Convective energy transport in a vertical porous channel: Effects of triple diffusion and Newtonian heating/cooling

The effect of triple diffusion on convection of viscous liquid in a vertical channel saturated with permeable material is explored subject to Robin conditions on the boundaries. Inside the duct, the salts of distinct compositions are diffused. Non‐Darcy approach is used to describe the porous materi...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 47; no. 5; pp. 3182 - 3200
Main Authors Umavathi, Jawali C., Sheremet, Mikhail A.
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 30.03.2024
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.7526

Cover

Abstract The effect of triple diffusion on convection of viscous liquid in a vertical channel saturated with permeable material is explored subject to Robin conditions on the boundaries. Inside the duct, the salts of distinct compositions are diffused. Non‐Darcy approach is used to describe the porous material influence on transport processes. Symmetric and asymmetric heating conditions are considered for the ambient temperatures close to the vertical channel borders. Heat is exchanged between the vertical plates and the external fluid. Initially, the solutions are found without an influence of viscous dissipation and buoyancy forces. Inclusion of these two effects leads to nonlinear equations and adopting Brinkman parameter as the perturbation characteristic for the solutions is procured. Owing to the limitation on the perturbation characteristic, the conservation relations are solved numerically using the Runge–Kutta procedure combined with shooting technique. The flow patterns are depicted for the properties of the heat and mass Grashof numbers, porous parameter, inertial parameter, Brinkman number, Biot numbers, and chemical reaction characteristics. The effects of these parameters are explored on the skin frictions and Nusselt numbers. In the case of dissipations caused by viscosity and Forchheimer drag term, the perturbation results and numerical solutions are equal for low magnitudes of perturbation characteristic.
AbstractList The effect of triple diffusion on convection of viscous liquid in a vertical channel saturated with permeable material is explored subject to Robin conditions on the boundaries. Inside the duct, the salts of distinct compositions are diffused. Non‐Darcy approach is used to describe the porous material influence on transport processes. Symmetric and asymmetric heating conditions are considered for the ambient temperatures close to the vertical channel borders. Heat is exchanged between the vertical plates and the external fluid. Initially, the solutions are found without an influence of viscous dissipation and buoyancy forces. Inclusion of these two effects leads to nonlinear equations and adopting Brinkman parameter as the perturbation characteristic for the solutions is procured. Owing to the limitation on the perturbation characteristic, the conservation relations are solved numerically using the Runge–Kutta procedure combined with shooting technique. The flow patterns are depicted for the properties of the heat and mass Grashof numbers, porous parameter, inertial parameter, Brinkman number, Biot numbers, and chemical reaction characteristics. The effects of these parameters are explored on the skin frictions and Nusselt numbers. In the case of dissipations caused by viscosity and Forchheimer drag term, the perturbation results and numerical solutions are equal for low magnitudes of perturbation characteristic.
Author Sheremet, Mikhail A.
Umavathi, Jawali C.
Author_xml – sequence: 1
  givenname: Jawali C.
  orcidid: 0000-0001-8624-9509
  surname: Umavathi
  fullname: Umavathi, Jawali C.
  organization: Department of Mathematics Gulbarga University Gulbarga India
– sequence: 2
  givenname: Mikhail A.
  orcidid: 0000-0002-4750-0227
  surname: Sheremet
  fullname: Sheremet, Mikhail A.
  organization: Laboratory on Convective Heat and Mass Transfer Tomsk State University Tomsk Russia
BookMark eNplkE1LAzEQhoNUsK2CPyHgxcu2k-xmP7xJqR9Q9KLnJc1O2pRtUpO00n9vSj3paYbheWeYZ0QG1lkk5JbBhAHw6XYrJ5Xg5QUZMmiajBVVOSBDYBVkBWfFFRmFsAGAmjE-JGHm7AFVNAekaNGvjjR6acPO-UiNpZIe0EejZE_TyO0DVWtpLfYPdK51CgbqdIqYXY-0M1rvg3EpZjv6ht_RWSMtXaOMxq6myrk-1WtyqWUf8Oa3jsnn0_xj9pIt3p9fZ4-LTHEhYlbneccbAJRdvcyxU2UhlqgRQFW5FEyIZaFPHZQizzVqWfMOWcWUYMhQ52Nyd9678-5rjyG2G7f3Np1seSNKKOqaN4m6P1PKuxA86nbnzVb6Y8ugPSltk9L2pDShkz-oMjG95mxyZvr_gR93-30n
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2024_108380
crossref_primary_10_1002_mma_9873
crossref_primary_10_1088_1402_4896_ad56d7
Cites_doi 10.1007/978-3-319-42082-0_15
10.1016/j.ijthermalsci.2011.05.003
10.1007/s00707-012-0749-2
10.1007/BF01589462
10.1007/s10483-012-1602-8
10.1007/s12648-020-01800-9
10.1016/j.ijheatmasstransfer.2008.06.034
10.1016/j.euromechflu.2017.01.017
10.1016/0017-9310(85)90272-8
10.1016/S0017-9310(98)00074-X
10.1002/htj.21019
10.4314/ijest.v3i4.68554
10.1016/j.ijmecsci.2020.105696
10.1016/j.aej.2013.02.001
10.1515/ijame-2016-0041
10.1080/10407782.2015.1081027
10.1115/1.2824086
10.12966/hmmt.04.02.2014
10.1016/S0017-9310(98)00114-8
10.2514/1.T5389
10.1016/0017-9310(87)90096-2
10.1007/BF00750792
10.1016/0017-9310(60)90020-X
10.1016/S0735-1933(97)00106-1
10.1007/s10404-017-1965-9
10.1016/j.icheatmasstransfer.2020.104703
10.1007/s11242-015-0505-x
10.1016/j.ces.2020.115980
10.1016/j.ijthermalsci.2014.06.035
10.1016/0017-9310(95)00225-1
10.1615/JPorMedia.v15.i11.40
10.1007/s11012-013-9860-2
10.3390/e20110846
10.1016/j.euromechflu.2015.08.013
10.1016/j.ijthermalsci.2014.12.002
10.1007/s11242-012-0035-8
10.1002/htj.21102
10.1134/S1810232810030021
10.1002/htj.21604
10.1201/9781420010244
10.1016/j.energy.2020.117702
10.1016/S1290-0729(00)01185-6
10.1002/htj.21052
10.4314/ijest.v8i3.4
ContentType Journal Article
Copyright 2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.7526
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 3200
ExternalDocumentID 10_1002_mma_7526
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c255t-833d2900ead8b3edc645befe00c73a5155b4f73a506533fefa82de171c51e1ef3
ISSN 0170-4214
IngestDate Fri Jul 25 10:27:02 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Wed Oct 01 00:37:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-833d2900ead8b3edc645befe00c73a5155b4f73a506533fefa82de171c51e1ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4750-0227
0000-0001-8624-9509
PQID 2956048829
PQPubID 1016386
PageCount 19
ParticipantIDs proquest_journals_2956048829
crossref_primary_10_1002_mma_7526
crossref_citationtrail_10_1002_mma_7526
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-30
PublicationDateYYYYMMDD 2024-03-30
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-30
  day: 30
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_48_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
Ayyub BM (e_1_2_11_46_1) 2016
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
Nield DA (e_1_2_11_2_1) 2006
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – ident: e_1_2_11_12_1
  doi: 10.1007/978-3-319-42082-0_15
– ident: e_1_2_11_18_1
  doi: 10.1016/j.ijthermalsci.2011.05.003
– ident: e_1_2_11_22_1
  doi: 10.1007/s00707-012-0749-2
– ident: e_1_2_11_29_1
  doi: 10.1007/BF01589462
– ident: e_1_2_11_37_1
  doi: 10.1007/s10483-012-1602-8
– ident: e_1_2_11_21_1
  doi: 10.1007/s12648-020-01800-9
– volume-title: Convection in Porous Media
  year: 2006
  ident: e_1_2_11_2_1
– ident: e_1_2_11_17_1
  doi: 10.1016/j.ijheatmasstransfer.2008.06.034
– ident: e_1_2_11_13_1
  doi: 10.1016/j.euromechflu.2017.01.017
– volume-title: Numerical Analysis for Engineers: Methods and Applications
  year: 2016
  ident: e_1_2_11_46_1
– ident: e_1_2_11_16_1
  doi: 10.1016/0017-9310(85)90272-8
– ident: e_1_2_11_48_1
  doi: 10.1016/S0017-9310(98)00074-X
– ident: e_1_2_11_34_1
  doi: 10.1002/htj.21019
– ident: e_1_2_11_35_1
  doi: 10.4314/ijest.v3i4.68554
– ident: e_1_2_11_39_1
  doi: 10.1016/j.ijmecsci.2020.105696
– ident: e_1_2_11_15_1
  doi: 10.1016/j.aej.2013.02.001
– ident: e_1_2_11_11_1
  doi: 10.1515/ijame-2016-0041
– ident: e_1_2_11_27_1
– ident: e_1_2_11_38_1
  doi: 10.1080/10407782.2015.1081027
– ident: e_1_2_11_47_1
  doi: 10.1115/1.2824086
– ident: e_1_2_11_8_1
  doi: 10.12966/hmmt.04.02.2014
– ident: e_1_2_11_32_1
  doi: 10.1016/S0017-9310(98)00114-8
– ident: e_1_2_11_20_1
  doi: 10.2514/1.T5389
– ident: e_1_2_11_49_1
  doi: 10.1016/0017-9310(87)90096-2
– ident: e_1_2_11_30_1
  doi: 10.1007/BF00750792
– ident: e_1_2_11_31_1
  doi: 10.1016/0017-9310(60)90020-X
– ident: e_1_2_11_4_1
  doi: 10.1016/S0735-1933(97)00106-1
– ident: e_1_2_11_14_1
  doi: 10.1007/s10404-017-1965-9
– ident: e_1_2_11_40_1
  doi: 10.1016/j.icheatmasstransfer.2020.104703
– ident: e_1_2_11_19_1
  doi: 10.1007/s11242-015-0505-x
– ident: e_1_2_11_26_1
  doi: 10.1016/j.ces.2020.115980
– ident: e_1_2_11_23_1
  doi: 10.1016/j.ijthermalsci.2014.06.035
– ident: e_1_2_11_3_1
  doi: 10.1016/0017-9310(95)00225-1
– ident: e_1_2_11_6_1
  doi: 10.1615/JPorMedia.v15.i11.40
– ident: e_1_2_11_9_1
  doi: 10.1007/s11012-013-9860-2
– ident: e_1_2_11_41_1
  doi: 10.3390/e20110846
– ident: e_1_2_11_44_1
  doi: 10.1016/j.euromechflu.2015.08.013
– ident: e_1_2_11_28_1
– ident: e_1_2_11_24_1
  doi: 10.1016/j.ijthermalsci.2014.12.002
– ident: e_1_2_11_33_1
  doi: 10.1007/s11242-012-0035-8
– ident: e_1_2_11_10_1
  doi: 10.1002/htj.21102
– ident: e_1_2_11_42_1
  doi: 10.1134/S1810232810030021
– ident: e_1_2_11_43_1
  doi: 10.1002/htj.21604
– ident: e_1_2_11_45_1
  doi: 10.1201/9781420010244
– ident: e_1_2_11_25_1
  doi: 10.1016/j.energy.2020.117702
– ident: e_1_2_11_5_1
  doi: 10.1016/S1290-0729(00)01185-6
– ident: e_1_2_11_7_1
  doi: 10.1002/htj.21052
– ident: e_1_2_11_36_1
  doi: 10.4314/ijest.v8i3.4
SSID ssj0008112
Score 2.3884225
Snippet The effect of triple diffusion on convection of viscous liquid in a vertical channel saturated with permeable material is explored subject to Robin conditions...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3182
SubjectTerms Ambient temperature
Chemical reactions
Convection cooling
Convection heating
Diffusion effects
Dissipation
Flow distribution
Heat exchange
Nonlinear equations
Parameters
Perturbation
Porous materials
Runge-Kutta method
Title Convective energy transport in a vertical porous channel: Effects of triple diffusion and Newtonian heating/cooling
URI https://www.proquest.com/docview/2956048829
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: AMVHM
  dateStart: 20120715
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0170-4214
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZK9wIPaBsgxn7ISEiAqmSJnTTx3qZqU4VUnla0t8hxHKhYU7SkQ-I_4L_mLnbcbPRh8BJFVpwouc9358vdd4S8K8Q41UoKLxYFwxZmzBO8KDywVhowI9AMYbbF5_F0Hn26jq8Hg9-9rKV1k_vq19a6kv-RKoyBXLFK9h8k624KA3AO8oUjSBiOj5LxBFPGW4U10qaGr-m4yjGOIUdts2WUAgxhriuW-Vb6BsMAF5tEjua2TSnEXinruktPBu0HbiEuf1TXbeeTS7XCFj9f-w7tzNG-tmUo2I667nInpfVwrZV13vt8Ke8w6dFk6f6EncBo4rtQD4BIL80vktni-ze5AAz5_eAEi9pqvaAfr0wCL2KmTtTXRsciKWgYmbYvnRI2tJsWbHFPo4LOYT3rzA2x6d-a3zDJLpfST2K2hVz7gdFzqYiGtpllMDPDmU_IDgMDEQzJzvnsy3TmzHoatr_O3Rt1TMYBO-2eet-3uW_aW3_lapc8txsNem5Qs0cGutonzzbiqvfJnlXsNf1g2cc_viD1BlTUgIo6UNFFRSXtQEUNqKgF1Rm1kKKrkhpIUQcpCpCiDlLUQurUAuolmV9eXE2mnu3M4SnYgjZeynnBYB2DGkpzrgs1juJclzoIVMIldg3KoxLPkPmYl7qUKSt0mIQqDnWoS_6KDKtVpV8TysdpkLBUh1JEURJIwZWKBUwHvwmsTXxA3nffNFOWth67p9xkDyV3QN66K38YqpYt1xx1YsnsQq4zhjECMGRMvHnELQ7J0w3Sj8iwuV3rY3BMm_zEQuYP_ROT-g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convective+energy+transport+in+a+vertical+porous+channel%3A+Effects+of+triple+diffusion+and+Newtonian+heating%2Fcooling&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Umavathi%2C+Jawali+C.&rft.au=Sheremet%2C+Mikhail+A.&rft.date=2024-03-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=47&rft.issue=5&rft.spage=3182&rft.epage=3200&rft_id=info:doi/10.1002%2Fmma.7526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_7526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon