The sequences of bundles of line segments for autonomous robots with limited vision range to escape from blind alley regions

Consider the following problem: A robot operating in a 2D environment with a limited vision range finds a path to a goal in an unknown environment containing obstacles. In this paper, we propose a novel algorithm to solve the problem. In some special cases, our algorithm is convergent with respect t...

Full description

Saved in:
Bibliographic Details
Published inRobotics and autonomous systems Vol. 195; p. 105185
Main Authors An, Phan Thanh, Anh, Pham Hoang, Binh, Tran Thanh, Hoai, Tran Van
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2026
Subjects
Online AccessGet full text
ISSN0921-8890
DOI10.1016/j.robot.2025.105185

Cover

Abstract Consider the following problem: A robot operating in a 2D environment with a limited vision range finds a path to a goal in an unknown environment containing obstacles. In this paper, we propose a novel algorithm to solve the problem. In some special cases, our algorithm is convergent with respect to ‖.‖. The problem involves discovering the environmental map and blind alley regions, that are bounded by obstacles, and it provides no possible passage for robots except in and out of their path entry occur, the robot has to return back to some positions outside to escape from such regions such that the returned path is not longer than the path entry (Blind Alley Region problem, (BAR) problem, in short). To solve the (BAR) problem, sequences of bundles of line segments during the robot’s traveling are constructed in our algorithm. Some advantages of our algorithm are that (a) It reduces search space in blind alley regions because it only works on the sequences of bundles of the line segments built by the robot’s limited vision range. (b) Our algorithm ensures that the returned path to escape from the regions is not longer than the previous path of the robot. (c) Due to the construction of the sequences of bundles of line segments, our paths are not always “close” obstacles and the number of turns of such paths is smaller ones determined by other shortest path algorithms (e.g., A*, RRT*). Our algorithm is implemented in Python and we experience the algorithm on some autonomous robots with different vision ranges in real environment. We also compare our result with RRTX, a state-of-art local path-planning algorithm, and A∗, a basic one. The experimental results show that our algorithm provides better solutions than RRTX and A* results in some specific circumstances.
AbstractList Consider the following problem: A robot operating in a 2D environment with a limited vision range finds a path to a goal in an unknown environment containing obstacles. In this paper, we propose a novel algorithm to solve the problem. In some special cases, our algorithm is convergent with respect to ‖.‖. The problem involves discovering the environmental map and blind alley regions, that are bounded by obstacles, and it provides no possible passage for robots except in and out of their path entry occur, the robot has to return back to some positions outside to escape from such regions such that the returned path is not longer than the path entry (Blind Alley Region problem, (BAR) problem, in short). To solve the (BAR) problem, sequences of bundles of line segments during the robot’s traveling are constructed in our algorithm. Some advantages of our algorithm are that (a) It reduces search space in blind alley regions because it only works on the sequences of bundles of the line segments built by the robot’s limited vision range. (b) Our algorithm ensures that the returned path to escape from the regions is not longer than the previous path of the robot. (c) Due to the construction of the sequences of bundles of line segments, our paths are not always “close” obstacles and the number of turns of such paths is smaller ones determined by other shortest path algorithms (e.g., A*, RRT*). Our algorithm is implemented in Python and we experience the algorithm on some autonomous robots with different vision ranges in real environment. We also compare our result with RRTX, a state-of-art local path-planning algorithm, and A∗, a basic one. The experimental results show that our algorithm provides better solutions than RRTX and A* results in some specific circumstances.
ArticleNumber 105185
Author An, Phan Thanh
Binh, Tran Thanh
Anh, Pham Hoang
Hoai, Tran Van
Author_xml – sequence: 1
  givenname: Phan Thanh
  orcidid: 0000-0002-1903-3510
  surname: An
  fullname: An, Phan Thanh
  email: thanhan@hcmut.edu.vn
  organization: Institute of Mathematical and Computational Sciences (IMACS), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam
– sequence: 2
  givenname: Pham Hoang
  orcidid: 0000-0002-5806-5910
  surname: Anh
  fullname: Anh, Pham Hoang
  organization: Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam
– sequence: 3
  givenname: Tran Thanh
  surname: Binh
  fullname: Binh, Tran Thanh
  organization: Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam
– sequence: 4
  givenname: Tran Van
  orcidid: 0000-0002-0602-4287
  surname: Hoai
  fullname: Hoai, Tran Van
  email: hoai@hcmut.edu.vn
  organization: Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam
BookMark eNp9kMtOwzAQRb0oEm3hC9jMD6TYSZzECxao4iVVYlPWVuKMW1eJXWy3qBIfT0JYs5rRzL3zOAsys84iIXeMrhhlxf1h5V3j4iqlKR8qnFV8RuZUpCypKkGvySKEA6U042U2J9_bPULAzxNahQGchuZk225KO2PH5q5HGwNo56E-RWdd704BfrcE-DJxPwh7E7GFswnGWfC13SFEBxhUfUTQ3vXQDNNaqLsOL-BxN-jCDbnSdRfw9i8uycfz03b9mmzeX97Wj5tEpZzHpBC1YEKpplQVbdKM5wUtqzRXQjSFTgUtG5bnrS4LwVVbClbQqmRMCyUyLYo8W5Jsmqu8C8Gjlkdv-tpfJKNyhCYP8vcdOUKTE7TB9TC5cDjtbNDLoMyIqTUeVZStM__6fwBjeXwz
Cites_doi 10.1177/0278364915594679
10.1177/0278364911406761
10.1109/ICRA.2016.7487747
10.1109/21.59969
10.3390/s23104766
10.1016/j.patrec.2022.06.005
10.1109/ICRA.2019.8793889
10.1177/027836499801700903
10.1080/02331934.2017.1387260
10.1109/CRV52889.2021.00020
10.1504/IJCAT.2011.042693
10.1016/j.robot.2016.04.007
10.1109/TASE.2021.3122111
10.1007/s10846-007-9157-6
10.1109/TRA.2004.824649
10.1016/j.cam.2012.11.001
10.1080/02331930802434732
10.1109/ROBOT.2005.1570375
10.1007/s10898-022-01244-x
10.3390/computers10110153
10.1109/70.650160
10.1080/16168658.2021.2019432
10.1109/100.580977
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.robot.2025.105185
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_robot_2025_105185
S0921889025002829
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c255t-69a919ccb7c80b2354607824c99b6f2907b144df7695cd791608711f9c93f9643
IEDL.DBID .~1
ISSN 0921-8890
IngestDate Thu Oct 02 04:24:23 EDT 2025
Sun Oct 19 01:43:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Robot path planning
Blind alley region
Rapidly-exploring random tree
Shortest path
Bundle of line segments
Polygonal obstacle
Astar algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-69a919ccb7c80b2354607824c99b6f2907b144df7695cd791608711f9c93f9643
ORCID 0000-0002-0602-4287
0000-0002-1903-3510
0000-0002-5806-5910
ParticipantIDs crossref_primary_10_1016_j_robot_2025_105185
elsevier_sciencedirect_doi_10_1016_j_robot_2025_105185
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Robotics and autonomous systems
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Seda (b17) 2007; vol. 6
An (b28) 2010; 59
Ladd, Kavraki (b14) 2004; 20
Tashtoush, Haj-Mahmoud, Darwish, Maabreh, Alsinglawi, Elkhodr, Alsaedi (b4) 2021; 10
Fox, Burgard, Thrun (b20) 1997; 4
Kamil, Moghrabiah (b6) 2021; 14
Manikandan, Kaliyaperumal (b15) 2022; 160
A.H. Qureshi, A. Simeonov, M.J. Bency, M.C. Yip, Motion planning networks, in: 2019, International Conference on Robotics and Automation, ICRA, Montreal, QC, Canada, 2019, pp. 2118–2124.
Kovács, Szayer, Tajti, Burdelis, Korondi (b12) 2016; 82
Kuffner, LaValle (b18) 2000; vol. 2
Ng, Braunl (b21) 2007; 50
An, Phu (b30) 2023; 85
An (b29) 2018; 67
J. Rosell, P. Iniguez, Path planning using Harmonic functions and probabilistic cell decomposition, in: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 1803–1808.
Kamon, Rivlin (b23) 1997; 13
Li, Klette (b11) 2011
Roy, Maitra, Bhattacharya (b3) 2022; 19
Karaman, Frazzoli (b26) 2011; 30
J. Alonso-Mora, E. Montijano, M. Schwager, D. Rus, Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus, in: IEEE International Conference on Robotics and Automation, ICRA, Stockholm, Sweden, 2016, pp. 5356–5363.
An, Hai, Hoai (b27) 2013; 244
Hsu, Latombe, Kurniawati (b13) 2007
A.-I. Toma, et al., Waypoint planning networks, in: 18th Conference on Robots and Vision, CRV, Burnaby, BC, Canada, 2021, pp. 87–94.
Kamon, Rimon, Rivlin (b22) 1998; 17
Kang, Yue, Li, Maple (b5) 2011; 41
Hai, An, Huyen (b10) 2019; 26
Otte, E. (b19) 2016; 35
An (b25) 2017
Feng, Xie, Sun, Wang, Jiang, Xiao (b7) 2023; 23
Lumelsky, Skewis (b24) 1990; 20
Kunchev, Jain, Ivancevic, Finn (b2) 2006
Ng (10.1016/j.robot.2025.105185_b21) 2007; 50
Tashtoush (10.1016/j.robot.2025.105185_b4) 2021; 10
Kamil (10.1016/j.robot.2025.105185_b6) 2021; 14
An (10.1016/j.robot.2025.105185_b30) 2023; 85
Seda (10.1016/j.robot.2025.105185_b17) 2007; vol. 6
Hai (10.1016/j.robot.2025.105185_b10) 2019; 26
Kuffner (10.1016/j.robot.2025.105185_b18) 2000; vol. 2
An (10.1016/j.robot.2025.105185_b27) 2013; 244
An (10.1016/j.robot.2025.105185_b25) 2017
10.1016/j.robot.2025.105185_b16
Karaman (10.1016/j.robot.2025.105185_b26) 2011; 30
Kang (10.1016/j.robot.2025.105185_b5) 2011; 41
Roy (10.1016/j.robot.2025.105185_b3) 2022; 19
Feng (10.1016/j.robot.2025.105185_b7) 2023; 23
Fox (10.1016/j.robot.2025.105185_b20) 1997; 4
Ladd (10.1016/j.robot.2025.105185_b14) 2004; 20
Hsu (10.1016/j.robot.2025.105185_b13) 2007
Lumelsky (10.1016/j.robot.2025.105185_b24) 1990; 20
An (10.1016/j.robot.2025.105185_b29) 2018; 67
An (10.1016/j.robot.2025.105185_b28) 2010; 59
10.1016/j.robot.2025.105185_b1
Kamon (10.1016/j.robot.2025.105185_b22) 1998; 17
Kunchev (10.1016/j.robot.2025.105185_b2) 2006
Kamon (10.1016/j.robot.2025.105185_b23) 1997; 13
Otte (10.1016/j.robot.2025.105185_b19) 2016; 35
10.1016/j.robot.2025.105185_b9
10.1016/j.robot.2025.105185_b8
Kovács (10.1016/j.robot.2025.105185_b12) 2016; 82
Manikandan (10.1016/j.robot.2025.105185_b15) 2022; 160
Li (10.1016/j.robot.2025.105185_b11) 2011
References_xml – reference: J. Rosell, P. Iniguez, Path planning using Harmonic functions and probabilistic cell decomposition, in: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 1803–1808.
– volume: vol. 6
  start-page: 127
  year: 2007
  end-page: -132
  ident: b17
  article-title: Roadmap methods vs. Cell decomposition in robot motion planning
  publication-title: Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation
– year: 2017
  ident: b25
  article-title: Optimization Approaches for Computational Geometry
– volume: 41
  start-page: 177
  year: 2011
  end-page: 184
  ident: b5
  article-title: Genetic algorithm based solution to dead-end problems in robot navigation
  publication-title: Int. J. Comput. Appl. Technol.
– volume: 20
  start-page: 1058
  year: 1990
  end-page: 1069
  ident: b24
  article-title: Incorporating range sensing in the robot navigation function
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 10
  start-page: 153
  year: 2021
  ident: b4
  article-title: Enhancing robots navigation in internet of things indoor systems
  publication-title: Computers
– start-page: 83
  year: 2007
  end-page: 97
  ident: b13
  article-title: On the probabilistic foundations of probabilistic roadmap planning
  publication-title: Robotics Research
– volume: 30
  start-page: 846
  year: 2011
  end-page: 894
  ident: b26
  article-title: Sampling-based algorithms for optimalmotion planning
  publication-title: Int. J. Robot. Res.
– volume: 26
  start-page: 1089
  year: 2019
  end-page: 1112
  ident: b10
  article-title: Shortest paths along a sequence of line segments in Euclidean spaces
  publication-title: J. Convex Anal.
– year: 2011
  ident: b11
  article-title: Euclidean Shortest Paths: Exact Or Approximate Algorithms
– volume: 82
  start-page: 24
  year: 2016
  end-page: 34
  ident: b12
  article-title: A novel potential field method for path planning of mobile robots by adapting animal motion attributes
  publication-title: Robot. Auton. Syst.
– volume: 35
  start-page: 797
  year: 2016
  end-page: 822
  ident: b19
  article-title: RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning
  publication-title: Int. J. Robot. Res.
– volume: 17
  start-page: 934
  year: 1998
  end-page: 953
  ident: b22
  article-title: TangentBug: A range-sensor-based navigation algorithm
  publication-title: Int. J. Robot. Res.
– start-page: 537
  year: 2006
  end-page: 544
  ident: b2
  article-title: Path planning and obstacle avoidance for autonomous mobile robots: a review
  publication-title: Int. Conf. Knowl. Based Intell. Inf. Eng. Syst
– reference: A.H. Qureshi, A. Simeonov, M.J. Bency, M.C. Yip, Motion planning networks, in: 2019, International Conference on Robotics and Automation, ICRA, Montreal, QC, Canada, 2019, pp. 2118–2124.
– volume: 244
  start-page: 67
  year: 2013
  end-page: 76
  ident: b27
  article-title: Direct multiple shooting method for solving approximate shortest path problems
  publication-title: J. Comput. Appl. Math.
– volume: 67
  start-page: 159
  year: 2018
  end-page: 177
  ident: b29
  article-title: Finding shortest paths in a sequence of triangles in 3D by the method of orienting curves
  publication-title: Optimization
– volume: vol. 2
  start-page: 995
  year: 2000
  end-page: 1001
  ident: b18
  article-title: RRT-connect: An efficient approach to single-query path planning
  publication-title: Proceedings 2000 ICRA Millennium Conference
– volume: 14
  start-page: 51
  year: 2021
  end-page: 73
  ident: b6
  article-title: Multilayer decision-based fuzzy logic model to navigate mobile robot in unknown dynamic environments
  publication-title: Fuzzy Inf. Eng.
– volume: 19
  start-page: 3459
  year: 2022
  end-page: 3470
  ident: b3
  article-title: Exploration of multiple unknown areas by swarm of robots utilizing virtual-region-based splitting and merging technique
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 13
  start-page: 814
  year: 1997
  end-page: 822
  ident: b23
  article-title: Sensory-based motion planning with global proofs
  publication-title: IEEE Trans. Robot. Autom.
– volume: 4
  start-page: 23
  year: 1997
  end-page: 33
  ident: b20
  article-title: The dynamic window approach to collision avoidance
  publication-title: IEEE Robot. Autom. Mag.
– volume: 85
  year: 2023
  ident: b30
  article-title: Finding exactly shortest paths through a sequence of adjacent triangles by the method of orienting curves
  publication-title: J. Global Optim.
– volume: 20
  start-page: 229
  year: 2004
  end-page: 242
  ident: b14
  article-title: Measure theoretic analysis of probabilistic path planning
  publication-title: IEEE Trans. Robot. Autom.
– volume: 50
  start-page: 73
  year: 2007
  end-page: 84
  ident: b21
  article-title: Performance comparison of bug navigation algorithms
  publication-title: J. Intell. Robot. Syst.
– reference: A.-I. Toma, et al., Waypoint planning networks, in: 18th Conference on Robots and Vision, CRV, Burnaby, BC, Canada, 2021, pp. 87–94.
– volume: 23
  start-page: 4766
  year: 2023
  ident: b7
  article-title: Efficient autonomous exploration and mapping in unknown environments
  publication-title: Sensors
– volume: 160
  start-page: 112
  year: 2022
  end-page: 121
  ident: b15
  article-title: Collision avoidance approaches for autonomous mobile robots to tackle the problem of pedestrians roaming on campus road
  publication-title: Pattern Recognit. Lett.
– volume: 59
  start-page: 175
  year: 2010
  end-page: 179
  ident: b28
  article-title: Method of orienting curves for determining the convex hull of a finite set of points in the plane
  publication-title: Optimization
– reference: J. Alonso-Mora, E. Montijano, M. Schwager, D. Rus, Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus, in: IEEE International Conference on Robotics and Automation, ICRA, Stockholm, Sweden, 2016, pp. 5356–5363.
– volume: 35
  start-page: 797
  year: 2016
  ident: 10.1016/j.robot.2025.105185_b19
  article-title: RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364915594679
– volume: 30
  start-page: 846
  year: 2011
  ident: 10.1016/j.robot.2025.105185_b26
  article-title: Sampling-based algorithms for optimalmotion planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364911406761
– ident: 10.1016/j.robot.2025.105185_b1
  doi: 10.1109/ICRA.2016.7487747
– volume: 20
  start-page: 1058
  year: 1990
  ident: 10.1016/j.robot.2025.105185_b24
  article-title: Incorporating range sensing in the robot navigation function
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.59969
– volume: 23
  start-page: 4766
  year: 2023
  ident: 10.1016/j.robot.2025.105185_b7
  article-title: Efficient autonomous exploration and mapping in unknown environments
  publication-title: Sensors
  doi: 10.3390/s23104766
– volume: 160
  start-page: 112
  year: 2022
  ident: 10.1016/j.robot.2025.105185_b15
  article-title: Collision avoidance approaches for autonomous mobile robots to tackle the problem of pedestrians roaming on campus road
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2022.06.005
– start-page: 83
  year: 2007
  ident: 10.1016/j.robot.2025.105185_b13
  article-title: On the probabilistic foundations of probabilistic roadmap planning
– ident: 10.1016/j.robot.2025.105185_b9
  doi: 10.1109/ICRA.2019.8793889
– volume: 17
  start-page: 934
  year: 1998
  ident: 10.1016/j.robot.2025.105185_b22
  article-title: TangentBug: A range-sensor-based navigation algorithm
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/027836499801700903
– volume: 67
  start-page: 159
  year: 2018
  ident: 10.1016/j.robot.2025.105185_b29
  article-title: Finding shortest paths in a sequence of triangles in 3D by the method of orienting curves
  publication-title: Optimization
  doi: 10.1080/02331934.2017.1387260
– ident: 10.1016/j.robot.2025.105185_b8
  doi: 10.1109/CRV52889.2021.00020
– volume: 41
  start-page: 177
  year: 2011
  ident: 10.1016/j.robot.2025.105185_b5
  article-title: Genetic algorithm based solution to dead-end problems in robot navigation
  publication-title: Int. J. Comput. Appl. Technol.
  doi: 10.1504/IJCAT.2011.042693
– volume: 82
  start-page: 24
  year: 2016
  ident: 10.1016/j.robot.2025.105185_b12
  article-title: A novel potential field method for path planning of mobile robots by adapting animal motion attributes
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2016.04.007
– volume: vol. 2
  start-page: 995
  year: 2000
  ident: 10.1016/j.robot.2025.105185_b18
  article-title: RRT-connect: An efficient approach to single-query path planning
– volume: 19
  start-page: 3459
  year: 2022
  ident: 10.1016/j.robot.2025.105185_b3
  article-title: Exploration of multiple unknown areas by swarm of robots utilizing virtual-region-based splitting and merging technique
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2021.3122111
– volume: 50
  start-page: 73
  year: 2007
  ident: 10.1016/j.robot.2025.105185_b21
  article-title: Performance comparison of bug navigation algorithms
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-007-9157-6
– volume: 20
  start-page: 229
  year: 2004
  ident: 10.1016/j.robot.2025.105185_b14
  article-title: Measure theoretic analysis of probabilistic path planning
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/TRA.2004.824649
– volume: 244
  start-page: 67
  year: 2013
  ident: 10.1016/j.robot.2025.105185_b27
  article-title: Direct multiple shooting method for solving approximate shortest path problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.11.001
– volume: 59
  start-page: 175
  year: 2010
  ident: 10.1016/j.robot.2025.105185_b28
  article-title: Method of orienting curves for determining the convex hull of a finite set of points in the plane
  publication-title: Optimization
  doi: 10.1080/02331930802434732
– ident: 10.1016/j.robot.2025.105185_b16
  doi: 10.1109/ROBOT.2005.1570375
– year: 2011
  ident: 10.1016/j.robot.2025.105185_b11
– volume: vol. 6
  start-page: 127
  year: 2007
  ident: 10.1016/j.robot.2025.105185_b17
  article-title: Roadmap methods vs. Cell decomposition in robot motion planning
– year: 2017
  ident: 10.1016/j.robot.2025.105185_b25
– volume: 85
  year: 2023
  ident: 10.1016/j.robot.2025.105185_b30
  article-title: Finding exactly shortest paths through a sequence of adjacent triangles by the method of orienting curves
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-022-01244-x
– start-page: 537
  year: 2006
  ident: 10.1016/j.robot.2025.105185_b2
  article-title: Path planning and obstacle avoidance for autonomous mobile robots: a review
– volume: 10
  start-page: 153
  issue: 11
  year: 2021
  ident: 10.1016/j.robot.2025.105185_b4
  article-title: Enhancing robots navigation in internet of things indoor systems
  publication-title: Computers
  doi: 10.3390/computers10110153
– volume: 13
  start-page: 814
  year: 1997
  ident: 10.1016/j.robot.2025.105185_b23
  article-title: Sensory-based motion planning with global proofs
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.650160
– volume: 14
  start-page: 51
  issue: 1
  year: 2021
  ident: 10.1016/j.robot.2025.105185_b6
  article-title: Multilayer decision-based fuzzy logic model to navigate mobile robot in unknown dynamic environments
  publication-title: Fuzzy Inf. Eng.
  doi: 10.1080/16168658.2021.2019432
– volume: 26
  start-page: 1089
  year: 2019
  ident: 10.1016/j.robot.2025.105185_b10
  article-title: Shortest paths along a sequence of line segments in Euclidean spaces
  publication-title: J. Convex Anal.
– volume: 4
  start-page: 23
  year: 1997
  ident: 10.1016/j.robot.2025.105185_b20
  article-title: The dynamic window approach to collision avoidance
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/100.580977
SSID ssj0003573
Score 2.4576604
Snippet Consider the following problem: A robot operating in a 2D environment with a limited vision range finds a path to a goal in an unknown environment containing...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105185
SubjectTerms Astar algorithm
Blind alley region
Bundle of line segments
Polygonal obstacle
Rapidly-exploring random tree
Robot path planning
Shortest path
Title The sequences of bundles of line segments for autonomous robots with limited vision range to escape from blind alley regions
URI https://dx.doi.org/10.1016/j.robot.2025.105185
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0921-8890
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003573
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  issn: 0921-8890
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003573
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0921-8890
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003573
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  issn: 0921-8890
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003573
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0921-8890
  databaseCode: AKRWK
  dateStart: 19880301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqG5gxDRpnh6riqpQ0QGo6BbZTozK0FRtOiAhfjt3TgJFQgxMiRM7cs7W-c7-vjvGLqUSOorSgLuxFNzXruQiNTGXbiwi45isa7E59-NwOPHvpsG0wfo1F4ZglZXuL3W61dbVk04lzc5iNus8OgKXJ3tMVp4HEoPdjyiLwfXHN8zDC8pTZqzMqXYdechivJa5yglQ2Q0o361LCZV_W502VpzBHtutTEXolb3ZZ41sfsB2NgIIHrJ3HGX4QkNDbkCtKWqCvSUDEl--WBIboHEKcl0QhwGdfbB9WgFtw2JFS3KCkmcOS-IbQJFDtiJ0FBADBRR-LQVKvPIGlMwBJ-sRmwxunvpDXuVT4Bodh4KHQgpXaK0iHTuq6wV-SAaCr4VQoemim6zQvUpNFIpApxEajg66U64RWniG4nYds-Y8n2cnDFBPxNJQ-DoZ-1JqIT0v8rAgiFaQ-i12VcsxWZRhM5IaT_aa2F9MSOxJKfYWC2tZJz9GP0HF_lfD0_82PGPbWKo2U85Zs1iusws0LwrVtvOnzbZ6t6PhmK6jh-fRJ_rL0bU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTleQMjoXknHlFFVaDtQit1i2wnRmVoqjYdkBC_nTsngSIhBrYktiP7bJ3v7O-7Y-xaSK6iKA0sJxbc8pUjLJ7q2BJOzCNt68w12JzBMOyN_cdJMGmwTs2FIVhlpftLnW60dfWlXUmzPZ9O2882x-3JXJOV94EbbNMP3Ig8sNuPb5yHF5TXzFjboup16CED8lrkMidEpRtQwluHMir_tj2tbTndPbZb2YpwV3ZnnzWy2QHbWYsgeMjecZrhCw4NuQa5orAJ5pEsSCx8MSw2QOsUxKogEgN6-2D6tAQ6h8WKhuUEJdEcFkQ4gCKHbEnwKCAKCkj8WwqUeeUNKJsDrtYjNu7ejzo9q0qoYCn0HAor5II7XCkZqdiWrhf4IVkIvuJchtpFP1mif5XqKOSBSiO0HG30pxzNFfc0Be46Zs1ZPstOGKCiiIWm-HUi9oVQXHhe5OELJ15B6rfYTS3HZF7GzUhqQNlrYoaYkNiTUuwtFtayTn5Mf4Ka_a-Gp_9teMW2eqNBP-k_DJ_O2DaWVCcr56xZLFbZBdoahbw0a-kTc0nRpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+sequences+of+bundles+of+line+segments+for+autonomous+robots+with+limited+vision+range+to+escape+from+blind+alley+regions&rft.jtitle=Robotics+and+autonomous+systems&rft.au=An%2C+Phan+Thanh&rft.au=Anh%2C+Pham+Hoang&rft.au=Binh%2C+Tran+Thanh&rft.au=Hoai%2C+Tran+Van&rft.date=2026-01-01&rft.pub=Elsevier+B.V&rft.issn=0921-8890&rft.volume=195&rft_id=info:doi/10.1016%2Fj.robot.2025.105185&rft.externalDocID=S0921889025002829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon