev.2024.100686_b23 doi: 10.1109/ICCV.2015.312 – ident: 10.1016/j.cosrev.2024.100686_b55 doi: 10.1109/CVPR.2016.89 – volume: 22 start-page: 9311 issue: 23 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b17 article-title: Dementia detection from speech using machine learning and deep learning architectures publication-title: Sensors doi: 10.3390/s22239311 – year: 2020 ident: 10.1016/j.cosrev.2024.100686_b61 – year: 2018 ident: 10.1016/j.cosrev.2024.100686_b85 – ident: 10.1016/j.cosrev.2024.100686_b79 doi: 10.1109/CVPR.2015.7298803 – volume: 68 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b21 article-title: A novel framework for prognostic factors identification of malignant mesothelioma through association rule mining publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102726 – volume: 70 start-page: 423 year: 2018 ident: 10.1016/j.cosrev.2024.100686_b30 article-title: Soft Computing based object detection and tracking approaches: State-of-the-Art survey publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.023 – volume: 116 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b10 article-title: A novel method for improving the robustness of deep learning-based malware detectors against adversarial attacks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105461 – start-page: 740 year: 2014 ident: 10.1016/j.cosrev.2024.100686_b65 article-title: Microsoft coco: Common objects in context – volume: 38 start-page: 15 year: 2000 ident: 10.1016/j.cosrev.2024.100686_b78 article-title: A trainable system for object detection publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1008162616689 – year: 2018 ident: 10.1016/j.cosrev.2024.100686_b56 – volume: 34 start-page: 705 issue: 4–5 year: 2015 ident: 10.1016/j.cosrev.2024.100686_b6 article-title: Deep learning for detecting robotic grasps publication-title: Int. J. Robot. Res. doi: 10.1177/0278364914549607 – volume: 23 start-page: 3871 issue: 8 year: 2023 ident: 10.1016/j.cosrev.2024.100686_b111 article-title: TRD-YOLO: a real-time, high-performance small traffic sign detection algorithm publication-title: Sensors doi: 10.3390/s23083871 – volume: 128 start-page: 261 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b39 article-title: Deep learning for generic object detection: A survey publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01247-4 – volume: 12 start-page: 2115 issue: 9 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b24 article-title: An efficient deep learning-based skin cancer classifier for an imbalanced dataset publication-title: Diagnostics doi: 10.3390/diagnostics12092115 – volume: 52 start-page: 10398 issue: 9 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b87 article-title: SIRA: Scale illumination rotation affine invariant mask R-CNN for pedestrian detection publication-title: Appl. Intell. doi: 10.1007/s10489-021-03073-z – volume: 122 year: 2023 ident: 10.1016/j.cosrev.2024.100686_b15 article-title: A novel deep learning-based approach for malware detection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106030 – volume: Vol. 1 start-page: 40 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b114 article-title: Underwater Object Detection model based on YOLOv3 architecture using Deep Neural Networks – ident: 10.1016/j.cosrev.2024.100686_b49 doi: 10.1109/CVPR.2016.90 – start-page: 1 year: 2015 ident: 10.1016/j.cosrev.2024.100686_b116 article-title: Fast accurate fish detection and recognition of underwater images with fast r-cnn – volume: 11 start-page: 3551 issue: 21 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b99 article-title: Deep learning-based pedestrian detection in autonomous vehicles: Substantial issues and challenges publication-title: Electronics doi: 10.3390/electronics11213551 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.cosrev.2024.100686_b64 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 14 start-page: 952 issue: 5 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b109 article-title: M-YOLO: Traffic sign detection algorithm applicable to complex scenarios publication-title: Symmetry doi: 10.3390/sym14050952 – ident: 