Intuitive-K-prototypes: A mixed data clustering algorithm with intuitionistic distribution centroid

Data sets are usually mixed with numerical and categorical attributes in the real world. Data mining of mixed data makes a lot of sense. This paper proposes an Intuitive-K-prototypes clustering algorithm with improved prototype representation and attribute weights. The proposed algorithm defines int...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 158; p. 111062
Main Authors Wang, Hongli, Mi, Jusheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2025
Subjects
Online AccessGet full text
ISSN0031-3203
DOI10.1016/j.patcog.2024.111062

Cover

Abstract Data sets are usually mixed with numerical and categorical attributes in the real world. Data mining of mixed data makes a lot of sense. This paper proposes an Intuitive-K-prototypes clustering algorithm with improved prototype representation and attribute weights. The proposed algorithm defines intuitionistic distribution centroid for categorical attributes. In our approach, a heuristic search for initial prototypes is performed. Then, we combine the mean of numerical attributes and intuitionistic distribution centroid to represent the cluster prototype. In addition, intra-cluster complexity and inter-cluster similarity are used to adjust attribute weights, with higher priority given to those with lower complexity and similarity. The membership and non-membership distance are calculated using the intuitionistic distribution centroid. These distances are then combined parametrically to obtain the composite distance. The algorithm is judged for its clustering effectiveness on the real UCI data set, and the results show that the proposed algorithm outperforms the traditional clustering algorithm in most cases. •Propose a method for initial prototypes based on the approximate farthest distance.•Propose the concept of the intuitionistic distribution centroid.•Construct attribute weights by the similarity of inter-cluster attributes.
AbstractList Data sets are usually mixed with numerical and categorical attributes in the real world. Data mining of mixed data makes a lot of sense. This paper proposes an Intuitive-K-prototypes clustering algorithm with improved prototype representation and attribute weights. The proposed algorithm defines intuitionistic distribution centroid for categorical attributes. In our approach, a heuristic search for initial prototypes is performed. Then, we combine the mean of numerical attributes and intuitionistic distribution centroid to represent the cluster prototype. In addition, intra-cluster complexity and inter-cluster similarity are used to adjust attribute weights, with higher priority given to those with lower complexity and similarity. The membership and non-membership distance are calculated using the intuitionistic distribution centroid. These distances are then combined parametrically to obtain the composite distance. The algorithm is judged for its clustering effectiveness on the real UCI data set, and the results show that the proposed algorithm outperforms the traditional clustering algorithm in most cases. •Propose a method for initial prototypes based on the approximate farthest distance.•Propose the concept of the intuitionistic distribution centroid.•Construct attribute weights by the similarity of inter-cluster attributes.
ArticleNumber 111062
Author Mi, Jusheng
Wang, Hongli
Author_xml – sequence: 1
  givenname: Hongli
  surname: Wang
  fullname: Wang, Hongli
  organization: School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
– sequence: 2
  givenname: Jusheng
  surname: Mi
  fullname: Mi, Jusheng
  email: mijsh@263.net
  organization: School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
BookMark eNp9kMtOwzAQRb0oEm3hD1j4BxL8StKwQKoqHhWV2MDacsaT4qqNI9st9O9JFdZs5kojnaurMyOTzndIyB1nOWe8vN_lvUngt7lgQuWcc1aKCZkyJnkmBZPXZBbjjjFecSWmBNZdOrrkTpi9ZX3wyadzj_GBLunB_aCl1iRDYX-MCYPrttTstz649HWg38OlbsR952JyQO0QwTXHy4cCdil4Z2_IVWv2EW__ck4-n58-Vq_Z5v1lvVpuMhBFkbJFqYxQNTMKFWsQWCkXSsoaRGmbSpamxUZCuZAgi6rihkkL3NRN3Yq6bTjIOVFjLwQfY8BW98EdTDhrzvRFjt7pUY6-yNGjnAF7HDEctp0cBh3BYQdoXUBI2nr3f8EvmdR1xQ
Cites_doi 10.1007/s41060-020-00216-2
10.1093/comjnl/bxab078
10.1016/j.ins.2020.08.121
10.1016/j.eswa.2022.118656
10.1109/TKDE.2023.3249475
10.1080/01621459.1983.10478008
10.1016/j.patrec.2022.04.026
10.1016/j.patcog.2020.107554
10.1016/j.knosys.2011.07.011
10.3233/JIFS-190146
10.1023/A:1009769707641
10.1016/S0020-0255(98)10083-X
10.1016/j.eswa.2020.114149
10.1109/TPAMI.2005.95
10.1016/j.knosys.2017.07.027
10.1007/BF01908075
10.1016/j.patcog.2023.109353
10.1016/j.patcog.2023.109815
10.1016/j.ins.2011.11.021
10.1023/A:1009982220290
10.1016/j.eswa.2017.09.052
10.1016/j.neucom.2013.04.011
10.1109/TPAMI.2007.53
10.1016/j.eswa.2016.10.022
10.1016/j.ins.2019.01.010
10.1016/j.patcog.2011.05.016
10.1016/j.ins.2021.07.039
10.1016/j.patrec.2004.04.007
10.1016/j.patcog.2020.107206
10.1007/s10994-016-5575-7
10.1007/s13042-022-01602-x
10.1016/j.cnsns.2022.106418
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2024.111062
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2024_111062
S0031320324008136
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c255t-864a2490a4e40bec06384339c26db736afeb3c683c35771a03dc1a9b9f29fb1c3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Wed Oct 01 03:17:30 EDT 2025
Sat Nov 16 15:59:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Intuitionistic fuzzy sets
Clustering
Mixed data
Distribution centroid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-864a2490a4e40bec06384339c26db736afeb3c683c35771a03dc1a9b9f29fb1c3
ParticipantIDs crossref_primary_10_1016_j_patcog_2024_111062
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_111062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mousavi, Sehhati (b23) 2023; 138
Yang (b32) 1999; 1
Xie, Wang, Lu, Liu, Grant (b4) 2022; 158
Sangam, Om (b11) 2018; 43
Ji, Bai, Zhou, Ma, Wang (b10) 2013; 120
Li, Liu, Li, Gan (b18) 2020; 102
Güngör, Özmen (b24) 2017; 69
Behzadi, Müller, Plant, Böhm (b6) 2020; 10
Ushakov, Vasilyev (b20) 2021; 545
Li, Wu, Zhao, Ding, He (b12) 2021; 577
Liu, Zhou, Huang, Shen (b30) 2017; 2017
Xia, Liu, Ding, Wang, Yu, Luo (b25) 2019; 483
Witten, Frank, Hall (b5) 2011
Huang (b7) 1998; 2
Zhang, Shang (b21) 2022; 111
Yu, Liu, Guo, Liu (b16) 2018; 92
Hong, Kim (b28) 1999; 115
Ahmad, Khan (b13) 2021; 167
de Carvalho, Lechevallier, de Melo (b33) 2012; 45
Ding, Du, Sun, Xu, Xue (b31) 2017; 133
Li, Deng, Li, Zeng (b27) 2012; 188
Jin, Zhao, Zhang, Gao, Dou, Lu (b36) 2020; 38
Foss, Markatou, Ray, Heching (b2) 2016
Liu, Zhang, Li, Tang, Zhang (b17) 2021; 64
Huang, Ng, Rong, Li (b22) 2005; 27
Fowlkes, Mallows (b35) 1983; 78
Ay, Özbakır, Kulluk, Gülmez, Öztürk, Özer (b3) 2023; 211
Hou, Zhang, Qi (b19) 2020; 108
Li, Qian, Wang, Peng, Liang (b14) 2022
Rezaei, Daneshpour (b15) 2023; 143
(b29) 2021
Cao, Liang, Li, Bai, Dang (b9) 2012; 26
Ng, Li, Huang, He (b8) 2007; 29
Khan, Ahmad (b1) 2004; 25
Hubert, Arabie (b34) 1985; 2
Xie, Kong, Xia, Wang, Gao (b26) 2023; 35
Khan (10.1016/j.patcog.2024.111062_b1) 2004; 25
Li (10.1016/j.patcog.2024.111062_b18) 2020; 102
Ushakov (10.1016/j.patcog.2024.111062_b20) 2021; 545
Ay (10.1016/j.patcog.2024.111062_b3) 2023; 211
Yu (10.1016/j.patcog.2024.111062_b16) 2018; 92
Xie (10.1016/j.patcog.2024.111062_b26) 2023; 35
Li (10.1016/j.patcog.2024.111062_b14) 2022
Zhang (10.1016/j.patcog.2024.111062_b21) 2022; 111
Li (10.1016/j.patcog.2024.111062_b27) 2012; 188
Liu (10.1016/j.patcog.2024.111062_b30) 2017; 2017
Fowlkes (10.1016/j.patcog.2024.111062_b35) 1983; 78
Rezaei (10.1016/j.patcog.2024.111062_b15) 2023; 143
Xie (10.1016/j.patcog.2024.111062_b4) 2022; 158
Mousavi (10.1016/j.patcog.2024.111062_b23) 2023; 138
Liu (10.1016/j.patcog.2024.111062_b17) 2021; 64
Hou (10.1016/j.patcog.2024.111062_b19) 2020; 108
Hubert (10.1016/j.patcog.2024.111062_b34) 1985; 2
Witten (10.1016/j.patcog.2024.111062_b5) 2011
Xia (10.1016/j.patcog.2024.111062_b25) 2019; 483
Behzadi (10.1016/j.patcog.2024.111062_b6) 2020; 10
Cao (10.1016/j.patcog.2024.111062_b9) 2012; 26
Ding (10.1016/j.patcog.2024.111062_b31) 2017; 133
Ahmad (10.1016/j.patcog.2024.111062_b13) 2021; 167
de Carvalho (10.1016/j.patcog.2024.111062_b33) 2012; 45
Hong (10.1016/j.patcog.2024.111062_b28) 1999; 115
Yang (10.1016/j.patcog.2024.111062_b32) 1999; 1
Jin (10.1016/j.patcog.2024.111062_b36) 2020; 38
Huang (10.1016/j.patcog.2024.111062_b7) 1998; 2
Foss (10.1016/j.patcog.2024.111062_b2) 2016
Ng (10.1016/j.patcog.2024.111062_b8) 2007; 29
(10.1016/j.patcog.2024.111062_b29) 2021
Güngör (10.1016/j.patcog.2024.111062_b24) 2017; 69
Ji (10.1016/j.patcog.2024.111062_b10) 2013; 120
Sangam (10.1016/j.patcog.2024.111062_b11) 2018; 43
Li (10.1016/j.patcog.2024.111062_b12) 2021; 577
Huang (10.1016/j.patcog.2024.111062_b22) 2005; 27
References_xml – start-page: 419
  year: 2016
  end-page: 458
  ident: b2
  article-title: A semiparametric method for clustering mixed data
  publication-title: Mach. Learn.
– volume: 545
  start-page: 344
  year: 2021
  end-page: 362
  ident: b20
  article-title: Near-optimal large-scale k-medoids clustering
  publication-title: Inform. Sci.
– volume: 69
  start-page: 10
  year: 2017
  end-page: 20
  ident: b24
  article-title: Distance and density based clustering algorithm using gaussian kernel
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 1293
  year: 2004
  end-page: 1302
  ident: b1
  article-title: Cluster center initialization algorithm for k-means clustering
  publication-title: Pattern Recognit. Lett.
– volume: 111
  year: 2022
  ident: b21
  article-title: Km-mic: An improved maximum information coefficient based on k-medoids clustering
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 138
  year: 2023
  ident: b23
  article-title: A generalized multi-aspect distance metric for mixed-type data clustering
  publication-title: Pattern Recognit.
– volume: 167
  year: 2021
  ident: b13
  article-title: Initkmix-a novel initial partition generation algorithm for clustering mixed data using k-means-based clustering
  publication-title: Expert Syst. Appl.
– year: 2011
  ident: b5
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 92
  start-page: 464
  year: 2018
  end-page: 473
  ident: b16
  article-title: An improved k-medoids algorithm based on step increasing and optimizing medoids
  publication-title: Expert Syst. Appl.
– volume: 115
  start-page: 83
  year: 1999
  end-page: 96
  ident: b28
  article-title: A note on similarity measures between vague sets and between elements
  publication-title: Inform. Sci.
– volume: 43
  start-page: 37
  year: 2018
  end-page: 48
  ident: b11
  article-title: An equi-biased k-prototypes algorithm for clustering mixed-type data
  publication-title: Sadhana Acad. Proc. Eng. Sci.
– volume: 133
  start-page: 294
  year: 2017
  end-page: 313
  ident: b31
  article-title: An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood
  publication-title: Knowl.-Based Syst.
– volume: 26
  start-page: 120
  year: 2012
  end-page: 127
  ident: b9
  article-title: A dissimilarity measure for the k-modes clustering algorithm
  publication-title: Knowl.-Based Syst.
– volume: 64
  start-page: 1130
  year: 2021
  end-page: 1143
  ident: b17
  article-title: An optimized k-means algorithm based on information entropy
  publication-title: Comput. J.
– year: 2021
  ident: b29
  article-title: The uci machine learning repository
– volume: 577
  start-page: 697
  year: 2021
  end-page: 721
  ident: b12
  article-title: A mixed data clustering algorithm with noise-filtered distribution centroid and iterative weight adjustment strategy
  publication-title: Inform. Sci.
– volume: 29
  start-page: 503
  year: 2007
  end-page: 507
  ident: b8
  article-title: On the impact of dissimilarity measure in k-modes clustering algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: b34
  article-title: Comparing partitions
  publication-title: J. Classification
– volume: 10
  start-page: 233
  year: 2020
  end-page: 248
  ident: b6
  article-title: Clustering of mixed-type data considering concept hierarchies: problem specification and algorithm
  publication-title: Int. J. Data Sci. Anal.
– volume: 188
  start-page: 314
  year: 2012
  end-page: 321
  ident: b27
  article-title: The relationship between similarity measure and entropy of intuitionistic fuzzy sets
  publication-title: Inform. Sci.
– volume: 38
  start-page: 3319
  year: 2020
  end-page: 3330
  ident: b36
  article-title: Adaptive soft subspace clustering combining within-cluster and between-cluster information
  publication-title: J. Intell. Fuzzy Systems
– volume: 120
  start-page: 590
  year: 2013
  end-page: 596
  ident: b10
  article-title: An improved k-prototypes clustering algorithm for mixed numeric and categorical data
  publication-title: Neurocomputing
– volume: 35
  start-page: 9743
  year: 2023
  end-page: 9753
  ident: b26
  article-title: An efficient spectral clustering algorithm based on granular-ball
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 102
  year: 2020
  ident: b18
  article-title: A novel density-based clustering algorithm using nearest neighbor graph
  publication-title: Pattern Recognit.
– volume: 108
  year: 2020
  ident: b19
  article-title: Density peak clustering based on relative density relationship
  publication-title: Pattern Recognit.
– volume: 78
  start-page: 553
  year: 1983
  end-page: 584
  ident: b35
  article-title: A method for comparing two hierarchical clusterings
  publication-title: J. Amer. Statist. Assoc.
– volume: 158
  start-page: 117
  year: 2022
  end-page: 124
  ident: b4
  article-title: Dp-k-modes: A self-tuning k-modes clustering algorithm
  publication-title: Pattern Recognit. Lett.
– volume: 211
  year: 2023
  ident: b3
  article-title: Fc-kmeans: Fixed-centered k-means algorithm
  publication-title: Expert Syst. Appl.
– start-page: 2799
  year: 2022
  end-page: 2812
  ident: b14
  article-title: Clustering mixed type data: a space structure-based approach
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 1
  start-page: 69
  year: 1999
  end-page: 90
  ident: b32
  article-title: An evaluation of statistical approaches to text categorization
  publication-title: Inf. Retr.
– volume: 45
  start-page: 447
  year: 2012
  end-page: 464
  ident: b33
  article-title: Partitioning hard clustering algorithms based on multiple dissimilarity matrices
  publication-title: Pattern Recognit.
– volume: 483
  start-page: 136
  year: 2019
  end-page: 152
  ident: b25
  article-title: Granular ball computing classifiers for efficient, scalable and robust learning
  publication-title: Inform. Sci.
– volume: 143
  year: 2023
  ident: b15
  article-title: Mixed data clustering based on a number of similar features
  publication-title: Pattern Recognit.
– volume: 2
  start-page: 283
  year: 1998
  end-page: 304
  ident: b7
  article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values
  publication-title: Data Min. Knowl. Discov.
– volume: 2017
  year: 2017
  ident: b30
  article-title: Clustering mixed data by fast search and find of density peaks
  publication-title: Math. Probl. Eng.
– volume: 27
  start-page: 657
  year: 2005
  end-page: 668
  ident: b22
  article-title: Automated variable weighting in k-means type clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 233
  year: 2020
  ident: 10.1016/j.patcog.2024.111062_b6
  article-title: Clustering of mixed-type data considering concept hierarchies: problem specification and algorithm
  publication-title: Int. J. Data Sci. Anal.
  doi: 10.1007/s41060-020-00216-2
– volume: 64
  start-page: 1130
  year: 2021
  ident: 10.1016/j.patcog.2024.111062_b17
  article-title: An optimized k-means algorithm based on information entropy
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxab078
– volume: 545
  start-page: 344
  year: 2021
  ident: 10.1016/j.patcog.2024.111062_b20
  article-title: Near-optimal large-scale k-medoids clustering
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.08.121
– year: 2021
  ident: 10.1016/j.patcog.2024.111062_b29
– volume: 211
  year: 2023
  ident: 10.1016/j.patcog.2024.111062_b3
  article-title: Fc-kmeans: Fixed-centered k-means algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118656
– volume: 43
  start-page: 37
  year: 2018
  ident: 10.1016/j.patcog.2024.111062_b11
  article-title: An equi-biased k-prototypes algorithm for clustering mixed-type data
  publication-title: Sadhana Acad. Proc. Eng. Sci.
– volume: 35
  start-page: 9743
  year: 2023
  ident: 10.1016/j.patcog.2024.111062_b26
  article-title: An efficient spectral clustering algorithm based on granular-ball
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3249475
– volume: 78
  start-page: 553
  year: 1983
  ident: 10.1016/j.patcog.2024.111062_b35
  article-title: A method for comparing two hierarchical clusterings
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1983.10478008
– volume: 158
  start-page: 117
  year: 2022
  ident: 10.1016/j.patcog.2024.111062_b4
  article-title: Dp-k-modes: A self-tuning k-modes clustering algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2022.04.026
– volume: 108
  year: 2020
  ident: 10.1016/j.patcog.2024.111062_b19
  article-title: Density peak clustering based on relative density relationship
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107554
– volume: 26
  start-page: 120
  year: 2012
  ident: 10.1016/j.patcog.2024.111062_b9
  article-title: A dissimilarity measure for the k-modes clustering algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.07.011
– volume: 38
  start-page: 3319
  year: 2020
  ident: 10.1016/j.patcog.2024.111062_b36
  article-title: Adaptive soft subspace clustering combining within-cluster and between-cluster information
  publication-title: J. Intell. Fuzzy Systems
  doi: 10.3233/JIFS-190146
– volume: 2
  start-page: 283
  year: 1998
  ident: 10.1016/j.patcog.2024.111062_b7
  article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009769707641
– volume: 115
  start-page: 83
  year: 1999
  ident: 10.1016/j.patcog.2024.111062_b28
  article-title: A note on similarity measures between vague sets and between elements
  publication-title: Inform. Sci.
  doi: 10.1016/S0020-0255(98)10083-X
– volume: 167
  year: 2021
  ident: 10.1016/j.patcog.2024.111062_b13
  article-title: Initkmix-a novel initial partition generation algorithm for clustering mixed data using k-means-based clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114149
– volume: 27
  start-page: 657
  year: 2005
  ident: 10.1016/j.patcog.2024.111062_b22
  article-title: Automated variable weighting in k-means type clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.95
– volume: 133
  start-page: 294
  year: 2017
  ident: 10.1016/j.patcog.2024.111062_b31
  article-title: An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.07.027
– volume: 2
  start-page: 193
  year: 1985
  ident: 10.1016/j.patcog.2024.111062_b34
  article-title: Comparing partitions
  publication-title: J. Classification
  doi: 10.1007/BF01908075
– volume: 138
  year: 2023
  ident: 10.1016/j.patcog.2024.111062_b23
  article-title: A generalized multi-aspect distance metric for mixed-type data clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109353
– volume: 143
  year: 2023
  ident: 10.1016/j.patcog.2024.111062_b15
  article-title: Mixed data clustering based on a number of similar features
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109815
– volume: 188
  start-page: 314
  year: 2012
  ident: 10.1016/j.patcog.2024.111062_b27
  article-title: The relationship between similarity measure and entropy of intuitionistic fuzzy sets
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.11.021
– year: 2011
  ident: 10.1016/j.patcog.2024.111062_b5
– volume: 1
  start-page: 69
  year: 1999
  ident: 10.1016/j.patcog.2024.111062_b32
  article-title: An evaluation of statistical approaches to text categorization
  publication-title: Inf. Retr.
  doi: 10.1023/A:1009982220290
– volume: 92
  start-page: 464
  year: 2018
  ident: 10.1016/j.patcog.2024.111062_b16
  article-title: An improved k-medoids algorithm based on step increasing and optimizing medoids
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.052
– volume: 120
  start-page: 590
  year: 2013
  ident: 10.1016/j.patcog.2024.111062_b10
  article-title: An improved k-prototypes clustering algorithm for mixed numeric and categorical data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.011
– volume: 29
  start-page: 503
  year: 2007
  ident: 10.1016/j.patcog.2024.111062_b8
  article-title: On the impact of dissimilarity measure in k-modes clustering algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.53
– volume: 69
  start-page: 10
  year: 2017
  ident: 10.1016/j.patcog.2024.111062_b24
  article-title: Distance and density based clustering algorithm using gaussian kernel
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.022
– volume: 483
  start-page: 136
  year: 2019
  ident: 10.1016/j.patcog.2024.111062_b25
  article-title: Granular ball computing classifiers for efficient, scalable and robust learning
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.01.010
– volume: 45
  start-page: 447
  year: 2012
  ident: 10.1016/j.patcog.2024.111062_b33
  article-title: Partitioning hard clustering algorithms based on multiple dissimilarity matrices
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.05.016
– volume: 577
  start-page: 697
  year: 2021
  ident: 10.1016/j.patcog.2024.111062_b12
  article-title: A mixed data clustering algorithm with noise-filtered distribution centroid and iterative weight adjustment strategy
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.07.039
– volume: 25
  start-page: 1293
  year: 2004
  ident: 10.1016/j.patcog.2024.111062_b1
  article-title: Cluster center initialization algorithm for k-means clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2004.04.007
– volume: 102
  year: 2020
  ident: 10.1016/j.patcog.2024.111062_b18
  article-title: A novel density-based clustering algorithm using nearest neighbor graph
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107206
– start-page: 419
  year: 2016
  ident: 10.1016/j.patcog.2024.111062_b2
  article-title: A semiparametric method for clustering mixed data
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-016-5575-7
– start-page: 2799
  year: 2022
  ident: 10.1016/j.patcog.2024.111062_b14
  article-title: Clustering mixed type data: a space structure-based approach
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-022-01602-x
– volume: 111
  year: 2022
  ident: 10.1016/j.patcog.2024.111062_b21
  article-title: Km-mic: An improved maximum information coefficient based on k-medoids clustering
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2022.106418
– volume: 2017
  year: 2017
  ident: 10.1016/j.patcog.2024.111062_b30
  article-title: Clustering mixed data by fast search and find of density peaks
  publication-title: Math. Probl. Eng.
SSID ssj0017142
Score 2.4649172
Snippet Data sets are usually mixed with numerical and categorical attributes in the real world. Data mining of mixed data makes a lot of sense. This paper proposes an...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111062
SubjectTerms Clustering
Distribution centroid
Intuitionistic fuzzy sets
Mixed data
Title Intuitive-K-prototypes: A mixed data clustering algorithm with intuitionistic distribution centroid
URI https://dx.doi.org/10.1016/j.patcog.2024.111062
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0031-3203
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017142
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0031-3203
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017142
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0031-3203
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017142
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0031-3203
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017142
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0031-3203
  databaseCode: AKRWK
  dateStart: 19680101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYPXuLZJ09TbGI7pYCcHu5U0SWdla8fswJN_u3lpKwriwUsPpQ_KS_t7H_ze7yF0GyuLcUxnRIQmI4ypgEgb5klgr7FQ1kY5tsWMT-bsaREuOmjUzsIArbLB_hrTHVo3dwaNNwebPIcZX5Ad9EBRzsY1CrLbjEWwxeDu44vmAfu9a8Vw6hN4uh2fcxyvjYW7cmmrxIABdng8-D08fQs54yN00OSKeFi_zjHqmOIEHbZ7GHDzW54i6CXvHAeITAkIL5TQWH27x0O8zt-NxkADxWq1A1EEG6qwXC3LbV69rDG0YXFem5eFE23GGrR0mzVY2JE3y1yfofn44Xk0Ic3yBKJslVARwZm0pZUnmWGePShITRil9my4TiPKZWbLaMUFVTSMIl96VCtfxmmcBXGW-oqeo25RFuYC4UwImfqep_1AMWWEsCWQYZkOqQy4EryHSOuzZFNrZCQteew1qX2cgI-T2sc9FLWOTX6cdWJh_E_Ly39bXqH9ADb3Or71NepW2525selElfbd99JHe8PH6WT2CWNGzBM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6ymie04DltVURVaOrVSN8txkhLUNlVJJSZ-O748EEiIgSVDlJOic_LdQ999h9BtYCzG8Sgh0osTwrmhRNswT6i9BtJYG1OwLUaiP-FPU2_aQN16FgZolRX2l5heoHV1p115s71KU5jxBdlBBxTlbFxjYgttc4_6UIHdfXzxPGDBdykZzlwCj9fzcwXJa2XxLpvZMpFyAA9H0N_j07eY0ztAe1WyiDvl-xyiRrw8Qvv1IgZc_ZfHCJrJm4IERAYElBcy6Ky-3eMOXqTvcYSBB4rNfAOqCDZWYT2fZes0f1lg6MPitDTPloVqM45ATLfag4UL9maWRido0nsYd_uk2p5AjC0TciIF17a2cjSPuWNPCnITzpg9HBGFPhM6sXW0EZIZ5vm-qx0WGVcHYZDQIAldw05Rc5kt4zOEEyl16DpO5FLDTSylrYFinkQe01QYKVqI1D5Tq1IkQ9XssVdV-liBj1Xp4xbya8eqH4etLI7_aXn-b8sbtNMfPw_V8HE0uEC7FNb4FuTrS9TM15v4yuYWeXhdfDufTl7NqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intuitive-K-prototypes%3A+A+mixed+data+clustering+algorithm+with+intuitionistic+distribution+centroid&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Hongli&rft.au=Mi%2C+Jusheng&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.volume=158&rft_id=info:doi/10.1016%2Fj.patcog.2024.111062&rft.externalDocID=S0031320324008136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon