Low-cost, high-precision integral 3D photography and holographic 3D display for real-world scenes

The lack of three-dimensional (3D) information limits the popularization and development of holographic technology. This paper proposes a low-cost, high-precision integral 3D real scene photography and holographic 3D display system using active fringe projection. The system solely relies on a projec...

Full description

Saved in:
Bibliographic Details
Published inOptics communications Vol. 570; p. 130870
Main Authors Sun, Zehao, Liu, Minghao, Dong, Jiaqing, Li, Zilong, Liu, Xuelin, Xiong, Jianghao, Wang, Yiguang, Cao, Yubin, Li, Jiahong, Xia, Zizhun, Liu, Qiegen, Song, Xianlin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Online AccessGet full text
ISSN0030-4018
DOI10.1016/j.optcom.2024.130870

Cover

Abstract The lack of three-dimensional (3D) information limits the popularization and development of holographic technology. This paper proposes a low-cost, high-precision integral 3D real scene photography and holographic 3D display system using active fringe projection. The system solely relies on a projector, a CCD camera, and a computer to swiftly and accurately acquire 3D information (accuracy within 2 mm) through Fringe Projection Profilometry. Then, significantly effective 3D holographic reconstruction is achieved using a layer-based algorithm. Finally, the energy of image gradient operator is used to calculate the focus measurement of the image, and the change of the focus region is quantitatively analyzed. The performance of the system was tested using a box, and the experiment results were consistent with the simulation results, verifying the feasibility of the system. This method will further expand the application of holographic technology in medicine, the military, navigation, and other fields. 3D holographic display has been widely used in education, medical science, military and other fields, and has a very promising prospect of application. At present, the methods of the acquisition of 3D content used for 3D holographic reconstruction has the problems of high system complexity, high cost and low precision. To address this issue, this work proposed a low-cost, high-precision 3D real scene photography and holographic 3D display system using active fringe projection. The system solely relies on a projector, a CCD camera, and a computer to swiftly and accurately acquire 3D information (accuracy within 2 mm) through Fringe Projection Profilometry. Then, significantly effective 3D holographic reconstruction is achieved using a layer-based algorithm. Finally, the energy of image gradient operator is used to calculate the focus measurement of the image, and the change of the focus region is quantitatively analyzed. The performance of the system was tested using a box, and the experiment results were consistent with the simulation results, verifying the feasibility of the system. Compared with other methods, this method is simple, low-cost and high-precision (depth measurement accuracy within 2 mm). This work will further expand the application of 3D holographic display in the field of medicine, the military, navigation, industrial applications (industrial inspection, head-mounted displays etc.) and other fields.
AbstractList The lack of three-dimensional (3D) information limits the popularization and development of holographic technology. This paper proposes a low-cost, high-precision integral 3D real scene photography and holographic 3D display system using active fringe projection. The system solely relies on a projector, a CCD camera, and a computer to swiftly and accurately acquire 3D information (accuracy within 2 mm) through Fringe Projection Profilometry. Then, significantly effective 3D holographic reconstruction is achieved using a layer-based algorithm. Finally, the energy of image gradient operator is used to calculate the focus measurement of the image, and the change of the focus region is quantitatively analyzed. The performance of the system was tested using a box, and the experiment results were consistent with the simulation results, verifying the feasibility of the system. This method will further expand the application of holographic technology in medicine, the military, navigation, and other fields. 3D holographic display has been widely used in education, medical science, military and other fields, and has a very promising prospect of application. At present, the methods of the acquisition of 3D content used for 3D holographic reconstruction has the problems of high system complexity, high cost and low precision. To address this issue, this work proposed a low-cost, high-precision 3D real scene photography and holographic 3D display system using active fringe projection. The system solely relies on a projector, a CCD camera, and a computer to swiftly and accurately acquire 3D information (accuracy within 2 mm) through Fringe Projection Profilometry. Then, significantly effective 3D holographic reconstruction is achieved using a layer-based algorithm. Finally, the energy of image gradient operator is used to calculate the focus measurement of the image, and the change of the focus region is quantitatively analyzed. The performance of the system was tested using a box, and the experiment results were consistent with the simulation results, verifying the feasibility of the system. Compared with other methods, this method is simple, low-cost and high-precision (depth measurement accuracy within 2 mm). This work will further expand the application of 3D holographic display in the field of medicine, the military, navigation, industrial applications (industrial inspection, head-mounted displays etc.) and other fields.
ArticleNumber 130870
Author Xia, Zizhun
Xiong, Jianghao
Sun, Zehao
Li, Zilong
Liu, Xuelin
Cao, Yubin
Liu, Qiegen
Liu, Minghao
Song, Xianlin
Dong, Jiaqing
Wang, Yiguang
Li, Jiahong
Author_xml – sequence: 1
  givenname: Zehao
  surname: Sun
  fullname: Sun, Zehao
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 2
  givenname: Minghao
  surname: Liu
  fullname: Liu, Minghao
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 3
  givenname: Jiaqing
  surname: Dong
  fullname: Dong, Jiaqing
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 4
  givenname: Zilong
  surname: Li
  fullname: Li, Zilong
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 5
  givenname: Xuelin
  surname: Liu
  fullname: Liu, Xuelin
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 6
  givenname: Jianghao
  surname: Xiong
  fullname: Xiong, Jianghao
  organization: School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 7
  givenname: Yiguang
  surname: Wang
  fullname: Wang, Yiguang
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 8
  givenname: Yubin
  surname: Cao
  fullname: Cao, Yubin
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 9
  givenname: Jiahong
  surname: Li
  fullname: Li, Jiahong
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 10
  givenname: Zizhun
  surname: Xia
  fullname: Xia, Zizhun
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 11
  givenname: Qiegen
  surname: Liu
  fullname: Liu, Qiegen
  email: liuqiegen@ncu.edu.cn
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 12
  givenname: Xianlin
  orcidid: 0000-0002-0356-5977
  surname: Song
  fullname: Song, Xianlin
  email: songxianlin@ncu.edu.cn
  organization: School of Information Engineering, Nanchang University, Nanchang, 330031, China
BookMark eNp9kM1OwzAQhH0oEi3wBhz8ACSsfxKSCxIqv1IlLnC23PWmcZXGkR1R9e1JFc6cRqPZGa2-FVv0oSfGbgXkAkR5v8_DMGI45BKkzoWC6gEWbAmgINMgqku2SmkPAEKrasnsJhwzDGm8463ftdkQCX3yoee-H2kXbcfVMx_aMIbJDO2J297xNnSz9XiOnU9DZ0-8CZFHsl12DLFzPCH1lK7ZRWO7RDd_esW-X1--1u_Z5vPtY_20yVAWxZjZstDbGkmVgE5KqHSxdSSlrkokkGWxVVRbdOgsIhWqaOqqFs6VVAo1naorpuddjCGlSI0Zoj_YeDICzBmN2ZsZjTmjMTOaqfY412j67cdTNAk99UjOTyhG44L_f-AXUh50PQ
Cites_doi 10.1038/161777a0
10.1364/OE.381717
10.1364/AO.56.00F138
10.1364/OE.23.025440
10.1364/OE.518393
10.1109/MC.2005.260
10.3390/app11219889
10.1016/j.optlaseng.2012.01.007
10.1109/ICNN.1995.488968
10.2478/raft-2021-0044
10.1364/AO.51.000861
10.1364/OL.479652
10.3390/s20061726
10.1364/AO.55.00A154
10.1016/j.patrec.2006.09.005
10.1364/OL.453580
10.1063/1.3147221
10.1016/j.precisioneng.2011.01.004
10.1364/OE.489175
10.1016/j.optlaseng.2009.03.008
10.1364/OE.21.009192
10.4103/ijri.IJRI_39_20
10.1364/AO.39.001549
10.1016/j.optlaseng.2011.06.024
10.1364/AOP.11.000518
10.1117/12.873865
10.1121/1.4945719
10.1038/s41377-022-00916-3
10.1016/j.optcom.2010.08.085
10.1109/TIM.2017.2712862
10.1007/s10043-015-0109-2
10.1364/OE.519511
10.1016/j.optcom.2008.10.060
10.1364/OL.425485
10.1364/PRJ.420944
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.optcom.2024.130870
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_optcom_2024_130870
S0030401824006072
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LY7
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EFLBG
EJD
F0J
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SET
SPG
WUQ
XJT
ZY4
~HD
ID FETCH-LOGICAL-c255t-a654b9ce360cd220845bde22486ce0265b3e9acdcdacce535f9891dd6e6135bd3
IEDL.DBID .~1
ISSN 0030-4018
IngestDate Wed Oct 01 04:39:39 EDT 2025
Sat Nov 23 15:55:18 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-a654b9ce360cd220845bde22486ce0265b3e9acdcdacce535f9891dd6e6135bd3
ORCID 0000-0002-0356-5977
ParticipantIDs crossref_primary_10_1016_j_optcom_2024_130870
elsevier_sciencedirect_doi_10_1016_j_optcom_2024_130870
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Optics communications
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Feng, Zuo, Zhang, Yin, Chen (bib37) 2021; 9
Keil, Korte, Ratmer, Edler, Dickmann (bib6) 2020; 88
Zhang, Ma, Yang, Zhao, Liu (bib11) 2023; 48
Yang, Takamura, Takahashi, Takamasu, Sato, Osawa, Takatsuji (bib16) 2011; 35
Zeng, Zheng, Lu, Gao, Yu (bib43) 2015; 22
Junchang, Y anmei (bib31) 2009; 282
Zhang, Yu, Li, Xia, Deng, Zhang (bib36) 2017; 66
Buonamici, Furferi, Governi, Marzola, Volpe (bib21) 2020; 20
Huang, Gojcic, Huang, Wieser, Schindler (bib22) 2022
Slinger, Cameron, Stanley (bib9) 2005; 38
Zhang (bib29) 2012; 50
Wang, Zhang (bib38) 2012; 51
Yan, Liu, Li, Zhang, Chang, Jing, Hu, Qu, Wang, Jiang (bib13) 2024
Barabas, Jolly, Smalley, Michael Bove (bib18) 2012; 8281
Takaki, Nakamura (bib19) 2012; DM2C.5
Yu, Li, Gao, Yan, Li, Wang, Sang (bib41) 2024; 32
Haleem, Javaid, Khan (bib3) 2020; 30
Wall, Gee, Neilsen, McKinley, James (bib5) 2016; 139
Chang, Wang, Zhu, Li, Xia, Zhang (bib10) 2022; 47
Zhang, Su, Xiang, Sun (bib23) 2012; 50
Gabor (bib2) 1948; 161
Dong, Li, Liu, Zhong, Wang, Liu, Song (bib14) 2023; 31
Yu, Dong, Gao, Li, Zhang, Fu, Pei, Wen, Zhao, Yan (bib42) 2024; 32
Huang, Jing (bib33) 2007; 28
Okada, Shimobaba, Ichihashi, Oi, Yamamoto, Oikawa, Kakue, Masuda, Ito (bib39) 2013; 21
Wu, Liu, Sui, Cao (bib12) 2021; 46
Zhang, Zhao, Cao, Jin (bib24) 2016; 55
Tian, Chen, Ma, Yu (bib34) 2011; 284
Zhang, Cao, Jin (bib7) 2017; 56
Jin, Sun, Li (bib35) 2020; 28
He, Sui, Cao (bib15) 2021; 11
Lei, Zhang (bib30) 2010; 35
Virca, Bârsan, Oancea, Vesa (bib4) 2017; 26
Li, Wang, Ma, Shi (bib40) 2013; vol. 8769
Lazarev, Hermerschmidt, Krüger, Osten (bib25) 2012
Zhao, Cao, Zhang, Kong, Jin (bib32) 2015; 23
Jiang, Jin, Cao (bib1) 2019; 11
Davis, McNamara, Cottrell, Sonehara (bib26) 2000; 39
Pi, Liu, Wang (bib8) 2022; 11
Chan, Chan, Taylor, Brener, Cich, Mittleman (bib27) 2009; 94
Barabas, Jolly, Smalley, Bove (bib17) 2011; 7957
Zhang (bib28) 2010; 48
Kennedy, Eberhart (bib20) 1995; 4
Zeng (10.1016/j.optcom.2024.130870_bib43) 2015; 22
Yan (10.1016/j.optcom.2024.130870_bib13) 2024
Huang (10.1016/j.optcom.2024.130870_bib33) 2007; 28
Zhang (10.1016/j.optcom.2024.130870_bib7) 2017; 56
Zhang (10.1016/j.optcom.2024.130870_bib28) 2010; 48
Zhao (10.1016/j.optcom.2024.130870_bib32) 2015; 23
Lei (10.1016/j.optcom.2024.130870_bib30) 2010; 35
Gabor (10.1016/j.optcom.2024.130870_bib2) 1948; 161
Wall (10.1016/j.optcom.2024.130870_bib5) 2016; 139
Yang (10.1016/j.optcom.2024.130870_bib16) 2011; 35
Takaki (10.1016/j.optcom.2024.130870_bib19) 2012; DM2C.5
Zhang (10.1016/j.optcom.2024.130870_bib29) 2012; 50
Jin (10.1016/j.optcom.2024.130870_bib35) 2020; 28
Haleem (10.1016/j.optcom.2024.130870_bib3) 2020; 30
Barabas (10.1016/j.optcom.2024.130870_bib17) 2011; 7957
Kennedy (10.1016/j.optcom.2024.130870_bib20) 1995; 4
Li (10.1016/j.optcom.2024.130870_bib40) 2013; vol. 8769
Davis (10.1016/j.optcom.2024.130870_bib26) 2000; 39
Yu (10.1016/j.optcom.2024.130870_bib41) 2024; 32
Dong (10.1016/j.optcom.2024.130870_bib14) 2023; 31
He (10.1016/j.optcom.2024.130870_bib15) 2021; 11
Jiang (10.1016/j.optcom.2024.130870_bib1) 2019; 11
Junchang (10.1016/j.optcom.2024.130870_bib31) 2009; 282
Chang (10.1016/j.optcom.2024.130870_bib10) 2022; 47
Lazarev (10.1016/j.optcom.2024.130870_bib25) 2012
Buonamici (10.1016/j.optcom.2024.130870_bib21) 2020; 20
Barabas (10.1016/j.optcom.2024.130870_bib18) 2012; 8281
Slinger (10.1016/j.optcom.2024.130870_bib9) 2005; 38
Zhang (10.1016/j.optcom.2024.130870_bib23) 2012; 50
Wu (10.1016/j.optcom.2024.130870_bib12) 2021; 46
Feng (10.1016/j.optcom.2024.130870_bib37) 2021; 9
Zhang (10.1016/j.optcom.2024.130870_bib24) 2016; 55
Okada (10.1016/j.optcom.2024.130870_bib39) 2013; 21
Yu (10.1016/j.optcom.2024.130870_bib42) 2024; 32
Virca (10.1016/j.optcom.2024.130870_bib4) 2017; 26
Pi (10.1016/j.optcom.2024.130870_bib8) 2022; 11
Keil (10.1016/j.optcom.2024.130870_bib6) 2020; 88
Zhang (10.1016/j.optcom.2024.130870_bib11) 2023; 48
Wang (10.1016/j.optcom.2024.130870_bib38) 2012; 51
Huang (10.1016/j.optcom.2024.130870_bib22) 2022
Tian (10.1016/j.optcom.2024.130870_bib34) 2011; 284
Zhang (10.1016/j.optcom.2024.130870_bib36) 2017; 66
Chan (10.1016/j.optcom.2024.130870_bib27) 2009; 94
References_xml – volume: 20
  start-page: 1726
  year: 2020
  ident: bib21
  article-title: Scene acquisition with multiple 2D and 3D optical sensors: a PSO-based visibility optimization
  publication-title: Sensors
– volume: 26
  start-page: 337
  year: 2017
  end-page: 347
  ident: bib4
  article-title: Applications of Augmented reality technology in the military educational field
  publication-title: Land Forces Academy Review
– volume: 48
  start-page: 1850
  year: 2023
  end-page: 1853
  ident: bib11
  article-title: End-to-end real-time holographic display based on real-time capture of real scenes
  publication-title: Opt. Lett.
– volume: 51
  start-page: 861
  year: 2012
  end-page: 872
  ident: bib38
  article-title: Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing
  publication-title: Appl. Opt.
– volume: 282
  start-page: 455
  year: 2009
  end-page: 458
  ident: bib31
  article-title: An indirect algorithm of Fresnel diffraction
  publication-title: Opt Commun.
– volume: 11
  start-page: 518
  year: 2019
  end-page: 576
  ident: bib1
  article-title: When metasurface meets hologram: principle and advances
  publication-title: Adv. Opt. Photonics
– volume: 56
  start-page: F138
  year: 2017
  end-page: F143
  ident: bib7
  article-title: Computer-generated hologram with occlusion effect using layer-based processing
  publication-title: Appl. Opt.
– volume: 46
  start-page: 2908
  year: 2021
  end-page: 2911
  ident: bib12
  article-title: High-speed computer-generated holography using an autoencoder-based deep neural network
  publication-title: Opt. Lett.
– volume: 7957
  year: 2011
  ident: bib17
  article-title: Diffraction specific coherent panoramagrams of real scenes
  publication-title: Proc. SPIE
– volume: 284
  start-page: 80
  year: 2011
  end-page: 87
  ident: bib34
  article-title: Multi-focus image fusion using a bilateral gradient-based sharpness criterion
  publication-title: Opt Commun.
– volume: 38
  start-page: 46
  year: 2005
  end-page: 53
  ident: bib9
  article-title: Computer-generated holography as a generic display technology
  publication-title: Computer
– volume: 35
  start-page: 931
  year: 2010
  end-page: 933
  ident: bib30
  article-title: Flexible 3-D shape measurement using projector defocusing
  publication-title: Opt. Lett.
– volume: 28
  start-page: 493
  year: 2007
  end-page: 500
  ident: bib33
  article-title: Evaluation of focus measures in multi-focus image fusion
  publication-title: Pattern Recogn. Lett.
– volume: 139
  start-page: 1938
  year: 2016
  end-page: 1950
  ident: bib5
  article-title: Military jet noise source imaging using multisource statistically optimized near-field acoustical holography
  publication-title: J. Acoust. Soc. Am.
– volume: 35
  start-page: 424
  year: 2011
  end-page: 430
  ident: bib16
  article-title: Development of high-precision micro-coordinate measuring machine: multi-probe measurement system for measuring yaw and straightness motion error of XY linear stage
  publication-title: Precis. Eng.
– volume: 161
  start-page: 777
  year: 1948
  end-page: 778
  ident: bib2
  article-title: A new microscopic principle
  publication-title: Nature
– volume: 50
  start-page: 1097
  year: 2012
  end-page: 1106
  ident: bib29
  article-title: Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques
  publication-title: Opt Laser. Eng.
– volume: 30
  start-page: 354
  year: 2020
  end-page: 361
  ident: bib3
  article-title: Holography applications toward medical field: an overview
  publication-title: Indian J. Radiol. Imag.
– volume: 11
  start-page: 9889
  year: 2021
  ident: bib15
  article-title: Holographic 3D display using depth maps generated by 2D-to-3D rendering approach
  publication-title: Appl. Sci.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib20
  article-title: Particle swarm optimization
  publication-title: Proc. Int. Conf. Neural Netw.
– volume: 39
  start-page: 1549
  year: 2000
  end-page: 1554
  ident: bib26
  article-title: Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator
  publication-title: Appl. Opt.
– volume: 28
  start-page: 3428
  year: 2020
  end-page: 3441
  ident: bib35
  article-title: Geometry parameter calibration for focused plenoptic cameras
  publication-title: Opt Express
– volume: 47
  start-page: 1482
  year: 2022
  end-page: 1485
  ident: bib10
  article-title: Deep-learning-based computer-generated hologram from a stereo image pair
  publication-title: Opt. Lett.
– year: 2024
  ident: bib13
  article-title: Generating multi‐depth 3D holograms using a fully convolutional neural network
  publication-title: Adv. Sci.
– volume: vol. 8769
  start-page: 396
  year: 2013
  end-page: 404
  ident: bib40
  article-title: Three-dimensional imaging and display of real-existing scene using fringe
  publication-title: International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013)
– volume: 55
  start-page: A154
  year: 2016
  end-page: A159
  ident: bib24
  article-title: Layered holographic stereogram based on inverse Fresnel diffraction
  publication-title: Appl. Opt.
– volume: 50
  start-page: 574
  year: 2012
  end-page: 579
  ident: bib23
  article-title: 3-D shape measurement based on complementary Gray-code light
  publication-title: Opt Laser. Eng.
– volume: 32
  start-page: 11296
  year: 2024
  end-page: 11306
  ident: bib42
  article-title: Vertically spliced tabletop light field cave display with extended depth content and separately optimized compound lens array
  publication-title: Opt Express
– volume: 22
  start-page: 853
  year: 2015
  end-page: 861
  ident: bib43
  article-title: Dynamic holographic three-dimensional projection based on liquid crystal spatial light modulator and cylindrical fog screen
  publication-title: Opt. Rev.
– volume: 31
  start-page: 21721
  year: 2023
  end-page: 21730
  ident: bib14
  article-title: High-speed real 3D scene acquisition and 3D holographic reconstruction system based on ultrafast optical axial scanning
  publication-title: Opt Express
– volume: DM2C.5
  year: 2012
  ident: bib19
  article-title: Development of a holographic display module using a 4K2K-SLM based on the resolution redistribution technique
  publication-title: OSA Tech. Digest DH
– volume: 9
  start-page: 1084
  year: 2021
  end-page: 1098
  ident: bib37
  article-title: Generalized framework for non-sinusoidal fringe analysis using deep learning
  publication-title: Photon. Res.
– volume: 32
  start-page: 9857
  year: 2024
  end-page: 9866
  ident: bib41
  article-title: Smooth motion parallax method for 3D light-field displays with a narrow pitch based on optimizing the light beam divergence angle
  publication-title: Opt Express
– volume: 8281
  year: 2012
  ident: bib18
  article-title: Depth perception and user interface in digital holographic television
  publication-title: Proc. SPIE
– volume: 23
  start-page: 25440
  year: 2015
  end-page: 25449
  ident: bib32
  article-title: Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method
  publication-title: Opt Express
– volume: 94
  year: 2009
  ident: bib27
  article-title: A spatial light modulator for terahertz beams
  publication-title: Appl. Phys. Lett.
– volume: 88
  start-page: 165
  year: 2020
  end-page: 172
  ident: bib6
  article-title: Augmented reality (AR) and spatial cognition: effects of holographic gridson distance estimation and location memory in a 3D indoor scenario
  publication-title: J. Photogramm. Remote Sens. Geoinf. Sci.
– volume: 11
  start-page: 231
  year: 2022
  ident: bib8
  article-title: Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display
  publication-title: Light Sci. Appl.
– start-page: 1
  year: 2012
  end-page: 29
  ident: bib25
  article-title: LCOS Spatial Light Modulators: Trends and Applications
– start-page: 674
  year: 2022
  end-page: 690
  ident: bib22
  article-title: Dynamic 3d scene analysis by point cloud accumulation
  publication-title: Proceedings of the 2022 European Conference on Computer Vision (ECCV), Tel Aviv, Israel
– volume: 48
  start-page: 149
  year: 2010
  end-page: 158
  ident: bib28
  article-title: Recent progresses on real-time 3D shape measurement using digital fringe projection techniques
  publication-title: Opt Laser. Eng.
– volume: 66
  start-page: 2755
  year: 2017
  end-page: 2761
  ident: bib36
  article-title: Black-box phase error compensation for digital phase-shifting profilometry
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 21
  start-page: 9192
  year: 2013
  end-page: 9197
  ident: bib39
  article-title: Band-limited double-step Fresnel diffraction and its application to computer-generated holograms
  publication-title: Opt Express
– volume: 161
  start-page: 777
  issue: 4098
  year: 1948
  ident: 10.1016/j.optcom.2024.130870_bib2
  article-title: A new microscopic principle
  publication-title: Nature
  doi: 10.1038/161777a0
– volume: 28
  start-page: 3428
  issue: 3
  year: 2020
  ident: 10.1016/j.optcom.2024.130870_bib35
  article-title: Geometry parameter calibration for focused plenoptic cameras
  publication-title: Opt Express
  doi: 10.1364/OE.381717
– volume: 56
  start-page: F138
  issue: 13
  year: 2017
  ident: 10.1016/j.optcom.2024.130870_bib7
  article-title: Computer-generated hologram with occlusion effect using layer-based processing
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.00F138
– volume: 23
  start-page: 25440
  issue: 20
  year: 2015
  ident: 10.1016/j.optcom.2024.130870_bib32
  article-title: Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method
  publication-title: Opt Express
  doi: 10.1364/OE.23.025440
– volume: 32
  start-page: 9857
  issue: 6
  year: 2024
  ident: 10.1016/j.optcom.2024.130870_bib41
  article-title: Smooth motion parallax method for 3D light-field displays with a narrow pitch based on optimizing the light beam divergence angle
  publication-title: Opt Express
  doi: 10.1364/OE.518393
– volume: 88
  start-page: 165
  issue: 2
  year: 2020
  ident: 10.1016/j.optcom.2024.130870_bib6
  article-title: Augmented reality (AR) and spatial cognition: effects of holographic gridson distance estimation and location memory in a 3D indoor scenario
  publication-title: J. Photogramm. Remote Sens. Geoinf. Sci.
– volume: 38
  start-page: 46
  issue: 8
  year: 2005
  ident: 10.1016/j.optcom.2024.130870_bib9
  article-title: Computer-generated holography as a generic display technology
  publication-title: Computer
  doi: 10.1109/MC.2005.260
– start-page: 1
  year: 2012
  ident: 10.1016/j.optcom.2024.130870_bib25
– volume: 11
  start-page: 9889
  issue: 21
  year: 2021
  ident: 10.1016/j.optcom.2024.130870_bib15
  article-title: Holographic 3D display using depth maps generated by 2D-to-3D rendering approach
  publication-title: Appl. Sci.
  doi: 10.3390/app11219889
– volume: 50
  start-page: 1097
  issue: 8
  year: 2012
  ident: 10.1016/j.optcom.2024.130870_bib29
  article-title: Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques
  publication-title: Opt Laser. Eng.
  doi: 10.1016/j.optlaseng.2012.01.007
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.optcom.2024.130870_bib20
  article-title: Particle swarm optimization
  publication-title: Proc. Int. Conf. Neural Netw.
  doi: 10.1109/ICNN.1995.488968
– volume: 26
  start-page: 337
  issue: 4
  year: 2017
  ident: 10.1016/j.optcom.2024.130870_bib4
  article-title: Applications of Augmented reality technology in the military educational field
  publication-title: Land Forces Academy Review
  doi: 10.2478/raft-2021-0044
– volume: 51
  start-page: 861
  issue: 7
  year: 2012
  ident: 10.1016/j.optcom.2024.130870_bib38
  article-title: Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing
  publication-title: Appl. Opt.
  doi: 10.1364/AO.51.000861
– volume: 48
  start-page: 1850
  issue: 7
  year: 2023
  ident: 10.1016/j.optcom.2024.130870_bib11
  article-title: End-to-end real-time holographic display based on real-time capture of real scenes
  publication-title: Opt. Lett.
  doi: 10.1364/OL.479652
– volume: 20
  start-page: 1726
  issue: 6
  year: 2020
  ident: 10.1016/j.optcom.2024.130870_bib21
  article-title: Scene acquisition with multiple 2D and 3D optical sensors: a PSO-based visibility optimization
  publication-title: Sensors
  doi: 10.3390/s20061726
– volume: 55
  start-page: A154
  issue: 3
  year: 2016
  ident: 10.1016/j.optcom.2024.130870_bib24
  article-title: Layered holographic stereogram based on inverse Fresnel diffraction
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.00A154
– volume: 28
  start-page: 493
  issue: 4
  year: 2007
  ident: 10.1016/j.optcom.2024.130870_bib33
  article-title: Evaluation of focus measures in multi-focus image fusion
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2006.09.005
– volume: 47
  start-page: 1482
  issue: 6
  year: 2022
  ident: 10.1016/j.optcom.2024.130870_bib10
  article-title: Deep-learning-based computer-generated hologram from a stereo image pair
  publication-title: Opt. Lett.
  doi: 10.1364/OL.453580
– volume: DM2C.5
  year: 2012
  ident: 10.1016/j.optcom.2024.130870_bib19
  article-title: Development of a holographic display module using a 4K2K-SLM based on the resolution redistribution technique
  publication-title: OSA Tech. Digest DH
– start-page: 674
  year: 2022
  ident: 10.1016/j.optcom.2024.130870_bib22
  article-title: Dynamic 3d scene analysis by point cloud accumulation
– volume: 94
  year: 2009
  ident: 10.1016/j.optcom.2024.130870_bib27
  article-title: A spatial light modulator for terahertz beams
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3147221
– volume: 35
  start-page: 424
  issue: 3
  year: 2011
  ident: 10.1016/j.optcom.2024.130870_bib16
  article-title: Development of high-precision micro-coordinate measuring machine: multi-probe measurement system for measuring yaw and straightness motion error of XY linear stage
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2011.01.004
– volume: 8281
  year: 2012
  ident: 10.1016/j.optcom.2024.130870_bib18
  article-title: Depth perception and user interface in digital holographic television
  publication-title: Proc. SPIE
– volume: 31
  start-page: 21721
  issue: 13
  year: 2023
  ident: 10.1016/j.optcom.2024.130870_bib14
  article-title: High-speed real 3D scene acquisition and 3D holographic reconstruction system based on ultrafast optical axial scanning
  publication-title: Opt Express
  doi: 10.1364/OE.489175
– year: 2024
  ident: 10.1016/j.optcom.2024.130870_bib13
  article-title: Generating multi‐depth 3D holograms using a fully convolutional neural network
  publication-title: Adv. Sci.
– volume: vol. 8769
  start-page: 396
  year: 2013
  ident: 10.1016/j.optcom.2024.130870_bib40
  article-title: Three-dimensional imaging and display of real-existing scene using fringe
– volume: 48
  start-page: 149
  issue: 2
  year: 2010
  ident: 10.1016/j.optcom.2024.130870_bib28
  article-title: Recent progresses on real-time 3D shape measurement using digital fringe projection techniques
  publication-title: Opt Laser. Eng.
  doi: 10.1016/j.optlaseng.2009.03.008
– volume: 21
  start-page: 9192
  issue: 7
  year: 2013
  ident: 10.1016/j.optcom.2024.130870_bib39
  article-title: Band-limited double-step Fresnel diffraction and its application to computer-generated holograms
  publication-title: Opt Express
  doi: 10.1364/OE.21.009192
– volume: 30
  start-page: 354
  issue: 3
  year: 2020
  ident: 10.1016/j.optcom.2024.130870_bib3
  article-title: Holography applications toward medical field: an overview
  publication-title: Indian J. Radiol. Imag.
  doi: 10.4103/ijri.IJRI_39_20
– volume: 39
  start-page: 1549
  issue: 10
  year: 2000
  ident: 10.1016/j.optcom.2024.130870_bib26
  article-title: Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator
  publication-title: Appl. Opt.
  doi: 10.1364/AO.39.001549
– volume: 50
  start-page: 574
  issue: 4
  year: 2012
  ident: 10.1016/j.optcom.2024.130870_bib23
  article-title: 3-D shape measurement based on complementary Gray-code light
  publication-title: Opt Laser. Eng.
  doi: 10.1016/j.optlaseng.2011.06.024
– volume: 11
  start-page: 518
  issue: 3
  year: 2019
  ident: 10.1016/j.optcom.2024.130870_bib1
  article-title: When metasurface meets hologram: principle and advances
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.11.000518
– volume: 7957
  year: 2011
  ident: 10.1016/j.optcom.2024.130870_bib17
  article-title: Diffraction specific coherent panoramagrams of real scenes
  publication-title: Proc. SPIE
  doi: 10.1117/12.873865
– volume: 139
  start-page: 1938
  issue: 4
  year: 2016
  ident: 10.1016/j.optcom.2024.130870_bib5
  article-title: Military jet noise source imaging using multisource statistically optimized near-field acoustical holography
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4945719
– volume: 35
  start-page: 931
  issue: 7
  year: 2010
  ident: 10.1016/j.optcom.2024.130870_bib30
  article-title: Flexible 3-D shape measurement using projector defocusing
  publication-title: Opt. Lett.
– volume: 11
  start-page: 231
  issue: 1
  year: 2022
  ident: 10.1016/j.optcom.2024.130870_bib8
  article-title: Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-022-00916-3
– volume: 284
  start-page: 80
  issue: 1
  year: 2011
  ident: 10.1016/j.optcom.2024.130870_bib34
  article-title: Multi-focus image fusion using a bilateral gradient-based sharpness criterion
  publication-title: Opt Commun.
  doi: 10.1016/j.optcom.2010.08.085
– volume: 66
  start-page: 2755
  issue: 10
  year: 2017
  ident: 10.1016/j.optcom.2024.130870_bib36
  article-title: Black-box phase error compensation for digital phase-shifting profilometry
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2712862
– volume: 22
  start-page: 853
  year: 2015
  ident: 10.1016/j.optcom.2024.130870_bib43
  article-title: Dynamic holographic three-dimensional projection based on liquid crystal spatial light modulator and cylindrical fog screen
  publication-title: Opt. Rev.
  doi: 10.1007/s10043-015-0109-2
– volume: 32
  start-page: 11296
  issue: 7
  year: 2024
  ident: 10.1016/j.optcom.2024.130870_bib42
  article-title: Vertically spliced tabletop light field cave display with extended depth content and separately optimized compound lens array
  publication-title: Opt Express
  doi: 10.1364/OE.519511
– volume: 282
  start-page: 455
  issue: 4
  year: 2009
  ident: 10.1016/j.optcom.2024.130870_bib31
  article-title: An indirect algorithm of Fresnel diffraction
  publication-title: Opt Commun.
  doi: 10.1016/j.optcom.2008.10.060
– volume: 46
  start-page: 2908
  issue: 12
  year: 2021
  ident: 10.1016/j.optcom.2024.130870_bib12
  article-title: High-speed computer-generated holography using an autoencoder-based deep neural network
  publication-title: Opt. Lett.
  doi: 10.1364/OL.425485
– volume: 9
  start-page: 1084
  issue: 6
  year: 2021
  ident: 10.1016/j.optcom.2024.130870_bib37
  article-title: Generalized framework for non-sinusoidal fringe analysis using deep learning
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.420944
SSID ssj0001438
Score 2.4395597
Snippet The lack of three-dimensional (3D) information limits the popularization and development of holographic technology. This paper proposes a low-cost,...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 130870
Title Low-cost, high-precision integral 3D photography and holographic 3D display for real-world scenes
URI https://dx.doi.org/10.1016/j.optcom.2024.130870
Volume 570
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0030-4018
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001438
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0030-4018
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001438
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0030-4018
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001438
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0030-4018
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001438
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0030-4018
  databaseCode: AKRWK
  dateStart: 19690401
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001438
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48ujbJbjbZY6mW-urJQm9hX6WR0oQmIl787e7kgQriwWOS3RC-hJlvwsz3IXQJnNkI7RMeLWIC2jlEeLEiIpaUSk8ov_qh_zTlkxm7n4fzDhq1szDQVtnE_jqmV9G6OTNo0BzkaQozvq4U9xw_ZiAqEkEcZiwCF4Prj682D7D3rqUZPQKr2_G5qscry0voGQlcogJb5Bgsi39LT99SzngP7TZcEQ_rx9lHHbs-QNtVz6YuDpF8zN6IzoryCoPoMMk3jV8ObjQgVpje4HyZlY0sNZZrg5etSnWq4bJJi3wl37HjrtjxxxWpJFQxaDzZ4gjNxrfPowlpHBOIdqVBSSQPmRLaUu5pEwRezEJlrMvSMdfWVVuholZIbbSRWtuQhgsRC98Ybl1Wd0vpMequs7U9QRhEbSImlIkcYwqDhbBc-ZoqdyvFBOU9RFqgkrwWxkjajrGXpAY2AWCTGtgeilo0kx8vOHGx-8-dp__eeYZ24KgeHTxH3XLzai8chyhVv_pI-mhrePcwmX4Cj4PFjQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KInoRn1ife_Do2iSbTbJHqZaqbU8t9Bb2VRopSWgi4sXf7k4eqCAevGZ3Q_gSZr4J33yD0DVwZs2VS4JwERHwziHciSThkaBUOFy61Q_98SQYzvynOZt3UL_thQFZZRP765heRevmSq9Bs5cnCfT42lLcsfzYB1OR0MbhTZ95IVRgtx9fOg-Y7117MzoEtrf9c5XIK8tLEI14NlPBXOQIZhb_lp--5ZzBHtptyCK-q59nH3VMeoC2KtGmKg6RGGVvRGVFeYPBdZjk62ZgDm5MIFaY3uN8mZWNLzUWqcbL1qY6UbCskyJfiXdsySu2BHJFKg9VDCZPpjhCs8HDtD8kzcgEomxtUBIRMF9yZWjgKO15TuQzqY1N01GgjC23mKSGC6WVFkoZRtmCR9zVOjA2rdut9BhtpFlqThAGV5vQ51KHljIxb8FNIF1Fpb2V9DkNuoi0QMV57YwRt5Kxl7gGNgZg4xrYLgpbNOMfbzi2wfvPk6f_PnmFtofT8SgePU6ez9AOrNR9hOdoo1y_mgtLKEp5WX0wn1z7xyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-cost%2C+high-precision+integral+3D+photography+and+holographic+3D+display+for+real-world+scenes&rft.jtitle=Optics+communications&rft.au=Sun%2C+Zehao&rft.au=Liu%2C+Minghao&rft.au=Dong%2C+Jiaqing&rft.au=Li%2C+Zilong&rft.date=2024-11-01&rft.issn=0030-4018&rft.volume=570&rft.spage=130870&rft_id=info:doi/10.1016%2Fj.optcom.2024.130870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optcom_2024_130870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon