A novel growing wavelet neural network algorithm for solving chemotaxis systems with blow‐up
In this study, we introduce a new growing neural network algorithm that is based on wavelet neural networks and call our algorithm a growing wavelet neural network (GWNN) method. We apply our proposed scheme to train a wavelet neural network to solve chemotaxis problems with blow‐up. These problems...
        Saved in:
      
    
          | Published in | Mathematical methods in the applied sciences Vol. 46; no. 15; pp. 16255 - 16281 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Freiburg
          Wiley Subscription Services, Inc
    
        01.10.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0170-4214 1099-1476  | 
| DOI | 10.1002/mma.9449 | 
Cover
| Abstract | In this study, we introduce a new growing neural network algorithm that is based on wavelet neural networks and call our algorithm a growing wavelet neural network (GWNN) method. We apply our proposed scheme to train a wavelet neural network to solve chemotaxis problems with blow‐up. These problems are highly nonlinear time‐dependent systems of partial differential equations, and it is a challenge to get the pattern of the solution accurately. The proposed structure is partial retraining of the network, which increases its capacity to catch the spiky pattern of the solution. Our neural network‐based algorithm allows us to solve the nonlinear chemotaxis problems without the use of linearization techniques and regularization techniques, most of which reduce the accuracy of the model. This mesh‐free‐based method can manage a variety of blow‐up models with curved boundaries without imposing an extra cost. By proving the consistency and stability of the method, we show the convergence of GWNN solutions to analytical solutions of the chemotaxis problem. Several illustrative examples and simulation results are provided to demonstrate the correctness of the results and the robust performance of the presented algorithm. Moreover, to illustrate the effectiveness of the GWNN method, we make a comparison with two other network‐based methods. | 
    
|---|---|
| AbstractList | In this study, we introduce a new growing neural network algorithm that is based on wavelet neural networks and call our algorithm a growing wavelet neural network (GWNN) method. We apply our proposed scheme to train a wavelet neural network to solve chemotaxis problems with blow‐up. These problems are highly nonlinear time‐dependent systems of partial differential equations, and it is a challenge to get the pattern of the solution accurately. The proposed structure is partial retraining of the network, which increases its capacity to catch the spiky pattern of the solution. Our neural network‐based algorithm allows us to solve the nonlinear chemotaxis problems without the use of linearization techniques and regularization techniques, most of which reduce the accuracy of the model. This mesh‐free‐based method can manage a variety of blow‐up models with curved boundaries without imposing an extra cost. By proving the consistency and stability of the method, we show the convergence of GWNN solutions to analytical solutions of the chemotaxis problem. Several illustrative examples and simulation results are provided to demonstrate the correctness of the results and the robust performance of the presented algorithm. Moreover, to illustrate the effectiveness of the GWNN method, we make a comparison with two other network‐based methods. | 
    
| Author | Mostajeran, F. Hosseini, S. M.  | 
    
| Author_xml | – sequence: 1 givenname: F. surname: Mostajeran fullname: Mostajeran, F. organization: Faculty of Mathematical Sciences Tarbiat Modares University Tehran Iran – sequence: 2 givenname: S. M. surname: Hosseini fullname: Hosseini, S. M. organization: Faculty of Mathematical Sciences Tarbiat Modares University Tehran Iran  | 
    
| BookMark | eNplkM1KAzEUhYNUsK2CjxBw42ZqkmYmk2Up_kHBjW4NSZppp2YmNcl07M5H8Bl9ElPqSleHC985F74RGLSuNQBcYjTBCJGbppETTik_AUOMOM8wZcUADBFmKKME0zMwCmGDECoxJkPwOoOt2xkLV971dbuCvUyXibA1nZc2Reydf4PSrpyv47qBlfMwOLs7wHptGhflRx1g2IdomgD7BEFlXf_9-dVtz8FpJW0wF785Bi93t8_zh2zxdP84ny0yTfI8ZnypmMy1niq21Cwvi7yiVHGCi8rQpeJKasVUkZBKldNKFUxKSTlTCKvC5Go6BlfH3a13750JUWxc59v0UpCyIIhywlCiJkdKexeCN5XQdZSxdm30srYCI3FwKJJDcXCYCtd_CltfN9Lv_6M_I_J3xg | 
    
| CitedBy_id | crossref_primary_10_1002_num_23156 | 
    
| Cites_doi | 10.1007/s10915-012-9599-2 10.1002/mma.8906 10.1016/j.jcp.2022.111868 10.1016/j.camwa.2023.04.026 10.1007/s10957-012-0258-4 10.1016/j.cam.2008.04.030 10.1016/j.neunet.2013.01.008 10.1016/j.cpc.2021.108236 10.1016/j.jcp.2018.10.045 10.1002/mma.8844 10.1016/j.camwa.2019.01.021 10.1063/5.0046181 10.4208/cicp.OA‐2020‐0164 10.1007/s10440-020-00374-2 10.1016/j.conengprac.2021.104840 10.30707/LiB6.2Raissi 10.1016/j.ijheatfluidflow.2022.109002 10.1016/j.matcom.2020.01.005 10.1007/s10915-020-01310-0 10.1002/mma.7862 10.1016/j.bspc.2021.102750 10.1016/0022-5193(71)90051-8 10.1002/mma.7687 10.1002/mana.19981950106 10.1002/9781119121534 10.1002/mma.5290 10.1002/mma.7310 10.1109/TSMCB.2004.834428 10.1007/s11075-017-0339-4 10.1007/s10915-015-0097-1 10.1109/78.388860 10.21914/anziamj.v61i0.15185 10.1016/0022-5193(71)90050-6 10.1016/j.enganabound.2023.03.039 10.1016/0022-5193(70)90092-5 10.1016/j.jcp.2017.07.050 10.1007/s10915-018-0813-8 10.1016/j.neunet.2013.03.010 10.1002/mma.9050 10.1007/s10915-019-00951-0 10.1007/BF01445268 10.1016/S0362-546X(01)00222-X  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 John Wiley & Sons, Ltd. | 
    
| Copyright_xml | – notice: 2023 John Wiley & Sons, Ltd. | 
    
| DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7  | 
    
| DOI | 10.1002/mma.9449 | 
    
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | CrossRef Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Mathematics  | 
    
| EISSN | 1099-1476 | 
    
| EndPage | 16281 | 
    
| ExternalDocumentID | 10_1002_mma_9449 | 
    
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT 7TB 8FD FR3 JQ2 KR7  | 
    
| ID | FETCH-LOGICAL-c255t-9db7a5cc3b7dc75865f44b9216fe4db9bacb7b6a5cfb83fb67aaa497b01b6e5b3 | 
    
| ISSN | 0170-4214 | 
    
| IngestDate | Fri Jul 25 12:09:00 EDT 2025 Wed Oct 01 03:42:48 EDT 2025 Thu Apr 24 23:03:59 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 15 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c255t-9db7a5cc3b7dc75865f44b9216fe4db9bacb7b6a5cfb83fb67aaa497b01b6e5b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2862049270 | 
    
| PQPubID | 1016386 | 
    
| PageCount | 27 | 
    
| ParticipantIDs | proquest_journals_2862049270 crossref_citationtrail_10_1002_mma_9449 crossref_primary_10_1002_mma_9449  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-10-00 20231001  | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Freiburg | 
    
| PublicationPlace_xml | – name: Freiburg | 
    
| PublicationTitle | Mathematical methods in the applied sciences | 
    
| PublicationYear | 2023 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 Horstmann D. (e_1_2_9_43_1) 2004; 106 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 Horstmann D. (e_1_2_9_42_1) 2003; 105 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Nagai T. (e_1_2_9_48_1) 1995; 3 Bishop C. M. (e_1_2_9_53_1) 1996 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Iserles A. (e_1_2_9_45_1) 2009 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Kurganov A. (e_1_2_9_52_1) 2014; 19 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1  | 
    
| References_xml | – ident: e_1_2_9_50_1 doi: 10.1007/s10915-012-9599-2 – ident: e_1_2_9_9_1 doi: 10.1002/mma.8906 – ident: e_1_2_9_30_1 doi: 10.1016/j.jcp.2022.111868 – ident: e_1_2_9_32_1 doi: 10.1016/j.camwa.2023.04.026 – volume: 106 start-page: 51 year: 2004 ident: e_1_2_9_43_1 article-title: From 1970 until now: The Keller‐Segel model in chemotaxis and its consequences II publication-title: Jahresber. Dtsch. Math.‐Ver. – ident: e_1_2_9_25_1 doi: 10.1007/s10957-012-0258-4 – ident: e_1_2_9_14_1 doi: 10.1016/j.cam.2008.04.030 – volume-title: Neural networks for pattern recognition year: 1996 ident: e_1_2_9_53_1 – volume: 105 start-page: 103 year: 2003 ident: e_1_2_9_42_1 article-title: From 1970 until now: The Keller‐Segel model in chemotaxis and its consequences I publication-title: Jahresber. Dtsch. Math.‐Ver. – ident: e_1_2_9_47_1 doi: 10.1016/j.neunet.2013.01.008 – ident: e_1_2_9_16_1 doi: 10.1016/j.cpc.2021.108236 – ident: e_1_2_9_18_1 doi: 10.1016/j.jcp.2018.10.045 – ident: e_1_2_9_11_1 doi: 10.1002/mma.8844 – ident: e_1_2_9_51_1 doi: 10.1016/j.camwa.2019.01.021 – ident: e_1_2_9_28_1 doi: 10.1063/5.0046181 – ident: e_1_2_9_29_1 doi: 10.4208/cicp.OA‐2020‐0164 – volume: 19 start-page: 131 year: 2014 ident: e_1_2_9_52_1 article-title: Numerical study of two‐species chemotaxis models publication-title: Discrete Contin. Dyn. Syst. Ser. B – ident: e_1_2_9_46_1 – ident: e_1_2_9_8_1 doi: 10.1007/s10440-020-00374-2 – ident: e_1_2_9_33_1 doi: 10.1016/j.conengprac.2021.104840 – ident: e_1_2_9_21_1 doi: 10.30707/LiB6.2Raissi – ident: e_1_2_9_27_1 doi: 10.1016/j.ijheatfluidflow.2022.109002 – ident: e_1_2_9_35_1 doi: 10.1016/j.matcom.2020.01.005 – ident: e_1_2_9_49_1 – ident: e_1_2_9_4_1 doi: 10.1007/s10915-020-01310-0 – ident: e_1_2_9_24_1 doi: 10.1002/mma.7862 – ident: e_1_2_9_20_1 doi: 10.1016/j.bspc.2021.102750 – ident: e_1_2_9_40_1 doi: 10.1016/0022-5193(71)90051-8 – ident: e_1_2_9_2_1 doi: 10.1002/mma.7687 – ident: e_1_2_9_6_1 doi: 10.1002/mana.19981950106 – ident: e_1_2_9_44_1 doi: 10.1002/9781119121534 – ident: e_1_2_9_22_1 doi: 10.1002/mma.5290 – ident: e_1_2_9_3_1 doi: 10.1002/mma.7310 – ident: e_1_2_9_36_1 doi: 10.1109/TSMCB.2004.834428 – ident: e_1_2_9_23_1 doi: 10.1007/s11075-017-0339-4 – ident: e_1_2_9_13_1 doi: 10.1007/s10915-015-0097-1 – ident: e_1_2_9_37_1 doi: 10.1109/78.388860 – ident: e_1_2_9_5_1 doi: 10.21914/anziamj.v61i0.15185 – ident: e_1_2_9_39_1 doi: 10.1016/0022-5193(71)90050-6 – ident: e_1_2_9_31_1 doi: 10.1016/j.enganabound.2023.03.039 – ident: e_1_2_9_19_1 – ident: e_1_2_9_38_1 doi: 10.1016/0022-5193(70)90092-5 – ident: e_1_2_9_17_1 doi: 10.1016/j.jcp.2017.07.050 – ident: e_1_2_9_15_1 doi: 10.1007/s10915-018-0813-8 – volume-title: A first course in the numerical analysis of differential equations year: 2009 ident: e_1_2_9_45_1 – ident: e_1_2_9_26_1 doi: 10.1016/j.neunet.2013.03.010 – ident: e_1_2_9_10_1 doi: 10.1002/mma.9050 – ident: e_1_2_9_12_1 doi: 10.1007/s10915-019-00951-0 – volume: 3 start-page: 581 year: 1995 ident: e_1_2_9_48_1 article-title: Blow‐up of radially symmetric solutions to a chemotaxis system publication-title: Adv. Math. Sci. Appl. – ident: e_1_2_9_7_1 doi: 10.1007/BF01445268 – ident: e_1_2_9_34_1 – ident: e_1_2_9_41_1 doi: 10.1016/S0362-546X(01)00222-X  | 
    
| SSID | ssj0008112 | 
    
| Score | 2.34238 | 
    
| Snippet | In this study, we introduce a new growing neural network algorithm that is based on wavelet neural networks and call our algorithm a growing wavelet neural... | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 16255 | 
    
| SubjectTerms | Algorithms Exact solutions Finite element method Model accuracy Neural networks Partial differential equations Regularization  | 
    
| Title | A novel growing wavelet neural network algorithm for solving chemotaxis systems with blow‐up | 
    
| URI | https://www.proquest.com/docview/2862049270 | 
    
| Volume | 46 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1099-1476 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0008112 issn: 0170-4214 databaseCode: AMVHM dateStart: 20120715 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0170-4214 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008112 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1BuoEFogVEaUGDhATIsrHHYzteRogqQjIbWtQV1rxcghK7it2CWPEJfCNfwvXMeJyULgobK7HGdjLn5L5yHwi9UHEVZRFL_bxi0geBF_qMiAS8FBFJ8LFVrqc1FB_S-Ql9f5qcjqlDurqk44H4cW1dyf-gCucA175K9h-QdTeFE_Aa8IUjIAzHG2E88-rmUi29M_CldVCV9WMkOq9vUglbX5sUb48tz5r1ovuy0jmF8JF0EAHQApjY90Vr2znbQje-bL65FAgblxpGPrker7rmpJ893Q6Jksyas1alOlO9aMD-_KrWJtB6FDgegXZWCz1QyvsYeEWwGX8gYyabC0lmIYBsSkEDZcRo3_czomayyyBnbajR8inZkJoROGHJhgqG92aOy1_y3fSLXa1YkFPT6nS7hfYV1eYSDk1zZlLClWV_5W20Q0ANhBO0Mys-zQunvKeR_oPcfamhX3FI3gxP3bZgthW4tkqO76N71p3AM8ONXXRL1Xvo7ohTu4d2rfhu8SvbY_z1A_R5hjV1sKUOttTBhjrYUgc76mCgDrbUwSN1sKUO7qmDe-r8_vnr4vwhOjl6d_x27ttRG76Are_8XPKMJULEPJMCXMg0qSjlOYnSSlHJc84Ez3gKSyo-jSueZowxmmc8jHiqEh4_QpO6qdVjhMNQhhUhkgoq6TQWPCZcm8lSShExuY9eDttXCtuHvh-HsiyvgrSPnruV56b3yjVrDgcESvvLbEsy7acs5CQLn9zgFgfozsjrQzTp1hfqKViaHX9m2fEHouGFhQ | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+growing+wavelet+neural+network+algorithm+for+solving+chemotaxis+systems+with+blow%E2%80%90up&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Mostajeran%2C+F.&rft.au=Hosseini%2C+S.+M.&rft.date=2023-10-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=46&rft.issue=15&rft.spage=16255&rft.epage=16281&rft_id=info:doi/10.1002%2Fmma.9449&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_9449 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |