Intuitive-K-prototypes: A mixed data clustering algorithm with intuitionistic distribution centroid
Data sets are usually mixed with numerical and categorical attributes in the real world. Data mining of mixed data makes a lot of sense. This paper proposes an Intuitive-K-prototypes clustering algorithm with improved prototype representation and attribute weights. The proposed algorithm defines int...
Saved in:
| Published in | Pattern recognition Vol. 158; p. 111062 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.02.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-3203 |
| DOI | 10.1016/j.patcog.2024.111062 |
Cover
| Abstract | Data sets are usually mixed with numerical and categorical attributes in the real world. Data mining of mixed data makes a lot of sense. This paper proposes an Intuitive-K-prototypes clustering algorithm with improved prototype representation and attribute weights. The proposed algorithm defines intuitionistic distribution centroid for categorical attributes. In our approach, a heuristic search for initial prototypes is performed. Then, we combine the mean of numerical attributes and intuitionistic distribution centroid to represent the cluster prototype. In addition, intra-cluster complexity and inter-cluster similarity are used to adjust attribute weights, with higher priority given to those with lower complexity and similarity. The membership and non-membership distance are calculated using the intuitionistic distribution centroid. These distances are then combined parametrically to obtain the composite distance. The algorithm is judged for its clustering effectiveness on the real UCI data set, and the results show that the proposed algorithm outperforms the traditional clustering algorithm in most cases.
•Propose a method for initial prototypes based on the approximate farthest distance.•Propose the concept of the intuitionistic distribution centroid.•Construct attribute weights by the similarity of inter-cluster attributes. |
|---|---|
| AbstractList | Data sets are usually mixed with numerical and categorical attributes in the real world. Data mining of mixed data makes a lot of sense. This paper proposes an Intuitive-K-prototypes clustering algorithm with improved prototype representation and attribute weights. The proposed algorithm defines intuitionistic distribution centroid for categorical attributes. In our approach, a heuristic search for initial prototypes is performed. Then, we combine the mean of numerical attributes and intuitionistic distribution centroid to represent the cluster prototype. In addition, intra-cluster complexity and inter-cluster similarity are used to adjust attribute weights, with higher priority given to those with lower complexity and similarity. The membership and non-membership distance are calculated using the intuitionistic distribution centroid. These distances are then combined parametrically to obtain the composite distance. The algorithm is judged for its clustering effectiveness on the real UCI data set, and the results show that the proposed algorithm outperforms the traditional clustering algorithm in most cases.
•Propose a method for initial prototypes based on the approximate farthest distance.•Propose the concept of the intuitionistic distribution centroid.•Construct attribute weights by the similarity of inter-cluster attributes. |
| ArticleNumber | 111062 |
| Author | Mi, Jusheng Wang, Hongli |
| Author_xml | – sequence: 1 givenname: Hongli surname: Wang fullname: Wang, Hongli organization: School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China – sequence: 2 givenname: Jusheng surname: Mi fullname: Mi, Jusheng email: mijsh@263.net organization: School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China |
| BookMark | eNp9kMtOwzAQRb0oEm3hD1j4BxL8StKwQKoqHhWV2MDacsaT4qqNI9st9O9JFdZs5kojnaurMyOTzndIyB1nOWe8vN_lvUngt7lgQuWcc1aKCZkyJnkmBZPXZBbjjjFecSWmBNZdOrrkTpi9ZX3wyadzj_GBLunB_aCl1iRDYX-MCYPrttTstz649HWg38OlbsR952JyQO0QwTXHy4cCdil4Z2_IVWv2EW__ck4-n58-Vq_Z5v1lvVpuMhBFkbJFqYxQNTMKFWsQWCkXSsoaRGmbSpamxUZCuZAgi6rihkkL3NRN3Yq6bTjIOVFjLwQfY8BW98EdTDhrzvRFjt7pUY6-yNGjnAF7HDEctp0cBh3BYQdoXUBI2nr3f8EvmdR1xQ |
| Cites_doi | 10.1007/s41060-020-00216-2 10.1093/comjnl/bxab078 10.1016/j.ins.2020.08.121 10.1016/j.eswa.2022.118656 10.1109/TKDE.2023.3249475 10.1080/01621459.1983.10478008 10.1016/j.patrec.2022.04.026 10.1016/j.patcog.2020.107554 10.1016/j.knosys.2011.07.011 10.3233/JIFS-190146 10.1023/A:1009769707641 10.1016/S0020-0255(98)10083-X 10.1016/j.eswa.2020.114149 10.1109/TPAMI.2005.95 10.1016/j.knosys.2017.07.027 10.1007/BF01908075 10.1016/j.patcog.2023.109353 10.1016/j.patcog.2023.109815 10.1016/j.ins.2011.11.021 10.1023/A:1009982220290 10.1016/j.eswa.2017.09.052 10.1016/j.neucom.2013.04.011 10.1109/TPAMI.2007.53 10.1016/j.eswa.2016.10.022 10.1016/j.ins.2019.01.010 10.1016/j.patcog.2011.05.016 10.1016/j.ins.2021.07.039 10.1016/j.patrec.2004.04.007 10.1016/j.patcog.2020.107206 10.1007/s10994-016-5575-7 10.1007/s13042-022-01602-x 10.1016/j.cnsns.2022.106418 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2024.111062 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_patcog_2024_111062 S0031320324008136 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABDPE ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c255t-864a2490a4e40bec06384339c26db736afeb3c683c35771a03dc1a9b9f29fb1c3 |
| IEDL.DBID | .~1 |
| ISSN | 0031-3203 |
| IngestDate | Wed Oct 01 03:17:30 EDT 2025 Sat Nov 16 15:59:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Intuitionistic fuzzy sets Clustering Mixed data Distribution centroid |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c255t-864a2490a4e40bec06384339c26db736afeb3c683c35771a03dc1a9b9f29fb1c3 |
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2024_111062 elsevier_sciencedirect_doi_10_1016_j_patcog_2024_111062 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mousavi, Sehhati (b23) 2023; 138 Yang (b32) 1999; 1 Xie, Wang, Lu, Liu, Grant (b4) 2022; 158 Sangam, Om (b11) 2018; 43 Ji, Bai, Zhou, Ma, Wang (b10) 2013; 120 Li, Liu, Li, Gan (b18) 2020; 102 Güngör, Özmen (b24) 2017; 69 Behzadi, Müller, Plant, Böhm (b6) 2020; 10 Ushakov, Vasilyev (b20) 2021; 545 Li, Wu, Zhao, Ding, He (b12) 2021; 577 Liu, Zhou, Huang, Shen (b30) 2017; 2017 Xia, Liu, Ding, Wang, Yu, Luo (b25) 2019; 483 Witten, Frank, Hall (b5) 2011 Huang (b7) 1998; 2 Zhang, Shang (b21) 2022; 111 Yu, Liu, Guo, Liu (b16) 2018; 92 Hong, Kim (b28) 1999; 115 Ahmad, Khan (b13) 2021; 167 de Carvalho, Lechevallier, de Melo (b33) 2012; 45 Ding, Du, Sun, Xu, Xue (b31) 2017; 133 Li, Deng, Li, Zeng (b27) 2012; 188 Jin, Zhao, Zhang, Gao, Dou, Lu (b36) 2020; 38 Foss, Markatou, Ray, Heching (b2) 2016 Liu, Zhang, Li, Tang, Zhang (b17) 2021; 64 Huang, Ng, Rong, Li (b22) 2005; 27 Fowlkes, Mallows (b35) 1983; 78 Ay, Özbakır, Kulluk, Gülmez, Öztürk, Özer (b3) 2023; 211 Hou, Zhang, Qi (b19) 2020; 108 Li, Qian, Wang, Peng, Liang (b14) 2022 Rezaei, Daneshpour (b15) 2023; 143 (b29) 2021 Cao, Liang, Li, Bai, Dang (b9) 2012; 26 Ng, Li, Huang, He (b8) 2007; 29 Khan, Ahmad (b1) 2004; 25 Hubert, Arabie (b34) 1985; 2 Xie, Kong, Xia, Wang, Gao (b26) 2023; 35 Khan (10.1016/j.patcog.2024.111062_b1) 2004; 25 Li (10.1016/j.patcog.2024.111062_b18) 2020; 102 Ushakov (10.1016/j.patcog.2024.111062_b20) 2021; 545 Ay (10.1016/j.patcog.2024.111062_b3) 2023; 211 Yu (10.1016/j.patcog.2024.111062_b16) 2018; 92 Xie (10.1016/j.patcog.2024.111062_b26) 2023; 35 Li (10.1016/j.patcog.2024.111062_b14) 2022 Zhang (10.1016/j.patcog.2024.111062_b21) 2022; 111 Li (10.1016/j.patcog.2024.111062_b27) 2012; 188 Liu (10.1016/j.patcog.2024.111062_b30) 2017; 2017 Fowlkes (10.1016/j.patcog.2024.111062_b35) 1983; 78 Rezaei (10.1016/j.patcog.2024.111062_b15) 2023; 143 Xie (10.1016/j.patcog.2024.111062_b4) 2022; 158 Mousavi (10.1016/j.patcog.2024.111062_b23) 2023; 138 Liu (10.1016/j.patcog.2024.111062_b17) 2021; 64 Hou (10.1016/j.patcog.2024.111062_b19) 2020; 108 Hubert (10.1016/j.patcog.2024.111062_b34) 1985; 2 Witten (10.1016/j.patcog.2024.111062_b5) 2011 Xia (10.1016/j.patcog.2024.111062_b25) 2019; 483 Behzadi (10.1016/j.patcog.2024.111062_b6) 2020; 10 Cao (10.1016/j.patcog.2024.111062_b9) 2012; 26 Ding (10.1016/j.patcog.2024.111062_b31) 2017; 133 Ahmad (10.1016/j.patcog.2024.111062_b13) 2021; 167 de Carvalho (10.1016/j.patcog.2024.111062_b33) 2012; 45 Hong (10.1016/j.patcog.2024.111062_b28) 1999; 115 Yang (10.1016/j.patcog.2024.111062_b32) 1999; 1 Jin (10.1016/j.patcog.2024.111062_b36) 2020; 38 Huang (10.1016/j.patcog.2024.111062_b7) 1998; 2 Foss (10.1016/j.patcog.2024.111062_b2) 2016 Ng (10.1016/j.patcog.2024.111062_b8) 2007; 29 (10.1016/j.patcog.2024.111062_b29) 2021 Güngör (10.1016/j.patcog.2024.111062_b24) 2017; 69 Ji (10.1016/j.patcog.2024.111062_b10) 2013; 120 Sangam (10.1016/j.patcog.2024.111062_b11) 2018; 43 Li (10.1016/j.patcog.2024.111062_b12) 2021; 577 Huang (10.1016/j.patcog.2024.111062_b22) 2005; 27 |
| References_xml | – start-page: 419 year: 2016 end-page: 458 ident: b2 article-title: A semiparametric method for clustering mixed data publication-title: Mach. Learn. – volume: 545 start-page: 344 year: 2021 end-page: 362 ident: b20 article-title: Near-optimal large-scale k-medoids clustering publication-title: Inform. Sci. – volume: 69 start-page: 10 year: 2017 end-page: 20 ident: b24 article-title: Distance and density based clustering algorithm using gaussian kernel publication-title: Expert Syst. Appl. – volume: 25 start-page: 1293 year: 2004 end-page: 1302 ident: b1 article-title: Cluster center initialization algorithm for k-means clustering publication-title: Pattern Recognit. Lett. – volume: 111 year: 2022 ident: b21 article-title: Km-mic: An improved maximum information coefficient based on k-medoids clustering publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 138 year: 2023 ident: b23 article-title: A generalized multi-aspect distance metric for mixed-type data clustering publication-title: Pattern Recognit. – volume: 167 year: 2021 ident: b13 article-title: Initkmix-a novel initial partition generation algorithm for clustering mixed data using k-means-based clustering publication-title: Expert Syst. Appl. – year: 2011 ident: b5 article-title: Data Mining: Practical Machine Learning Tools and Techniques – volume: 92 start-page: 464 year: 2018 end-page: 473 ident: b16 article-title: An improved k-medoids algorithm based on step increasing and optimizing medoids publication-title: Expert Syst. Appl. – volume: 115 start-page: 83 year: 1999 end-page: 96 ident: b28 article-title: A note on similarity measures between vague sets and between elements publication-title: Inform. Sci. – volume: 43 start-page: 37 year: 2018 end-page: 48 ident: b11 article-title: An equi-biased k-prototypes algorithm for clustering mixed-type data publication-title: Sadhana Acad. Proc. Eng. Sci. – volume: 133 start-page: 294 year: 2017 end-page: 313 ident: b31 article-title: An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood publication-title: Knowl.-Based Syst. – volume: 26 start-page: 120 year: 2012 end-page: 127 ident: b9 article-title: A dissimilarity measure for the k-modes clustering algorithm publication-title: Knowl.-Based Syst. – volume: 64 start-page: 1130 year: 2021 end-page: 1143 ident: b17 article-title: An optimized k-means algorithm based on information entropy publication-title: Comput. J. – year: 2021 ident: b29 article-title: The uci machine learning repository – volume: 577 start-page: 697 year: 2021 end-page: 721 ident: b12 article-title: A mixed data clustering algorithm with noise-filtered distribution centroid and iterative weight adjustment strategy publication-title: Inform. Sci. – volume: 29 start-page: 503 year: 2007 end-page: 507 ident: b8 article-title: On the impact of dissimilarity measure in k-modes clustering algorithm publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 2 start-page: 193 year: 1985 end-page: 218 ident: b34 article-title: Comparing partitions publication-title: J. Classification – volume: 10 start-page: 233 year: 2020 end-page: 248 ident: b6 article-title: Clustering of mixed-type data considering concept hierarchies: problem specification and algorithm publication-title: Int. J. Data Sci. Anal. – volume: 188 start-page: 314 year: 2012 end-page: 321 ident: b27 article-title: The relationship between similarity measure and entropy of intuitionistic fuzzy sets publication-title: Inform. Sci. – volume: 38 start-page: 3319 year: 2020 end-page: 3330 ident: b36 article-title: Adaptive soft subspace clustering combining within-cluster and between-cluster information publication-title: J. Intell. Fuzzy Systems – volume: 120 start-page: 590 year: 2013 end-page: 596 ident: b10 article-title: An improved k-prototypes clustering algorithm for mixed numeric and categorical data publication-title: Neurocomputing – volume: 35 start-page: 9743 year: 2023 end-page: 9753 ident: b26 article-title: An efficient spectral clustering algorithm based on granular-ball publication-title: IEEE Trans. Knowl. Data Eng. – volume: 102 year: 2020 ident: b18 article-title: A novel density-based clustering algorithm using nearest neighbor graph publication-title: Pattern Recognit. – volume: 108 year: 2020 ident: b19 article-title: Density peak clustering based on relative density relationship publication-title: Pattern Recognit. – volume: 78 start-page: 553 year: 1983 end-page: 584 ident: b35 article-title: A method for comparing two hierarchical clusterings publication-title: J. Amer. Statist. Assoc. – volume: 158 start-page: 117 year: 2022 end-page: 124 ident: b4 article-title: Dp-k-modes: A self-tuning k-modes clustering algorithm publication-title: Pattern Recognit. Lett. – volume: 211 year: 2023 ident: b3 article-title: Fc-kmeans: Fixed-centered k-means algorithm publication-title: Expert Syst. Appl. – start-page: 2799 year: 2022 end-page: 2812 ident: b14 article-title: Clustering mixed type data: a space structure-based approach publication-title: Int. J. Mach. Learn. Cybern. – volume: 1 start-page: 69 year: 1999 end-page: 90 ident: b32 article-title: An evaluation of statistical approaches to text categorization publication-title: Inf. Retr. – volume: 45 start-page: 447 year: 2012 end-page: 464 ident: b33 article-title: Partitioning hard clustering algorithms based on multiple dissimilarity matrices publication-title: Pattern Recognit. – volume: 483 start-page: 136 year: 2019 end-page: 152 ident: b25 article-title: Granular ball computing classifiers for efficient, scalable and robust learning publication-title: Inform. Sci. – volume: 143 year: 2023 ident: b15 article-title: Mixed data clustering based on a number of similar features publication-title: Pattern Recognit. – volume: 2 start-page: 283 year: 1998 end-page: 304 ident: b7 article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values publication-title: Data Min. Knowl. Discov. – volume: 2017 year: 2017 ident: b30 article-title: Clustering mixed data by fast search and find of density peaks publication-title: Math. Probl. Eng. – volume: 27 start-page: 657 year: 2005 end-page: 668 ident: b22 article-title: Automated variable weighting in k-means type clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 start-page: 233 year: 2020 ident: 10.1016/j.patcog.2024.111062_b6 article-title: Clustering of mixed-type data considering concept hierarchies: problem specification and algorithm publication-title: Int. J. Data Sci. Anal. doi: 10.1007/s41060-020-00216-2 – volume: 64 start-page: 1130 year: 2021 ident: 10.1016/j.patcog.2024.111062_b17 article-title: An optimized k-means algorithm based on information entropy publication-title: Comput. J. doi: 10.1093/comjnl/bxab078 – volume: 545 start-page: 344 year: 2021 ident: 10.1016/j.patcog.2024.111062_b20 article-title: Near-optimal large-scale k-medoids clustering publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.08.121 – year: 2021 ident: 10.1016/j.patcog.2024.111062_b29 – volume: 211 year: 2023 ident: 10.1016/j.patcog.2024.111062_b3 article-title: Fc-kmeans: Fixed-centered k-means algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118656 – volume: 43 start-page: 37 year: 2018 ident: 10.1016/j.patcog.2024.111062_b11 article-title: An equi-biased k-prototypes algorithm for clustering mixed-type data publication-title: Sadhana Acad. Proc. Eng. Sci. – volume: 35 start-page: 9743 year: 2023 ident: 10.1016/j.patcog.2024.111062_b26 article-title: An efficient spectral clustering algorithm based on granular-ball publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3249475 – volume: 78 start-page: 553 year: 1983 ident: 10.1016/j.patcog.2024.111062_b35 article-title: A method for comparing two hierarchical clusterings publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1983.10478008 – volume: 158 start-page: 117 year: 2022 ident: 10.1016/j.patcog.2024.111062_b4 article-title: Dp-k-modes: A self-tuning k-modes clustering algorithm publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2022.04.026 – volume: 108 year: 2020 ident: 10.1016/j.patcog.2024.111062_b19 article-title: Density peak clustering based on relative density relationship publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107554 – volume: 26 start-page: 120 year: 2012 ident: 10.1016/j.patcog.2024.111062_b9 article-title: A dissimilarity measure for the k-modes clustering algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.07.011 – volume: 38 start-page: 3319 year: 2020 ident: 10.1016/j.patcog.2024.111062_b36 article-title: Adaptive soft subspace clustering combining within-cluster and between-cluster information publication-title: J. Intell. Fuzzy Systems doi: 10.3233/JIFS-190146 – volume: 2 start-page: 283 year: 1998 ident: 10.1016/j.patcog.2024.111062_b7 article-title: Extensions to the k-means algorithm for clustering large data sets with categorical values publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009769707641 – volume: 115 start-page: 83 year: 1999 ident: 10.1016/j.patcog.2024.111062_b28 article-title: A note on similarity measures between vague sets and between elements publication-title: Inform. Sci. doi: 10.1016/S0020-0255(98)10083-X – volume: 167 year: 2021 ident: 10.1016/j.patcog.2024.111062_b13 article-title: Initkmix-a novel initial partition generation algorithm for clustering mixed data using k-means-based clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114149 – volume: 27 start-page: 657 year: 2005 ident: 10.1016/j.patcog.2024.111062_b22 article-title: Automated variable weighting in k-means type clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.95 – volume: 133 start-page: 294 year: 2017 ident: 10.1016/j.patcog.2024.111062_b31 article-title: An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.07.027 – volume: 2 start-page: 193 year: 1985 ident: 10.1016/j.patcog.2024.111062_b34 article-title: Comparing partitions publication-title: J. Classification doi: 10.1007/BF01908075 – volume: 138 year: 2023 ident: 10.1016/j.patcog.2024.111062_b23 article-title: A generalized multi-aspect distance metric for mixed-type data clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109353 – volume: 143 year: 2023 ident: 10.1016/j.patcog.2024.111062_b15 article-title: Mixed data clustering based on a number of similar features publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109815 – volume: 188 start-page: 314 year: 2012 ident: 10.1016/j.patcog.2024.111062_b27 article-title: The relationship between similarity measure and entropy of intuitionistic fuzzy sets publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.11.021 – year: 2011 ident: 10.1016/j.patcog.2024.111062_b5 – volume: 1 start-page: 69 year: 1999 ident: 10.1016/j.patcog.2024.111062_b32 article-title: An evaluation of statistical approaches to text categorization publication-title: Inf. Retr. doi: 10.1023/A:1009982220290 – volume: 92 start-page: 464 year: 2018 ident: 10.1016/j.patcog.2024.111062_b16 article-title: An improved k-medoids algorithm based on step increasing and optimizing medoids publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.052 – volume: 120 start-page: 590 year: 2013 ident: 10.1016/j.patcog.2024.111062_b10 article-title: An improved k-prototypes clustering algorithm for mixed numeric and categorical data publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.011 – volume: 29 start-page: 503 year: 2007 ident: 10.1016/j.patcog.2024.111062_b8 article-title: On the impact of dissimilarity measure in k-modes clustering algorithm publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.53 – volume: 69 start-page: 10 year: 2017 ident: 10.1016/j.patcog.2024.111062_b24 article-title: Distance and density based clustering algorithm using gaussian kernel publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.10.022 – volume: 483 start-page: 136 year: 2019 ident: 10.1016/j.patcog.2024.111062_b25 article-title: Granular ball computing classifiers for efficient, scalable and robust learning publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.01.010 – volume: 45 start-page: 447 year: 2012 ident: 10.1016/j.patcog.2024.111062_b33 article-title: Partitioning hard clustering algorithms based on multiple dissimilarity matrices publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.05.016 – volume: 577 start-page: 697 year: 2021 ident: 10.1016/j.patcog.2024.111062_b12 article-title: A mixed data clustering algorithm with noise-filtered distribution centroid and iterative weight adjustment strategy publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.07.039 – volume: 25 start-page: 1293 year: 2004 ident: 10.1016/j.patcog.2024.111062_b1 article-title: Cluster center initialization algorithm for k-means clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2004.04.007 – volume: 102 year: 2020 ident: 10.1016/j.patcog.2024.111062_b18 article-title: A novel density-based clustering algorithm using nearest neighbor graph publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107206 – start-page: 419 year: 2016 ident: 10.1016/j.patcog.2024.111062_b2 article-title: A semiparametric method for clustering mixed data publication-title: Mach. Learn. doi: 10.1007/s10994-016-5575-7 – start-page: 2799 year: 2022 ident: 10.1016/j.patcog.2024.111062_b14 article-title: Clustering mixed type data: a space structure-based approach publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-022-01602-x – volume: 111 year: 2022 ident: 10.1016/j.patcog.2024.111062_b21 article-title: Km-mic: An improved maximum information coefficient based on k-medoids clustering publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2022.106418 – volume: 2017 year: 2017 ident: 10.1016/j.patcog.2024.111062_b30 article-title: Clustering mixed data by fast search and find of density peaks publication-title: Math. Probl. Eng. |
| SSID | ssj0017142 |
| Score | 2.4649172 |
| Snippet | Data sets are usually mixed with numerical and categorical attributes in the real world. Data mining of mixed data makes a lot of sense. This paper proposes an... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 111062 |
| SubjectTerms | Clustering Distribution centroid Intuitionistic fuzzy sets Mixed data |
| Title | Intuitive-K-prototypes: A mixed data clustering algorithm with intuitionistic distribution centroid |
| URI | https://dx.doi.org/10.1016/j.patcog.2024.111062 |
| Volume | 158 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0031-3203 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0031-3203 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0031-3203 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0031-3203 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017142 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0031-3203 databaseCode: AKRWK dateStart: 19680101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYPXuLZJ09TbGI7pYCcHu5U0SWdla8fswJN_u3lpKwriwUsPpQ_KS_t7H_ze7yF0GyuLcUxnRIQmI4ypgEgb5klgr7FQ1kY5tsWMT-bsaREuOmjUzsIArbLB_hrTHVo3dwaNNwebPIcZX5Ad9EBRzsY1CrLbjEWwxeDu44vmAfu9a8Vw6hN4uh2fcxyvjYW7cmmrxIABdng8-D08fQs54yN00OSKeFi_zjHqmOIEHbZ7GHDzW54i6CXvHAeITAkIL5TQWH27x0O8zt-NxkADxWq1A1EEG6qwXC3LbV69rDG0YXFem5eFE23GGrR0mzVY2JE3y1yfofn44Xk0Ic3yBKJslVARwZm0pZUnmWGePShITRil9my4TiPKZWbLaMUFVTSMIl96VCtfxmmcBXGW-oqeo25RFuYC4UwImfqep_1AMWWEsCWQYZkOqQy4EryHSOuzZFNrZCQteew1qX2cgI-T2sc9FLWOTX6cdWJh_E_Ly39bXqH9ADb3Or71NepW2525selElfbd99JHe8PH6WT2CWNGzBM |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6ymie04DltVURVaOrVSN8txkhLUNlVJJSZ-O748EEiIgSVDlJOic_LdQ999h9BtYCzG8Sgh0osTwrmhRNswT6i9BtJYG1OwLUaiP-FPU2_aQN16FgZolRX2l5heoHV1p115s71KU5jxBdlBBxTlbFxjYgttc4_6UIHdfXzxPGDBdykZzlwCj9fzcwXJa2XxLpvZMpFyAA9H0N_j07eY0ztAe1WyiDvl-xyiRrw8Qvv1IgZc_ZfHCJrJm4IERAYElBcy6Ky-3eMOXqTvcYSBB4rNfAOqCDZWYT2fZes0f1lg6MPitDTPloVqM45ATLfag4UL9maWRido0nsYd_uk2p5AjC0TciIF17a2cjSPuWNPCnITzpg9HBGFPhM6sXW0EZIZ5vm-qx0WGVcHYZDQIAldw05Rc5kt4zOEEyl16DpO5FLDTSylrYFinkQe01QYKVqI1D5Tq1IkQ9XssVdV-liBj1Xp4xbya8eqH4etLI7_aXn-b8sbtNMfPw_V8HE0uEC7FNb4FuTrS9TM15v4yuYWeXhdfDufTl7NqA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intuitive-K-prototypes%3A+A+mixed+data+clustering+algorithm+with+intuitionistic+distribution+centroid&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Hongli&rft.au=Mi%2C+Jusheng&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.volume=158&rft_id=info:doi/10.1016%2Fj.patcog.2024.111062&rft.externalDocID=S0031320324008136 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |