A novel growing wavelet neural network algorithm for solving chemotaxis systems with blow‐up

In this study, we introduce a new growing neural network algorithm that is based on wavelet neural networks and call our algorithm a growing wavelet neural network (GWNN) method. We apply our proposed scheme to train a wavelet neural network to solve chemotaxis problems with blow‐up. These problems...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 46; no. 15; pp. 16255 - 16281
Main Authors Mostajeran, F., Hosseini, S. M.
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.9449

Cover

Abstract In this study, we introduce a new growing neural network algorithm that is based on wavelet neural networks and call our algorithm a growing wavelet neural network (GWNN) method. We apply our proposed scheme to train a wavelet neural network to solve chemotaxis problems with blow‐up. These problems are highly nonlinear time‐dependent systems of partial differential equations, and it is a challenge to get the pattern of the solution accurately. The proposed structure is partial retraining of the network, which increases its capacity to catch the spiky pattern of the solution. Our neural network‐based algorithm allows us to solve the nonlinear chemotaxis problems without the use of linearization techniques and regularization techniques, most of which reduce the accuracy of the model. This mesh‐free‐based method can manage a variety of blow‐up models with curved boundaries without imposing an extra cost. By proving the consistency and stability of the method, we show the convergence of GWNN solutions to analytical solutions of the chemotaxis problem. Several illustrative examples and simulation results are provided to demonstrate the correctness of the results and the robust performance of the presented algorithm. Moreover, to illustrate the effectiveness of the GWNN method, we make a comparison with two other network‐based methods.
AbstractList In this study, we introduce a new growing neural network algorithm that is based on wavelet neural networks and call our algorithm a growing wavelet neural network (GWNN) method. We apply our proposed scheme to train a wavelet neural network to solve chemotaxis problems with blow‐up. These problems are highly nonlinear time‐dependent systems of partial differential equations, and it is a challenge to get the pattern of the solution accurately. The proposed structure is partial retraining of the network, which increases its capacity to catch the spiky pattern of the solution. Our neural network‐based algorithm allows us to solve the nonlinear chemotaxis problems without the use of linearization techniques and regularization techniques, most of which reduce the accuracy of the model. This mesh‐free‐based method can manage a variety of blow‐up models with curved boundaries without imposing an extra cost. By proving the consistency and stability of the method, we show the convergence of GWNN solutions to analytical solutions of the chemotaxis problem. Several illustrative examples and simulation results are provided to demonstrate the correctness of the results and the robust performance of the presented algorithm. Moreover, to illustrate the effectiveness of the GWNN method, we make a comparison with two other network‐based methods.
Author Mostajeran, F.
Hosseini, S. M.
Author_xml – sequence: 1
  givenname: F.
  surname: Mostajeran
  fullname: Mostajeran, F.
  organization: Faculty of Mathematical Sciences Tarbiat Modares University Tehran Iran
– sequence: 2
  givenname: S. M.
  surname: Hosseini
  fullname: Hosseini, S. M.
  organization: Faculty of Mathematical Sciences Tarbiat Modares University Tehran Iran
BookMark eNplkM1KAzEUhYNUsK2CjxBw42ZqkmYmk2Up_kHBjW4NSZppp2YmNcl07M5H8Bl9ElPqSleHC985F74RGLSuNQBcYjTBCJGbppETTik_AUOMOM8wZcUADBFmKKME0zMwCmGDECoxJkPwOoOt2xkLV971dbuCvUyXibA1nZc2Reydf4PSrpyv47qBlfMwOLs7wHptGhflRx1g2IdomgD7BEFlXf_9-dVtz8FpJW0wF785Bi93t8_zh2zxdP84ny0yTfI8ZnypmMy1niq21Cwvi7yiVHGCi8rQpeJKasVUkZBKldNKFUxKSTlTCKvC5Go6BlfH3a13750JUWxc59v0UpCyIIhywlCiJkdKexeCN5XQdZSxdm30srYCI3FwKJJDcXCYCtd_CltfN9Lv_6M_I_J3xg
CitedBy_id crossref_primary_10_1002_num_23156
Cites_doi 10.1007/s10915-012-9599-2
10.1002/mma.8906
10.1016/j.jcp.2022.111868
10.1016/j.camwa.2023.04.026
10.1007/s10957-012-0258-4
10.1016/j.cam.2008.04.030
10.1016/j.neunet.2013.01.008
10.1016/j.cpc.2021.108236
10.1016/j.jcp.2018.10.045
10.1002/mma.8844
10.1016/j.camwa.2019.01.021
10.1063/5.0046181
10.4208/cicp.OA‐2020‐0164
10.1007/s10440-020-00374-2
10.1016/j.conengprac.2021.104840
10.30707/LiB6.2Raissi
10.1016/j.ijheatfluidflow.2022.109002
10.1016/j.matcom.2020.01.005
10.1007/s10915-020-01310-0
10.1002/mma.7862
10.1016/j.bspc.2021.102750
10.1016/0022-5193(71)90051-8
10.1002/mma.7687
10.1002/mana.19981950106
10.1002/9781119121534
10.1002/mma.5290
10.1002/mma.7310
10.1109/TSMCB.2004.834428
10.1007/s11075-017-0339-4
10.1007/s10915-015-0097-1
10.1109/78.388860
10.21914/anziamj.v61i0.15185
10.1016/0022-5193(71)90050-6
10.1016/j.enganabound.2023.03.039
10.1016/0022-5193(70)90092-5
10.1016/j.jcp.2017.07.050
10.1007/s10915-018-0813-8
10.1016/j.neunet.2013.03.010
10.1002/mma.9050
10.1007/s10915-019-00951-0
10.1007/BF01445268
10.1016/S0362-546X(01)00222-X
ContentType Journal Article
Copyright 2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.9449
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 16281
ExternalDocumentID 10_1002_mma_9449
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c255t-9db7a5cc3b7dc75865f44b9216fe4db9bacb7b6a5cfb83fb67aaa497b01b6e5b3
ISSN 0170-4214
IngestDate Fri Jul 25 12:09:00 EDT 2025
Wed Oct 01 03:42:48 EDT 2025
Thu Apr 24 23:03:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-9db7a5cc3b7dc75865f44b9216fe4db9bacb7b6a5cfb83fb67aaa497b01b6e5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2862049270
PQPubID 1016386
PageCount 27
ParticipantIDs proquest_journals_2862049270
crossref_citationtrail_10_1002_mma_9449
crossref_primary_10_1002_mma_9449
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Horstmann D. (e_1_2_9_43_1) 2004; 106
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
Horstmann D. (e_1_2_9_42_1) 2003; 105
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Nagai T. (e_1_2_9_48_1) 1995; 3
Bishop C. M. (e_1_2_9_53_1) 1996
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Iserles A. (e_1_2_9_45_1) 2009
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Kurganov A. (e_1_2_9_52_1) 2014; 19
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_50_1
  doi: 10.1007/s10915-012-9599-2
– ident: e_1_2_9_9_1
  doi: 10.1002/mma.8906
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jcp.2022.111868
– ident: e_1_2_9_32_1
  doi: 10.1016/j.camwa.2023.04.026
– volume: 106
  start-page: 51
  year: 2004
  ident: e_1_2_9_43_1
  article-title: From 1970 until now: The Keller‐Segel model in chemotaxis and its consequences II
  publication-title: Jahresber. Dtsch. Math.‐Ver.
– ident: e_1_2_9_25_1
  doi: 10.1007/s10957-012-0258-4
– ident: e_1_2_9_14_1
  doi: 10.1016/j.cam.2008.04.030
– volume-title: Neural networks for pattern recognition
  year: 1996
  ident: e_1_2_9_53_1
– volume: 105
  start-page: 103
  year: 2003
  ident: e_1_2_9_42_1
  article-title: From 1970 until now: The Keller‐Segel model in chemotaxis and its consequences I
  publication-title: Jahresber. Dtsch. Math.‐Ver.
– ident: e_1_2_9_47_1
  doi: 10.1016/j.neunet.2013.01.008
– ident: e_1_2_9_16_1
  doi: 10.1016/j.cpc.2021.108236
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jcp.2018.10.045
– ident: e_1_2_9_11_1
  doi: 10.1002/mma.8844
– ident: e_1_2_9_51_1
  doi: 10.1016/j.camwa.2019.01.021
– ident: e_1_2_9_28_1
  doi: 10.1063/5.0046181
– ident: e_1_2_9_29_1
  doi: 10.4208/cicp.OA‐2020‐0164
– volume: 19
  start-page: 131
  year: 2014
  ident: e_1_2_9_52_1
  article-title: Numerical study of two‐species chemotaxis models
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– ident: e_1_2_9_46_1
– ident: e_1_2_9_8_1
  doi: 10.1007/s10440-020-00374-2
– ident: e_1_2_9_33_1
  doi: 10.1016/j.conengprac.2021.104840
– ident: e_1_2_9_21_1
  doi: 10.30707/LiB6.2Raissi
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ijheatfluidflow.2022.109002
– ident: e_1_2_9_35_1
  doi: 10.1016/j.matcom.2020.01.005
– ident: e_1_2_9_49_1
– ident: e_1_2_9_4_1
  doi: 10.1007/s10915-020-01310-0
– ident: e_1_2_9_24_1
  doi: 10.1002/mma.7862
– ident: e_1_2_9_20_1
  doi: 10.1016/j.bspc.2021.102750
– ident: e_1_2_9_40_1
  doi: 10.1016/0022-5193(71)90051-8
– ident: e_1_2_9_2_1
  doi: 10.1002/mma.7687
– ident: e_1_2_9_6_1
  doi: 10.1002/mana.19981950106
– ident: e_1_2_9_44_1
  doi: 10.1002/9781119121534
– ident: e_1_2_9_22_1
  doi: 10.1002/mma.5290
– ident: e_1_2_9_3_1
  doi: 10.1002/mma.7310
– ident: e_1_2_9_36_1
  doi: 10.1109/TSMCB.2004.834428
– ident: e_1_2_9_23_1
  doi: 10.1007/s11075-017-0339-4
– ident: e_1_2_9_13_1
  doi: 10.1007/s10915-015-0097-1
– ident: e_1_2_9_37_1
  doi: 10.1109/78.388860
– ident: e_1_2_9_5_1
  doi: 10.21914/anziamj.v61i0.15185
– ident: e_1_2_9_39_1
  doi: 10.1016/0022-5193(71)90050-6
– ident: e_1_2_9_31_1
  doi: 10.1016/j.enganabound.2023.03.039
– ident: e_1_2_9_19_1
– ident: e_1_2_9_38_1
  doi: 10.1016/0022-5193(70)90092-5
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jcp.2017.07.050
– ident: e_1_2_9_15_1
  doi: 10.1007/s10915-018-0813-8
– volume-title: A first course in the numerical analysis of differential equations
  year: 2009
  ident: e_1_2_9_45_1
– ident: e_1_2_9_26_1
  doi: 10.1016/j.neunet.2013.03.010
– ident: e_1_2_9_10_1
  doi: 10.1002/mma.9050
– ident: e_1_2_9_12_1
  doi: 10.1007/s10915-019-00951-0
– volume: 3
  start-page: 581
  year: 1995
  ident: e_1_2_9_48_1
  article-title: Blow‐up of radially symmetric solutions to a chemotaxis system
  publication-title: Adv. Math. Sci. Appl.
– ident: e_1_2_9_7_1
  doi: 10.1007/BF01445268
– ident: e_1_2_9_34_1
– ident: e_1_2_9_41_1
  doi: 10.1016/S0362-546X(01)00222-X
SSID ssj0008112
Score 2.34238
Snippet In this study, we introduce a new growing neural network algorithm that is based on wavelet neural networks and call our algorithm a growing wavelet neural...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 16255
SubjectTerms Algorithms
Exact solutions
Finite element method
Model accuracy
Neural networks
Partial differential equations
Regularization
Title A novel growing wavelet neural network algorithm for solving chemotaxis systems with blow‐up
URI https://www.proquest.com/docview/2862049270
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: AMVHM
  dateStart: 20120715
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0170-4214
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1BuoEFogVEaUGDhATIsrHHYzteRogqQjIbWtQV1rxcghK7it2CWPEJfCNfwvXMeJyULgobK7HGdjLn5L5yHwi9UHEVZRFL_bxi0geBF_qMiAS8FBFJ8LFVrqc1FB_S-Ql9f5qcjqlDurqk44H4cW1dyf-gCucA175K9h-QdTeFE_Aa8IUjIAzHG2E88-rmUi29M_CldVCV9WMkOq9vUglbX5sUb48tz5r1ovuy0jmF8JF0EAHQApjY90Vr2znbQje-bL65FAgblxpGPrker7rmpJ893Q6Jksyas1alOlO9aMD-_KrWJtB6FDgegXZWCz1QyvsYeEWwGX8gYyabC0lmIYBsSkEDZcRo3_czomayyyBnbajR8inZkJoROGHJhgqG92aOy1_y3fSLXa1YkFPT6nS7hfYV1eYSDk1zZlLClWV_5W20Q0ANhBO0Mys-zQunvKeR_oPcfamhX3FI3gxP3bZgthW4tkqO76N71p3AM8ONXXRL1Xvo7ohTu4d2rfhu8SvbY_z1A_R5hjV1sKUOttTBhjrYUgc76mCgDrbUwSN1sKUO7qmDe-r8_vnr4vwhOjl6d_x27ttRG76Are_8XPKMJULEPJMCXMg0qSjlOYnSSlHJc84Ez3gKSyo-jSueZowxmmc8jHiqEh4_QpO6qdVjhMNQhhUhkgoq6TQWPCZcm8lSShExuY9eDttXCtuHvh-HsiyvgrSPnruV56b3yjVrDgcESvvLbEsy7acs5CQLn9zgFgfozsjrQzTp1hfqKViaHX9m2fEHouGFhQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+growing+wavelet+neural+network+algorithm+for+solving+chemotaxis+systems+with+blow%E2%80%90up&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Mostajeran%2C+F.&rft.au=Hosseini%2C+S.+M.&rft.date=2023-10-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=46&rft.issue=15&rft.spage=16255&rft.epage=16281&rft_id=info:doi/10.1002%2Fmma.9449&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_9449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon