Droplet collision with hydrophobic and superhydrophobic surfaces: Experimental studies and numerical modeling

The characteristics of the collision of water droplets with textured hydrophobic and superhydrophobic surfaces obtained using two techniques were studied experimentally. The surface processing techniques are based on laser modification of the surface layer and changes in its chemical composition. We...

Full description

Saved in:
Bibliographic Details
Published inSurfaces and interfaces Vol. 48; p. 104264
Main Authors Antonov, D.V., Islamova, A.G., Orlova, E.G., Strizhak, P.A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2024
Subjects
Online AccessGet full text
ISSN2468-0230
2468-0230
DOI10.1016/j.surfin.2024.104264

Cover

Abstract The characteristics of the collision of water droplets with textured hydrophobic and superhydrophobic surfaces obtained using two techniques were studied experimentally. The surface processing techniques are based on laser modification of the surface layer and changes in its chemical composition. Weber numbers in the experiments were varied in the range of 10–200. Regimes of water droplet-surface collision, the critical conditions for the transition between regimes, as well as integral characteristics of the formed liquid fragments were identified. The main characteristics of the process under study, such as the droplet spreading diameter, the height of its rebound from the surface, the number of secondary fragments during its break up were obtained experimentally. A model with a two-dimensional axisymmetric formulation was used to predict the characteristics of water droplet-textured surface collision based on the phase field method. The results of experimental studies and numerical modeling are in satisfactory agreement (differences of no more than 3–5 %). The conditions, when it is necessary to consider the values of static and dynamic contact angles during the modeling process, were determined. [Display omitted]
AbstractList The characteristics of the collision of water droplets with textured hydrophobic and superhydrophobic surfaces obtained using two techniques were studied experimentally. The surface processing techniques are based on laser modification of the surface layer and changes in its chemical composition. Weber numbers in the experiments were varied in the range of 10–200. Regimes of water droplet-surface collision, the critical conditions for the transition between regimes, as well as integral characteristics of the formed liquid fragments were identified. The main characteristics of the process under study, such as the droplet spreading diameter, the height of its rebound from the surface, the number of secondary fragments during its break up were obtained experimentally. A model with a two-dimensional axisymmetric formulation was used to predict the characteristics of water droplet-textured surface collision based on the phase field method. The results of experimental studies and numerical modeling are in satisfactory agreement (differences of no more than 3–5 %). The conditions, when it is necessary to consider the values of static and dynamic contact angles during the modeling process, were determined. [Display omitted]
ArticleNumber 104264
Author Strizhak, P.A.
Orlova, E.G.
Islamova, A.G.
Antonov, D.V.
Author_xml – sequence: 1
  givenname: D.V.
  surname: Antonov
  fullname: Antonov, D.V.
  organization: National Research Tomsk Polytechnic University, Heat and Mass Transfer Laboratory, Tomsk, Russia, https://hmtslab.tpu.ru/
– sequence: 2
  givenname: A.G.
  orcidid: 0000-0001-7350-8102
  surname: Islamova
  fullname: Islamova, A.G.
  organization: National Research Tomsk Polytechnic University, Heat and Mass Transfer Laboratory, Tomsk, Russia, https://hmtslab.tpu.ru/
– sequence: 3
  givenname: E.G.
  surname: Orlova
  fullname: Orlova, E.G.
  organization: National Research Tomsk Polytechnic University, Heat and Mass Transfer Laboratory, Tomsk, Russia, https://hmtslab.tpu.ru/
– sequence: 4
  givenname: P.A.
  orcidid: 0000-0003-1707-5335
  surname: Strizhak
  fullname: Strizhak, P.A.
  email: pavelspa@tpu.ru
  organization: National Research Tomsk Polytechnic University, Heat and Mass Transfer Laboratory, Tomsk, Russia, https://hmtslab.tpu.ru/
BookMark eNp9kM1OwzAQhC1UJErpG3DwC6TYru0kHJBQKT9SJS5wthz_UFeJXdkJ0LfHJRx64rSrGc3u6LsEEx-8AeAaowVGmN_sFmmI1vkFQYRmiRJOz8CUUF4ViCzR5GS_APOUdgghXJU1w2wKuocY9q3poQpt65ILHn65fgu3B52NbWicgtJrmIa9iafi8alUJt3C9Xe2XGd8L1uY-kE7k34zfuiyobLaBW1a5z-uwLmVbTLzvzkD74_rt9VzsXl9elndbwpFGOuLyjZNrbTEVKmm5LxhmDdK87K2tkSSoLqxmHFSI8p0ySWWpaUVYrLWDFkllzNAx7sqhpSisWKfG8p4EBiJIzWxEyM1caQmRmo5djfGTO726UwUSTnjldEuGtULHdz_B34AEJR9GA
Cites_doi 10.1016/j.colsurfa.2023.131796
10.1103/PhysRevFluids.4.073601
10.1038/417811a
10.1016/j.surfcoat.2020.125993
10.1021/la0481288
10.1016/j.expthermflusci.2014.01.014
10.1016/j.compfluid.2010.06.006
10.1039/C6SM02514E
10.1063/5.0066366
10.1209/epl/i2000-00547-6
10.1063/1.858724
10.1016/j.cocis.2020.09.002
10.1002/dro2.63
10.1063/1.4940995
10.1016/j.ces.2019.115351
10.1063/1.4873338
10.1016/j.ijheatmasstransfer.2021.121836
10.1016/j.powtec.2022.117371
10.1021/acsnano.8b09549
10.1017/jfm.2020.926
10.1016/j.icheatmasstransfer.2019.104329
10.1016/j.ijmultiphaseflow.2016.01.005
10.1016/j.apsusc.2019.143793
10.1179/174328409X453190
10.1146/annurev-fluid-030321-103941
10.1063/5.0147849
10.1016/j.apsusc.2022.155000
10.1063/1.4729935
10.1016/j.jcis.2017.12.086
10.1016/j.colsurfa.2008.03.005
10.1016/S0894-1777(01)00109-1
10.1016/j.apsusc.2016.04.056
10.1063/5.0156033
10.1016/j.surfcoat.2021.127518
10.1016/j.ijheatmasstransfer.2021.122463
10.1038/s41586-020-1985-6
10.1063/1.4943938
10.1017/jfm.2016.584
10.1016/j.jcp.2014.04.054
10.1016/j.expthermflusci.2021.110369
10.1016/j.biosystemseng.2014.07.013
10.1002/dro2.72
10.1016/j.apsusc.2018.11.046
10.1016/j.apsusc.2020.147099
10.1016/j.apsusc.2019.06.104
10.1103/PhysRevLett.122.228001
10.3390/coatings8110409
10.1038/nphys2980
10.1016/j.ces.2007.07.036
10.1002/aic.690430903
10.1016/j.compfluid.2009.10.009
10.1007/s00348-018-2535-y
10.1017/S0022112003004142
10.1016/j.colsurfa.2023.132381
10.1063/1.3158468
10.1016/j.ijheatmasstransfer.2022.122710
10.1016/j.jcp.2008.12.036
10.1016/j.jcp.2015.08.026
10.1007/s00348-002-0431-x
10.1146/annurev-fluid-122414-034401
10.1038/nphys3145
10.1017/S002211200700554X
10.1080/10407790150503495
10.1063/1.2408495
10.1016/j.ijheatmasstransfer.2018.04.056
10.1073/pnas.1417718112
10.1016/j.expthermflusci.2006.03.028
10.1038/s41598-019-51490-5
10.1016/0021-9797(79)90081-X
10.1016/j.jiec.2016.07.027
10.1063/1.1928828
10.2351/1.5096076
10.1016/j.ces.2018.06.030
10.1016/j.ijmecsci.2023.108824
10.1038/srep30328
10.1063/1.868850
10.1038/s41586-021-04307-3
10.1134/S1995078020020172
10.1021/acs.langmuir.0c01151
10.1021/acs.langmuir.8b01317
10.1016/j.ijheatmasstransfer.2016.10.031
10.1038/s41596-018-0003-z
10.1063/5.0024837
10.1017/jfm.2019.258
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.surfin.2024.104264
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2468-0230
ExternalDocumentID 10_1016_j_surfin_2024_104264
S2468023024004231
GroupedDBID --M
0R~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AHPOS
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
O9-
ROL
SPC
SPCBC
SSG
SSM
SSQ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c255t-8fbb9cda14ccb766b516bcd679ff70a209bf15629045d76a1a7f4805a9d50fca3
IEDL.DBID AIKHN
ISSN 2468-0230
IngestDate Wed Oct 01 04:17:09 EDT 2025
Sat May 04 15:44:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrophobic and superhydrophobic surfaces
Secondary fragments
Droplet-surface collision
Water droplet
Collision regime
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-8fbb9cda14ccb766b516bcd679ff70a209bf15629045d76a1a7f4805a9d50fca3
ORCID 0000-0001-7350-8102
0000-0003-1707-5335
ParticipantIDs crossref_primary_10_1016_j_surfin_2024_104264
elsevier_sciencedirect_doi_10_1016_j_surfin_2024_104264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Surfaces and interfaces
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sen, Vaikuntanathan, Sivakumar (bib0028) 2014; 54
Rioboo, Marengo, Tropea (bib0027) 2002; 33
Zwertvaegher, Verhaeghe, Brusselman, Verboven, Lebeau, Massinon, Nicolaï, Nuyttens (bib0019) 2014; 126
Lunkad, Buwa, Nigam (bib0052) 2007; 62
Liu, Cai, Luo, Chen, Pan, Zhang, Zhong (bib0070) 2019; 31
Kuhn, Schweigert, Kuntz, Börnhorst (bib0012) 2021; 181
Feoktistov, Glushkov, Kuznetsov, Orlova (bib0069) 2020
Jiaung, Ho, Kuo (bib0053) 2001; 39
Ballinger, Shugar (bib0075) 2011
Yonemoto, Kunugi (bib0029) 2018; 8
Sataeva, Emelyanenko, Domantovsky, Emelyanenko, Boinovich (bib0066) 2020; 15
Kuznetsov, Islamova, Orlova, Ivashutenko, Shanenkov, Zykov, Feoktistov (bib0067) 2021; 422
Kim, Park, Lee, Kim, Hwan Kim, Kim (bib0078) 2014; 104
W. Wu, Q. Liu, B. Wang, Curved surface effect on high-speed droplet impingement, (2021).
Wildeman, Visser, Sun, Lohse (bib0025) 2016; 805
Quetzeri-Santiago, Yokoi, Castrejón-Pita, Castrejón-Pita (bib0030) 2019; 122
Li, Zhang (bib0046) 2019; 498
Weisensee, Tian, Miljkovic, King (bib0077) 2016; 6
Qu, Yang, Yang, Hu, Qiu (bib0044) 2019; 491
Qin, Bhadeshia (bib0081) 2010; 26
Jiang, Xu, Wu, Li (bib0036) 2020; 212
Nuthalapati, Sheng, Tsao (bib0002) 2023; 38
Moitra, Elsharkawy, Russo, Sarkar, Ganguly, Asinari, Megaridis (bib0017) 2023; 2
Liu, Cai, Tsai (bib0011) 2020; 36
Pasandideh-Fard, Qiao, Chandra, Mostaghimi (bib0080) 1998; 8
Voytkova, Syrodoy, Kostoreva (bib0005) 2023; 673
Liu, Zhang, Cai, Tsai (bib0013) 2022; 189
Yang, Zhang, Liu, Lai, Hou (bib0023) 2023; 677
Renardy, Popinet, Duchemin, Renardy, Zaleski, Josserand, Drumright-Clarke, Richard, Clanet, Quéré (bib0076) 2003; 484
Patil, Gada, Sharma, Bhardwaj (bib0047) 2016; 81
Riboux, Gordillo (bib0064) 2014; 113
Almohammadi, Amirfazli (bib0016) 2017; 13
Ding, Hu, Dai, Zhang, Wu (bib0050) 2021; 33
Richard, Quéré (bib0055) 2000; 50
.
Liang, Mudawar (bib0009) 2017; 106
Muradoglu, Tasoglu (bib0060) 2010; 39
Khojasteh, Kazerooni, Salarian, Kamali (bib0063) 2016; 42
Guermond, Salgado (bib0057) 2009; 228
McCarthy, Gerasopoulos, Enright, Culver, Ghodssi, Wang (bib0042) 2012; 100
(accessed March 5, 2022).
Khatavkar, Anderson, Duineveld, Meijer (bib0061) 2007; 581
Lin, Zhao, Zou, Guo, Wei, Chen (bib0026) 2018; 516
Yilbas, Abubakar, Hassan, Al-Qahtani, Al-Sharafi, Alzahrani, Mohammed (bib0024) 2022; 29
Jiang, Soo-Gun, Slattery (bib0085) 1979; 69
Huhtamäki, Tian, Korhonen, Ras (bib0072) 2018; 13
Gao, Wang (bib0058) 2014; 272
Quetzeri-Santiago, Castrejón-Pita, Castrejón-Pita (bib0031) 2019; 9
Quintero, Riboux, Gordillo (bib0032) 2019; 870
De Ruiter, Lagraauw, Van Den Ende, Mugele (bib0039) 2015; 11
Roisman, Opfer, Tropea, Raessi, Mostaghimi, Chandra (bib0084) 2008; 322
Šikalo, Ganić (bib0086) 2006; 31
Islamova, Kerimbekova, Shlegel, Strizhak (bib0074) 2022; 403
Xu, Zheng, Liu, Zhou, Zhang, Song, Deng, Leung, Yang, Xu, Wang, Zeng, Wang (bib0006) 2020; 578
Blanken, Saleem, Thoraval, Antonini (bib0022) 2021; 51
Attané, Girard, Morin (bib0089) 2007; 19
Josserand, Thoroddsen (bib0020) 2016; 48
Cheng, Sun, Gordillo (bib0021) 2021; 54
Yokoi, Vadillo, Hinch, Hutchings (bib0051) 2009; 21
Zhang, Qian, Wang (bib0059) 2016; 28
Šikalo, Marengo, Tropea, Ganić (bib0087) 2002; 25
Mao, Kuhn, Tran (bib0090) 1997; 43
Shlegel, Strizhak, Tarlet, Bellettre (bib0092) 2019
Liu, Tan, Xu (bib0034) 2015; 112
Fu, Jin, Zhang, Xue, Guo, Yao, Gao, Wang, Wen (bib0043) 2024; 2310200
Sinha, Mynam, Nadimpalli, Runkana (bib0045) 2023; 35
Xia, Chen, Yang, Liu, Tian, Zhang (bib0049) 2024; 264
Zhang, Zhang, Yi, He, Niu, Hao (bib0033) 2021; 124
Chu, Jiao, Huang, Chen, Zheng, Wang, He (bib0003) 2020; 530
Zhao, Hargrave, Versteeg, Garner, Reid, Long, Zhao (bib0018) 2018; 190
Zhang, Li, Xin, Li, Sun (bib0062) 2023; 608
Ukiwe, Kwok (bib0079) 2004; 21
Xiong, Cheng (bib0054) 2018; 124
Kuznetsov, Feoktistov, Orlova, Batishcheva, Ilenok (bib0073) 2019; 469
Wang, Gao, Zhong, Zhang, Cui, Jiang, Wang, Wang (bib0008) 2022; 3
Fang, Wang, Duan, Tahir, Zhang, Wang, Feng, Song (bib0037) 2023; 2
Boinovich, Emelyanenko, Emelyanenko, Modin (bib0001) 2019
Mehrizi, Sun, Zhang, Pang, Zhang, Chen (bib0004) 2024; 44
Ebrahim, Elkenani, Ortega (bib0014) 2022; 186
Gao, Jin, Shi, Wei, Wang, Zheng, Yang, Wang (bib0038) 2023; 35
Jiang, Wang, Liu, Du, Li, Zhang, To, Wang, Pan, Yu, Quéré, Wang (bib0007) 2022; 601
Liu, Moevius, Xu, Qian, Yeomans, Wang (bib0040) 2014; 10
Gupta, Kumar (bib0082) 2010; 39
J. Breitenbach, I.V.I.V. Roisman, C. Tropea, From drop impact physics to spray cooling models: a critical review, 59 (2018) 1–21.
Ding, Liu, Wu, Zhang (bib0091) 2020; 32
Boinovich, Emelyanenko, Emelyanenko, Domantovsky, Shiryaev (bib0071) 2016; 379
Šikalo, Wilhelm, Roisman, Jakirlić, Tropea (bib0083) 2005; 17
Boinovich, Emelyanenko, Domantovsky, Emelyanenko (bib0068) 2018; 34
Burzynski, Bansmer (bib0035) 2019; 4
Ganesan (bib0088) 2015; 301
Sataeva, Boinovich, Emelyanenko, Domantovsky, Emelyanenko (bib0065) 2020; 397
Richard, Clanet, Quéré (bib0041) 2002; 417
Fukai, Zhao, Poulikakos, Megaridis, Miyatake (bib0056) 1992; 5
Zhang, Yu, Fan, Sun, Cao (bib0015) 2016; 119
Mehrizi (10.1016/j.surfin.2024.104264_bib0004) 2024; 44
Zhang (10.1016/j.surfin.2024.104264_bib0033) 2021; 124
Islamova (10.1016/j.surfin.2024.104264_bib0074) 2022; 403
Fu (10.1016/j.surfin.2024.104264_bib0043) 2024; 2310200
Zhang (10.1016/j.surfin.2024.104264_bib0015) 2016; 119
Quetzeri-Santiago (10.1016/j.surfin.2024.104264_bib0030) 2019; 122
10.1016/j.surfin.2024.104264_bib0048
Nuthalapati (10.1016/j.surfin.2024.104264_bib0002) 2023; 38
Shlegel (10.1016/j.surfin.2024.104264_bib0092) 2019
Zwertvaegher (10.1016/j.surfin.2024.104264_bib0019) 2014; 126
Fang (10.1016/j.surfin.2024.104264_bib0037) 2023; 2
Sinha (10.1016/j.surfin.2024.104264_bib0045) 2023; 35
Khojasteh (10.1016/j.surfin.2024.104264_bib0063) 2016; 42
Blanken (10.1016/j.surfin.2024.104264_bib0022) 2021; 51
Attané (10.1016/j.surfin.2024.104264_bib0089) 2007; 19
Boinovich (10.1016/j.surfin.2024.104264_bib0001) 2019
Roisman (10.1016/j.surfin.2024.104264_bib0084) 2008; 322
Gao (10.1016/j.surfin.2024.104264_bib0058) 2014; 272
Muradoglu (10.1016/j.surfin.2024.104264_bib0060) 2010; 39
Liu (10.1016/j.surfin.2024.104264_bib0034) 2015; 112
Guermond (10.1016/j.surfin.2024.104264_bib0057) 2009; 228
Boinovich (10.1016/j.surfin.2024.104264_bib0068) 2018; 34
Patil (10.1016/j.surfin.2024.104264_bib0047) 2016; 81
Liang (10.1016/j.surfin.2024.104264_bib0009) 2017; 106
Šikalo (10.1016/j.surfin.2024.104264_bib0087) 2002; 25
Pasandideh-Fard (10.1016/j.surfin.2024.104264_bib0080) 1998; 8
Šikalo (10.1016/j.surfin.2024.104264_bib0083) 2005; 17
Riboux (10.1016/j.surfin.2024.104264_bib0064) 2014; 113
De Ruiter (10.1016/j.surfin.2024.104264_bib0039) 2015; 11
Jiaung (10.1016/j.surfin.2024.104264_bib0053) 2001; 39
Liu (10.1016/j.surfin.2024.104264_bib0011) 2020; 36
Xu (10.1016/j.surfin.2024.104264_bib0006) 2020; 578
Zhang (10.1016/j.surfin.2024.104264_bib0059) 2016; 28
Richard (10.1016/j.surfin.2024.104264_bib0055) 2000; 50
Boinovich (10.1016/j.surfin.2024.104264_bib0071) 2016; 379
Moitra (10.1016/j.surfin.2024.104264_bib0017) 2023; 2
Mao (10.1016/j.surfin.2024.104264_bib0090) 1997; 43
Ebrahim (10.1016/j.surfin.2024.104264_bib0014) 2022; 186
Richard (10.1016/j.surfin.2024.104264_bib0041) 2002; 417
Xiong (10.1016/j.surfin.2024.104264_bib0054) 2018; 124
Renardy (10.1016/j.surfin.2024.104264_bib0076) 2003; 484
Chu (10.1016/j.surfin.2024.104264_bib0003) 2020; 530
Kuznetsov (10.1016/j.surfin.2024.104264_bib0073) 2019; 469
Wang (10.1016/j.surfin.2024.104264_bib0008) 2022; 3
Quintero (10.1016/j.surfin.2024.104264_bib0032) 2019; 870
Qu (10.1016/j.surfin.2024.104264_bib0044) 2019; 491
Josserand (10.1016/j.surfin.2024.104264_bib0020) 2016; 48
Jiang (10.1016/j.surfin.2024.104264_bib0036) 2020; 212
Sataeva (10.1016/j.surfin.2024.104264_bib0065) 2020; 397
Kim (10.1016/j.surfin.2024.104264_bib0078) 2014; 104
Ukiwe (10.1016/j.surfin.2024.104264_bib0079) 2004; 21
Wildeman (10.1016/j.surfin.2024.104264_bib0025) 2016; 805
Burzynski (10.1016/j.surfin.2024.104264_bib0035) 2019; 4
Ding (10.1016/j.surfin.2024.104264_bib0050) 2021; 33
Liu (10.1016/j.surfin.2024.104264_bib0013) 2022; 189
Jiang (10.1016/j.surfin.2024.104264_bib0007) 2022; 601
Yilbas (10.1016/j.surfin.2024.104264_bib0024) 2022; 29
Liu (10.1016/j.surfin.2024.104264_bib0040) 2014; 10
Feoktistov (10.1016/j.surfin.2024.104264_bib0069) 2020
Xia (10.1016/j.surfin.2024.104264_bib0049) 2024; 264
Khatavkar (10.1016/j.surfin.2024.104264_bib0061) 2007; 581
Zhang (10.1016/j.surfin.2024.104264_bib0062) 2023; 608
Ganesan (10.1016/j.surfin.2024.104264_bib0088) 2015; 301
Yang (10.1016/j.surfin.2024.104264_bib0023) 2023; 677
Liu (10.1016/j.surfin.2024.104264_bib0070) 2019; 31
Ding (10.1016/j.surfin.2024.104264_bib0091) 2020; 32
Šikalo (10.1016/j.surfin.2024.104264_bib0086) 2006; 31
Rioboo (10.1016/j.surfin.2024.104264_bib0027) 2002; 33
Quetzeri-Santiago (10.1016/j.surfin.2024.104264_bib0031) 2019; 9
Gao (10.1016/j.surfin.2024.104264_bib0038) 2023; 35
Fukai (10.1016/j.surfin.2024.104264_bib0056) 1992; 5
Qin (10.1016/j.surfin.2024.104264_bib0081) 2010; 26
Voytkova (10.1016/j.surfin.2024.104264_bib0005) 2023; 673
Sen (10.1016/j.surfin.2024.104264_bib0028) 2014; 54
Jiang (10.1016/j.surfin.2024.104264_bib0085) 1979; 69
Li (10.1016/j.surfin.2024.104264_bib0046) 2019; 498
McCarthy (10.1016/j.surfin.2024.104264_bib0042) 2012; 100
10.1016/j.surfin.2024.104264_bib0010
Weisensee (10.1016/j.surfin.2024.104264_bib0077) 2016; 6
Yonemoto (10.1016/j.surfin.2024.104264_bib0029) 2018; 8
Gupta (10.1016/j.surfin.2024.104264_bib0082) 2010; 39
Lin (10.1016/j.surfin.2024.104264_bib0026) 2018; 516
Cheng (10.1016/j.surfin.2024.104264_bib0021) 2021; 54
Yokoi (10.1016/j.surfin.2024.104264_bib0051) 2009; 21
Zhao (10.1016/j.surfin.2024.104264_bib0018) 2018; 190
Almohammadi (10.1016/j.surfin.2024.104264_bib0016) 2017; 13
Ballinger (10.1016/j.surfin.2024.104264_bib0075) 2011
Kuznetsov (10.1016/j.surfin.2024.104264_bib0067) 2021; 422
Huhtamäki (10.1016/j.surfin.2024.104264_bib0072) 2018; 13
Kuhn (10.1016/j.surfin.2024.104264_bib0012) 2021; 181
Lunkad (10.1016/j.surfin.2024.104264_bib0052) 2007; 62
Sataeva (10.1016/j.surfin.2024.104264_bib0066) 2020; 15
References_xml – volume: 422
  year: 2021
  ident: bib0067
  article-title: Influence of roughness on polar and dispersed components of surface free energy and wettability properties of copper and steel surfaces
  publication-title: Surf. Coatings Technol.
– volume: 81
  start-page: 54
  year: 2016
  end-page: 66
  ident: bib0047
  article-title: On dual-grid level-set method for contact line modeling during impact of a droplet on hydrophobic and superhydrophobic surfaces
  publication-title: Int. J. Multiph. Flow.
– year: 2011
  ident: bib0075
  article-title: Chemical Technicians’ Ready Reference Handbook
– volume: 21
  start-page: 666
  year: 2004
  end-page: 673
  ident: bib0079
  article-title: On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces
  publication-title: Langmuir
– volume: 44
  year: 2024
  ident: bib0004
  article-title: Droplet impact dynamics on a flexible superhydrophobic cantilever wire mesh
  publication-title: Surf. Interfaces
– volume: 21
  year: 2009
  ident: bib0051
  article-title: Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface
  publication-title: Phys. Fluids.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0031
  article-title: The effect of surface roughness on the contact line and splashing dynamics of impacting droplets
  publication-title: Sci. Rep.
– volume: 112
  start-page: 3280
  year: 2015
  end-page: 3284
  ident: bib0034
  article-title: Kelvin-Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 31
  start-page: 22503
  year: 2019
  ident: bib0070
  article-title: Wettability transition modes of aluminum surfaces with various micro/nanostructures produced by a femtosecond laser
  publication-title: J. Laser Appl.
– volume: 31
  start-page: 97
  year: 2006
  end-page: 110
  ident: bib0086
  article-title: Phenomena of droplet–surface interactions
  publication-title: Exp. Therm. Fluid Sci.
– year: 2019
  ident: bib0092
  article-title: Comparing the integral characteristics of secondary droplet atomization under different situations
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 13
  start-page: 2040
  year: 2017
  end-page: 2053
  ident: bib0016
  article-title: Understanding the drop impact on moving hydrophilic and hydrophobic surfaces
  publication-title: Soft Matter
– volume: 54
  start-page: 38
  year: 2014
  end-page: 46
  ident: bib0028
  article-title: Experimental investigation of biofuel drop impact on stainless steel surface
  publication-title: Exp. Therm. Fluid Sci.
– volume: 673
  year: 2023
  ident: bib0005
  article-title: Droplet pinning on the tilted surface processed by a grinding machine
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 19
  year: 2007
  ident: bib0089
  article-title: An energy balance approach of the dynamics of drop impact on a solid surface
  publication-title: Phys. Fluids.
– volume: 35
  year: 2023
  ident: bib0045
  article-title: Droplet impingement on a solid surface: parametrization and asymmetry of dynamic contact angle model
  publication-title: Phys. Fluids.
– volume: 36
  start-page: 10051
  year: 2020
  end-page: 10060
  ident: bib0011
  article-title: Drop impact on heated nanostructures
  publication-title: Langmuir
– volume: 2
  start-page: 1
  year: 2023
  end-page: 11
  ident: bib0017
  article-title: Droplet orthogonal impact on nonuniform wettability surfaces
  publication-title: Droplet
– volume: 608
  year: 2023
  ident: bib0062
  article-title: Engulfed small Wenzel droplets on hierarchically structured superhydrophobic surface by large Cassie droplets: experiments and molecular dynamics simulations
  publication-title: Appl. Surf. Sci.
– volume: 113
  year: 2014
  ident: bib0064
  article-title: Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing
  publication-title: Phys. Rev. Lett.
– volume: 484
  start-page: 69
  year: 2003
  end-page: 83
  ident: bib0076
  article-title: Pyramidal and toroidal water drops after impact on a solid surface
  publication-title: J. Fluid Mech.
– reference: W. Wu, Q. Liu, B. Wang, Curved surface effect on high-speed droplet impingement, (2021).
– volume: 28
  year: 2016
  ident: bib0059
  article-title: Phase field simulation of a droplet impacting a solid surface
  publication-title: Phys. Fluids.
– volume: 322
  start-page: 183
  year: 2008
  end-page: 191
  ident: bib0084
  article-title: Drop impact onto a dry surface: role of the dynamic contact angle
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 530
  year: 2020
  ident: bib0003
  article-title: Directional rebound control of droplets on low-temperature regular and irregular wrinkled superhydrophobic surfaces
  publication-title: Appl. Surf. Sci.
– volume: 491
  start-page: 160
  year: 2019
  end-page: 170
  ident: bib0044
  article-title: Droplet impingement on nano-textured superhydrophobic surface: experimental and numerical study
  publication-title: Appl. Surf. Sci.
– volume: 870
  start-page: 175
  year: 2019
  end-page: 188
  ident: bib0032
  article-title: Splashing of droplets impacting superhydrophobic substrates
  publication-title: J. Fluid Mech.
– volume: 34
  start-page: 7059
  year: 2018
  end-page: 7066
  ident: bib0068
  article-title: Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings
  publication-title: Langmuir
– volume: 417
  start-page: 811
  year: 2002
  end-page: 812
  ident: bib0041
  article-title: Contact time of a bouncing drop
  publication-title: Nature
– volume: 33
  start-page: 112
  year: 2002
  end-page: 124
  ident: bib0027
  article-title: Time evolution of liquid drop impact onto solid, dry surfaces
  publication-title: Exp. Fluids.
– volume: 39
  start-page: 167
  year: 2001
  end-page: 187
  ident: bib0053
  article-title: Lattice boltzmann method for the heat conduction problem with phase change
  publication-title: Numer. Heat Transf.
– volume: 35
  year: 2023
  ident: bib0038
  article-title: Critical contact angle of a bouncing droplet
  publication-title: Phys. Fluids.
– volume: 100
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib0042
  article-title: Biotemplated hierarchical surfaces and the role of dual length scales on the repellency of impacting droplets
  publication-title: Appl. Phys. Lett.
– volume: 69
  start-page: 74
  year: 1979
  end-page: 77
  ident: bib0085
  article-title: Correlation for dynamic contact angle
  publication-title: J. Colloid Interface Sci.
– year: 2019
  ident: bib0001
  article-title: Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings
  publication-title: ACS Nano
– volume: 379
  start-page: 111
  year: 2016
  end-page: 113
  ident: bib0071
  article-title: Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard (Ap
  publication-title: Appl. Surf. Sci.
– volume: 469
  start-page: 974
  year: 2019
  end-page: 982
  ident: bib0073
  article-title: Unification of the textures formed on aluminum after laser treatment
  publication-title: Appl. Surf. Sci.
– volume: 25
  start-page: 503
  year: 2002
  end-page: 510
  ident: bib0087
  article-title: Analysis of impact of droplets on horizontal surfaces
  publication-title: Exp. Therm. Fluid Sci.
– volume: 186
  year: 2022
  ident: bib0014
  article-title: Transient surface temperatures upon the impact of a single droplet onto a heated surface in the film evaporation regime
  publication-title: Int. J. Heat Mass Transf.
– volume: 3
  year: 2022
  ident: bib0008
  article-title: Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting
  publication-title: Cell Rep. Phys. Sci.
– volume: 272
  start-page: 704
  year: 2014
  end-page: 718
  ident: bib0058
  article-title: An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity
  publication-title: J. Comput. Phys.
– year: 2020
  ident: bib0069
  article-title: Gel fuels based on oil-filled cryogels: corrosion of tank material and spontaneous ignition
  publication-title: Chem. Eng. J.
– volume: 181
  year: 2021
  ident: bib0012
  article-title: Single droplet impingement of urea water solution on heated porous surfaces
  publication-title: Int. J. Heat Mass Transf.
– volume: 301
  start-page: 178
  year: 2015
  end-page: 200
  ident: bib0088
  article-title: Simulations of impinging droplets with surfactant-dependent dynamic contact angle
  publication-title: J. Comput. Phys.
– volume: 48
  start-page: 365
  year: 2016
  end-page: 391
  ident: bib0020
  article-title: Drop impact on a solid surface
  publication-title: Annu. Rev. Fluid Mech.
– volume: 43
  start-page: 2169
  year: 1997
  end-page: 2179
  ident: bib0090
  article-title: Spread and rebound of liquid droplets upon impact on flat surfaces
  publication-title: AIChE J.
– volume: 17
  start-page: 1
  year: 2005
  end-page: 13
  ident: bib0083
  article-title: Dynamic contact angle of spreading droplets: experiments and simulations
  publication-title: Phys. Fluids.
– volume: 403
  year: 2022
  ident: bib0074
  article-title: Droplet-droplet, droplet-particle, and droplet-substrate collision behavior
  publication-title: Powder Technol.
– volume: 189
  year: 2022
  ident: bib0013
  article-title: High-speed dynamics and temperature variation during drop impact on a heated surface
  publication-title: Int. J. Heat Mass Transf.
– volume: 126
  start-page: 82
  year: 2014
  end-page: 91
  ident: bib0019
  article-title: The impact and retention of spray droplets on a horizontal hydrophobic surface
  publication-title: Biosyst. Eng.
– volume: 51
  year: 2021
  ident: bib0022
  article-title: Impact of compound drops: a perspective
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 190
  start-page: 232
  year: 2018
  end-page: 247
  ident: bib0018
  article-title: The dynamics of droplet impact on a heated porous surface
  publication-title: Chem. Eng. Sci.
– volume: 124
  start-page: 1262
  year: 2018
  end-page: 1274
  ident: bib0054
  article-title: Numerical investigation of air entrapment in a molten droplet impacting and solidifying on a cold smooth substrate by 3D lattice Boltzmann method
  publication-title: Int. J. Heat Mass Transf.
– volume: 581
  start-page: 97
  year: 2007
  end-page: 127
  ident: bib0061
  article-title: Diffuse-interface modeling of droplet impact
  publication-title: J. Fluid Mech.
– volume: 119
  year: 2016
  ident: bib0015
  article-title: Droplet impact behavior on heated micro-patterned surfaces
  publication-title: J. Appl. Phys.
– volume: 54
  start-page: 57
  year: 2021
  end-page: 81
  ident: bib0021
  article-title: Drop impact dynamics: impact force and stress distributions
  publication-title: Annu. Rev. Fluid Mech.
– volume: 10
  start-page: 515
  year: 2014
  end-page: 519
  ident: bib0040
  article-title: Pancake bouncing on superhydrophobic surfaces
  publication-title: Nat. Phys.
– volume: 50
  start-page: 769
  year: 2000
  ident: bib0055
  article-title: Bouncing water drops
  publication-title: Europhys. Lett.
– reference: (accessed March 5, 2022).
– volume: 124
  year: 2021
  ident: bib0033
  article-title: Effect of wettability on droplet impact: spreading and splashing
  publication-title: Exp. Therm. Fluid Sci.
– volume: 228
  start-page: 2834
  year: 2009
  end-page: 2846
  ident: bib0057
  article-title: A splitting method for incompressible flows with variable density based on a pressure Poisson equation
  publication-title: J. Comput. Phys.
– volume: 33
  year: 2021
  ident: bib0050
  article-title: Droplet impact dynamics on single-pillar superhydrophobic surfaces
  publication-title: Phys. Fluids.
– volume: 397
  year: 2020
  ident: bib0065
  article-title: Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors
  publication-title: Surf. Coatings Technol.
– volume: 39
  start-page: 1696
  year: 2010
  end-page: 1703
  ident: bib0082
  article-title: Droplet impingement and breakup on a dry surface
  publication-title: Comput. Fluids.
– volume: 106
  start-page: 103
  year: 2017
  end-page: 126
  ident: bib0009
  article-title: Review of drop impact on heated walls
  publication-title: Int. J. Heat Mass Transf.
– volume: 26
  start-page: 803
  year: 2010
  end-page: 811
  ident: bib0081
  article-title: Phase field method
  publication-title: Mater. Sci. Technol.
– volume: 8
  start-page: 409
  year: 2018
  ident: bib0029
  article-title: Universality of droplet impingement: low-to-high viscosities and surface tensions
  publication-title: Coatings
– volume: 62
  start-page: 7214
  year: 2007
  end-page: 7224
  ident: bib0052
  article-title: Numerical simulations of drop impact and spreading on horizontal and inclined surfaces
  publication-title: Chem. Eng. Sci.
– volume: 578
  start-page: 392
  year: 2020
  end-page: 396
  ident: bib0006
  article-title: A droplet-based electricity generator with high instantaneous power density
  publication-title: Nature
– volume: 264
  year: 2024
  ident: bib0049
  article-title: Droplet impact dynamics on superhydrophobic surfaces with convex hemispherical shapes
  publication-title: Int. J. Mech. Sci.
– volume: 8
  start-page: 650
  year: 1998
  ident: bib0080
  article-title: Capillary effects during droplet impact on a solid surface
  publication-title: Phys. Fluids.
– volume: 677
  year: 2023
  ident: bib0023
  article-title: Spreading dynamics of a droplet impacts on a supercooled substrate: physical models and neural networks
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 5
  start-page: 2588
  year: 1992
  end-page: 2599
  ident: bib0056
  article-title: Modeling of the deformation of a liquid droplet impinging upon a flat surface
  publication-title: Phys. Fluids A.
– volume: 2310200
  start-page: 1
  year: 2024
  end-page: 10
  ident: bib0043
  article-title: Low-pressure pancake bouncing on superhydrophobic surfaces
  publication-title: Small
– volume: 4
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0035
  article-title: Role of surrounding gas in the outcome of droplet splashing
  publication-title: Phys. Rev. Fluids.
– volume: 32
  year: 2020
  ident: bib0091
  article-title: Droplet breakup and rebound during impact on small cylindrical superhydrophobic targets
  publication-title: Phys. Fluids.
– volume: 104
  year: 2014
  ident: bib0078
  article-title: Drop splashing on a rough surface: how surface morphology affects splashing threshold
  publication-title: Appl. Phys. Lett.
– volume: 601
  start-page: 568
  year: 2022
  end-page: 572
  ident: bib0007
  article-title: Inhibiting the Leidenfrost effect above 1,000°C for sustained thermal cooling
  publication-title: Nature
– volume: 212
  year: 2020
  ident: bib0036
  article-title: Drop impact on superhydrophobic surface with protrusions
  publication-title: Chem. Eng. Sci.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0077
  article-title: Water droplet impact on elastic superhydrophobic surfaces
  publication-title: Sci. Rep.
– volume: 498
  year: 2019
  ident: bib0046
  article-title: Dynamic behavior of water droplets impacting on the superhydrophobic surface: both experimental study and molecular dynamics simulation study
  publication-title: Appl. Surf. Sci.
– volume: 38
  year: 2023
  ident: bib0002
  article-title: Evaporation-driven directed motion of droplets on the glass
  publication-title: Surf. Interfaces
– volume: 2
  start-page: 1
  year: 2023
  end-page: 11
  ident: bib0037
  article-title: Target slinging of droplets with a flexible cantilever
  publication-title: Droplet
– reference: .
– volume: 39
  start-page: 615
  year: 2010
  end-page: 625
  ident: bib0060
  article-title: A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls
  publication-title: Comput. Fluids.
– volume: 11
  start-page: 48
  year: 2015
  end-page: 53
  ident: bib0039
  article-title: Wettability-independent bouncing on flat surfaces mediated by thin air films
  publication-title: Nat. Phys.
– volume: 13
  start-page: 1521
  year: 2018
  end-page: 1538
  ident: bib0072
  article-title: Surface-wetting characterization using contact-angle measurements
  publication-title: Nat. Protoc.
– reference: J. Breitenbach, I.V.I.V. Roisman, C. Tropea, From drop impact physics to spray cooling models: a critical review, 59 (2018) 1–21.
– volume: 516
  start-page: 86
  year: 2018
  end-page: 97
  ident: bib0026
  article-title: Impact of viscous droplets on different wettable surfaces: impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation
  publication-title: J. Colloid Interface Sci.
– volume: 29
  year: 2022
  ident: bib0024
  article-title: Ferro-fluid droplet impact on hydrophobic surface under magnetic influence
  publication-title: Surf. Interfaces
– volume: 15
  start-page: 141
  year: 2020
  end-page: 145
  ident: bib0066
  article-title: Laser treatment of aluminum alloys for fabrication of weather-resistant superhydrophobic coatings
  publication-title: Nanotechnol. Russ.
– volume: 42
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib0063
  article-title: Droplet impact on superhydrophobic surfaces: a review of recent developments
  publication-title: J. Ind. Eng. Chem.
– volume: 805
  start-page: 636
  year: 2016
  end-page: 655
  ident: bib0025
  article-title: On the spreading of impacting drops
  publication-title: J. Fluid Mech.
– volume: 122
  year: 2019
  ident: bib0030
  article-title: Role of the dynamic contact angle on splashing
  publication-title: Phys. Rev. Lett.
– volume: 673
  year: 2023
  ident: 10.1016/j.surfin.2024.104264_bib0005
  article-title: Droplet pinning on the tilted surface processed by a grinding machine
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2023.131796
– volume: 4
  start-page: 1
  year: 2019
  ident: 10.1016/j.surfin.2024.104264_bib0035
  article-title: Role of surrounding gas in the outcome of droplet splashing
  publication-title: Phys. Rev. Fluids.
  doi: 10.1103/PhysRevFluids.4.073601
– volume: 417
  start-page: 811
  year: 2002
  ident: 10.1016/j.surfin.2024.104264_bib0041
  article-title: Contact time of a bouncing drop
  publication-title: Nature
  doi: 10.1038/417811a
– volume: 397
  year: 2020
  ident: 10.1016/j.surfin.2024.104264_bib0065
  article-title: Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2020.125993
– volume: 21
  start-page: 666
  year: 2004
  ident: 10.1016/j.surfin.2024.104264_bib0079
  article-title: On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces
  publication-title: Langmuir
  doi: 10.1021/la0481288
– volume: 54
  start-page: 38
  year: 2014
  ident: 10.1016/j.surfin.2024.104264_bib0028
  article-title: Experimental investigation of biofuel drop impact on stainless steel surface
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.01.014
– volume: 39
  start-page: 1696
  year: 2010
  ident: 10.1016/j.surfin.2024.104264_bib0082
  article-title: Droplet impingement and breakup on a dry surface
  publication-title: Comput. Fluids.
  doi: 10.1016/j.compfluid.2010.06.006
– volume: 13
  start-page: 2040
  year: 2017
  ident: 10.1016/j.surfin.2024.104264_bib0016
  article-title: Understanding the drop impact on moving hydrophilic and hydrophobic surfaces
  publication-title: Soft Matter
  doi: 10.1039/C6SM02514E
– volume: 33
  year: 2021
  ident: 10.1016/j.surfin.2024.104264_bib0050
  article-title: Droplet impact dynamics on single-pillar superhydrophobic surfaces
  publication-title: Phys. Fluids.
  doi: 10.1063/5.0066366
– volume: 50
  start-page: 769
  year: 2000
  ident: 10.1016/j.surfin.2024.104264_bib0055
  article-title: Bouncing water drops
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2000-00547-6
– volume: 5
  start-page: 2588
  year: 1992
  ident: 10.1016/j.surfin.2024.104264_bib0056
  article-title: Modeling of the deformation of a liquid droplet impinging upon a flat surface
  publication-title: Phys. Fluids A.
  doi: 10.1063/1.858724
– volume: 51
  year: 2021
  ident: 10.1016/j.surfin.2024.104264_bib0022
  article-title: Impact of compound drops: a perspective
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2020.09.002
– volume: 2
  start-page: 1
  year: 2023
  ident: 10.1016/j.surfin.2024.104264_bib0017
  article-title: Droplet orthogonal impact on nonuniform wettability surfaces
  publication-title: Droplet
  doi: 10.1002/dro2.63
– volume: 28
  year: 2016
  ident: 10.1016/j.surfin.2024.104264_bib0059
  article-title: Phase field simulation of a droplet impacting a solid surface
  publication-title: Phys. Fluids.
  doi: 10.1063/1.4940995
– year: 2020
  ident: 10.1016/j.surfin.2024.104264_bib0069
  article-title: Gel fuels based on oil-filled cryogels: corrosion of tank material and spontaneous ignition
  publication-title: Chem. Eng. J.
– volume: 212
  year: 2020
  ident: 10.1016/j.surfin.2024.104264_bib0036
  article-title: Drop impact on superhydrophobic surface with protrusions
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.115351
– volume: 104
  year: 2014
  ident: 10.1016/j.surfin.2024.104264_bib0078
  article-title: Drop splashing on a rough surface: how surface morphology affects splashing threshold
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4873338
– volume: 181
  year: 2021
  ident: 10.1016/j.surfin.2024.104264_bib0012
  article-title: Single droplet impingement of urea water solution on heated porous surfaces
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121836
– volume: 403
  year: 2022
  ident: 10.1016/j.surfin.2024.104264_bib0074
  article-title: Droplet-droplet, droplet-particle, and droplet-substrate collision behavior
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2022.117371
– year: 2019
  ident: 10.1016/j.surfin.2024.104264_bib0001
  article-title: Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09549
– ident: 10.1016/j.surfin.2024.104264_bib0048
  doi: 10.1017/jfm.2020.926
– year: 2019
  ident: 10.1016/j.surfin.2024.104264_bib0092
  article-title: Comparing the integral characteristics of secondary droplet atomization under different situations
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.104329
– year: 2011
  ident: 10.1016/j.surfin.2024.104264_bib0075
– volume: 81
  start-page: 54
  year: 2016
  ident: 10.1016/j.surfin.2024.104264_bib0047
  article-title: On dual-grid level-set method for contact line modeling during impact of a droplet on hydrophobic and superhydrophobic surfaces
  publication-title: Int. J. Multiph. Flow.
  doi: 10.1016/j.ijmultiphaseflow.2016.01.005
– volume: 498
  year: 2019
  ident: 10.1016/j.surfin.2024.104264_bib0046
  article-title: Dynamic behavior of water droplets impacting on the superhydrophobic surface: both experimental study and molecular dynamics simulation study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143793
– volume: 26
  start-page: 803
  year: 2010
  ident: 10.1016/j.surfin.2024.104264_bib0081
  article-title: Phase field method
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/174328409X453190
– volume: 54
  start-page: 57
  year: 2021
  ident: 10.1016/j.surfin.2024.104264_bib0021
  article-title: Drop impact dynamics: impact force and stress distributions
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-030321-103941
– volume: 35
  year: 2023
  ident: 10.1016/j.surfin.2024.104264_bib0045
  article-title: Droplet impingement on a solid surface: parametrization and asymmetry of dynamic contact angle model
  publication-title: Phys. Fluids.
  doi: 10.1063/5.0147849
– volume: 608
  year: 2023
  ident: 10.1016/j.surfin.2024.104264_bib0062
  article-title: Engulfed small Wenzel droplets on hierarchically structured superhydrophobic surface by large Cassie droplets: experiments and molecular dynamics simulations
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.155000
– volume: 100
  start-page: 1
  year: 2012
  ident: 10.1016/j.surfin.2024.104264_bib0042
  article-title: Biotemplated hierarchical surfaces and the role of dual length scales on the repellency of impacting droplets
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4729935
– volume: 38
  year: 2023
  ident: 10.1016/j.surfin.2024.104264_bib0002
  article-title: Evaporation-driven directed motion of droplets on the glass
  publication-title: Surf. Interfaces
– volume: 516
  start-page: 86
  year: 2018
  ident: 10.1016/j.surfin.2024.104264_bib0026
  article-title: Impact of viscous droplets on different wettable surfaces: impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.12.086
– volume: 322
  start-page: 183
  year: 2008
  ident: 10.1016/j.surfin.2024.104264_bib0084
  article-title: Drop impact onto a dry surface: role of the dynamic contact angle
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2008.03.005
– volume: 25
  start-page: 503
  year: 2002
  ident: 10.1016/j.surfin.2024.104264_bib0087
  article-title: Analysis of impact of droplets on horizontal surfaces
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(01)00109-1
– volume: 44
  year: 2024
  ident: 10.1016/j.surfin.2024.104264_bib0004
  article-title: Droplet impact dynamics on a flexible superhydrophobic cantilever wire mesh
  publication-title: Surf. Interfaces
– volume: 379
  start-page: 111
  year: 2016
  ident: 10.1016/j.surfin.2024.104264_bib0071
  article-title: Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard (Ap
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.04.056
– volume: 113
  year: 2014
  ident: 10.1016/j.surfin.2024.104264_bib0064
  article-title: Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing
  publication-title: Phys. Rev. Lett.
– volume: 35
  year: 2023
  ident: 10.1016/j.surfin.2024.104264_bib0038
  article-title: Critical contact angle of a bouncing droplet
  publication-title: Phys. Fluids.
  doi: 10.1063/5.0156033
– volume: 422
  year: 2021
  ident: 10.1016/j.surfin.2024.104264_bib0067
  article-title: Influence of roughness on polar and dispersed components of surface free energy and wettability properties of copper and steel surfaces
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2021.127518
– volume: 186
  year: 2022
  ident: 10.1016/j.surfin.2024.104264_bib0014
  article-title: Transient surface temperatures upon the impact of a single droplet onto a heated surface in the film evaporation regime
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.122463
– volume: 2310200
  start-page: 1
  year: 2024
  ident: 10.1016/j.surfin.2024.104264_bib0043
  article-title: Low-pressure pancake bouncing on superhydrophobic surfaces
  publication-title: Small
– volume: 578
  start-page: 392
  year: 2020
  ident: 10.1016/j.surfin.2024.104264_bib0006
  article-title: A droplet-based electricity generator with high instantaneous power density
  publication-title: Nature
  doi: 10.1038/s41586-020-1985-6
– volume: 119
  year: 2016
  ident: 10.1016/j.surfin.2024.104264_bib0015
  article-title: Droplet impact behavior on heated micro-patterned surfaces
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4943938
– volume: 805
  start-page: 636
  year: 2016
  ident: 10.1016/j.surfin.2024.104264_bib0025
  article-title: On the spreading of impacting drops
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.584
– volume: 272
  start-page: 704
  year: 2014
  ident: 10.1016/j.surfin.2024.104264_bib0058
  article-title: An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.04.054
– volume: 124
  year: 2021
  ident: 10.1016/j.surfin.2024.104264_bib0033
  article-title: Effect of wettability on droplet impact: spreading and splashing
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2021.110369
– volume: 126
  start-page: 82
  year: 2014
  ident: 10.1016/j.surfin.2024.104264_bib0019
  article-title: The impact and retention of spray droplets on a horizontal hydrophobic surface
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2014.07.013
– volume: 2
  start-page: 1
  year: 2023
  ident: 10.1016/j.surfin.2024.104264_bib0037
  article-title: Target slinging of droplets with a flexible cantilever
  publication-title: Droplet
  doi: 10.1002/dro2.72
– volume: 469
  start-page: 974
  year: 2019
  ident: 10.1016/j.surfin.2024.104264_bib0073
  article-title: Unification of the textures formed on aluminum after laser treatment
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.11.046
– volume: 530
  year: 2020
  ident: 10.1016/j.surfin.2024.104264_bib0003
  article-title: Directional rebound control of droplets on low-temperature regular and irregular wrinkled superhydrophobic surfaces
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147099
– volume: 491
  start-page: 160
  year: 2019
  ident: 10.1016/j.surfin.2024.104264_bib0044
  article-title: Droplet impingement on nano-textured superhydrophobic surface: experimental and numerical study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.06.104
– volume: 122
  year: 2019
  ident: 10.1016/j.surfin.2024.104264_bib0030
  article-title: Role of the dynamic contact angle on splashing
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.228001
– volume: 8
  start-page: 409
  year: 2018
  ident: 10.1016/j.surfin.2024.104264_bib0029
  article-title: Universality of droplet impingement: low-to-high viscosities and surface tensions
  publication-title: Coatings
  doi: 10.3390/coatings8110409
– volume: 10
  start-page: 515
  year: 2014
  ident: 10.1016/j.surfin.2024.104264_bib0040
  article-title: Pancake bouncing on superhydrophobic surfaces
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2980
– volume: 62
  start-page: 7214
  year: 2007
  ident: 10.1016/j.surfin.2024.104264_bib0052
  article-title: Numerical simulations of drop impact and spreading on horizontal and inclined surfaces
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.07.036
– volume: 43
  start-page: 2169
  year: 1997
  ident: 10.1016/j.surfin.2024.104264_bib0090
  article-title: Spread and rebound of liquid droplets upon impact on flat surfaces
  publication-title: AIChE J.
  doi: 10.1002/aic.690430903
– volume: 39
  start-page: 615
  year: 2010
  ident: 10.1016/j.surfin.2024.104264_bib0060
  article-title: A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls
  publication-title: Comput. Fluids.
  doi: 10.1016/j.compfluid.2009.10.009
– ident: 10.1016/j.surfin.2024.104264_bib0010
  doi: 10.1007/s00348-018-2535-y
– volume: 484
  start-page: 69
  year: 2003
  ident: 10.1016/j.surfin.2024.104264_bib0076
  article-title: Pyramidal and toroidal water drops after impact on a solid surface
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003004142
– volume: 3
  year: 2022
  ident: 10.1016/j.surfin.2024.104264_bib0008
  article-title: Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting
  publication-title: Cell Rep. Phys. Sci.
– volume: 677
  year: 2023
  ident: 10.1016/j.surfin.2024.104264_bib0023
  article-title: Spreading dynamics of a droplet impacts on a supercooled substrate: physical models and neural networks
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2023.132381
– volume: 21
  year: 2009
  ident: 10.1016/j.surfin.2024.104264_bib0051
  article-title: Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface
  publication-title: Phys. Fluids.
  doi: 10.1063/1.3158468
– volume: 189
  year: 2022
  ident: 10.1016/j.surfin.2024.104264_bib0013
  article-title: High-speed dynamics and temperature variation during drop impact on a heated surface
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.122710
– volume: 228
  start-page: 2834
  year: 2009
  ident: 10.1016/j.surfin.2024.104264_bib0057
  article-title: A splitting method for incompressible flows with variable density based on a pressure Poisson equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.12.036
– volume: 301
  start-page: 178
  year: 2015
  ident: 10.1016/j.surfin.2024.104264_bib0088
  article-title: Simulations of impinging droplets with surfactant-dependent dynamic contact angle
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.08.026
– volume: 33
  start-page: 112
  year: 2002
  ident: 10.1016/j.surfin.2024.104264_bib0027
  article-title: Time evolution of liquid drop impact onto solid, dry surfaces
  publication-title: Exp. Fluids.
  doi: 10.1007/s00348-002-0431-x
– volume: 48
  start-page: 365
  year: 2016
  ident: 10.1016/j.surfin.2024.104264_bib0020
  article-title: Drop impact on a solid surface
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122414-034401
– volume: 11
  start-page: 48
  year: 2015
  ident: 10.1016/j.surfin.2024.104264_bib0039
  article-title: Wettability-independent bouncing on flat surfaces mediated by thin air films
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3145
– volume: 581
  start-page: 97
  year: 2007
  ident: 10.1016/j.surfin.2024.104264_bib0061
  article-title: Diffuse-interface modeling of droplet impact
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200700554X
– volume: 39
  start-page: 167
  year: 2001
  ident: 10.1016/j.surfin.2024.104264_bib0053
  article-title: Lattice boltzmann method for the heat conduction problem with phase change
  publication-title: Numer. Heat Transf.
  doi: 10.1080/10407790150503495
– volume: 19
  year: 2007
  ident: 10.1016/j.surfin.2024.104264_bib0089
  article-title: An energy balance approach of the dynamics of drop impact on a solid surface
  publication-title: Phys. Fluids.
  doi: 10.1063/1.2408495
– volume: 124
  start-page: 1262
  year: 2018
  ident: 10.1016/j.surfin.2024.104264_bib0054
  article-title: Numerical investigation of air entrapment in a molten droplet impacting and solidifying on a cold smooth substrate by 3D lattice Boltzmann method
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.04.056
– volume: 112
  start-page: 3280
  year: 2015
  ident: 10.1016/j.surfin.2024.104264_bib0034
  article-title: Kelvin-Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1417718112
– volume: 31
  start-page: 97
  year: 2006
  ident: 10.1016/j.surfin.2024.104264_bib0086
  article-title: Phenomena of droplet–surface interactions
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2006.03.028
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.surfin.2024.104264_bib0031
  article-title: The effect of surface roughness on the contact line and splashing dynamics of impacting droplets
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51490-5
– volume: 69
  start-page: 74
  year: 1979
  ident: 10.1016/j.surfin.2024.104264_bib0085
  article-title: Correlation for dynamic contact angle
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(79)90081-X
– volume: 42
  start-page: 1
  year: 2016
  ident: 10.1016/j.surfin.2024.104264_bib0063
  article-title: Droplet impact on superhydrophobic surfaces: a review of recent developments
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.07.027
– volume: 17
  start-page: 1
  year: 2005
  ident: 10.1016/j.surfin.2024.104264_bib0083
  article-title: Dynamic contact angle of spreading droplets: experiments and simulations
  publication-title: Phys. Fluids.
  doi: 10.1063/1.1928828
– volume: 31
  start-page: 22503
  year: 2019
  ident: 10.1016/j.surfin.2024.104264_bib0070
  article-title: Wettability transition modes of aluminum surfaces with various micro/nanostructures produced by a femtosecond laser
  publication-title: J. Laser Appl.
  doi: 10.2351/1.5096076
– volume: 190
  start-page: 232
  year: 2018
  ident: 10.1016/j.surfin.2024.104264_bib0018
  article-title: The dynamics of droplet impact on a heated porous surface
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.06.030
– volume: 264
  year: 2024
  ident: 10.1016/j.surfin.2024.104264_bib0049
  article-title: Droplet impact dynamics on superhydrophobic surfaces with convex hemispherical shapes
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2023.108824
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.surfin.2024.104264_bib0077
  article-title: Water droplet impact on elastic superhydrophobic surfaces
  publication-title: Sci. Rep.
  doi: 10.1038/srep30328
– volume: 8
  start-page: 650
  year: 1998
  ident: 10.1016/j.surfin.2024.104264_bib0080
  article-title: Capillary effects during droplet impact on a solid surface
  publication-title: Phys. Fluids.
  doi: 10.1063/1.868850
– volume: 601
  start-page: 568
  year: 2022
  ident: 10.1016/j.surfin.2024.104264_bib0007
  article-title: Inhibiting the Leidenfrost effect above 1,000°C for sustained thermal cooling
  publication-title: Nature
  doi: 10.1038/s41586-021-04307-3
– volume: 15
  start-page: 141
  year: 2020
  ident: 10.1016/j.surfin.2024.104264_bib0066
  article-title: Laser treatment of aluminum alloys for fabrication of weather-resistant superhydrophobic coatings
  publication-title: Nanotechnol. Russ.
  doi: 10.1134/S1995078020020172
– volume: 36
  start-page: 10051
  year: 2020
  ident: 10.1016/j.surfin.2024.104264_bib0011
  article-title: Drop impact on heated nanostructures
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c01151
– volume: 34
  start-page: 7059
  year: 2018
  ident: 10.1016/j.surfin.2024.104264_bib0068
  article-title: Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01317
– volume: 29
  year: 2022
  ident: 10.1016/j.surfin.2024.104264_bib0024
  article-title: Ferro-fluid droplet impact on hydrophobic surface under magnetic influence
  publication-title: Surf. Interfaces
– volume: 106
  start-page: 103
  year: 2017
  ident: 10.1016/j.surfin.2024.104264_bib0009
  article-title: Review of drop impact on heated walls
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.10.031
– volume: 13
  start-page: 1521
  year: 2018
  ident: 10.1016/j.surfin.2024.104264_bib0072
  article-title: Surface-wetting characterization using contact-angle measurements
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0003-z
– volume: 32
  year: 2020
  ident: 10.1016/j.surfin.2024.104264_bib0091
  article-title: Droplet breakup and rebound during impact on small cylindrical superhydrophobic targets
  publication-title: Phys. Fluids.
  doi: 10.1063/5.0024837
– volume: 870
  start-page: 175
  year: 2019
  ident: 10.1016/j.surfin.2024.104264_bib0032
  article-title: Splashing of droplets impacting superhydrophobic substrates
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.258
SSID ssj0001879515
Score 2.2777586
Snippet The characteristics of the collision of water droplets with textured hydrophobic and superhydrophobic surfaces obtained using two techniques were studied...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104264
SubjectTerms Collision regime
Droplet-surface collision
Hydrophobic and superhydrophobic surfaces
Secondary fragments
Water droplet
Title Droplet collision with hydrophobic and superhydrophobic surfaces: Experimental studies and numerical modeling
URI https://dx.doi.org/10.1016/j.surfin.2024.104264
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  customDbUrl:
  eissn: 2468-0230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001879515
  issn: 2468-0230
  databaseCode: ACRLP
  dateStart: 20160801
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 2468-0230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001879515
  issn: 2468-0230
  databaseCode: AIKHN
  dateStart: 20160801
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2468-0230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001879515
  issn: 2468-0230
  databaseCode: AKRWK
  dateStart: 20160801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ki-BFfOKbPXhdmqbJbuKt1JZqsQe12FvYJ61oWvI4-O_dySZYQTx4CtkwsHwb5rXfzCB0oxjXItaSGK04sRaPEk55RLiJmQo5tHyDPOTjjE7mwcMiXLTQsKmFAVplrfudTq-0db3SrdHsblar7rMfUOheBk26gNxhQ6COtT9R1Eadwf10MvtOtcBA7WqWAYgQkGmK6CqmV15mZgW9UP0Arjx9GvxupLYMz3gf7dUeIx64TR2glk4P0U7F3JT5Efq4y4ADXmA40apQHENuFS8_lf2wXIuVxDxVOC83OttehP0AH-sWj7a6_OPcEQsrmbR09znvuBqYY63cMZqPRy_DCalnKBBpg4WCREaIWCreC6QUjFIR9qiQijLI1Xrc92JhbAjnx9a1U4zyHmcmiLyQxyr0jOT9E9RO16k-RViEKjJMCmvSeKA5FUz71ruyERqTYWT6Z4g0oCUb1yojaThkb4kDOQGQEwfyGWINssmPI0-sNv9T8vzfkhdoF94cY_EStYus1FfWqyjEdf3XwHP69Dr9AoDR0HQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JawIxFA6ilPZSulK75tBrUMeZZKY3sYrW5VIFb0NWtLSjzHLov2_eLNRC6aHXhAfhZeZt-d73EHpUjGsRaEmMVpxYj0cJp9wn3ARMeRwo36AOOZvT0dJ9WXmrGupXvTAAqyxtf2HTc2tdrrRKbbZ2m03r1XEpsJcBSReAO2wK1HC9LrN_Z6M3nozm36UWGKidzzIAEQIyVRNdjvRKsthsgAvVceHJ06Hu705qz_EMT9BxGTHiXnGoU1TT0Rk6yJGbMjlHH88xYMBTDDeaN4pjqK3i9aeyG-ut2EjMI4WTbKfj_UU4D-CxnvBgj-UfJwWwMJeJsuI95x3nA3Osl7tAy-Fg0R-RcoYCkTZZSIlvhAik4h1XSsEoFV6HCqkog1ptmzvtQBibwjmBDe0Uo7zDmXH9tscD5bWN5N1LVI-2kb5CWHjKN0wK69K4qzkVTDs2urIZGpOeb7pNRCqlhbuCKiOsMGRvYaHkEJQcFkpuIlZpNvxx5aG15n9KXv9b8gEdjhazaTgdzyc36Ah2CvTiLaqncabvbISRivvyC_oCwibRsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Droplet+collision+with+hydrophobic+and+superhydrophobic+surfaces%3A+Experimental+studies+and+numerical+modeling&rft.jtitle=Surfaces+and+interfaces&rft.au=Antonov%2C+D.V.&rft.au=Islamova%2C+A.G.&rft.au=Orlova%2C+E.G.&rft.au=Strizhak%2C+P.A.&rft.date=2024-05-01&rft.issn=2468-0230&rft.volume=48&rft.spage=104264&rft_id=info:doi/10.1016%2Fj.surfin.2024.104264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfin_2024_104264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-0230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-0230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-0230&client=summon