GCD-JFSE: Graph-based class-domain knowledge joint feature selection and ensemble learning for EEG-based emotion recognition
Feature selection has demonstrated strong performance in emotion recognition using intrasubject electroencephalography (EEG) data. However, it faces challenges due to individual differences and the nonstationarity of EEG signals in cross-subject and cross-session emotion recognition. Currently, rese...
Saved in:
Published in | Knowledge-based systems Vol. 309; p. 112770 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
30.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0950-7051 |
DOI | 10.1016/j.knosys.2024.112770 |
Cover
Abstract | Feature selection has demonstrated strong performance in emotion recognition using intrasubject electroencephalography (EEG) data. However, it faces challenges due to individual differences and the nonstationarity of EEG signals in cross-subject and cross-session emotion recognition. Currently, research on incorporating domain information into feature selection for cross-domain (subject or session) emotion recognition remains limited. To address this issue, we propose a graph-based class-domain knowledge joint feature selection and ensemble learning approach. Firstly, an undirected, fully connected weighted graph is constructed to capture the relationship between features. Then, some metrics such as domain scatter, domain correlation, and domain standard deviation are introduced to guide feature selection. Subsequently, soft voting ensemble learning is employed to enhance recognition performance. To validate the effectiveness of our method, we conduct experiments on public datasets (SEED, SEED_IV, DREAMER), achieving accuracies of 78.67% on SEED, 58.98% on SEED_IV, 61.11% of valence and 72.46% of arousal on DREAMER in a cross-subject scenario. In the cross-session scenario, we obtain 87.11% on SEED and 60.74% on SEED_IV. The proposed method outperforms state-of-the-art approaches. This study not only expands the application of feature selection in emotion recognition but also provides a potential strategy to enhance the performance of real-world EEG-based emotion recognition applications. |
---|---|
AbstractList | Feature selection has demonstrated strong performance in emotion recognition using intrasubject electroencephalography (EEG) data. However, it faces challenges due to individual differences and the nonstationarity of EEG signals in cross-subject and cross-session emotion recognition. Currently, research on incorporating domain information into feature selection for cross-domain (subject or session) emotion recognition remains limited. To address this issue, we propose a graph-based class-domain knowledge joint feature selection and ensemble learning approach. Firstly, an undirected, fully connected weighted graph is constructed to capture the relationship between features. Then, some metrics such as domain scatter, domain correlation, and domain standard deviation are introduced to guide feature selection. Subsequently, soft voting ensemble learning is employed to enhance recognition performance. To validate the effectiveness of our method, we conduct experiments on public datasets (SEED, SEED_IV, DREAMER), achieving accuracies of 78.67% on SEED, 58.98% on SEED_IV, 61.11% of valence and 72.46% of arousal on DREAMER in a cross-subject scenario. In the cross-session scenario, we obtain 87.11% on SEED and 60.74% on SEED_IV. The proposed method outperforms state-of-the-art approaches. This study not only expands the application of feature selection in emotion recognition but also provides a potential strategy to enhance the performance of real-world EEG-based emotion recognition applications. |
ArticleNumber | 112770 |
Author | Xie, Weichu Li, Xiaowei Tian, Fuze Qian, Kun Luo, Gang Hu, Bin Han, Yutong Sun, Shuting Zhu, Lixian |
Author_xml | – sequence: 1 givenname: Gang surname: Luo fullname: Luo, Gang organization: School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China – sequence: 2 givenname: Yutong surname: Han fullname: Han, Yutong organization: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, China – sequence: 3 givenname: Weichu surname: Xie fullname: Xie, Weichu organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China – sequence: 4 givenname: Fuze orcidid: 0000-0001-6734-0585 surname: Tian fullname: Tian, Fuze organization: School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China – sequence: 5 givenname: Lixian surname: Zhu fullname: Zhu, Lixian email: zhulx17@bit.edu.cn organization: School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China – sequence: 6 givenname: Kun orcidid: 0000-0002-1918-6453 surname: Qian fullname: Qian, Kun organization: School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China – sequence: 7 givenname: Xiaowei surname: Li fullname: Li, Xiaowei organization: School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China – sequence: 8 givenname: Shuting surname: Sun fullname: Sun, Shuting email: sst@lzu.edu.cn organization: School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China – sequence: 9 givenname: Bin orcidid: 0000-0003-3514-5413 surname: Hu fullname: Hu, Bin email: bh@bit.edu.cn organization: School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China |
BookMark | eNp9kMtOwzAQRb0oEm3hD1j4BxLsvJywQEKlDaBKLIC15djj4pDYlR1Alfh4UtI1q7mLuUczZ4Fm1llA6IqSmBJaXLfxh3XhEOKEJFlMacIYmaE5qXISMZLTc7QIoSWEJAkt5-inXt1HT5uX9Q2uvdi_R40IoLDsRAiRcr0wFo_A7w7UDnDrjB2wBjF8esABOpCDcRYLqzDYAH3TAe5AeGvsDmvn8Xpdn5DQu79dD9LtrDnmC3SmRRfg8jSX6G2zfl09RNvn-nF1t41kkudDJPOqFFmZi6IUmqmsoVSxNFVFUpZUU5WmeUoKxmRVEMHKqhC0kkJLkRdalw1NlyibuNK7EDxovvemF_7AKeFHa7zlkzV-tMYna2PtdqrBeNuXAc-DNGAlKDM-MXDlzP-AX6affP8 |
Cites_doi | 10.1109/TAFFC.2017.2714671 10.1109/TCYB.2018.2797176 10.3389/fphys.2024.1425582 10.1080/026999398379574 10.1080/00220973.1993.9943832 10.1016/j.neucom.2021.02.048 10.1002/int.22295 10.1016/j.bspc.2024.106912 10.1109/ACCESS.2024.3413136 10.1109/TAFFC.2022.3179717 10.1109/CVPRW63382.2024.00474 10.1109/TPAMI.2020.3002843 10.1109/TBME.2010.2048568 10.1109/TPAMI.2023.3263585 10.1109/JSEN.2022.3168572 10.1109/TAFFC.2017.2712143 10.1109/JBHI.2017.2688239 10.1109/JBHI.2022.3198688 10.1109/JBHI.2022.3225330 10.1016/j.bspc.2021.102979 10.1016/j.knosys.2023.110372 10.1109/TKDE.2008.239 10.1016/j.ins.2022.07.121 10.1016/j.bspc.2021.102648 10.1109/TPAMI.2016.2547397 10.1016/j.inffus.2020.01.011 10.1109/TGRS.2008.2011983 10.1007/s11042-023-14489-9 10.1109/TAMD.2015.2431497 10.1016/j.compbiomed.2023.106857 10.1109/ACCESS.2019.2891579 10.1109/JSEN.2022.3144317 10.1016/j.jad.2023.08.087 10.3390/math9212799 10.1016/j.eswa.2023.121419 10.1109/TNN.2010.2091281 10.1016/j.knosys.2023.110756 10.3390/s19071738 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.knosys.2024.112770 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_knosys_2024_112770 S0950705124014047 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
ID | FETCH-LOGICAL-c255t-c598a485a68af7d4b11d733d62881f1d33530677c960a7896a19cafca56ff8b13 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Wed Oct 01 00:22:48 EDT 2025 Sat Feb 01 16:08:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Affective computing Cross-domain emotion recognition Feature selection EEG |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c255t-c598a485a68af7d4b11d733d62881f1d33530677c960a7896a19cafca56ff8b13 |
ORCID | 0000-0002-1918-6453 0000-0003-3514-5413 0000-0001-6734-0585 |
ParticipantIDs | crossref_primary_10_1016_j_knosys_2024_112770 elsevier_sciencedirect_doi_10_1016_j_knosys_2024_112770 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-30 |
PublicationDateYYYYMMDD | 2025-01-30 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Yin, Chen, Nichele (b11) 2020; 59 Lin, Wang, Jung, Wu, Jeng, Duann, Chen (b31) 2010; 57 Cui, Liu, Zhang, Chen, Liu, Chen (b48) 2022; 14 Feldmann, Zsigo, Mörtl, Bartling, Wachinger, Oort, Schulte-Körne, Greimel (b4) 2023; 340 W.-L. Zheng, B.-L. Lu, Personalizing EEG-based affective models with transfer learning, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016, pp. 2732–2738. Sarma, Barma (b19) 2019 Tyagi, Mittal (b61) 2020 Zheng, Liu, Zhang, Cui, Yu (b17) 2021; 36 Kamble, Sengupta (b12) 2023; 82 Zheng, Zhu, Lu (b34) 2017; 10 Wei, Hu, Yang, Luu, Dong (b7) 2024; 237 Shi, Jiao, Lu (b32) 2013 Tzeng, Hoffman, Zhang, Saenko, Darrell (b42) 2014 Li, Yuan, Ouyang, Li, Pan, Guo, Guo (b37) 2024 Li, Ouyang, Yuan, Li, Guo, Qu, Green (b24) 2022; 22 Zheng, Liu, Lu, Lu, Cichocki (b28) 2018; 49 Bower (b59) 2014 Zhou, Zhang, Fu, Zhang, Li, Huang, Dong, Li, Yang, Liang (b52) 2022 Swain, Maji, Khan, El Saddik, Gueaieb (b1) 2023 Roffo (b54) 2016 Yu, He, Li, Dou, Tan, Wu, Chen (b58) 2025; 100 Yazdani, Ebrahimi, Hoffmann (b36) 2009 Chu, De la Torre, Cohn (b45) 2016; 39 Javidan, Yazdchi, Baharlouei, Mahnam (b18) 2021; 70 Wang, Zhang, Xu, Chen, Xing, Chen (b15) 2018 Huang, Wang, Li, Wu (b53) 2024 Song, Zheng, Lu, Zong, Zhang, Cui (b46) 2019; 7 Katsigiannis, Ramzan (b29) 2017; 22 Wagner, Triantafyllopoulos, Wierstorf, Schmitt, Burkhardt, Eyben, Schuller (b8) 2023; 45 Liu, Wang, An, Zhao, Zhao, Zhang (b2) 2023; 265 She, Zhang, Fang, Ma, Zhang (b57) 2023; 72 He, Garcia (b60) 2009; 21 Li, Fu, Li, Shi, Zheng (b16) 2021; 447 Veerabhadrappa, Hettiarachchi, Algumaei, Bhatti (b25) 2021 Zimmerman, Zumbo (b55) 1993; 62 Kwon (b64) 2021; 167 Wang, Chen, Imamura, Tapia, Somers, Zee, Lim (b21) 2024; 15 Alarcao, Fonseca (b40) 2017; 10 Shi, Chen, Li, Zhang (b51) 2024 Karnati, Seal, Jaworek-Korjakowska, Krejcar (b6) 2023; 72 Bhardwaj, Gupta, Jain, Rani, Yadav (b38) 2015 Li, Chen (b10) 2006 Pan, Tsang, Kwok, Yang (b41) 2010; 22 Feng, Cheng, Zhao, Deng, Zhang (b14) 2022; 26 Bălan, Moise, Moldoveanu, Leordeanu, Moldoveanu (b20) 2019; 19 Khan, Saddik, Deriche, Gueaieb (b62) 2024; 12 Roffo, Melzi, Castellani, Vinciarelli, Cristani (b22) 2020; 43 Sun, Saenko (b43) 2016 Li, Chen, Chen, Zhang (b3) 2024 Li, Ren, Ge, Zhao, Yang, Shi, Zhang, Hu (b23) 2023; 276 Duan, Zhu, Lu (b33) 2013 Taha (b35) 2021; 9 Subasi, Tuncer, Dogan, Tanko, Sakoglu (b26) 2021; 68 Zheng, Lu (b27) 2015; 7 Chu, Huang, Jian, Cheng (b5) 2017; 16 Shah, Albishri, Kang, Lee, Sponheim, Shim (b13) 2023; 158 Zitouni, Park, Lee, Hadjileontiadis, Khandoker (b9) 2023; 27 Bruzzone, Persello (b39) 2009; 47 Barrett (b30) 1998; 12 Long, Cao, Wang, Jordan (b44) 2015 Anuragi, Sisodia, Pachori (b56) 2022; 610 Wang, Wang, Hu, Yin, Song (b50) 2022; 22 Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, March, Lempitsky (b47) 2016; 17 M. Khan, J. Ahmad, A. El Saddik, W. Gueaieb, G. De Masi, F. Karray, Drone-HAT: Hybrid Attention Transformer for Complex Action Recognition in Drone Surveillance Videos, in: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2024, pp. 4713–4722. Zheng (10.1016/j.knosys.2024.112770_b17) 2021; 36 Veerabhadrappa (10.1016/j.knosys.2024.112770_b25) 2021 Yazdani (10.1016/j.knosys.2024.112770_b36) 2009 Barrett (10.1016/j.knosys.2024.112770_b30) 1998; 12 Taha (10.1016/j.knosys.2024.112770_b35) 2021; 9 10.1016/j.knosys.2024.112770_b49 Zhang (10.1016/j.knosys.2024.112770_b11) 2020; 59 Song (10.1016/j.knosys.2024.112770_b46) 2019; 7 Li (10.1016/j.knosys.2024.112770_b37) 2024 Huang (10.1016/j.knosys.2024.112770_b53) 2024 Zheng (10.1016/j.knosys.2024.112770_b28) 2018; 49 Bruzzone (10.1016/j.knosys.2024.112770_b39) 2009; 47 Li (10.1016/j.knosys.2024.112770_b3) 2024 Anuragi (10.1016/j.knosys.2024.112770_b56) 2022; 610 Pan (10.1016/j.knosys.2024.112770_b41) 2010; 22 Tzeng (10.1016/j.knosys.2024.112770_b42) 2014 Karnati (10.1016/j.knosys.2024.112770_b6) 2023; 72 Bălan (10.1016/j.knosys.2024.112770_b20) 2019; 19 Ganin (10.1016/j.knosys.2024.112770_b47) 2016; 17 Khan (10.1016/j.knosys.2024.112770_b62) 2024; 12 Javidan (10.1016/j.knosys.2024.112770_b18) 2021; 70 Sun (10.1016/j.knosys.2024.112770_b43) 2016 Zitouni (10.1016/j.knosys.2024.112770_b9) 2023; 27 Cui (10.1016/j.knosys.2024.112770_b48) 2022; 14 Swain (10.1016/j.knosys.2024.112770_b1) 2023 Feldmann (10.1016/j.knosys.2024.112770_b4) 2023; 340 Roffo (10.1016/j.knosys.2024.112770_b54) 2016 Yu (10.1016/j.knosys.2024.112770_b58) 2025; 100 Lin (10.1016/j.knosys.2024.112770_b31) 2010; 57 Wang (10.1016/j.knosys.2024.112770_b15) 2018 Li (10.1016/j.knosys.2024.112770_b24) 2022; 22 Zheng (10.1016/j.knosys.2024.112770_b34) 2017; 10 Bower (10.1016/j.knosys.2024.112770_b59) 2014 Wang (10.1016/j.knosys.2024.112770_b21) 2024; 15 Li (10.1016/j.knosys.2024.112770_b10) 2006 He (10.1016/j.knosys.2024.112770_b60) 2009; 21 Katsigiannis (10.1016/j.knosys.2024.112770_b29) 2017; 22 Li (10.1016/j.knosys.2024.112770_b23) 2023; 276 Chu (10.1016/j.knosys.2024.112770_b5) 2017; 16 Bhardwaj (10.1016/j.knosys.2024.112770_b38) 2015 Wagner (10.1016/j.knosys.2024.112770_b8) 2023; 45 Zheng (10.1016/j.knosys.2024.112770_b27) 2015; 7 Tyagi (10.1016/j.knosys.2024.112770_b61) 2020 Wei (10.1016/j.knosys.2024.112770_b7) 2024; 237 Kwon (10.1016/j.knosys.2024.112770_b64) 2021; 167 Kamble (10.1016/j.knosys.2024.112770_b12) 2023; 82 Zimmerman (10.1016/j.knosys.2024.112770_b55) 1993; 62 Li (10.1016/j.knosys.2024.112770_b16) 2021; 447 Chu (10.1016/j.knosys.2024.112770_b45) 2016; 39 10.1016/j.knosys.2024.112770_b63 Sarma (10.1016/j.knosys.2024.112770_b19) 2019 Wang (10.1016/j.knosys.2024.112770_b50) 2022; 22 Feng (10.1016/j.knosys.2024.112770_b14) 2022; 26 Long (10.1016/j.knosys.2024.112770_b44) 2015 She (10.1016/j.knosys.2024.112770_b57) 2023; 72 Duan (10.1016/j.knosys.2024.112770_b33) 2013 Shi (10.1016/j.knosys.2024.112770_b51) 2024 Liu (10.1016/j.knosys.2024.112770_b2) 2023; 265 Roffo (10.1016/j.knosys.2024.112770_b22) 2020; 43 Shah (10.1016/j.knosys.2024.112770_b13) 2023; 158 Alarcao (10.1016/j.knosys.2024.112770_b40) 2017; 10 Subasi (10.1016/j.knosys.2024.112770_b26) 2021; 68 Zhou (10.1016/j.knosys.2024.112770_b52) 2022 Shi (10.1016/j.knosys.2024.112770_b32) 2013 |
References_xml | – volume: 237 year: 2024 ident: b7 article-title: Learning facial expression and body gesture visual information for video emotion recognition publication-title: Expert Syst. Appl. – volume: 10 start-page: 374 year: 2017 end-page: 393 ident: b40 article-title: Emotions recognition using EEG signals: A survey publication-title: IEEE Trans. Affect. Comput. – year: 2024 ident: b37 article-title: Emotion recognition based on selected EEG signals by common spatial pattern publication-title: IEEE Sens. J. – volume: 72 start-page: 1 year: 2023 end-page: 12 ident: b57 article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition publication-title: IEEE Trans. Instrum. Meas. – start-page: 1 year: 2024 end-page: 12 ident: b3 article-title: Gusa: Graph-based unsupervised subdomain adaptation for cross-subject EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 22 start-page: 199 year: 2010 end-page: 210 ident: b41 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. – volume: 276 year: 2023 ident: b23 article-title: MTLFuseNet: a novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning publication-title: Knowl.-Based Syst. – start-page: 437 year: 2006 end-page: 446 ident: b10 article-title: Emotion recognition using physiological signals publication-title: International Conference on Artificial Reality and Telexistence – volume: 14 start-page: 2740 year: 2022 end-page: 2750 ident: b48 article-title: EEG-based subject-independent emotion recognition using gated recurrent unit and minimum class confusion publication-title: IEEE Trans. Affect. Comput. – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: b60 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 443 year: 2016 end-page: 450 ident: b43 article-title: Deep coral: Correlation alignment for deep domain adaptation publication-title: Computer Vision–ECCV 2016 Workshops: Amsterdam, the Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14 – start-page: 1 year: 2024 end-page: 13 ident: b53 article-title: FBSTCNet: A spatio-temporal convolutional network integrating power and connectivity features for EEG-based emotion decoding publication-title: IEEE Trans. Affect. Comput. – volume: 68 year: 2021 ident: b26 article-title: EEG-based emotion recognition using tunable q wavelet transform and rotation forest ensemble classifier publication-title: Biomed. Signal Process. Control – start-page: 3 year: 2014 end-page: 31 ident: b59 article-title: How might emotions affect learning? publication-title: The Handbook of Emotion and Memory – volume: 265 year: 2023 ident: b2 article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network publication-title: Knowl.-Based Syst. – year: 2022 ident: b52 article-title: PR-PL: A novel transfer learning framework with prototypical representation based pairwise learning for EEG-based emotion recognition – volume: 22 start-page: 4359 year: 2022 end-page: 4368 ident: b50 article-title: Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model publication-title: IEEE Sens. J. – volume: 59 start-page: 103 year: 2020 end-page: 126 ident: b11 article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review publication-title: Inf. Fusion – volume: 167 year: 2021 ident: b64 article-title: MLT-DNet: Speech emotion recognition using 1D dilated CNN based on multi-learning trick approach publication-title: Expert Syst. Appl. – volume: 39 start-page: 529 year: 2016 end-page: 545 ident: b45 article-title: Selective transfer machine for personalized facial expression analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 327 year: 2009 end-page: 330 ident: b36 article-title: Classification of EEG signals using Dempster Shafer theory and a k-nearest neighbor classifier publication-title: 2009 4th International IEEE/EMBS Conference on Neural Engineering – volume: 15 year: 2024 ident: b21 article-title: A novel methodology for emotion recognition through 62-lead EEG signals: multilevel heterogeneous recurrence analysis publication-title: Front. Physiol. – volume: 158 year: 2023 ident: b13 article-title: ETSNet: A deep neural network for EEG-based temporal–spatial pattern recognition in psychiatric disorder and emotional distress classification publication-title: Comput. Biol. Med. – volume: 22 start-page: 98 year: 2017 end-page: 107 ident: b29 article-title: DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices publication-title: IEEE J. Biomed. Health Inform. – start-page: 72 year: 2019 end-page: 77 ident: b19 article-title: Emotion analysis based on LASSO publication-title: 2019 IEEE Region 10 Symposium – volume: 19 year: 2019 ident: b20 article-title: Fear level classification based on emotional dimensions and machine learning techniques publication-title: Sensors – volume: 70 year: 2021 ident: b18 article-title: Feature and channel selection for designing a regression-based continuous-variable emotion recognition system with two EEG channels publication-title: Biomed. Signal Process. Control – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b27 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 22 start-page: 10751 year: 2022 end-page: 10763 ident: b24 article-title: An EEG data processing approach for emotion recognition publication-title: IEEE Sens. J. – volume: 49 start-page: 1110 year: 2018 end-page: 1122 ident: b28 article-title: Emotionmeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. – volume: 10 start-page: 417 year: 2017 end-page: 429 ident: b34 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans. Affect. Comput. – volume: 36 start-page: 152 year: 2021 end-page: 176 ident: b17 article-title: A portable HCI system-oriented EEG feature extraction and channel selection for emotion recognition publication-title: Int. J. Intell. Syst. – volume: 47 start-page: 2142 year: 2009 end-page: 2154 ident: b39 article-title: A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 26 start-page: 5406 year: 2022 end-page: 5417 ident: b14 article-title: EEG-based emotion recognition using spatial-temporal graph convolutional LSTM with attention mechanism publication-title: IEEE J. Biomed. Health Inf. – volume: 7 start-page: 12177 year: 2019 end-page: 12191 ident: b46 article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition publication-title: IEEE Access – volume: 43 start-page: 4396 year: 2020 end-page: 4410 ident: b22 article-title: Infinite feature selection: a graph-based feature filtering approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 12 start-page: 86220 year: 2024 end-page: 86231 ident: b62 article-title: STT-Net: Simplified temporal transformer for emotion recognition publication-title: IEEE Access – volume: 610 start-page: 508 year: 2022 end-page: 524 ident: b56 article-title: EEG-based cross-subject emotion recognition using Fourier-bessel series expansion based empirical wavelet transform and NCA feature selection method publication-title: Inform. Sci. – start-page: 6627 year: 2013 end-page: 6630 ident: b32 article-title: Differential entropy feature for EEG-based vigilance estimation publication-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – start-page: 1 year: 2024 end-page: 15 ident: b51 article-title: Functional connectivity patterns learning for EEG-based emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – reference: W.-L. Zheng, B.-L. Lu, Personalizing EEG-based affective models with transfer learning, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016, pp. 2732–2738. – start-page: 1240 year: 2018 end-page: 1244 ident: b15 article-title: EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system publication-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine – volume: 17 start-page: 1 year: 2016 end-page: 35 ident: b47 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – year: 2016 ident: b54 article-title: Feature selection library (MATLAB toolbox) – volume: 72 start-page: 1 year: 2023 end-page: 16 ident: b6 article-title: Facial expression recognition in-the-wild using blended feature attention network publication-title: IEEE Trans. Instrum. Meas. – start-page: 1953 year: 2021 end-page: 1958 ident: b25 article-title: A deep convolutional neural network model for classification of emotions from electroencephalography data publication-title: 2021 IEEE International Conference on Systems, Man, and Cybernetics – volume: 62 start-page: 75 year: 1993 end-page: 86 ident: b55 article-title: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks publication-title: J. Exp. Educ. – volume: 16 start-page: 1 year: 2017 end-page: 9 ident: b5 article-title: Analysis of EEG entropy during visual evocation of emotion in schizophrenia publication-title: Ann. Gener. Psychiatry – start-page: 81 year: 2013 end-page: 84 ident: b33 article-title: Differential entropy feature for EEG-based emotion classification publication-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering – volume: 9 start-page: 2799 year: 2021 ident: b35 article-title: Intelligent ensemble learning approach for phishing website detection based on weighted soft voting publication-title: Mathematics – volume: 82 start-page: 27269 year: 2023 end-page: 27304 ident: b12 article-title: A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signals publication-title: Multimedia Tools Appl. – volume: 340 start-page: 899 year: 2023 end-page: 906 ident: b4 article-title: Emotion regulation in adolescents with major depression – evidence from a combined EEG and eye-tracking study publication-title: J. Affect. Disord. – volume: 12 start-page: 579 year: 1998 end-page: 599 ident: b30 article-title: Discrete emotions or dimensions? The role of valence focus and arousal focus publication-title: Cogn. Emot. – start-page: 97 year: 2015 end-page: 105 ident: b44 article-title: Learning transferable features with deep adaptation networks publication-title: International Conference on Machine Learning – start-page: 209 year: 2020 end-page: 221 ident: b61 article-title: Sampling approaches for imbalanced data classification problem in machine learning publication-title: Proceedings of ICRIC 2019: Recent Innovations in Computing – volume: 45 start-page: 10745 year: 2023 end-page: 10759 ident: b8 article-title: Dawn of the transformer era in speech emotion recognition: Closing the valence gap publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2014 ident: b42 article-title: Deep domain confusion: Maximizing for domain invariance – start-page: 180 year: 2015 end-page: 185 ident: b38 article-title: Classification of human emotions from EEG signals using SVM and lda classifiers publication-title: 2015 2nd International Conference on Signal Processing and Integrated Networks – volume: 447 start-page: 92 year: 2021 end-page: 101 ident: b16 article-title: A novel transferability attention neural network model for EEG emotion recognition publication-title: Neurocomputing – volume: 27 start-page: 912 year: 2023 end-page: 923 ident: b9 article-title: LSTM-modeling of emotion recognition using peripheral physiological signals in naturalistic conversations publication-title: IEEE J. Biomed. Health Inf. – volume: 57 start-page: 1798 year: 2010 end-page: 1806 ident: b31 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. – volume: 100 year: 2025 ident: b58 article-title: FMLAN: A novel framework for cross-subject and cross-session EEG emotion recognition publication-title: Biomed. Signal Process. Control – reference: M. Khan, J. Ahmad, A. El Saddik, W. Gueaieb, G. De Masi, F. Karray, Drone-HAT: Hybrid Attention Transformer for Complex Action Recognition in Drone Surveillance Videos, in: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2024, pp. 4713–4722. – start-page: 1 year: 2023 end-page: 5 ident: b1 article-title: Multilevel feature representation for hybrid transformers-based emotion recognition publication-title: 2023 5th International Conference on Bio-Engineering for Smart Technologies (BioSMART) – volume: 10 start-page: 374 issue: 3 year: 2017 ident: 10.1016/j.knosys.2024.112770_b40 article-title: Emotions recognition using EEG signals: A survey publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2714671 – ident: 10.1016/j.knosys.2024.112770_b49 – volume: 49 start-page: 1110 issue: 3 year: 2018 ident: 10.1016/j.knosys.2024.112770_b28 article-title: Emotionmeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797176 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.knosys.2024.112770_b57 article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition publication-title: IEEE Trans. Instrum. Meas. – volume: 167 year: 2021 ident: 10.1016/j.knosys.2024.112770_b64 article-title: MLT-DNet: Speech emotion recognition using 1D dilated CNN based on multi-learning trick approach publication-title: Expert Syst. Appl. – start-page: 81 year: 2013 ident: 10.1016/j.knosys.2024.112770_b33 article-title: Differential entropy feature for EEG-based emotion classification – volume: 15 year: 2024 ident: 10.1016/j.knosys.2024.112770_b21 article-title: A novel methodology for emotion recognition through 62-lead EEG signals: multilevel heterogeneous recurrence analysis publication-title: Front. Physiol. doi: 10.3389/fphys.2024.1425582 – year: 2016 ident: 10.1016/j.knosys.2024.112770_b54 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.knosys.2024.112770_b6 article-title: Facial expression recognition in-the-wild using blended feature attention network publication-title: IEEE Trans. Instrum. Meas. – start-page: 6627 year: 2013 ident: 10.1016/j.knosys.2024.112770_b32 article-title: Differential entropy feature for EEG-based vigilance estimation – volume: 12 start-page: 579 issue: 4 year: 1998 ident: 10.1016/j.knosys.2024.112770_b30 article-title: Discrete emotions or dimensions? The role of valence focus and arousal focus publication-title: Cogn. Emot. doi: 10.1080/026999398379574 – volume: 62 start-page: 75 issue: 1 year: 1993 ident: 10.1016/j.knosys.2024.112770_b55 article-title: Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks publication-title: J. Exp. Educ. doi: 10.1080/00220973.1993.9943832 – volume: 447 start-page: 92 year: 2021 ident: 10.1016/j.knosys.2024.112770_b16 article-title: A novel transferability attention neural network model for EEG emotion recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.02.048 – volume: 36 start-page: 152 issue: 1 year: 2021 ident: 10.1016/j.knosys.2024.112770_b17 article-title: A portable HCI system-oriented EEG feature extraction and channel selection for emotion recognition publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22295 – start-page: 72 year: 2019 ident: 10.1016/j.knosys.2024.112770_b19 article-title: Emotion analysis based on LASSO – volume: 100 year: 2025 ident: 10.1016/j.knosys.2024.112770_b58 article-title: FMLAN: A novel framework for cross-subject and cross-session EEG emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.106912 – start-page: 1953 year: 2021 ident: 10.1016/j.knosys.2024.112770_b25 article-title: A deep convolutional neural network model for classification of emotions from electroencephalography data – start-page: 327 year: 2009 ident: 10.1016/j.knosys.2024.112770_b36 article-title: Classification of EEG signals using Dempster Shafer theory and a k-nearest neighbor classifier – volume: 12 start-page: 86220 year: 2024 ident: 10.1016/j.knosys.2024.112770_b62 article-title: STT-Net: Simplified temporal transformer for emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3413136 – start-page: 1 year: 2023 ident: 10.1016/j.knosys.2024.112770_b1 article-title: Multilevel feature representation for hybrid transformers-based emotion recognition – volume: 14 start-page: 2740 issue: 4 year: 2022 ident: 10.1016/j.knosys.2024.112770_b48 article-title: EEG-based subject-independent emotion recognition using gated recurrent unit and minimum class confusion publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3179717 – ident: 10.1016/j.knosys.2024.112770_b63 doi: 10.1109/CVPRW63382.2024.00474 – volume: 43 start-page: 4396 issue: 12 year: 2020 ident: 10.1016/j.knosys.2024.112770_b22 article-title: Infinite feature selection: a graph-based feature filtering approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3002843 – start-page: 1 year: 2024 ident: 10.1016/j.knosys.2024.112770_b53 article-title: FBSTCNet: A spatio-temporal convolutional network integrating power and connectivity features for EEG-based emotion decoding publication-title: IEEE Trans. Affect. Comput. – year: 2024 ident: 10.1016/j.knosys.2024.112770_b37 article-title: Emotion recognition based on selected EEG signals by common spatial pattern publication-title: IEEE Sens. J. – volume: 57 start-page: 1798 issue: 7 year: 2010 ident: 10.1016/j.knosys.2024.112770_b31 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2048568 – volume: 45 start-page: 10745 issue: 9 year: 2023 ident: 10.1016/j.knosys.2024.112770_b8 article-title: Dawn of the transformer era in speech emotion recognition: Closing the valence gap publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3263585 – year: 2022 ident: 10.1016/j.knosys.2024.112770_b52 – start-page: 3 year: 2014 ident: 10.1016/j.knosys.2024.112770_b59 article-title: How might emotions affect learning? – volume: 22 start-page: 10751 issue: 11 year: 2022 ident: 10.1016/j.knosys.2024.112770_b24 article-title: An EEG data processing approach for emotion recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3168572 – volume: 10 start-page: 417 issue: 3 year: 2017 ident: 10.1016/j.knosys.2024.112770_b34 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2712143 – volume: 22 start-page: 98 issue: 1 year: 2017 ident: 10.1016/j.knosys.2024.112770_b29 article-title: DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2688239 – volume: 26 start-page: 5406 issue: 11 year: 2022 ident: 10.1016/j.knosys.2024.112770_b14 article-title: EEG-based emotion recognition using spatial-temporal graph convolutional LSTM with attention mechanism publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3198688 – volume: 27 start-page: 912 issue: 2 year: 2023 ident: 10.1016/j.knosys.2024.112770_b9 article-title: LSTM-modeling of emotion recognition using peripheral physiological signals in naturalistic conversations publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3225330 – volume: 70 year: 2021 ident: 10.1016/j.knosys.2024.112770_b18 article-title: Feature and channel selection for designing a regression-based continuous-variable emotion recognition system with two EEG channels publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102979 – start-page: 97 year: 2015 ident: 10.1016/j.knosys.2024.112770_b44 article-title: Learning transferable features with deep adaptation networks – volume: 265 year: 2023 ident: 10.1016/j.knosys.2024.112770_b2 article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110372 – year: 2014 ident: 10.1016/j.knosys.2024.112770_b42 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.knosys.2024.112770_b60 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 610 start-page: 508 year: 2022 ident: 10.1016/j.knosys.2024.112770_b56 article-title: EEG-based cross-subject emotion recognition using Fourier-bessel series expansion based empirical wavelet transform and NCA feature selection method publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.07.121 – volume: 68 year: 2021 ident: 10.1016/j.knosys.2024.112770_b26 article-title: EEG-based emotion recognition using tunable q wavelet transform and rotation forest ensemble classifier publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102648 – volume: 39 start-page: 529 issue: 3 year: 2016 ident: 10.1016/j.knosys.2024.112770_b45 article-title: Selective transfer machine for personalized facial expression analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2547397 – volume: 59 start-page: 103 year: 2020 ident: 10.1016/j.knosys.2024.112770_b11 article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.01.011 – volume: 47 start-page: 2142 issue: 7 year: 2009 ident: 10.1016/j.knosys.2024.112770_b39 article-title: A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2011983 – volume: 82 start-page: 27269 issue: 18 year: 2023 ident: 10.1016/j.knosys.2024.112770_b12 article-title: A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signals publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-14489-9 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.knosys.2024.112770_b27 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 158 year: 2023 ident: 10.1016/j.knosys.2024.112770_b13 article-title: ETSNet: A deep neural network for EEG-based temporal–spatial pattern recognition in psychiatric disorder and emotional distress classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106857 – start-page: 209 year: 2020 ident: 10.1016/j.knosys.2024.112770_b61 article-title: Sampling approaches for imbalanced data classification problem in machine learning – volume: 7 start-page: 12177 year: 2019 ident: 10.1016/j.knosys.2024.112770_b46 article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891579 – volume: 17 start-page: 1 issue: 59 year: 2016 ident: 10.1016/j.knosys.2024.112770_b47 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2024 ident: 10.1016/j.knosys.2024.112770_b51 article-title: Functional connectivity patterns learning for EEG-based emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 22 start-page: 4359 issue: 5 year: 2022 ident: 10.1016/j.knosys.2024.112770_b50 article-title: Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3144317 – volume: 340 start-page: 899 year: 2023 ident: 10.1016/j.knosys.2024.112770_b4 article-title: Emotion regulation in adolescents with major depression – evidence from a combined EEG and eye-tracking study publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2023.08.087 – start-page: 437 year: 2006 ident: 10.1016/j.knosys.2024.112770_b10 article-title: Emotion recognition using physiological signals – volume: 9 start-page: 2799 issue: 21 year: 2021 ident: 10.1016/j.knosys.2024.112770_b35 article-title: Intelligent ensemble learning approach for phishing website detection based on weighted soft voting publication-title: Mathematics doi: 10.3390/math9212799 – volume: 237 year: 2024 ident: 10.1016/j.knosys.2024.112770_b7 article-title: Learning facial expression and body gesture visual information for video emotion recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121419 – start-page: 1 year: 2024 ident: 10.1016/j.knosys.2024.112770_b3 article-title: Gusa: Graph-based unsupervised subdomain adaptation for cross-subject EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – start-page: 180 year: 2015 ident: 10.1016/j.knosys.2024.112770_b38 article-title: Classification of human emotions from EEG signals using SVM and lda classifiers – start-page: 1240 year: 2018 ident: 10.1016/j.knosys.2024.112770_b15 article-title: EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system – volume: 22 start-page: 199 issue: 2 year: 2010 ident: 10.1016/j.knosys.2024.112770_b41 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2091281 – volume: 276 year: 2023 ident: 10.1016/j.knosys.2024.112770_b23 article-title: MTLFuseNet: a novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110756 – start-page: 443 year: 2016 ident: 10.1016/j.knosys.2024.112770_b43 article-title: Deep coral: Correlation alignment for deep domain adaptation – volume: 16 start-page: 1 year: 2017 ident: 10.1016/j.knosys.2024.112770_b5 article-title: Analysis of EEG entropy during visual evocation of emotion in schizophrenia publication-title: Ann. Gener. Psychiatry – volume: 19 issue: 7 year: 2019 ident: 10.1016/j.knosys.2024.112770_b20 article-title: Fear level classification based on emotional dimensions and machine learning techniques publication-title: Sensors doi: 10.3390/s19071738 |
SSID | ssj0002218 |
Score | 2.4461412 |
Snippet | Feature selection has demonstrated strong performance in emotion recognition using intrasubject electroencephalography (EEG) data. However, it faces challenges... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 112770 |
SubjectTerms | Affective computing Cross-domain emotion recognition EEG Feature selection |
Title | GCD-JFSE: Graph-based class-domain knowledge joint feature selection and ensemble learning for EEG-based emotion recognition |
URI | https://dx.doi.org/10.1016/j.knosys.2024.112770 |
Volume | 309 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2025 issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvHjxbcQH2YPXFbbdvrwRLCBGLkjCrWn3YUBpieDBxPjbnekDNTEevDa7m-bb2XllZj5CLqUnwSuAsMTSPGFCK80CMNTMNobbIvZ8YTAPeT9yBxMxnDrTGulWvTBYVlnq_kKn59q6_NIq0WwtZ7PWGJwDkFcwWCKfEYMd5Tj9C2T66uOrzMOy8hwfLma4umqfy2u8ntJs9YZDuy2BvTQeUhb_Zp6-mZzeHtkpfUXaKX5nn9R0ekB2Kx4GWj7LQ_Le796wYW8cXtM-zp9maJoUlegYM5UtIPinm9wZnWezdE2Nzid60lXOgwOXQ-NUUYhp9SJ51rQkk3ik4NPSMOyXR-qC9Iduyo6y9IhMeuFDd8BKVgUmIXxYM-kEfix8J3b92HhKJJwrz7YV8g5zw5VtOxhGwB26bbirwI15IGMjY8c1xk-4fUzqaZbqE0JFolTApdIGoipbSB8AbMt2oLmxEjinQVgFZrQshmdEVVXZPCrAjxD8qAC_QbwK8eiHEESg3__cefrvnWdk20JK3zam4c5Jff3yqi_Az1gnzVyQmmSrc3s3GH0CMTjTJA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsNAEB2FUEDDjQjnFrSrZO31RReFnCRpAInOsvdACWAjEgokPp5Zex2BhChoLe_KejOeSzPzAC5FIDAqwLTEUSylXElFI3TU1NWauTwJQq5NHXIy9Qf3fPTgPdSgU83CmLZKa_tLm15Ya_ukadFsvs5mzVsMDlBf0WHxYkdMsAbr3EObXIf19vBmMF0ZZMcpynzmfWoOVBN0RZvXU5YvPszeboebcZrAsBb_5qG-eZ3eDmzZcJG0yy_ahZrK9mC7omIg9s_ch89-55qOerfdK9I3K6ip8U6SCBMbU5m_YP5PVuUzMs9n2ZJoVSz1JIuCCgflQ5JMEkxr1Uv6rIjlk3gkGNaSbrdvr1Ql7w9ZdR7l2QHc97p3nQG1xApUYAaxpMKLwoSHXuKHiQ4kTxmTgetKQz3MNJOu65lMAsXot1BckZ-wSCRaJJ6vdZgy9xDqWZ6pIyA8lTJiQiqNiZXLRYgAtkQrUkw7Kd7TAFqBGb-W-zPiqrFsHpfgxwb8uAS_AUGFePxDD2I08X-ePP73yQvYGNxNxvF4OL05gU3HMPy2TFXuFOrLt3d1hmHHMj23avUFa-bVzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCD-JFSE%3A+Graph-based+class-domain+knowledge+joint+feature+selection+and+ensemble+learning+for+EEG-based+emotion+recognition&rft.jtitle=Knowledge-based+systems&rft.au=Luo%2C+Gang&rft.au=Han%2C+Yutong&rft.au=Xie%2C+Weichu&rft.au=Tian%2C+Fuze&rft.date=2025-01-30&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=309&rft_id=info:doi/10.1016%2Fj.knosys.2024.112770&rft.externalDocID=S0950705124014047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |