Droplet collision with hydrophobic and superhydrophobic surfaces: Experimental studies and numerical modeling
The characteristics of the collision of water droplets with textured hydrophobic and superhydrophobic surfaces obtained using two techniques were studied experimentally. The surface processing techniques are based on laser modification of the surface layer and changes in its chemical composition. We...
Saved in:
| Published in | Surfaces and interfaces Vol. 48; p. 104264 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2468-0230 2468-0230 |
| DOI | 10.1016/j.surfin.2024.104264 |
Cover
| Abstract | The characteristics of the collision of water droplets with textured hydrophobic and superhydrophobic surfaces obtained using two techniques were studied experimentally. The surface processing techniques are based on laser modification of the surface layer and changes in its chemical composition. Weber numbers in the experiments were varied in the range of 10–200. Regimes of water droplet-surface collision, the critical conditions for the transition between regimes, as well as integral characteristics of the formed liquid fragments were identified. The main characteristics of the process under study, such as the droplet spreading diameter, the height of its rebound from the surface, the number of secondary fragments during its break up were obtained experimentally. A model with a two-dimensional axisymmetric formulation was used to predict the characteristics of water droplet-textured surface collision based on the phase field method. The results of experimental studies and numerical modeling are in satisfactory agreement (differences of no more than 3–5 %). The conditions, when it is necessary to consider the values of static and dynamic contact angles during the modeling process, were determined.
[Display omitted] |
|---|---|
| AbstractList | The characteristics of the collision of water droplets with textured hydrophobic and superhydrophobic surfaces obtained using two techniques were studied experimentally. The surface processing techniques are based on laser modification of the surface layer and changes in its chemical composition. Weber numbers in the experiments were varied in the range of 10–200. Regimes of water droplet-surface collision, the critical conditions for the transition between regimes, as well as integral characteristics of the formed liquid fragments were identified. The main characteristics of the process under study, such as the droplet spreading diameter, the height of its rebound from the surface, the number of secondary fragments during its break up were obtained experimentally. A model with a two-dimensional axisymmetric formulation was used to predict the characteristics of water droplet-textured surface collision based on the phase field method. The results of experimental studies and numerical modeling are in satisfactory agreement (differences of no more than 3–5 %). The conditions, when it is necessary to consider the values of static and dynamic contact angles during the modeling process, were determined.
[Display omitted] |
| ArticleNumber | 104264 |
| Author | Strizhak, P.A. Orlova, E.G. Islamova, A.G. Antonov, D.V. |
| Author_xml | – sequence: 1 givenname: D.V. surname: Antonov fullname: Antonov, D.V. organization: National Research Tomsk Polytechnic University, Heat and Mass Transfer Laboratory, Tomsk, Russia, https://hmtslab.tpu.ru/ – sequence: 2 givenname: A.G. orcidid: 0000-0001-7350-8102 surname: Islamova fullname: Islamova, A.G. organization: National Research Tomsk Polytechnic University, Heat and Mass Transfer Laboratory, Tomsk, Russia, https://hmtslab.tpu.ru/ – sequence: 3 givenname: E.G. surname: Orlova fullname: Orlova, E.G. organization: National Research Tomsk Polytechnic University, Heat and Mass Transfer Laboratory, Tomsk, Russia, https://hmtslab.tpu.ru/ – sequence: 4 givenname: P.A. orcidid: 0000-0003-1707-5335 surname: Strizhak fullname: Strizhak, P.A. email: pavelspa@tpu.ru organization: National Research Tomsk Polytechnic University, Heat and Mass Transfer Laboratory, Tomsk, Russia, https://hmtslab.tpu.ru/ |
| BookMark | eNp9kM1OwzAQhC1UJErpG3DwC6TYru0kHJBQKT9SJS5wthz_UFeJXdkJ0LfHJRx64rSrGc3u6LsEEx-8AeAaowVGmN_sFmmI1vkFQYRmiRJOz8CUUF4ViCzR5GS_APOUdgghXJU1w2wKuocY9q3poQpt65ILHn65fgu3B52NbWicgtJrmIa9iafi8alUJt3C9Xe2XGd8L1uY-kE7k34zfuiyobLaBW1a5z-uwLmVbTLzvzkD74_rt9VzsXl9elndbwpFGOuLyjZNrbTEVKmm5LxhmDdK87K2tkSSoLqxmHFSI8p0ySWWpaUVYrLWDFkllzNAx7sqhpSisWKfG8p4EBiJIzWxEyM1caQmRmo5djfGTO726UwUSTnjldEuGtULHdz_B34AEJR9GA |
| Cites_doi | 10.1016/j.colsurfa.2023.131796 10.1103/PhysRevFluids.4.073601 10.1038/417811a 10.1016/j.surfcoat.2020.125993 10.1021/la0481288 10.1016/j.expthermflusci.2014.01.014 10.1016/j.compfluid.2010.06.006 10.1039/C6SM02514E 10.1063/5.0066366 10.1209/epl/i2000-00547-6 10.1063/1.858724 10.1016/j.cocis.2020.09.002 10.1002/dro2.63 10.1063/1.4940995 10.1016/j.ces.2019.115351 10.1063/1.4873338 10.1016/j.ijheatmasstransfer.2021.121836 10.1016/j.powtec.2022.117371 10.1021/acsnano.8b09549 10.1017/jfm.2020.926 10.1016/j.icheatmasstransfer.2019.104329 10.1016/j.ijmultiphaseflow.2016.01.005 10.1016/j.apsusc.2019.143793 10.1179/174328409X453190 10.1146/annurev-fluid-030321-103941 10.1063/5.0147849 10.1016/j.apsusc.2022.155000 10.1063/1.4729935 10.1016/j.jcis.2017.12.086 10.1016/j.colsurfa.2008.03.005 10.1016/S0894-1777(01)00109-1 10.1016/j.apsusc.2016.04.056 10.1063/5.0156033 10.1016/j.surfcoat.2021.127518 10.1016/j.ijheatmasstransfer.2021.122463 10.1038/s41586-020-1985-6 10.1063/1.4943938 10.1017/jfm.2016.584 10.1016/j.jcp.2014.04.054 10.1016/j.expthermflusci.2021.110369 10.1016/j.biosystemseng.2014.07.013 10.1002/dro2.72 10.1016/j.apsusc.2018.11.046 10.1016/j.apsusc.2020.147099 10.1016/j.apsusc.2019.06.104 10.1103/PhysRevLett.122.228001 10.3390/coatings8110409 10.1038/nphys2980 10.1016/j.ces.2007.07.036 10.1002/aic.690430903 10.1016/j.compfluid.2009.10.009 10.1007/s00348-018-2535-y 10.1017/S0022112003004142 10.1016/j.colsurfa.2023.132381 10.1063/1.3158468 10.1016/j.ijheatmasstransfer.2022.122710 10.1016/j.jcp.2008.12.036 10.1016/j.jcp.2015.08.026 10.1007/s00348-002-0431-x 10.1146/annurev-fluid-122414-034401 10.1038/nphys3145 10.1017/S002211200700554X 10.1080/10407790150503495 10.1063/1.2408495 10.1016/j.ijheatmasstransfer.2018.04.056 10.1073/pnas.1417718112 10.1016/j.expthermflusci.2006.03.028 10.1038/s41598-019-51490-5 10.1016/0021-9797(79)90081-X 10.1016/j.jiec.2016.07.027 10.1063/1.1928828 10.2351/1.5096076 10.1016/j.ces.2018.06.030 10.1016/j.ijmecsci.2023.108824 10.1038/srep30328 10.1063/1.868850 10.1038/s41586-021-04307-3 10.1134/S1995078020020172 10.1021/acs.langmuir.0c01151 10.1021/acs.langmuir.8b01317 10.1016/j.ijheatmasstransfer.2016.10.031 10.1038/s41596-018-0003-z 10.1063/5.0024837 10.1017/jfm.2019.258 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.surfin.2024.104264 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2468-0230 |
| ExternalDocumentID | 10_1016_j_surfin_2024_104264 S2468023024004231 |
| GroupedDBID | --M 0R~ AABXZ AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNEU ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AEZYN AFKWA AFRZQ AFTJW AGUBO AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK EBS EFJIC EJD FDB FIRID FYGXN KOM O9- ROL SPC SPCBC SSG SSM SSQ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG |
| ID | FETCH-LOGICAL-c255t-8fbb9cda14ccb766b516bcd679ff70a209bf15629045d76a1a7f4805a9d50fca3 |
| IEDL.DBID | AIKHN |
| ISSN | 2468-0230 |
| IngestDate | Wed Oct 01 04:17:09 EDT 2025 Sat May 04 15:44:12 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hydrophobic and superhydrophobic surfaces Secondary fragments Droplet-surface collision Water droplet Collision regime |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c255t-8fbb9cda14ccb766b516bcd679ff70a209bf15629045d76a1a7f4805a9d50fca3 |
| ORCID | 0000-0001-7350-8102 0000-0003-1707-5335 |
| ParticipantIDs | crossref_primary_10_1016_j_surfin_2024_104264 elsevier_sciencedirect_doi_10_1016_j_surfin_2024_104264 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2024 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Surfaces and interfaces |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sen, Vaikuntanathan, Sivakumar (bib0028) 2014; 54 Rioboo, Marengo, Tropea (bib0027) 2002; 33 Zwertvaegher, Verhaeghe, Brusselman, Verboven, Lebeau, Massinon, Nicolaï, Nuyttens (bib0019) 2014; 126 Lunkad, Buwa, Nigam (bib0052) 2007; 62 Liu, Cai, Luo, Chen, Pan, Zhang, Zhong (bib0070) 2019; 31 Kuhn, Schweigert, Kuntz, Börnhorst (bib0012) 2021; 181 Feoktistov, Glushkov, Kuznetsov, Orlova (bib0069) 2020 Jiaung, Ho, Kuo (bib0053) 2001; 39 Ballinger, Shugar (bib0075) 2011 Yonemoto, Kunugi (bib0029) 2018; 8 Sataeva, Emelyanenko, Domantovsky, Emelyanenko, Boinovich (bib0066) 2020; 15 Kuznetsov, Islamova, Orlova, Ivashutenko, Shanenkov, Zykov, Feoktistov (bib0067) 2021; 422 Kim, Park, Lee, Kim, Hwan Kim, Kim (bib0078) 2014; 104 W. Wu, Q. Liu, B. Wang, Curved surface effect on high-speed droplet impingement, (2021). Wildeman, Visser, Sun, Lohse (bib0025) 2016; 805 Quetzeri-Santiago, Yokoi, Castrejón-Pita, Castrejón-Pita (bib0030) 2019; 122 Li, Zhang (bib0046) 2019; 498 Weisensee, Tian, Miljkovic, King (bib0077) 2016; 6 Qu, Yang, Yang, Hu, Qiu (bib0044) 2019; 491 Qin, Bhadeshia (bib0081) 2010; 26 Jiang, Xu, Wu, Li (bib0036) 2020; 212 Nuthalapati, Sheng, Tsao (bib0002) 2023; 38 Moitra, Elsharkawy, Russo, Sarkar, Ganguly, Asinari, Megaridis (bib0017) 2023; 2 Liu, Cai, Tsai (bib0011) 2020; 36 Pasandideh-Fard, Qiao, Chandra, Mostaghimi (bib0080) 1998; 8 Voytkova, Syrodoy, Kostoreva (bib0005) 2023; 673 Liu, Zhang, Cai, Tsai (bib0013) 2022; 189 Yang, Zhang, Liu, Lai, Hou (bib0023) 2023; 677 Renardy, Popinet, Duchemin, Renardy, Zaleski, Josserand, Drumright-Clarke, Richard, Clanet, Quéré (bib0076) 2003; 484 Patil, Gada, Sharma, Bhardwaj (bib0047) 2016; 81 Riboux, Gordillo (bib0064) 2014; 113 Almohammadi, Amirfazli (bib0016) 2017; 13 Ding, Hu, Dai, Zhang, Wu (bib0050) 2021; 33 Richard, Quéré (bib0055) 2000; 50 . Liang, Mudawar (bib0009) 2017; 106 Muradoglu, Tasoglu (bib0060) 2010; 39 Khojasteh, Kazerooni, Salarian, Kamali (bib0063) 2016; 42 Guermond, Salgado (bib0057) 2009; 228 McCarthy, Gerasopoulos, Enright, Culver, Ghodssi, Wang (bib0042) 2012; 100 (accessed March 5, 2022). Khatavkar, Anderson, Duineveld, Meijer (bib0061) 2007; 581 Lin, Zhao, Zou, Guo, Wei, Chen (bib0026) 2018; 516 Yilbas, Abubakar, Hassan, Al-Qahtani, Al-Sharafi, Alzahrani, Mohammed (bib0024) 2022; 29 Jiang, Soo-Gun, Slattery (bib0085) 1979; 69 Huhtamäki, Tian, Korhonen, Ras (bib0072) 2018; 13 Gao, Wang (bib0058) 2014; 272 Quetzeri-Santiago, Castrejón-Pita, Castrejón-Pita (bib0031) 2019; 9 Quintero, Riboux, Gordillo (bib0032) 2019; 870 De Ruiter, Lagraauw, Van Den Ende, Mugele (bib0039) 2015; 11 Roisman, Opfer, Tropea, Raessi, Mostaghimi, Chandra (bib0084) 2008; 322 Šikalo, Ganić (bib0086) 2006; 31 Islamova, Kerimbekova, Shlegel, Strizhak (bib0074) 2022; 403 Xu, Zheng, Liu, Zhou, Zhang, Song, Deng, Leung, Yang, Xu, Wang, Zeng, Wang (bib0006) 2020; 578 Blanken, Saleem, Thoraval, Antonini (bib0022) 2021; 51 Attané, Girard, Morin (bib0089) 2007; 19 Josserand, Thoroddsen (bib0020) 2016; 48 Cheng, Sun, Gordillo (bib0021) 2021; 54 Yokoi, Vadillo, Hinch, Hutchings (bib0051) 2009; 21 Zhang, Qian, Wang (bib0059) 2016; 28 Šikalo, Marengo, Tropea, Ganić (bib0087) 2002; 25 Mao, Kuhn, Tran (bib0090) 1997; 43 Shlegel, Strizhak, Tarlet, Bellettre (bib0092) 2019 Liu, Tan, Xu (bib0034) 2015; 112 Fu, Jin, Zhang, Xue, Guo, Yao, Gao, Wang, Wen (bib0043) 2024; 2310200 Sinha, Mynam, Nadimpalli, Runkana (bib0045) 2023; 35 Xia, Chen, Yang, Liu, Tian, Zhang (bib0049) 2024; 264 Zhang, Zhang, Yi, He, Niu, Hao (bib0033) 2021; 124 Chu, Jiao, Huang, Chen, Zheng, Wang, He (bib0003) 2020; 530 Zhao, Hargrave, Versteeg, Garner, Reid, Long, Zhao (bib0018) 2018; 190 Zhang, Li, Xin, Li, Sun (bib0062) 2023; 608 Ukiwe, Kwok (bib0079) 2004; 21 Xiong, Cheng (bib0054) 2018; 124 Kuznetsov, Feoktistov, Orlova, Batishcheva, Ilenok (bib0073) 2019; 469 Wang, Gao, Zhong, Zhang, Cui, Jiang, Wang, Wang (bib0008) 2022; 3 Fang, Wang, Duan, Tahir, Zhang, Wang, Feng, Song (bib0037) 2023; 2 Boinovich, Emelyanenko, Emelyanenko, Modin (bib0001) 2019 Mehrizi, Sun, Zhang, Pang, Zhang, Chen (bib0004) 2024; 44 Ebrahim, Elkenani, Ortega (bib0014) 2022; 186 Gao, Jin, Shi, Wei, Wang, Zheng, Yang, Wang (bib0038) 2023; 35 Jiang, Wang, Liu, Du, Li, Zhang, To, Wang, Pan, Yu, Quéré, Wang (bib0007) 2022; 601 Liu, Moevius, Xu, Qian, Yeomans, Wang (bib0040) 2014; 10 Gupta, Kumar (bib0082) 2010; 39 J. Breitenbach, I.V.I.V. Roisman, C. Tropea, From drop impact physics to spray cooling models: a critical review, 59 (2018) 1–21. Ding, Liu, Wu, Zhang (bib0091) 2020; 32 Boinovich, Emelyanenko, Emelyanenko, Domantovsky, Shiryaev (bib0071) 2016; 379 Šikalo, Wilhelm, Roisman, Jakirlić, Tropea (bib0083) 2005; 17 Boinovich, Emelyanenko, Domantovsky, Emelyanenko (bib0068) 2018; 34 Burzynski, Bansmer (bib0035) 2019; 4 Ganesan (bib0088) 2015; 301 Sataeva, Boinovich, Emelyanenko, Domantovsky, Emelyanenko (bib0065) 2020; 397 Richard, Clanet, Quéré (bib0041) 2002; 417 Fukai, Zhao, Poulikakos, Megaridis, Miyatake (bib0056) 1992; 5 Zhang, Yu, Fan, Sun, Cao (bib0015) 2016; 119 Mehrizi (10.1016/j.surfin.2024.104264_bib0004) 2024; 44 Zhang (10.1016/j.surfin.2024.104264_bib0033) 2021; 124 Islamova (10.1016/j.surfin.2024.104264_bib0074) 2022; 403 Fu (10.1016/j.surfin.2024.104264_bib0043) 2024; 2310200 Zhang (10.1016/j.surfin.2024.104264_bib0015) 2016; 119 Quetzeri-Santiago (10.1016/j.surfin.2024.104264_bib0030) 2019; 122 10.1016/j.surfin.2024.104264_bib0048 Nuthalapati (10.1016/j.surfin.2024.104264_bib0002) 2023; 38 Shlegel (10.1016/j.surfin.2024.104264_bib0092) 2019 Zwertvaegher (10.1016/j.surfin.2024.104264_bib0019) 2014; 126 Fang (10.1016/j.surfin.2024.104264_bib0037) 2023; 2 Sinha (10.1016/j.surfin.2024.104264_bib0045) 2023; 35 Khojasteh (10.1016/j.surfin.2024.104264_bib0063) 2016; 42 Blanken (10.1016/j.surfin.2024.104264_bib0022) 2021; 51 Attané (10.1016/j.surfin.2024.104264_bib0089) 2007; 19 Boinovich (10.1016/j.surfin.2024.104264_bib0001) 2019 Roisman (10.1016/j.surfin.2024.104264_bib0084) 2008; 322 Gao (10.1016/j.surfin.2024.104264_bib0058) 2014; 272 Muradoglu (10.1016/j.surfin.2024.104264_bib0060) 2010; 39 Liu (10.1016/j.surfin.2024.104264_bib0034) 2015; 112 Guermond (10.1016/j.surfin.2024.104264_bib0057) 2009; 228 Boinovich (10.1016/j.surfin.2024.104264_bib0068) 2018; 34 Patil (10.1016/j.surfin.2024.104264_bib0047) 2016; 81 Liang (10.1016/j.surfin.2024.104264_bib0009) 2017; 106 Šikalo (10.1016/j.surfin.2024.104264_bib0087) 2002; 25 Pasandideh-Fard (10.1016/j.surfin.2024.104264_bib0080) 1998; 8 Šikalo (10.1016/j.surfin.2024.104264_bib0083) 2005; 17 Riboux (10.1016/j.surfin.2024.104264_bib0064) 2014; 113 De Ruiter (10.1016/j.surfin.2024.104264_bib0039) 2015; 11 Jiaung (10.1016/j.surfin.2024.104264_bib0053) 2001; 39 Liu (10.1016/j.surfin.2024.104264_bib0011) 2020; 36 Xu (10.1016/j.surfin.2024.104264_bib0006) 2020; 578 Zhang (10.1016/j.surfin.2024.104264_bib0059) 2016; 28 Richard (10.1016/j.surfin.2024.104264_bib0055) 2000; 50 Boinovich (10.1016/j.surfin.2024.104264_bib0071) 2016; 379 Moitra (10.1016/j.surfin.2024.104264_bib0017) 2023; 2 Mao (10.1016/j.surfin.2024.104264_bib0090) 1997; 43 Ebrahim (10.1016/j.surfin.2024.104264_bib0014) 2022; 186 Richard (10.1016/j.surfin.2024.104264_bib0041) 2002; 417 Xiong (10.1016/j.surfin.2024.104264_bib0054) 2018; 124 Renardy (10.1016/j.surfin.2024.104264_bib0076) 2003; 484 Chu (10.1016/j.surfin.2024.104264_bib0003) 2020; 530 Kuznetsov (10.1016/j.surfin.2024.104264_bib0073) 2019; 469 Wang (10.1016/j.surfin.2024.104264_bib0008) 2022; 3 Quintero (10.1016/j.surfin.2024.104264_bib0032) 2019; 870 Qu (10.1016/j.surfin.2024.104264_bib0044) 2019; 491 Josserand (10.1016/j.surfin.2024.104264_bib0020) 2016; 48 Jiang (10.1016/j.surfin.2024.104264_bib0036) 2020; 212 Sataeva (10.1016/j.surfin.2024.104264_bib0065) 2020; 397 Kim (10.1016/j.surfin.2024.104264_bib0078) 2014; 104 Ukiwe (10.1016/j.surfin.2024.104264_bib0079) 2004; 21 Wildeman (10.1016/j.surfin.2024.104264_bib0025) 2016; 805 Burzynski (10.1016/j.surfin.2024.104264_bib0035) 2019; 4 Ding (10.1016/j.surfin.2024.104264_bib0050) 2021; 33 Liu (10.1016/j.surfin.2024.104264_bib0013) 2022; 189 Jiang (10.1016/j.surfin.2024.104264_bib0007) 2022; 601 Yilbas (10.1016/j.surfin.2024.104264_bib0024) 2022; 29 Liu (10.1016/j.surfin.2024.104264_bib0040) 2014; 10 Feoktistov (10.1016/j.surfin.2024.104264_bib0069) 2020 Xia (10.1016/j.surfin.2024.104264_bib0049) 2024; 264 Khatavkar (10.1016/j.surfin.2024.104264_bib0061) 2007; 581 Zhang (10.1016/j.surfin.2024.104264_bib0062) 2023; 608 Ganesan (10.1016/j.surfin.2024.104264_bib0088) 2015; 301 Yang (10.1016/j.surfin.2024.104264_bib0023) 2023; 677 Liu (10.1016/j.surfin.2024.104264_bib0070) 2019; 31 Ding (10.1016/j.surfin.2024.104264_bib0091) 2020; 32 Šikalo (10.1016/j.surfin.2024.104264_bib0086) 2006; 31 Rioboo (10.1016/j.surfin.2024.104264_bib0027) 2002; 33 Quetzeri-Santiago (10.1016/j.surfin.2024.104264_bib0031) 2019; 9 Gao (10.1016/j.surfin.2024.104264_bib0038) 2023; 35 Fukai (10.1016/j.surfin.2024.104264_bib0056) 1992; 5 Qin (10.1016/j.surfin.2024.104264_bib0081) 2010; 26 Voytkova (10.1016/j.surfin.2024.104264_bib0005) 2023; 673 Sen (10.1016/j.surfin.2024.104264_bib0028) 2014; 54 Jiang (10.1016/j.surfin.2024.104264_bib0085) 1979; 69 Li (10.1016/j.surfin.2024.104264_bib0046) 2019; 498 McCarthy (10.1016/j.surfin.2024.104264_bib0042) 2012; 100 10.1016/j.surfin.2024.104264_bib0010 Weisensee (10.1016/j.surfin.2024.104264_bib0077) 2016; 6 Yonemoto (10.1016/j.surfin.2024.104264_bib0029) 2018; 8 Gupta (10.1016/j.surfin.2024.104264_bib0082) 2010; 39 Lin (10.1016/j.surfin.2024.104264_bib0026) 2018; 516 Cheng (10.1016/j.surfin.2024.104264_bib0021) 2021; 54 Yokoi (10.1016/j.surfin.2024.104264_bib0051) 2009; 21 Zhao (10.1016/j.surfin.2024.104264_bib0018) 2018; 190 Almohammadi (10.1016/j.surfin.2024.104264_bib0016) 2017; 13 Ballinger (10.1016/j.surfin.2024.104264_bib0075) 2011 Kuznetsov (10.1016/j.surfin.2024.104264_bib0067) 2021; 422 Huhtamäki (10.1016/j.surfin.2024.104264_bib0072) 2018; 13 Kuhn (10.1016/j.surfin.2024.104264_bib0012) 2021; 181 Lunkad (10.1016/j.surfin.2024.104264_bib0052) 2007; 62 Sataeva (10.1016/j.surfin.2024.104264_bib0066) 2020; 15 |
| References_xml | – volume: 422 year: 2021 ident: bib0067 article-title: Influence of roughness on polar and dispersed components of surface free energy and wettability properties of copper and steel surfaces publication-title: Surf. Coatings Technol. – volume: 81 start-page: 54 year: 2016 end-page: 66 ident: bib0047 article-title: On dual-grid level-set method for contact line modeling during impact of a droplet on hydrophobic and superhydrophobic surfaces publication-title: Int. J. Multiph. Flow. – year: 2011 ident: bib0075 article-title: Chemical Technicians’ Ready Reference Handbook – volume: 21 start-page: 666 year: 2004 end-page: 673 ident: bib0079 article-title: On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces publication-title: Langmuir – volume: 44 year: 2024 ident: bib0004 article-title: Droplet impact dynamics on a flexible superhydrophobic cantilever wire mesh publication-title: Surf. Interfaces – volume: 21 year: 2009 ident: bib0051 article-title: Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface publication-title: Phys. Fluids. – volume: 9 start-page: 1 year: 2019 end-page: 10 ident: bib0031 article-title: The effect of surface roughness on the contact line and splashing dynamics of impacting droplets publication-title: Sci. Rep. – volume: 112 start-page: 3280 year: 2015 end-page: 3284 ident: bib0034 article-title: Kelvin-Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 31 start-page: 22503 year: 2019 ident: bib0070 article-title: Wettability transition modes of aluminum surfaces with various micro/nanostructures produced by a femtosecond laser publication-title: J. Laser Appl. – volume: 31 start-page: 97 year: 2006 end-page: 110 ident: bib0086 article-title: Phenomena of droplet–surface interactions publication-title: Exp. Therm. Fluid Sci. – year: 2019 ident: bib0092 article-title: Comparing the integral characteristics of secondary droplet atomization under different situations publication-title: Int. Commun. Heat Mass Transf. – volume: 13 start-page: 2040 year: 2017 end-page: 2053 ident: bib0016 article-title: Understanding the drop impact on moving hydrophilic and hydrophobic surfaces publication-title: Soft Matter – volume: 54 start-page: 38 year: 2014 end-page: 46 ident: bib0028 article-title: Experimental investigation of biofuel drop impact on stainless steel surface publication-title: Exp. Therm. Fluid Sci. – volume: 673 year: 2023 ident: bib0005 article-title: Droplet pinning on the tilted surface processed by a grinding machine publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 19 year: 2007 ident: bib0089 article-title: An energy balance approach of the dynamics of drop impact on a solid surface publication-title: Phys. Fluids. – volume: 35 year: 2023 ident: bib0045 article-title: Droplet impingement on a solid surface: parametrization and asymmetry of dynamic contact angle model publication-title: Phys. Fluids. – volume: 36 start-page: 10051 year: 2020 end-page: 10060 ident: bib0011 article-title: Drop impact on heated nanostructures publication-title: Langmuir – volume: 2 start-page: 1 year: 2023 end-page: 11 ident: bib0017 article-title: Droplet orthogonal impact on nonuniform wettability surfaces publication-title: Droplet – volume: 608 year: 2023 ident: bib0062 article-title: Engulfed small Wenzel droplets on hierarchically structured superhydrophobic surface by large Cassie droplets: experiments and molecular dynamics simulations publication-title: Appl. Surf. Sci. – volume: 113 year: 2014 ident: bib0064 article-title: Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing publication-title: Phys. Rev. Lett. – volume: 484 start-page: 69 year: 2003 end-page: 83 ident: bib0076 article-title: Pyramidal and toroidal water drops after impact on a solid surface publication-title: J. Fluid Mech. – reference: W. Wu, Q. Liu, B. Wang, Curved surface effect on high-speed droplet impingement, (2021). – volume: 28 year: 2016 ident: bib0059 article-title: Phase field simulation of a droplet impacting a solid surface publication-title: Phys. Fluids. – volume: 322 start-page: 183 year: 2008 end-page: 191 ident: bib0084 article-title: Drop impact onto a dry surface: role of the dynamic contact angle publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 530 year: 2020 ident: bib0003 article-title: Directional rebound control of droplets on low-temperature regular and irregular wrinkled superhydrophobic surfaces publication-title: Appl. Surf. Sci. – volume: 491 start-page: 160 year: 2019 end-page: 170 ident: bib0044 article-title: Droplet impingement on nano-textured superhydrophobic surface: experimental and numerical study publication-title: Appl. Surf. Sci. – volume: 870 start-page: 175 year: 2019 end-page: 188 ident: bib0032 article-title: Splashing of droplets impacting superhydrophobic substrates publication-title: J. Fluid Mech. – volume: 34 start-page: 7059 year: 2018 end-page: 7066 ident: bib0068 article-title: Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings publication-title: Langmuir – volume: 417 start-page: 811 year: 2002 end-page: 812 ident: bib0041 article-title: Contact time of a bouncing drop publication-title: Nature – volume: 33 start-page: 112 year: 2002 end-page: 124 ident: bib0027 article-title: Time evolution of liquid drop impact onto solid, dry surfaces publication-title: Exp. Fluids. – volume: 39 start-page: 167 year: 2001 end-page: 187 ident: bib0053 article-title: Lattice boltzmann method for the heat conduction problem with phase change publication-title: Numer. Heat Transf. – volume: 35 year: 2023 ident: bib0038 article-title: Critical contact angle of a bouncing droplet publication-title: Phys. Fluids. – volume: 100 start-page: 1 year: 2012 end-page: 6 ident: bib0042 article-title: Biotemplated hierarchical surfaces and the role of dual length scales on the repellency of impacting droplets publication-title: Appl. Phys. Lett. – volume: 69 start-page: 74 year: 1979 end-page: 77 ident: bib0085 article-title: Correlation for dynamic contact angle publication-title: J. Colloid Interface Sci. – year: 2019 ident: bib0001 article-title: Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings publication-title: ACS Nano – volume: 379 start-page: 111 year: 2016 end-page: 113 ident: bib0071 article-title: Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard (Ap publication-title: Appl. Surf. Sci. – volume: 469 start-page: 974 year: 2019 end-page: 982 ident: bib0073 article-title: Unification of the textures formed on aluminum after laser treatment publication-title: Appl. Surf. Sci. – volume: 25 start-page: 503 year: 2002 end-page: 510 ident: bib0087 article-title: Analysis of impact of droplets on horizontal surfaces publication-title: Exp. Therm. Fluid Sci. – volume: 186 year: 2022 ident: bib0014 article-title: Transient surface temperatures upon the impact of a single droplet onto a heated surface in the film evaporation regime publication-title: Int. J. Heat Mass Transf. – volume: 3 year: 2022 ident: bib0008 article-title: Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting publication-title: Cell Rep. Phys. Sci. – volume: 272 start-page: 704 year: 2014 end-page: 718 ident: bib0058 article-title: An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity publication-title: J. Comput. Phys. – year: 2020 ident: bib0069 article-title: Gel fuels based on oil-filled cryogels: corrosion of tank material and spontaneous ignition publication-title: Chem. Eng. J. – volume: 181 year: 2021 ident: bib0012 article-title: Single droplet impingement of urea water solution on heated porous surfaces publication-title: Int. J. Heat Mass Transf. – volume: 301 start-page: 178 year: 2015 end-page: 200 ident: bib0088 article-title: Simulations of impinging droplets with surfactant-dependent dynamic contact angle publication-title: J. Comput. Phys. – volume: 48 start-page: 365 year: 2016 end-page: 391 ident: bib0020 article-title: Drop impact on a solid surface publication-title: Annu. Rev. Fluid Mech. – volume: 43 start-page: 2169 year: 1997 end-page: 2179 ident: bib0090 article-title: Spread and rebound of liquid droplets upon impact on flat surfaces publication-title: AIChE J. – volume: 17 start-page: 1 year: 2005 end-page: 13 ident: bib0083 article-title: Dynamic contact angle of spreading droplets: experiments and simulations publication-title: Phys. Fluids. – volume: 403 year: 2022 ident: bib0074 article-title: Droplet-droplet, droplet-particle, and droplet-substrate collision behavior publication-title: Powder Technol. – volume: 189 year: 2022 ident: bib0013 article-title: High-speed dynamics and temperature variation during drop impact on a heated surface publication-title: Int. J. Heat Mass Transf. – volume: 126 start-page: 82 year: 2014 end-page: 91 ident: bib0019 article-title: The impact and retention of spray droplets on a horizontal hydrophobic surface publication-title: Biosyst. Eng. – volume: 51 year: 2021 ident: bib0022 article-title: Impact of compound drops: a perspective publication-title: Curr. Opin. Colloid Interface Sci. – volume: 190 start-page: 232 year: 2018 end-page: 247 ident: bib0018 article-title: The dynamics of droplet impact on a heated porous surface publication-title: Chem. Eng. Sci. – volume: 124 start-page: 1262 year: 2018 end-page: 1274 ident: bib0054 article-title: Numerical investigation of air entrapment in a molten droplet impacting and solidifying on a cold smooth substrate by 3D lattice Boltzmann method publication-title: Int. J. Heat Mass Transf. – volume: 581 start-page: 97 year: 2007 end-page: 127 ident: bib0061 article-title: Diffuse-interface modeling of droplet impact publication-title: J. Fluid Mech. – volume: 119 year: 2016 ident: bib0015 article-title: Droplet impact behavior on heated micro-patterned surfaces publication-title: J. Appl. Phys. – volume: 54 start-page: 57 year: 2021 end-page: 81 ident: bib0021 article-title: Drop impact dynamics: impact force and stress distributions publication-title: Annu. Rev. Fluid Mech. – volume: 10 start-page: 515 year: 2014 end-page: 519 ident: bib0040 article-title: Pancake bouncing on superhydrophobic surfaces publication-title: Nat. Phys. – volume: 50 start-page: 769 year: 2000 ident: bib0055 article-title: Bouncing water drops publication-title: Europhys. Lett. – reference: (accessed March 5, 2022). – volume: 124 year: 2021 ident: bib0033 article-title: Effect of wettability on droplet impact: spreading and splashing publication-title: Exp. Therm. Fluid Sci. – volume: 228 start-page: 2834 year: 2009 end-page: 2846 ident: bib0057 article-title: A splitting method for incompressible flows with variable density based on a pressure Poisson equation publication-title: J. Comput. Phys. – volume: 33 year: 2021 ident: bib0050 article-title: Droplet impact dynamics on single-pillar superhydrophobic surfaces publication-title: Phys. Fluids. – volume: 397 year: 2020 ident: bib0065 article-title: Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors publication-title: Surf. Coatings Technol. – volume: 39 start-page: 1696 year: 2010 end-page: 1703 ident: bib0082 article-title: Droplet impingement and breakup on a dry surface publication-title: Comput. Fluids. – volume: 106 start-page: 103 year: 2017 end-page: 126 ident: bib0009 article-title: Review of drop impact on heated walls publication-title: Int. J. Heat Mass Transf. – volume: 26 start-page: 803 year: 2010 end-page: 811 ident: bib0081 article-title: Phase field method publication-title: Mater. Sci. Technol. – volume: 8 start-page: 409 year: 2018 ident: bib0029 article-title: Universality of droplet impingement: low-to-high viscosities and surface tensions publication-title: Coatings – volume: 62 start-page: 7214 year: 2007 end-page: 7224 ident: bib0052 article-title: Numerical simulations of drop impact and spreading on horizontal and inclined surfaces publication-title: Chem. Eng. Sci. – volume: 578 start-page: 392 year: 2020 end-page: 396 ident: bib0006 article-title: A droplet-based electricity generator with high instantaneous power density publication-title: Nature – volume: 264 year: 2024 ident: bib0049 article-title: Droplet impact dynamics on superhydrophobic surfaces with convex hemispherical shapes publication-title: Int. J. Mech. Sci. – volume: 8 start-page: 650 year: 1998 ident: bib0080 article-title: Capillary effects during droplet impact on a solid surface publication-title: Phys. Fluids. – volume: 677 year: 2023 ident: bib0023 article-title: Spreading dynamics of a droplet impacts on a supercooled substrate: physical models and neural networks publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 5 start-page: 2588 year: 1992 end-page: 2599 ident: bib0056 article-title: Modeling of the deformation of a liquid droplet impinging upon a flat surface publication-title: Phys. Fluids A. – volume: 2310200 start-page: 1 year: 2024 end-page: 10 ident: bib0043 article-title: Low-pressure pancake bouncing on superhydrophobic surfaces publication-title: Small – volume: 4 start-page: 1 year: 2019 end-page: 10 ident: bib0035 article-title: Role of surrounding gas in the outcome of droplet splashing publication-title: Phys. Rev. Fluids. – volume: 32 year: 2020 ident: bib0091 article-title: Droplet breakup and rebound during impact on small cylindrical superhydrophobic targets publication-title: Phys. Fluids. – volume: 104 year: 2014 ident: bib0078 article-title: Drop splashing on a rough surface: how surface morphology affects splashing threshold publication-title: Appl. Phys. Lett. – volume: 601 start-page: 568 year: 2022 end-page: 572 ident: bib0007 article-title: Inhibiting the Leidenfrost effect above 1,000°C for sustained thermal cooling publication-title: Nature – volume: 212 year: 2020 ident: bib0036 article-title: Drop impact on superhydrophobic surface with protrusions publication-title: Chem. Eng. Sci. – volume: 6 start-page: 1 year: 2016 end-page: 9 ident: bib0077 article-title: Water droplet impact on elastic superhydrophobic surfaces publication-title: Sci. Rep. – volume: 498 year: 2019 ident: bib0046 article-title: Dynamic behavior of water droplets impacting on the superhydrophobic surface: both experimental study and molecular dynamics simulation study publication-title: Appl. Surf. Sci. – volume: 38 year: 2023 ident: bib0002 article-title: Evaporation-driven directed motion of droplets on the glass publication-title: Surf. Interfaces – volume: 2 start-page: 1 year: 2023 end-page: 11 ident: bib0037 article-title: Target slinging of droplets with a flexible cantilever publication-title: Droplet – reference: . – volume: 39 start-page: 615 year: 2010 end-page: 625 ident: bib0060 article-title: A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls publication-title: Comput. Fluids. – volume: 11 start-page: 48 year: 2015 end-page: 53 ident: bib0039 article-title: Wettability-independent bouncing on flat surfaces mediated by thin air films publication-title: Nat. Phys. – volume: 13 start-page: 1521 year: 2018 end-page: 1538 ident: bib0072 article-title: Surface-wetting characterization using contact-angle measurements publication-title: Nat. Protoc. – reference: J. Breitenbach, I.V.I.V. Roisman, C. Tropea, From drop impact physics to spray cooling models: a critical review, 59 (2018) 1–21. – volume: 516 start-page: 86 year: 2018 end-page: 97 ident: bib0026 article-title: Impact of viscous droplets on different wettable surfaces: impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation publication-title: J. Colloid Interface Sci. – volume: 29 year: 2022 ident: bib0024 article-title: Ferro-fluid droplet impact on hydrophobic surface under magnetic influence publication-title: Surf. Interfaces – volume: 15 start-page: 141 year: 2020 end-page: 145 ident: bib0066 article-title: Laser treatment of aluminum alloys for fabrication of weather-resistant superhydrophobic coatings publication-title: Nanotechnol. Russ. – volume: 42 start-page: 1 year: 2016 end-page: 14 ident: bib0063 article-title: Droplet impact on superhydrophobic surfaces: a review of recent developments publication-title: J. Ind. Eng. Chem. – volume: 805 start-page: 636 year: 2016 end-page: 655 ident: bib0025 article-title: On the spreading of impacting drops publication-title: J. Fluid Mech. – volume: 122 year: 2019 ident: bib0030 article-title: Role of the dynamic contact angle on splashing publication-title: Phys. Rev. Lett. – volume: 673 year: 2023 ident: 10.1016/j.surfin.2024.104264_bib0005 article-title: Droplet pinning on the tilted surface processed by a grinding machine publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2023.131796 – volume: 4 start-page: 1 year: 2019 ident: 10.1016/j.surfin.2024.104264_bib0035 article-title: Role of surrounding gas in the outcome of droplet splashing publication-title: Phys. Rev. Fluids. doi: 10.1103/PhysRevFluids.4.073601 – volume: 417 start-page: 811 year: 2002 ident: 10.1016/j.surfin.2024.104264_bib0041 article-title: Contact time of a bouncing drop publication-title: Nature doi: 10.1038/417811a – volume: 397 year: 2020 ident: 10.1016/j.surfin.2024.104264_bib0065 article-title: Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors publication-title: Surf. Coatings Technol. doi: 10.1016/j.surfcoat.2020.125993 – volume: 21 start-page: 666 year: 2004 ident: 10.1016/j.surfin.2024.104264_bib0079 article-title: On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces publication-title: Langmuir doi: 10.1021/la0481288 – volume: 54 start-page: 38 year: 2014 ident: 10.1016/j.surfin.2024.104264_bib0028 article-title: Experimental investigation of biofuel drop impact on stainless steel surface publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2014.01.014 – volume: 39 start-page: 1696 year: 2010 ident: 10.1016/j.surfin.2024.104264_bib0082 article-title: Droplet impingement and breakup on a dry surface publication-title: Comput. Fluids. doi: 10.1016/j.compfluid.2010.06.006 – volume: 13 start-page: 2040 year: 2017 ident: 10.1016/j.surfin.2024.104264_bib0016 article-title: Understanding the drop impact on moving hydrophilic and hydrophobic surfaces publication-title: Soft Matter doi: 10.1039/C6SM02514E – volume: 33 year: 2021 ident: 10.1016/j.surfin.2024.104264_bib0050 article-title: Droplet impact dynamics on single-pillar superhydrophobic surfaces publication-title: Phys. Fluids. doi: 10.1063/5.0066366 – volume: 50 start-page: 769 year: 2000 ident: 10.1016/j.surfin.2024.104264_bib0055 article-title: Bouncing water drops publication-title: Europhys. Lett. doi: 10.1209/epl/i2000-00547-6 – volume: 5 start-page: 2588 year: 1992 ident: 10.1016/j.surfin.2024.104264_bib0056 article-title: Modeling of the deformation of a liquid droplet impinging upon a flat surface publication-title: Phys. Fluids A. doi: 10.1063/1.858724 – volume: 51 year: 2021 ident: 10.1016/j.surfin.2024.104264_bib0022 article-title: Impact of compound drops: a perspective publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2020.09.002 – volume: 2 start-page: 1 year: 2023 ident: 10.1016/j.surfin.2024.104264_bib0017 article-title: Droplet orthogonal impact on nonuniform wettability surfaces publication-title: Droplet doi: 10.1002/dro2.63 – volume: 28 year: 2016 ident: 10.1016/j.surfin.2024.104264_bib0059 article-title: Phase field simulation of a droplet impacting a solid surface publication-title: Phys. Fluids. doi: 10.1063/1.4940995 – year: 2020 ident: 10.1016/j.surfin.2024.104264_bib0069 article-title: Gel fuels based on oil-filled cryogels: corrosion of tank material and spontaneous ignition publication-title: Chem. Eng. J. – volume: 212 year: 2020 ident: 10.1016/j.surfin.2024.104264_bib0036 article-title: Drop impact on superhydrophobic surface with protrusions publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.115351 – volume: 104 year: 2014 ident: 10.1016/j.surfin.2024.104264_bib0078 article-title: Drop splashing on a rough surface: how surface morphology affects splashing threshold publication-title: Appl. Phys. Lett. doi: 10.1063/1.4873338 – volume: 181 year: 2021 ident: 10.1016/j.surfin.2024.104264_bib0012 article-title: Single droplet impingement of urea water solution on heated porous surfaces publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121836 – volume: 403 year: 2022 ident: 10.1016/j.surfin.2024.104264_bib0074 article-title: Droplet-droplet, droplet-particle, and droplet-substrate collision behavior publication-title: Powder Technol. doi: 10.1016/j.powtec.2022.117371 – year: 2019 ident: 10.1016/j.surfin.2024.104264_bib0001 article-title: Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings publication-title: ACS Nano doi: 10.1021/acsnano.8b09549 – ident: 10.1016/j.surfin.2024.104264_bib0048 doi: 10.1017/jfm.2020.926 – year: 2019 ident: 10.1016/j.surfin.2024.104264_bib0092 article-title: Comparing the integral characteristics of secondary droplet atomization under different situations publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.104329 – year: 2011 ident: 10.1016/j.surfin.2024.104264_bib0075 – volume: 81 start-page: 54 year: 2016 ident: 10.1016/j.surfin.2024.104264_bib0047 article-title: On dual-grid level-set method for contact line modeling during impact of a droplet on hydrophobic and superhydrophobic surfaces publication-title: Int. J. Multiph. Flow. doi: 10.1016/j.ijmultiphaseflow.2016.01.005 – volume: 498 year: 2019 ident: 10.1016/j.surfin.2024.104264_bib0046 article-title: Dynamic behavior of water droplets impacting on the superhydrophobic surface: both experimental study and molecular dynamics simulation study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143793 – volume: 26 start-page: 803 year: 2010 ident: 10.1016/j.surfin.2024.104264_bib0081 article-title: Phase field method publication-title: Mater. Sci. Technol. doi: 10.1179/174328409X453190 – volume: 54 start-page: 57 year: 2021 ident: 10.1016/j.surfin.2024.104264_bib0021 article-title: Drop impact dynamics: impact force and stress distributions publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-030321-103941 – volume: 35 year: 2023 ident: 10.1016/j.surfin.2024.104264_bib0045 article-title: Droplet impingement on a solid surface: parametrization and asymmetry of dynamic contact angle model publication-title: Phys. Fluids. doi: 10.1063/5.0147849 – volume: 608 year: 2023 ident: 10.1016/j.surfin.2024.104264_bib0062 article-title: Engulfed small Wenzel droplets on hierarchically structured superhydrophobic surface by large Cassie droplets: experiments and molecular dynamics simulations publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.155000 – volume: 100 start-page: 1 year: 2012 ident: 10.1016/j.surfin.2024.104264_bib0042 article-title: Biotemplated hierarchical surfaces and the role of dual length scales on the repellency of impacting droplets publication-title: Appl. Phys. Lett. doi: 10.1063/1.4729935 – volume: 38 year: 2023 ident: 10.1016/j.surfin.2024.104264_bib0002 article-title: Evaporation-driven directed motion of droplets on the glass publication-title: Surf. Interfaces – volume: 516 start-page: 86 year: 2018 ident: 10.1016/j.surfin.2024.104264_bib0026 article-title: Impact of viscous droplets on different wettable surfaces: impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.12.086 – volume: 322 start-page: 183 year: 2008 ident: 10.1016/j.surfin.2024.104264_bib0084 article-title: Drop impact onto a dry surface: role of the dynamic contact angle publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2008.03.005 – volume: 25 start-page: 503 year: 2002 ident: 10.1016/j.surfin.2024.104264_bib0087 article-title: Analysis of impact of droplets on horizontal surfaces publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/S0894-1777(01)00109-1 – volume: 44 year: 2024 ident: 10.1016/j.surfin.2024.104264_bib0004 article-title: Droplet impact dynamics on a flexible superhydrophobic cantilever wire mesh publication-title: Surf. Interfaces – volume: 379 start-page: 111 year: 2016 ident: 10.1016/j.surfin.2024.104264_bib0071 article-title: Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard (Ap publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.04.056 – volume: 113 year: 2014 ident: 10.1016/j.surfin.2024.104264_bib0064 article-title: Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing publication-title: Phys. Rev. Lett. – volume: 35 year: 2023 ident: 10.1016/j.surfin.2024.104264_bib0038 article-title: Critical contact angle of a bouncing droplet publication-title: Phys. Fluids. doi: 10.1063/5.0156033 – volume: 422 year: 2021 ident: 10.1016/j.surfin.2024.104264_bib0067 article-title: Influence of roughness on polar and dispersed components of surface free energy and wettability properties of copper and steel surfaces publication-title: Surf. Coatings Technol. doi: 10.1016/j.surfcoat.2021.127518 – volume: 186 year: 2022 ident: 10.1016/j.surfin.2024.104264_bib0014 article-title: Transient surface temperatures upon the impact of a single droplet onto a heated surface in the film evaporation regime publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.122463 – volume: 2310200 start-page: 1 year: 2024 ident: 10.1016/j.surfin.2024.104264_bib0043 article-title: Low-pressure pancake bouncing on superhydrophobic surfaces publication-title: Small – volume: 578 start-page: 392 year: 2020 ident: 10.1016/j.surfin.2024.104264_bib0006 article-title: A droplet-based electricity generator with high instantaneous power density publication-title: Nature doi: 10.1038/s41586-020-1985-6 – volume: 119 year: 2016 ident: 10.1016/j.surfin.2024.104264_bib0015 article-title: Droplet impact behavior on heated micro-patterned surfaces publication-title: J. Appl. Phys. doi: 10.1063/1.4943938 – volume: 805 start-page: 636 year: 2016 ident: 10.1016/j.surfin.2024.104264_bib0025 article-title: On the spreading of impacting drops publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.584 – volume: 272 start-page: 704 year: 2014 ident: 10.1016/j.surfin.2024.104264_bib0058 article-title: An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.04.054 – volume: 124 year: 2021 ident: 10.1016/j.surfin.2024.104264_bib0033 article-title: Effect of wettability on droplet impact: spreading and splashing publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2021.110369 – volume: 126 start-page: 82 year: 2014 ident: 10.1016/j.surfin.2024.104264_bib0019 article-title: The impact and retention of spray droplets on a horizontal hydrophobic surface publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2014.07.013 – volume: 2 start-page: 1 year: 2023 ident: 10.1016/j.surfin.2024.104264_bib0037 article-title: Target slinging of droplets with a flexible cantilever publication-title: Droplet doi: 10.1002/dro2.72 – volume: 469 start-page: 974 year: 2019 ident: 10.1016/j.surfin.2024.104264_bib0073 article-title: Unification of the textures formed on aluminum after laser treatment publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.11.046 – volume: 530 year: 2020 ident: 10.1016/j.surfin.2024.104264_bib0003 article-title: Directional rebound control of droplets on low-temperature regular and irregular wrinkled superhydrophobic surfaces publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147099 – volume: 491 start-page: 160 year: 2019 ident: 10.1016/j.surfin.2024.104264_bib0044 article-title: Droplet impingement on nano-textured superhydrophobic surface: experimental and numerical study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.06.104 – volume: 122 year: 2019 ident: 10.1016/j.surfin.2024.104264_bib0030 article-title: Role of the dynamic contact angle on splashing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.228001 – volume: 8 start-page: 409 year: 2018 ident: 10.1016/j.surfin.2024.104264_bib0029 article-title: Universality of droplet impingement: low-to-high viscosities and surface tensions publication-title: Coatings doi: 10.3390/coatings8110409 – volume: 10 start-page: 515 year: 2014 ident: 10.1016/j.surfin.2024.104264_bib0040 article-title: Pancake bouncing on superhydrophobic surfaces publication-title: Nat. Phys. doi: 10.1038/nphys2980 – volume: 62 start-page: 7214 year: 2007 ident: 10.1016/j.surfin.2024.104264_bib0052 article-title: Numerical simulations of drop impact and spreading on horizontal and inclined surfaces publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.07.036 – volume: 43 start-page: 2169 year: 1997 ident: 10.1016/j.surfin.2024.104264_bib0090 article-title: Spread and rebound of liquid droplets upon impact on flat surfaces publication-title: AIChE J. doi: 10.1002/aic.690430903 – volume: 39 start-page: 615 year: 2010 ident: 10.1016/j.surfin.2024.104264_bib0060 article-title: A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls publication-title: Comput. Fluids. doi: 10.1016/j.compfluid.2009.10.009 – ident: 10.1016/j.surfin.2024.104264_bib0010 doi: 10.1007/s00348-018-2535-y – volume: 484 start-page: 69 year: 2003 ident: 10.1016/j.surfin.2024.104264_bib0076 article-title: Pyramidal and toroidal water drops after impact on a solid surface publication-title: J. Fluid Mech. doi: 10.1017/S0022112003004142 – volume: 3 year: 2022 ident: 10.1016/j.surfin.2024.104264_bib0008 article-title: Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting publication-title: Cell Rep. Phys. Sci. – volume: 677 year: 2023 ident: 10.1016/j.surfin.2024.104264_bib0023 article-title: Spreading dynamics of a droplet impacts on a supercooled substrate: physical models and neural networks publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2023.132381 – volume: 21 year: 2009 ident: 10.1016/j.surfin.2024.104264_bib0051 article-title: Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface publication-title: Phys. Fluids. doi: 10.1063/1.3158468 – volume: 189 year: 2022 ident: 10.1016/j.surfin.2024.104264_bib0013 article-title: High-speed dynamics and temperature variation during drop impact on a heated surface publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.122710 – volume: 228 start-page: 2834 year: 2009 ident: 10.1016/j.surfin.2024.104264_bib0057 article-title: A splitting method for incompressible flows with variable density based on a pressure Poisson equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.12.036 – volume: 301 start-page: 178 year: 2015 ident: 10.1016/j.surfin.2024.104264_bib0088 article-title: Simulations of impinging droplets with surfactant-dependent dynamic contact angle publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.08.026 – volume: 33 start-page: 112 year: 2002 ident: 10.1016/j.surfin.2024.104264_bib0027 article-title: Time evolution of liquid drop impact onto solid, dry surfaces publication-title: Exp. Fluids. doi: 10.1007/s00348-002-0431-x – volume: 48 start-page: 365 year: 2016 ident: 10.1016/j.surfin.2024.104264_bib0020 article-title: Drop impact on a solid surface publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122414-034401 – volume: 11 start-page: 48 year: 2015 ident: 10.1016/j.surfin.2024.104264_bib0039 article-title: Wettability-independent bouncing on flat surfaces mediated by thin air films publication-title: Nat. Phys. doi: 10.1038/nphys3145 – volume: 581 start-page: 97 year: 2007 ident: 10.1016/j.surfin.2024.104264_bib0061 article-title: Diffuse-interface modeling of droplet impact publication-title: J. Fluid Mech. doi: 10.1017/S002211200700554X – volume: 39 start-page: 167 year: 2001 ident: 10.1016/j.surfin.2024.104264_bib0053 article-title: Lattice boltzmann method for the heat conduction problem with phase change publication-title: Numer. Heat Transf. doi: 10.1080/10407790150503495 – volume: 19 year: 2007 ident: 10.1016/j.surfin.2024.104264_bib0089 article-title: An energy balance approach of the dynamics of drop impact on a solid surface publication-title: Phys. Fluids. doi: 10.1063/1.2408495 – volume: 124 start-page: 1262 year: 2018 ident: 10.1016/j.surfin.2024.104264_bib0054 article-title: Numerical investigation of air entrapment in a molten droplet impacting and solidifying on a cold smooth substrate by 3D lattice Boltzmann method publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.056 – volume: 112 start-page: 3280 year: 2015 ident: 10.1016/j.surfin.2024.104264_bib0034 article-title: Kelvin-Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1417718112 – volume: 31 start-page: 97 year: 2006 ident: 10.1016/j.surfin.2024.104264_bib0086 article-title: Phenomena of droplet–surface interactions publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2006.03.028 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.surfin.2024.104264_bib0031 article-title: The effect of surface roughness on the contact line and splashing dynamics of impacting droplets publication-title: Sci. Rep. doi: 10.1038/s41598-019-51490-5 – volume: 69 start-page: 74 year: 1979 ident: 10.1016/j.surfin.2024.104264_bib0085 article-title: Correlation for dynamic contact angle publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(79)90081-X – volume: 42 start-page: 1 year: 2016 ident: 10.1016/j.surfin.2024.104264_bib0063 article-title: Droplet impact on superhydrophobic surfaces: a review of recent developments publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.07.027 – volume: 17 start-page: 1 year: 2005 ident: 10.1016/j.surfin.2024.104264_bib0083 article-title: Dynamic contact angle of spreading droplets: experiments and simulations publication-title: Phys. Fluids. doi: 10.1063/1.1928828 – volume: 31 start-page: 22503 year: 2019 ident: 10.1016/j.surfin.2024.104264_bib0070 article-title: Wettability transition modes of aluminum surfaces with various micro/nanostructures produced by a femtosecond laser publication-title: J. Laser Appl. doi: 10.2351/1.5096076 – volume: 190 start-page: 232 year: 2018 ident: 10.1016/j.surfin.2024.104264_bib0018 article-title: The dynamics of droplet impact on a heated porous surface publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.06.030 – volume: 264 year: 2024 ident: 10.1016/j.surfin.2024.104264_bib0049 article-title: Droplet impact dynamics on superhydrophobic surfaces with convex hemispherical shapes publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2023.108824 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.surfin.2024.104264_bib0077 article-title: Water droplet impact on elastic superhydrophobic surfaces publication-title: Sci. Rep. doi: 10.1038/srep30328 – volume: 8 start-page: 650 year: 1998 ident: 10.1016/j.surfin.2024.104264_bib0080 article-title: Capillary effects during droplet impact on a solid surface publication-title: Phys. Fluids. doi: 10.1063/1.868850 – volume: 601 start-page: 568 year: 2022 ident: 10.1016/j.surfin.2024.104264_bib0007 article-title: Inhibiting the Leidenfrost effect above 1,000°C for sustained thermal cooling publication-title: Nature doi: 10.1038/s41586-021-04307-3 – volume: 15 start-page: 141 year: 2020 ident: 10.1016/j.surfin.2024.104264_bib0066 article-title: Laser treatment of aluminum alloys for fabrication of weather-resistant superhydrophobic coatings publication-title: Nanotechnol. Russ. doi: 10.1134/S1995078020020172 – volume: 36 start-page: 10051 year: 2020 ident: 10.1016/j.surfin.2024.104264_bib0011 article-title: Drop impact on heated nanostructures publication-title: Langmuir doi: 10.1021/acs.langmuir.0c01151 – volume: 34 start-page: 7059 year: 2018 ident: 10.1016/j.surfin.2024.104264_bib0068 article-title: Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01317 – volume: 29 year: 2022 ident: 10.1016/j.surfin.2024.104264_bib0024 article-title: Ferro-fluid droplet impact on hydrophobic surface under magnetic influence publication-title: Surf. Interfaces – volume: 106 start-page: 103 year: 2017 ident: 10.1016/j.surfin.2024.104264_bib0009 article-title: Review of drop impact on heated walls publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.10.031 – volume: 13 start-page: 1521 year: 2018 ident: 10.1016/j.surfin.2024.104264_bib0072 article-title: Surface-wetting characterization using contact-angle measurements publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0003-z – volume: 32 year: 2020 ident: 10.1016/j.surfin.2024.104264_bib0091 article-title: Droplet breakup and rebound during impact on small cylindrical superhydrophobic targets publication-title: Phys. Fluids. doi: 10.1063/5.0024837 – volume: 870 start-page: 175 year: 2019 ident: 10.1016/j.surfin.2024.104264_bib0032 article-title: Splashing of droplets impacting superhydrophobic substrates publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.258 |
| SSID | ssj0001879515 |
| Score | 2.2777586 |
| Snippet | The characteristics of the collision of water droplets with textured hydrophobic and superhydrophobic surfaces obtained using two techniques were studied... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 104264 |
| SubjectTerms | Collision regime Droplet-surface collision Hydrophobic and superhydrophobic surfaces Secondary fragments Water droplet |
| Title | Droplet collision with hydrophobic and superhydrophobic surfaces: Experimental studies and numerical modeling |
| URI | https://dx.doi.org/10.1016/j.surfin.2024.104264 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2025 customDbUrl: eissn: 2468-0230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001879515 issn: 2468-0230 databaseCode: ACRLP dateStart: 20160801 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 2468-0230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001879515 issn: 2468-0230 databaseCode: AIKHN dateStart: 20160801 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2468-0230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001879515 issn: 2468-0230 databaseCode: AKRWK dateStart: 20160801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ki-BFfOKbPXhdmqbJbuKt1JZqsQe12FvYJ61oWvI4-O_dySZYQTx4CtkwsHwb5rXfzCB0oxjXItaSGK04sRaPEk55RLiJmQo5tHyDPOTjjE7mwcMiXLTQsKmFAVplrfudTq-0db3SrdHsblar7rMfUOheBk26gNxhQ6COtT9R1Eadwf10MvtOtcBA7WqWAYgQkGmK6CqmV15mZgW9UP0Arjx9GvxupLYMz3gf7dUeIx64TR2glk4P0U7F3JT5Efq4y4ADXmA40apQHENuFS8_lf2wXIuVxDxVOC83OttehP0AH-sWj7a6_OPcEQsrmbR09znvuBqYY63cMZqPRy_DCalnKBBpg4WCREaIWCreC6QUjFIR9qiQijLI1Xrc92JhbAjnx9a1U4zyHmcmiLyQxyr0jOT9E9RO16k-RViEKjJMCmvSeKA5FUz71ruyERqTYWT6Z4g0oCUb1yojaThkb4kDOQGQEwfyGWINssmPI0-sNv9T8vzfkhdoF94cY_EStYus1FfWqyjEdf3XwHP69Dr9AoDR0HQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JawIxFA6ilPZSulK75tBrUMeZZKY3sYrW5VIFb0NWtLSjzHLov2_eLNRC6aHXhAfhZeZt-d73EHpUjGsRaEmMVpxYj0cJp9wn3ARMeRwo36AOOZvT0dJ9WXmrGupXvTAAqyxtf2HTc2tdrrRKbbZ2m03r1XEpsJcBSReAO2wK1HC9LrN_Z6M3nozm36UWGKidzzIAEQIyVRNdjvRKsthsgAvVceHJ06Hu705qz_EMT9BxGTHiXnGoU1TT0Rk6yJGbMjlHH88xYMBTDDeaN4pjqK3i9aeyG-ut2EjMI4WTbKfj_UU4D-CxnvBgj-UfJwWwMJeJsuI95x3nA3Osl7tAy-Fg0R-RcoYCkTZZSIlvhAik4h1XSsEoFV6HCqkog1ptmzvtQBibwjmBDe0Uo7zDmXH9tscD5bWN5N1LVI-2kb5CWHjKN0wK69K4qzkVTDs2urIZGpOeb7pNRCqlhbuCKiOsMGRvYaHkEJQcFkpuIlZpNvxx5aG15n9KXv9b8gEdjhazaTgdzyc36Ah2CvTiLaqncabvbISRivvyC_oCwibRsg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Droplet+collision+with+hydrophobic+and+superhydrophobic+surfaces%3A+Experimental+studies+and+numerical+modeling&rft.jtitle=Surfaces+and+interfaces&rft.au=Antonov%2C+D.V.&rft.au=Islamova%2C+A.G.&rft.au=Orlova%2C+E.G.&rft.au=Strizhak%2C+P.A.&rft.date=2024-05-01&rft.issn=2468-0230&rft.volume=48&rft.spage=104264&rft_id=info:doi/10.1016%2Fj.surfin.2024.104264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfin_2024_104264 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-0230&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-0230&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-0230&client=summon |