10.1016/j.cosrev.2024.100686_b53 doi: 10.1109/CVPR.2016.91 – start-page: 1 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b11 article-title: Cyber threat detection using machine learning techniques: A performance evaluation perspective – ident: 10.1016/j.cosrev.2024.100686_b59 doi: 10.1109/ICCV.2017.324 – volume: 115 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b88 article-title: Pedestrian detection with super-resolution reconstruction for low-quality image publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107846 – volume: 2022 issue: 1 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b20 article-title: Deep transfer learning approaches in performance analysis of brain tumor classification using MRI images publication-title: J. Healthc. Eng. – start-page: 165 year: 2018 ident: 10.1016/j.cosrev.2024.100686_b105 – volume: 67 start-page: 8889 issue: 10 year: 2019 ident: 10.1016/j.cosrev.2024.100686_b96 article-title: Deep learning approaches on pedestrian detection in hazy weather publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2945295 – volume: 24 start-page: 487 issue: 4 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b108 article-title: A novel lightweight real-time traffic sign detection integration framework based on YOLOv4 publication-title: Entropy doi: 10.3390/e24040487 – volume: 23 start-page: 15794 issue: 9 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b107 article-title: Traffic sign recognition based on semantic scene understanding and structural traffic sign location publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3145467 – start-page: 1808 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b33 article-title: Deep domain adaptive object detection: A survey – ident: 10.1016/j.cosrev.2024.100686_b104 doi: 10.1145/2072652.2072656 – ident: 10.1016/j.cosrev.2024.100686_b69 doi: 10.1109/CVPR.2013.407 – volume: 468 start-page: 384 year: 2022 ident: 10.1016/j.cosrev.2024.100686_b86 article-title: PSNet: Perspective-sensitive convolutional network for object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.068 – volume: 25 year: 2012 ident: 10.1016/j.cosrev.2024.100686_b3 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 start-page: 200 issue: 5 year: 2014 ident: 10.1016/j.cosrev.2024.100686_b31 article-title: Functional magnetic resonance imaging as experienced by stroke survivors publication-title: Res. Gerontol. Nurs. doi: 10.3928/19404921-20140820-01 – volume: 88 start-page: 303 year: 2010 ident: 10.1016/j.cosrev.2024.100686_b63 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – volume: 7 start-page: 128837 year: 2019 ident: 10.1016/j.cosrev.2024.100686_b45 article-title: A survey of deep learning-based object detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939201 – volume: 66 start-page: 2169 issue: 9 year: 2023 ident: 10.1016/j.cosrev.2024.100686_b12 article-title: A fuzzy inference-based decision support system for disease diagnosis publication-title: Comput. J. doi: 10.1093/comjnl/bxac068 – ident: 10.1016/j.cosrev.2024.100686_b81 doi: 10.1109/CVPR.2019.01108 – year: 2022 ident: 10.1016/j.cosrev.2024.100686_b7 – year: 2018 ident: 10.1016/j.cosrev.2024.100686_b42 – volume: 29 start-page: 2947 year: 2019 ident: 10.1016/j.cosrev.2024.100686_b44 article-title: Notice of violation of IEEE publication principles: Recent advances in 3D object detection in the era of deep neural networks: A survey publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2955239 – ident: 10.1016/j.cosrev.2024.100686_b75 – ident: 10.1016/j.cosrev.2024.100686_b118 doi: 10.1145/3419635.3419678 – ident: 10.1016/j.cosrev.2024.100686_b48 doi: 10.1109/CVPR.2017.106 – volume: 48 start-page: 2402 issue: 8 year: 2017 ident: 10.1016/j.cosrev.2024.100686_b84 article-title: Fuzzy sparse autoencoder framework for single image per person face recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2739338 – ident: 10.1016/j.cosrev.2024.100686_b50 doi: 10.1109/ICCV.2017.322 – volume: 517 start-page: 243 year: 2023 ident: 10.1016/j.cosrev.2024.100686_b73 article-title: Rethinking general underwater object detection: Datasets, challenges, and solutions publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.039 – volume: 26 year: 2013 ident: 10.1016/j.cosrev.2024.100686_b32 article-title: Deep neural networks for object detection publication-title: Adv. Neural Inf. Process. Syst. – volume: 32 start-page: 1627 issue: 9 year: 2009 ident: 10.1016/j.cosrev.2024.100686_b4 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.167 – volume: 24 start-page: 2069 year: 2021 ident: 10.1016/j.cosrev.2024.100686_b95 article-title: Real-time and accurate UAV pedestrian detection for social distancing monitoring in COVID-19 pandemic publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3075566 – start-page: 1 year: 2020 ident: 10.1016/j.cosrev.2024.100686_b94 article-title: Application of transfer learning in infrared pedestrian detection – start-page: 21 year: 2016 ident: 10.1016/j.cosrev.2024.100686_b58 article-title: Ssd: Single shot multibox detector |
| SSID | ssj0070056 |
| Score | 2.3670378 |
| SecondaryResourceType | review_article |
| Snippet | Object detection has been used extensively in daily life, and in computer vision, this sub-field is highly significant and challenging. The field of object... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 100686 |
| SubjectTerms | Classification Complex environment Convolutional neural networks Localization One-stage detector Two-stage detector |
| Title | A survey of deep learning techniques for detecting and recognizing objects in complex environments |
| URI | https://dx.doi.org/10.1016/j.cosrev.2024.100686 |
| Volume | 54 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1574-0137 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0070056 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1574-0137 databaseCode: ACRLP dateStart: 20070801 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0070056 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 1574-0137 databaseCode: .~1 dateStart: 20070801 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0070056 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 1574-0137 databaseCode: AIKHN dateStart: 20070801 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0070056 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1574-0137 databaseCode: AKRWK dateStart: 20070801 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0070056 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLUqWFh4I8qj8sAamodfGauKqlDRAajoFtmOjcqQVE2LgIFvxzePqkiIgSlxLEvRiXOv45xzD0JXMTWh0Fx6TIEkh6eBJ0nEPBUTbiWNGeWgRr4fs-GE3E3ptIX6jRYGaJV17K9iehmt6yvdGs3ufDbrPga0dJPjwIJ0ExdqghLCwcXg-mtN8-BQ67KsmcqBbRHxRj5Xcrx0XoDTS-gSFdAFGCiqf0tPGylnsI9267Ui7lW3c4BaJjtEe40PA65fyyOkerhYLd7MB84tTo2Z49oL4gWvS7QW2K1OXSf8M4AOmaW4Jg99QjtXsCFT4FmGS5a5ecebGrhjNBncPPWHXu2d4Gn3kbD0dBpoHdpUhyn1mQ0iLWLLOHGnYMnpQlwkhSVWKkG1ZsICUNxQaaQkRPnRCdrK8sycIuwrK_3YUiJNRGLuK6UjQQQV2tdMRaKNvAayZF6VyEga7thrUkGcAMRJBXEb8QbX5MejTlwU_3Pk2b9HnqMdaFUiwgu0tVyszKVbTSxVp5wuHbTdux0Nx3AcPTyPvgGj9c0f |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGWDhjShPD6yhaeJXxqqiKtB2oZW6RbZjozIkVR8IGPh2fPOoioQY2JJcWYpOnHvt5Jx7ELqNqAmE5tJjCiQ5PGl5koTMUxHhVtKIUQ5q5MGQ9cbkcUInNdSptDBAqyxzf5HT82xdXmmWaDZn02nzuUVzNzkOLEg3cckW2iY04LADu_ta8zw4NLvMm6ZyoFuEvNLP5SQvnS3A6iVwlQr4Agwk1b_Vp42a0z1Ae-ViEbeL-zlENZMeof3KiAGX7-UxUm28WM3fzAfOLE6MmeHSDOIFr3u0LrBbnrog_DSAgEwTXLKHPuE8U_BFZoGnKc5p5uYdb4rgTtC4ez_q9LzSPMHTbpew9HTS0jqwiQ4S6jPbCrWILOPEHYInp8txoRSWWKkE1ZoJC0BxQ6WRkhDlh6eonmapOUPYV1b6kaVEmpBE3FdKh4IIKrSvmQpFA3kVZPGs6JERV-Sx17iAOAaI4wLiBuIVrvGPZx27NP7nyPN_j7xBO73RoB_3H4ZPF2gXIoWi8BLVl_OVuXJLi6W6zqfONyplzRE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+deep+learning+techniques+for+detecting+and+recognizing+objects+in+complex+environments&rft.jtitle=Computer+science+review&rft.au=Dogra%2C+Ashish+Kumar&rft.au=Sharma%2C+Vipal&rft.au=Sohal%2C+Harsh&rft.date=2024-11-01&rft.pub=Elsevier+Inc&rft.issn=1574-0137&rft.volume=54&rft_id=info:doi/10.1016%2Fj.cosrev.2024.100686&rft.externalDocID=S1574013724000704 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-0137&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-0137&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-0137&client=summon |