Low-cost, high-precision integral 3D photography and holographic 3D display for real-world scenes
The lack of three-dimensional (3D) information limits the popularization and development of holographic technology. This paper proposes a low-cost, high-precision integral 3D real scene photography and holographic 3D display system using active fringe projection. The system solely relies on a projec...
Saved in:
| Published in | Optics communications Vol. 570; p. 130870 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.11.2024
|
| Online Access | Get full text |
| ISSN | 0030-4018 |
| DOI | 10.1016/j.optcom.2024.130870 |
Cover
| Abstract | The lack of three-dimensional (3D) information limits the popularization and development of holographic technology. This paper proposes a low-cost, high-precision integral 3D real scene photography and holographic 3D display system using active fringe projection. The system solely relies on a projector, a CCD camera, and a computer to swiftly and accurately acquire 3D information (accuracy within 2 mm) through Fringe Projection Profilometry. Then, significantly effective 3D holographic reconstruction is achieved using a layer-based algorithm. Finally, the energy of image gradient operator is used to calculate the focus measurement of the image, and the change of the focus region is quantitatively analyzed. The performance of the system was tested using a box, and the experiment results were consistent with the simulation results, verifying the feasibility of the system. This method will further expand the application of holographic technology in medicine, the military, navigation, and other fields.
3D holographic display has been widely used in education, medical science, military and other fields, and has a very promising prospect of application. At present, the methods of the acquisition of 3D content used for 3D holographic reconstruction has the problems of high system complexity, high cost and low precision. To address this issue, this work proposed a low-cost, high-precision 3D real scene photography and holographic 3D display system using active fringe projection. The system solely relies on a projector, a CCD camera, and a computer to swiftly and accurately acquire 3D information (accuracy within 2 mm) through Fringe Projection Profilometry. Then, significantly effective 3D holographic reconstruction is achieved using a layer-based algorithm. Finally, the energy of image gradient operator is used to calculate the focus measurement of the image, and the change of the focus region is quantitatively analyzed. The performance of the system was tested using a box, and the experiment results were consistent with the simulation results, verifying the feasibility of the system. Compared with other methods, this method is simple, low-cost and high-precision (depth measurement accuracy within 2 mm). This work will further expand the application of 3D holographic display in the field of medicine, the military, navigation, industrial applications (industrial inspection, head-mounted displays etc.) and other fields. |
|---|---|
| AbstractList | The lack of three-dimensional (3D) information limits the popularization and development of holographic technology. This paper proposes a low-cost, high-precision integral 3D real scene photography and holographic 3D display system using active fringe projection. The system solely relies on a projector, a CCD camera, and a computer to swiftly and accurately acquire 3D information (accuracy within 2 mm) through Fringe Projection Profilometry. Then, significantly effective 3D holographic reconstruction is achieved using a layer-based algorithm. Finally, the energy of image gradient operator is used to calculate the focus measurement of the image, and the change of the focus region is quantitatively analyzed. The performance of the system was tested using a box, and the experiment results were consistent with the simulation results, verifying the feasibility of the system. This method will further expand the application of holographic technology in medicine, the military, navigation, and other fields.
3D holographic display has been widely used in education, medical science, military and other fields, and has a very promising prospect of application. At present, the methods of the acquisition of 3D content used for 3D holographic reconstruction has the problems of high system complexity, high cost and low precision. To address this issue, this work proposed a low-cost, high-precision 3D real scene photography and holographic 3D display system using active fringe projection. The system solely relies on a projector, a CCD camera, and a computer to swiftly and accurately acquire 3D information (accuracy within 2 mm) through Fringe Projection Profilometry. Then, significantly effective 3D holographic reconstruction is achieved using a layer-based algorithm. Finally, the energy of image gradient operator is used to calculate the focus measurement of the image, and the change of the focus region is quantitatively analyzed. The performance of the system was tested using a box, and the experiment results were consistent with the simulation results, verifying the feasibility of the system. Compared with other methods, this method is simple, low-cost and high-precision (depth measurement accuracy within 2 mm). This work will further expand the application of 3D holographic display in the field of medicine, the military, navigation, industrial applications (industrial inspection, head-mounted displays etc.) and other fields. |
| ArticleNumber | 130870 |
| Author | Xia, Zizhun Xiong, Jianghao Sun, Zehao Li, Zilong Liu, Xuelin Cao, Yubin Liu, Qiegen Liu, Minghao Song, Xianlin Dong, Jiaqing Wang, Yiguang Li, Jiahong |
| Author_xml | – sequence: 1 givenname: Zehao surname: Sun fullname: Sun, Zehao organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China – sequence: 2 givenname: Minghao surname: Liu fullname: Liu, Minghao organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China – sequence: 3 givenname: Jiaqing surname: Dong fullname: Dong, Jiaqing organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China – sequence: 4 givenname: Zilong surname: Li fullname: Li, Zilong organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China – sequence: 5 givenname: Xuelin surname: Liu fullname: Liu, Xuelin organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China – sequence: 6 givenname: Jianghao surname: Xiong fullname: Xiong, Jianghao organization: School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China – sequence: 7 givenname: Yiguang surname: Wang fullname: Wang, Yiguang organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China – sequence: 8 givenname: Yubin surname: Cao fullname: Cao, Yubin organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China – sequence: 9 givenname: Jiahong surname: Li fullname: Li, Jiahong organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China – sequence: 10 givenname: Zizhun surname: Xia fullname: Xia, Zizhun organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China – sequence: 11 givenname: Qiegen surname: Liu fullname: Liu, Qiegen email: liuqiegen@ncu.edu.cn organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China – sequence: 12 givenname: Xianlin orcidid: 0000-0002-0356-5977 surname: Song fullname: Song, Xianlin email: songxianlin@ncu.edu.cn organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China |
| BookMark | eNp9kM1OwzAQhH0oEi3wBhz8ACSsfxKSCxIqv1IlLnC23PWmcZXGkR1R9e1JFc6cRqPZGa2-FVv0oSfGbgXkAkR5v8_DMGI45BKkzoWC6gEWbAmgINMgqku2SmkPAEKrasnsJhwzDGm8463ftdkQCX3yoee-H2kXbcfVMx_aMIbJDO2J297xNnSz9XiOnU9DZ0-8CZFHsl12DLFzPCH1lK7ZRWO7RDd_esW-X1--1u_Z5vPtY_20yVAWxZjZstDbGkmVgE5KqHSxdSSlrkokkGWxVVRbdOgsIhWqaOqqFs6VVAo1naorpuddjCGlSI0Zoj_YeDICzBmN2ZsZjTmjMTOaqfY412j67cdTNAk99UjOTyhG44L_f-AXUh50PQ |
| Cites_doi | 10.1038/161777a0 10.1364/OE.381717 10.1364/AO.56.00F138 10.1364/OE.23.025440 10.1364/OE.518393 10.1109/MC.2005.260 10.3390/app11219889 10.1016/j.optlaseng.2012.01.007 10.1109/ICNN.1995.488968 10.2478/raft-2021-0044 10.1364/AO.51.000861 10.1364/OL.479652 10.3390/s20061726 10.1364/AO.55.00A154 10.1016/j.patrec.2006.09.005 10.1364/OL.453580 10.1063/1.3147221 10.1016/j.precisioneng.2011.01.004 10.1364/OE.489175 10.1016/j.optlaseng.2009.03.008 10.1364/OE.21.009192 10.4103/ijri.IJRI_39_20 10.1364/AO.39.001549 10.1016/j.optlaseng.2011.06.024 10.1364/AOP.11.000518 10.1117/12.873865 10.1121/1.4945719 10.1038/s41377-022-00916-3 10.1016/j.optcom.2010.08.085 10.1109/TIM.2017.2712862 10.1007/s10043-015-0109-2 10.1364/OE.519511 10.1016/j.optcom.2008.10.060 10.1364/OL.425485 10.1364/PRJ.420944 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optcom.2024.130870 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| ExternalDocumentID | 10_1016_j_optcom_2024_130870 S0030401824006072 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABXRA ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LY7 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AETEA AEUPX AFFNX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EFLBG EJD F0J FEDTE FGOYB G-2 HMV HVGLF HZ~ MVM NDZJH R2- SET SPG WUQ XJT ZY4 ~HD |
| ID | FETCH-LOGICAL-c255t-a654b9ce360cd220845bde22486ce0265b3e9acdcdacce535f9891dd6e6135bd3 |
| IEDL.DBID | .~1 |
| ISSN | 0030-4018 |
| IngestDate | Wed Oct 01 04:39:39 EDT 2025 Sat Nov 23 15:55:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c255t-a654b9ce360cd220845bde22486ce0265b3e9acdcdacce535f9891dd6e6135bd3 |
| ORCID | 0000-0002-0356-5977 |
| ParticipantIDs | crossref_primary_10_1016_j_optcom_2024_130870 elsevier_sciencedirect_doi_10_1016_j_optcom_2024_130870 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 2024-11-00 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics communications |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Feng, Zuo, Zhang, Yin, Chen (bib37) 2021; 9 Keil, Korte, Ratmer, Edler, Dickmann (bib6) 2020; 88 Zhang, Ma, Yang, Zhao, Liu (bib11) 2023; 48 Yang, Takamura, Takahashi, Takamasu, Sato, Osawa, Takatsuji (bib16) 2011; 35 Zeng, Zheng, Lu, Gao, Yu (bib43) 2015; 22 Junchang, Y anmei (bib31) 2009; 282 Zhang, Yu, Li, Xia, Deng, Zhang (bib36) 2017; 66 Buonamici, Furferi, Governi, Marzola, Volpe (bib21) 2020; 20 Huang, Gojcic, Huang, Wieser, Schindler (bib22) 2022 Slinger, Cameron, Stanley (bib9) 2005; 38 Zhang (bib29) 2012; 50 Wang, Zhang (bib38) 2012; 51 Yan, Liu, Li, Zhang, Chang, Jing, Hu, Qu, Wang, Jiang (bib13) 2024 Barabas, Jolly, Smalley, Michael Bove (bib18) 2012; 8281 Takaki, Nakamura (bib19) 2012; DM2C.5 Yu, Li, Gao, Yan, Li, Wang, Sang (bib41) 2024; 32 Haleem, Javaid, Khan (bib3) 2020; 30 Wall, Gee, Neilsen, McKinley, James (bib5) 2016; 139 Chang, Wang, Zhu, Li, Xia, Zhang (bib10) 2022; 47 Zhang, Su, Xiang, Sun (bib23) 2012; 50 Gabor (bib2) 1948; 161 Dong, Li, Liu, Zhong, Wang, Liu, Song (bib14) 2023; 31 Yu, Dong, Gao, Li, Zhang, Fu, Pei, Wen, Zhao, Yan (bib42) 2024; 32 Huang, Jing (bib33) 2007; 28 Okada, Shimobaba, Ichihashi, Oi, Yamamoto, Oikawa, Kakue, Masuda, Ito (bib39) 2013; 21 Wu, Liu, Sui, Cao (bib12) 2021; 46 Zhang, Zhao, Cao, Jin (bib24) 2016; 55 Tian, Chen, Ma, Yu (bib34) 2011; 284 Zhang, Cao, Jin (bib7) 2017; 56 Jin, Sun, Li (bib35) 2020; 28 He, Sui, Cao (bib15) 2021; 11 Lei, Zhang (bib30) 2010; 35 Virca, Bârsan, Oancea, Vesa (bib4) 2017; 26 Li, Wang, Ma, Shi (bib40) 2013; vol. 8769 Lazarev, Hermerschmidt, Krüger, Osten (bib25) 2012 Zhao, Cao, Zhang, Kong, Jin (bib32) 2015; 23 Jiang, Jin, Cao (bib1) 2019; 11 Davis, McNamara, Cottrell, Sonehara (bib26) 2000; 39 Pi, Liu, Wang (bib8) 2022; 11 Chan, Chan, Taylor, Brener, Cich, Mittleman (bib27) 2009; 94 Barabas, Jolly, Smalley, Bove (bib17) 2011; 7957 Zhang (bib28) 2010; 48 Kennedy, Eberhart (bib20) 1995; 4 Zeng (10.1016/j.optcom.2024.130870_bib43) 2015; 22 Yan (10.1016/j.optcom.2024.130870_bib13) 2024 Huang (10.1016/j.optcom.2024.130870_bib33) 2007; 28 Zhang (10.1016/j.optcom.2024.130870_bib7) 2017; 56 Zhang (10.1016/j.optcom.2024.130870_bib28) 2010; 48 Zhao (10.1016/j.optcom.2024.130870_bib32) 2015; 23 Lei (10.1016/j.optcom.2024.130870_bib30) 2010; 35 Gabor (10.1016/j.optcom.2024.130870_bib2) 1948; 161 Wall (10.1016/j.optcom.2024.130870_bib5) 2016; 139 Yang (10.1016/j.optcom.2024.130870_bib16) 2011; 35 Takaki (10.1016/j.optcom.2024.130870_bib19) 2012; DM2C.5 Zhang (10.1016/j.optcom.2024.130870_bib29) 2012; 50 Jin (10.1016/j.optcom.2024.130870_bib35) 2020; 28 Haleem (10.1016/j.optcom.2024.130870_bib3) 2020; 30 Barabas (10.1016/j.optcom.2024.130870_bib17) 2011; 7957 Kennedy (10.1016/j.optcom.2024.130870_bib20) 1995; 4 Li (10.1016/j.optcom.2024.130870_bib40) 2013; vol. 8769 Davis (10.1016/j.optcom.2024.130870_bib26) 2000; 39 Yu (10.1016/j.optcom.2024.130870_bib41) 2024; 32 Dong (10.1016/j.optcom.2024.130870_bib14) 2023; 31 He (10.1016/j.optcom.2024.130870_bib15) 2021; 11 Jiang (10.1016/j.optcom.2024.130870_bib1) 2019; 11 Junchang (10.1016/j.optcom.2024.130870_bib31) 2009; 282 Chang (10.1016/j.optcom.2024.130870_bib10) 2022; 47 Lazarev (10.1016/j.optcom.2024.130870_bib25) 2012 Buonamici (10.1016/j.optcom.2024.130870_bib21) 2020; 20 Barabas (10.1016/j.optcom.2024.130870_bib18) 2012; 8281 Slinger (10.1016/j.optcom.2024.130870_bib9) 2005; 38 Zhang (10.1016/j.optcom.2024.130870_bib23) 2012; 50 Wu (10.1016/j.optcom.2024.130870_bib12) 2021; 46 Feng (10.1016/j.optcom.2024.130870_bib37) 2021; 9 Zhang (10.1016/j.optcom.2024.130870_bib24) 2016; 55 Okada (10.1016/j.optcom.2024.130870_bib39) 2013; 21 Yu (10.1016/j.optcom.2024.130870_bib42) 2024; 32 Virca (10.1016/j.optcom.2024.130870_bib4) 2017; 26 Pi (10.1016/j.optcom.2024.130870_bib8) 2022; 11 Keil (10.1016/j.optcom.2024.130870_bib6) 2020; 88 Zhang (10.1016/j.optcom.2024.130870_bib11) 2023; 48 Wang (10.1016/j.optcom.2024.130870_bib38) 2012; 51 Huang (10.1016/j.optcom.2024.130870_bib22) 2022 Tian (10.1016/j.optcom.2024.130870_bib34) 2011; 284 Zhang (10.1016/j.optcom.2024.130870_bib36) 2017; 66 Chan (10.1016/j.optcom.2024.130870_bib27) 2009; 94 |
| References_xml | – volume: 20 start-page: 1726 year: 2020 ident: bib21 article-title: Scene acquisition with multiple 2D and 3D optical sensors: a PSO-based visibility optimization publication-title: Sensors – volume: 26 start-page: 337 year: 2017 end-page: 347 ident: bib4 article-title: Applications of Augmented reality technology in the military educational field publication-title: Land Forces Academy Review – volume: 48 start-page: 1850 year: 2023 end-page: 1853 ident: bib11 article-title: End-to-end real-time holographic display based on real-time capture of real scenes publication-title: Opt. Lett. – volume: 51 start-page: 861 year: 2012 end-page: 872 ident: bib38 article-title: Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing publication-title: Appl. Opt. – volume: 282 start-page: 455 year: 2009 end-page: 458 ident: bib31 article-title: An indirect algorithm of Fresnel diffraction publication-title: Opt Commun. – volume: 11 start-page: 518 year: 2019 end-page: 576 ident: bib1 article-title: When metasurface meets hologram: principle and advances publication-title: Adv. Opt. Photonics – volume: 56 start-page: F138 year: 2017 end-page: F143 ident: bib7 article-title: Computer-generated hologram with occlusion effect using layer-based processing publication-title: Appl. Opt. – volume: 46 start-page: 2908 year: 2021 end-page: 2911 ident: bib12 article-title: High-speed computer-generated holography using an autoencoder-based deep neural network publication-title: Opt. Lett. – volume: 7957 year: 2011 ident: bib17 article-title: Diffraction specific coherent panoramagrams of real scenes publication-title: Proc. SPIE – volume: 284 start-page: 80 year: 2011 end-page: 87 ident: bib34 article-title: Multi-focus image fusion using a bilateral gradient-based sharpness criterion publication-title: Opt Commun. – volume: 38 start-page: 46 year: 2005 end-page: 53 ident: bib9 article-title: Computer-generated holography as a generic display technology publication-title: Computer – volume: 35 start-page: 931 year: 2010 end-page: 933 ident: bib30 article-title: Flexible 3-D shape measurement using projector defocusing publication-title: Opt. Lett. – volume: 28 start-page: 493 year: 2007 end-page: 500 ident: bib33 article-title: Evaluation of focus measures in multi-focus image fusion publication-title: Pattern Recogn. Lett. – volume: 139 start-page: 1938 year: 2016 end-page: 1950 ident: bib5 article-title: Military jet noise source imaging using multisource statistically optimized near-field acoustical holography publication-title: J. Acoust. Soc. Am. – volume: 35 start-page: 424 year: 2011 end-page: 430 ident: bib16 article-title: Development of high-precision micro-coordinate measuring machine: multi-probe measurement system for measuring yaw and straightness motion error of XY linear stage publication-title: Precis. Eng. – volume: 161 start-page: 777 year: 1948 end-page: 778 ident: bib2 article-title: A new microscopic principle publication-title: Nature – volume: 50 start-page: 1097 year: 2012 end-page: 1106 ident: bib29 article-title: Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques publication-title: Opt Laser. Eng. – volume: 30 start-page: 354 year: 2020 end-page: 361 ident: bib3 article-title: Holography applications toward medical field: an overview publication-title: Indian J. Radiol. Imag. – volume: 11 start-page: 9889 year: 2021 ident: bib15 article-title: Holographic 3D display using depth maps generated by 2D-to-3D rendering approach publication-title: Appl. Sci. – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib20 article-title: Particle swarm optimization publication-title: Proc. Int. Conf. Neural Netw. – volume: 39 start-page: 1549 year: 2000 end-page: 1554 ident: bib26 article-title: Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator publication-title: Appl. Opt. – volume: 28 start-page: 3428 year: 2020 end-page: 3441 ident: bib35 article-title: Geometry parameter calibration for focused plenoptic cameras publication-title: Opt Express – volume: 47 start-page: 1482 year: 2022 end-page: 1485 ident: bib10 article-title: Deep-learning-based computer-generated hologram from a stereo image pair publication-title: Opt. Lett. – year: 2024 ident: bib13 article-title: Generating multi‐depth 3D holograms using a fully convolutional neural network publication-title: Adv. Sci. – volume: vol. 8769 start-page: 396 year: 2013 end-page: 404 ident: bib40 article-title: Three-dimensional imaging and display of real-existing scene using fringe publication-title: International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013) – volume: 55 start-page: A154 year: 2016 end-page: A159 ident: bib24 article-title: Layered holographic stereogram based on inverse Fresnel diffraction publication-title: Appl. Opt. – volume: 50 start-page: 574 year: 2012 end-page: 579 ident: bib23 article-title: 3-D shape measurement based on complementary Gray-code light publication-title: Opt Laser. Eng. – volume: 32 start-page: 11296 year: 2024 end-page: 11306 ident: bib42 article-title: Vertically spliced tabletop light field cave display with extended depth content and separately optimized compound lens array publication-title: Opt Express – volume: 22 start-page: 853 year: 2015 end-page: 861 ident: bib43 article-title: Dynamic holographic three-dimensional projection based on liquid crystal spatial light modulator and cylindrical fog screen publication-title: Opt. Rev. – volume: 31 start-page: 21721 year: 2023 end-page: 21730 ident: bib14 article-title: High-speed real 3D scene acquisition and 3D holographic reconstruction system based on ultrafast optical axial scanning publication-title: Opt Express – volume: DM2C.5 year: 2012 ident: bib19 article-title: Development of a holographic display module using a 4K2K-SLM based on the resolution redistribution technique publication-title: OSA Tech. Digest DH – volume: 9 start-page: 1084 year: 2021 end-page: 1098 ident: bib37 article-title: Generalized framework for non-sinusoidal fringe analysis using deep learning publication-title: Photon. Res. – volume: 32 start-page: 9857 year: 2024 end-page: 9866 ident: bib41 article-title: Smooth motion parallax method for 3D light-field displays with a narrow pitch based on optimizing the light beam divergence angle publication-title: Opt Express – volume: 8281 year: 2012 ident: bib18 article-title: Depth perception and user interface in digital holographic television publication-title: Proc. SPIE – volume: 23 start-page: 25440 year: 2015 end-page: 25449 ident: bib32 article-title: Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method publication-title: Opt Express – volume: 94 year: 2009 ident: bib27 article-title: A spatial light modulator for terahertz beams publication-title: Appl. Phys. Lett. – volume: 88 start-page: 165 year: 2020 end-page: 172 ident: bib6 article-title: Augmented reality (AR) and spatial cognition: effects of holographic gridson distance estimation and location memory in a 3D indoor scenario publication-title: J. Photogramm. Remote Sens. Geoinf. Sci. – volume: 11 start-page: 231 year: 2022 ident: bib8 article-title: Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display publication-title: Light Sci. Appl. – start-page: 1 year: 2012 end-page: 29 ident: bib25 article-title: LCOS Spatial Light Modulators: Trends and Applications – start-page: 674 year: 2022 end-page: 690 ident: bib22 article-title: Dynamic 3d scene analysis by point cloud accumulation publication-title: Proceedings of the 2022 European Conference on Computer Vision (ECCV), Tel Aviv, Israel – volume: 48 start-page: 149 year: 2010 end-page: 158 ident: bib28 article-title: Recent progresses on real-time 3D shape measurement using digital fringe projection techniques publication-title: Opt Laser. Eng. – volume: 66 start-page: 2755 year: 2017 end-page: 2761 ident: bib36 article-title: Black-box phase error compensation for digital phase-shifting profilometry publication-title: IEEE Trans. Instrum. Meas. – volume: 21 start-page: 9192 year: 2013 end-page: 9197 ident: bib39 article-title: Band-limited double-step Fresnel diffraction and its application to computer-generated holograms publication-title: Opt Express – volume: 161 start-page: 777 issue: 4098 year: 1948 ident: 10.1016/j.optcom.2024.130870_bib2 article-title: A new microscopic principle publication-title: Nature doi: 10.1038/161777a0 – volume: 28 start-page: 3428 issue: 3 year: 2020 ident: 10.1016/j.optcom.2024.130870_bib35 article-title: Geometry parameter calibration for focused plenoptic cameras publication-title: Opt Express doi: 10.1364/OE.381717 – volume: 56 start-page: F138 issue: 13 year: 2017 ident: 10.1016/j.optcom.2024.130870_bib7 article-title: Computer-generated hologram with occlusion effect using layer-based processing publication-title: Appl. Opt. doi: 10.1364/AO.56.00F138 – volume: 23 start-page: 25440 issue: 20 year: 2015 ident: 10.1016/j.optcom.2024.130870_bib32 article-title: Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method publication-title: Opt Express doi: 10.1364/OE.23.025440 – volume: 32 start-page: 9857 issue: 6 year: 2024 ident: 10.1016/j.optcom.2024.130870_bib41 article-title: Smooth motion parallax method for 3D light-field displays with a narrow pitch based on optimizing the light beam divergence angle publication-title: Opt Express doi: 10.1364/OE.518393 – volume: 88 start-page: 165 issue: 2 year: 2020 ident: 10.1016/j.optcom.2024.130870_bib6 article-title: Augmented reality (AR) and spatial cognition: effects of holographic gridson distance estimation and location memory in a 3D indoor scenario publication-title: J. Photogramm. Remote Sens. Geoinf. Sci. – volume: 38 start-page: 46 issue: 8 year: 2005 ident: 10.1016/j.optcom.2024.130870_bib9 article-title: Computer-generated holography as a generic display technology publication-title: Computer doi: 10.1109/MC.2005.260 – start-page: 1 year: 2012 ident: 10.1016/j.optcom.2024.130870_bib25 – volume: 11 start-page: 9889 issue: 21 year: 2021 ident: 10.1016/j.optcom.2024.130870_bib15 article-title: Holographic 3D display using depth maps generated by 2D-to-3D rendering approach publication-title: Appl. Sci. doi: 10.3390/app11219889 – volume: 50 start-page: 1097 issue: 8 year: 2012 ident: 10.1016/j.optcom.2024.130870_bib29 article-title: Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques publication-title: Opt Laser. Eng. doi: 10.1016/j.optlaseng.2012.01.007 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.optcom.2024.130870_bib20 article-title: Particle swarm optimization publication-title: Proc. Int. Conf. Neural Netw. doi: 10.1109/ICNN.1995.488968 – volume: 26 start-page: 337 issue: 4 year: 2017 ident: 10.1016/j.optcom.2024.130870_bib4 article-title: Applications of Augmented reality technology in the military educational field publication-title: Land Forces Academy Review doi: 10.2478/raft-2021-0044 – volume: 51 start-page: 861 issue: 7 year: 2012 ident: 10.1016/j.optcom.2024.130870_bib38 article-title: Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing publication-title: Appl. Opt. doi: 10.1364/AO.51.000861 – volume: 48 start-page: 1850 issue: 7 year: 2023 ident: 10.1016/j.optcom.2024.130870_bib11 article-title: End-to-end real-time holographic display based on real-time capture of real scenes publication-title: Opt. Lett. doi: 10.1364/OL.479652 – volume: 20 start-page: 1726 issue: 6 year: 2020 ident: 10.1016/j.optcom.2024.130870_bib21 article-title: Scene acquisition with multiple 2D and 3D optical sensors: a PSO-based visibility optimization publication-title: Sensors doi: 10.3390/s20061726 – volume: 55 start-page: A154 issue: 3 year: 2016 ident: 10.1016/j.optcom.2024.130870_bib24 article-title: Layered holographic stereogram based on inverse Fresnel diffraction publication-title: Appl. Opt. doi: 10.1364/AO.55.00A154 – volume: 28 start-page: 493 issue: 4 year: 2007 ident: 10.1016/j.optcom.2024.130870_bib33 article-title: Evaluation of focus measures in multi-focus image fusion publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2006.09.005 – volume: 47 start-page: 1482 issue: 6 year: 2022 ident: 10.1016/j.optcom.2024.130870_bib10 article-title: Deep-learning-based computer-generated hologram from a stereo image pair publication-title: Opt. Lett. doi: 10.1364/OL.453580 – volume: DM2C.5 year: 2012 ident: 10.1016/j.optcom.2024.130870_bib19 article-title: Development of a holographic display module using a 4K2K-SLM based on the resolution redistribution technique publication-title: OSA Tech. Digest DH – start-page: 674 year: 2022 ident: 10.1016/j.optcom.2024.130870_bib22 article-title: Dynamic 3d scene analysis by point cloud accumulation – volume: 94 year: 2009 ident: 10.1016/j.optcom.2024.130870_bib27 article-title: A spatial light modulator for terahertz beams publication-title: Appl. Phys. Lett. doi: 10.1063/1.3147221 – volume: 35 start-page: 424 issue: 3 year: 2011 ident: 10.1016/j.optcom.2024.130870_bib16 article-title: Development of high-precision micro-coordinate measuring machine: multi-probe measurement system for measuring yaw and straightness motion error of XY linear stage publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2011.01.004 – volume: 8281 year: 2012 ident: 10.1016/j.optcom.2024.130870_bib18 article-title: Depth perception and user interface in digital holographic television publication-title: Proc. SPIE – volume: 31 start-page: 21721 issue: 13 year: 2023 ident: 10.1016/j.optcom.2024.130870_bib14 article-title: High-speed real 3D scene acquisition and 3D holographic reconstruction system based on ultrafast optical axial scanning publication-title: Opt Express doi: 10.1364/OE.489175 – year: 2024 ident: 10.1016/j.optcom.2024.130870_bib13 article-title: Generating multi‐depth 3D holograms using a fully convolutional neural network publication-title: Adv. Sci. – volume: vol. 8769 start-page: 396 year: 2013 ident: 10.1016/j.optcom.2024.130870_bib40 article-title: Three-dimensional imaging and display of real-existing scene using fringe – volume: 48 start-page: 149 issue: 2 year: 2010 ident: 10.1016/j.optcom.2024.130870_bib28 article-title: Recent progresses on real-time 3D shape measurement using digital fringe projection techniques publication-title: Opt Laser. Eng. doi: 10.1016/j.optlaseng.2009.03.008 – volume: 21 start-page: 9192 issue: 7 year: 2013 ident: 10.1016/j.optcom.2024.130870_bib39 article-title: Band-limited double-step Fresnel diffraction and its application to computer-generated holograms publication-title: Opt Express doi: 10.1364/OE.21.009192 – volume: 30 start-page: 354 issue: 3 year: 2020 ident: 10.1016/j.optcom.2024.130870_bib3 article-title: Holography applications toward medical field: an overview publication-title: Indian J. Radiol. Imag. doi: 10.4103/ijri.IJRI_39_20 – volume: 39 start-page: 1549 issue: 10 year: 2000 ident: 10.1016/j.optcom.2024.130870_bib26 article-title: Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator publication-title: Appl. Opt. doi: 10.1364/AO.39.001549 – volume: 50 start-page: 574 issue: 4 year: 2012 ident: 10.1016/j.optcom.2024.130870_bib23 article-title: 3-D shape measurement based on complementary Gray-code light publication-title: Opt Laser. Eng. doi: 10.1016/j.optlaseng.2011.06.024 – volume: 11 start-page: 518 issue: 3 year: 2019 ident: 10.1016/j.optcom.2024.130870_bib1 article-title: When metasurface meets hologram: principle and advances publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.11.000518 – volume: 7957 year: 2011 ident: 10.1016/j.optcom.2024.130870_bib17 article-title: Diffraction specific coherent panoramagrams of real scenes publication-title: Proc. SPIE doi: 10.1117/12.873865 – volume: 139 start-page: 1938 issue: 4 year: 2016 ident: 10.1016/j.optcom.2024.130870_bib5 article-title: Military jet noise source imaging using multisource statistically optimized near-field acoustical holography publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4945719 – volume: 35 start-page: 931 issue: 7 year: 2010 ident: 10.1016/j.optcom.2024.130870_bib30 article-title: Flexible 3-D shape measurement using projector defocusing publication-title: Opt. Lett. – volume: 11 start-page: 231 issue: 1 year: 2022 ident: 10.1016/j.optcom.2024.130870_bib8 article-title: Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00916-3 – volume: 284 start-page: 80 issue: 1 year: 2011 ident: 10.1016/j.optcom.2024.130870_bib34 article-title: Multi-focus image fusion using a bilateral gradient-based sharpness criterion publication-title: Opt Commun. doi: 10.1016/j.optcom.2010.08.085 – volume: 66 start-page: 2755 issue: 10 year: 2017 ident: 10.1016/j.optcom.2024.130870_bib36 article-title: Black-box phase error compensation for digital phase-shifting profilometry publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2712862 – volume: 22 start-page: 853 year: 2015 ident: 10.1016/j.optcom.2024.130870_bib43 article-title: Dynamic holographic three-dimensional projection based on liquid crystal spatial light modulator and cylindrical fog screen publication-title: Opt. Rev. doi: 10.1007/s10043-015-0109-2 – volume: 32 start-page: 11296 issue: 7 year: 2024 ident: 10.1016/j.optcom.2024.130870_bib42 article-title: Vertically spliced tabletop light field cave display with extended depth content and separately optimized compound lens array publication-title: Opt Express doi: 10.1364/OE.519511 – volume: 282 start-page: 455 issue: 4 year: 2009 ident: 10.1016/j.optcom.2024.130870_bib31 article-title: An indirect algorithm of Fresnel diffraction publication-title: Opt Commun. doi: 10.1016/j.optcom.2008.10.060 – volume: 46 start-page: 2908 issue: 12 year: 2021 ident: 10.1016/j.optcom.2024.130870_bib12 article-title: High-speed computer-generated holography using an autoencoder-based deep neural network publication-title: Opt. Lett. doi: 10.1364/OL.425485 – volume: 9 start-page: 1084 issue: 6 year: 2021 ident: 10.1016/j.optcom.2024.130870_bib37 article-title: Generalized framework for non-sinusoidal fringe analysis using deep learning publication-title: Photon. Res. doi: 10.1364/PRJ.420944 |
| SSID | ssj0001438 |
| Score | 2.4395597 |
| Snippet | The lack of three-dimensional (3D) information limits the popularization and development of holographic technology. This paper proposes a low-cost,... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 130870 |
| Title | Low-cost, high-precision integral 3D photography and holographic 3D display for real-world scenes |
| URI | https://dx.doi.org/10.1016/j.optcom.2024.130870 |
| Volume | 570 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0030-4018 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001438 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0030-4018 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001438 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 0030-4018 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001438 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0030-4018 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001438 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0030-4018 databaseCode: AKRWK dateStart: 19690401 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001438 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48ujbJbjbZY6mW-urJQm9hX6WR0oQmIl787e7kgQriwWOS3RC-hJlvwsz3IXQJnNkI7RMeLWIC2jlEeLEiIpaUSk8ov_qh_zTlkxm7n4fzDhq1szDQVtnE_jqmV9G6OTNo0BzkaQozvq4U9xw_ZiAqEkEcZiwCF4Prj682D7D3rqUZPQKr2_G5qscry0voGQlcogJb5Bgsi39LT99SzngP7TZcEQ_rx9lHHbs-QNtVz6YuDpF8zN6IzoryCoPoMMk3jV8ObjQgVpje4HyZlY0sNZZrg5etSnWq4bJJi3wl37HjrtjxxxWpJFQxaDzZ4gjNxrfPowlpHBOIdqVBSSQPmRLaUu5pEwRezEJlrMvSMdfWVVuholZIbbSRWtuQhgsRC98Ybl1Wd0vpMequs7U9QRhEbSImlIkcYwqDhbBc-ZoqdyvFBOU9RFqgkrwWxkjajrGXpAY2AWCTGtgeilo0kx8vOHGx-8-dp__eeYZ24KgeHTxH3XLzai8chyhVv_pI-mhrePcwmX4Cj4PFjQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KInoRn1ife_Do2iSbTbJHqZaqbU8t9Bb2VRopSWgi4sXf7k4eqCAevGZ3Q_gSZr4J33yD0DVwZs2VS4JwERHwziHciSThkaBUOFy61Q_98SQYzvynOZt3UL_thQFZZRP765heRevmSq9Bs5cnCfT42lLcsfzYB1OR0MbhTZ95IVRgtx9fOg-Y7117MzoEtrf9c5XIK8tLEI14NlPBXOQIZhb_lp--5ZzBHtptyCK-q59nH3VMeoC2KtGmKg6RGGVvRGVFeYPBdZjk62ZgDm5MIFaY3uN8mZWNLzUWqcbL1qY6UbCskyJfiXdsySu2BHJFKg9VDCZPpjhCs8HDtD8kzcgEomxtUBIRMF9yZWjgKO15TuQzqY1N01GgjC23mKSGC6WVFkoZRtmCR9zVOjA2rdut9BhtpFlqThAGV5vQ51KHljIxb8FNIF1Fpb2V9DkNuoi0QMV57YwRt5Kxl7gGNgZg4xrYLgpbNOMfbzi2wfvPk6f_PnmFtofT8SgePU6ez9AOrNR9hOdoo1y_mgtLKEp5WX0wn1z7xyI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-cost%2C+high-precision+integral+3D+photography+and+holographic+3D+display+for+real-world+scenes&rft.jtitle=Optics+communications&rft.au=Sun%2C+Zehao&rft.au=Liu%2C+Minghao&rft.au=Dong%2C+Jiaqing&rft.au=Li%2C+Zilong&rft.date=2024-11-01&rft.issn=0030-4018&rft.volume=570&rft.spage=130870&rft_id=info:doi/10.1016%2Fj.optcom.2024.130870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optcom_2024_130870 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon |