The sequences of bundles of line segments for autonomous robots with limited vision range to escape from blind alley regions
Consider the following problem: A robot operating in a 2D environment with a limited vision range finds a path to a goal in an unknown environment containing obstacles. In this paper, we propose a novel algorithm to solve the problem. In some special cases, our algorithm is convergent with respect t...
        Saved in:
      
    
          | Published in | Robotics and autonomous systems Vol. 195; p. 105185 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.01.2026
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0921-8890 | 
| DOI | 10.1016/j.robot.2025.105185 | 
Cover
| Abstract | Consider the following problem: A robot operating in a 2D environment with a limited vision range finds a path to a goal in an unknown environment containing obstacles. In this paper, we propose a novel algorithm to solve the problem. In some special cases, our algorithm is convergent with respect to ‖.‖. The problem involves discovering the environmental map and blind alley regions, that are bounded by obstacles, and it provides no possible passage for robots except in and out of their path entry occur, the robot has to return back to some positions outside to escape from such regions such that the returned path is not longer than the path entry (Blind Alley Region problem, (BAR) problem, in short). To solve the (BAR) problem, sequences of bundles of line segments during the robot’s traveling are constructed in our algorithm.
Some advantages of our algorithm are that (a) It reduces search space in blind alley regions because it only works on the sequences of bundles of the line segments built by the robot’s limited vision range. (b) Our algorithm ensures that the returned path to escape from the regions is not longer than the previous path of the robot. (c) Due to the construction of the sequences of bundles of line segments, our paths are not always “close” obstacles and the number of turns of such paths is smaller ones determined by other shortest path algorithms (e.g., A*, RRT*).
Our algorithm is implemented in Python and we experience the algorithm on some autonomous robots with different vision ranges in real environment. We also compare our result with RRTX, a state-of-art local path-planning algorithm, and A∗, a basic one. The experimental results show that our algorithm provides better solutions than RRTX and A* results in some specific circumstances. | 
    
|---|---|
| AbstractList | Consider the following problem: A robot operating in a 2D environment with a limited vision range finds a path to a goal in an unknown environment containing obstacles. In this paper, we propose a novel algorithm to solve the problem. In some special cases, our algorithm is convergent with respect to ‖.‖. The problem involves discovering the environmental map and blind alley regions, that are bounded by obstacles, and it provides no possible passage for robots except in and out of their path entry occur, the robot has to return back to some positions outside to escape from such regions such that the returned path is not longer than the path entry (Blind Alley Region problem, (BAR) problem, in short). To solve the (BAR) problem, sequences of bundles of line segments during the robot’s traveling are constructed in our algorithm.
Some advantages of our algorithm are that (a) It reduces search space in blind alley regions because it only works on the sequences of bundles of the line segments built by the robot’s limited vision range. (b) Our algorithm ensures that the returned path to escape from the regions is not longer than the previous path of the robot. (c) Due to the construction of the sequences of bundles of line segments, our paths are not always “close” obstacles and the number of turns of such paths is smaller ones determined by other shortest path algorithms (e.g., A*, RRT*).
Our algorithm is implemented in Python and we experience the algorithm on some autonomous robots with different vision ranges in real environment. We also compare our result with RRTX, a state-of-art local path-planning algorithm, and A∗, a basic one. The experimental results show that our algorithm provides better solutions than RRTX and A* results in some specific circumstances. | 
    
| ArticleNumber | 105185 | 
    
| Author | An, Phan Thanh Binh, Tran Thanh Anh, Pham Hoang Hoai, Tran Van  | 
    
| Author_xml | – sequence: 1 givenname: Phan Thanh orcidid: 0000-0002-1903-3510 surname: An fullname: An, Phan Thanh email: thanhan@hcmut.edu.vn organization: Institute of Mathematical and Computational Sciences (IMACS), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam – sequence: 2 givenname: Pham Hoang orcidid: 0000-0002-5806-5910 surname: Anh fullname: Anh, Pham Hoang organization: Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam – sequence: 3 givenname: Tran Thanh surname: Binh fullname: Binh, Tran Thanh organization: Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam – sequence: 4 givenname: Tran Van orcidid: 0000-0002-0602-4287 surname: Hoai fullname: Hoai, Tran Van email: hoai@hcmut.edu.vn organization: Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Viet Nam  | 
    
| BookMark | eNp9kMtOwzAQRb0oEm3hC9jMD6TYSZzECxao4iVVYlPWVuKMW1eJXWy3qBIfT0JYs5rRzL3zOAsys84iIXeMrhhlxf1h5V3j4iqlKR8qnFV8RuZUpCypKkGvySKEA6U042U2J9_bPULAzxNahQGchuZk225KO2PH5q5HGwNo56E-RWdd704BfrcE-DJxPwh7E7GFswnGWfC13SFEBxhUfUTQ3vXQDNNaqLsOL-BxN-jCDbnSdRfw9i8uycfz03b9mmzeX97Wj5tEpZzHpBC1YEKpplQVbdKM5wUtqzRXQjSFTgUtG5bnrS4LwVVbClbQqmRMCyUyLYo8W5Jsmqu8C8Gjlkdv-tpfJKNyhCYP8vcdOUKTE7TB9TC5cDjtbNDLoMyIqTUeVZStM__6fwBjeXwz | 
    
| Cites_doi | 10.1177/0278364915594679 10.1177/0278364911406761 10.1109/ICRA.2016.7487747 10.1109/21.59969 10.3390/s23104766 10.1016/j.patrec.2022.06.005 10.1109/ICRA.2019.8793889 10.1177/027836499801700903 10.1080/02331934.2017.1387260 10.1109/CRV52889.2021.00020 10.1504/IJCAT.2011.042693 10.1016/j.robot.2016.04.007 10.1109/TASE.2021.3122111 10.1007/s10846-007-9157-6 10.1109/TRA.2004.824649 10.1016/j.cam.2012.11.001 10.1080/02331930802434732 10.1109/ROBOT.2005.1570375 10.1007/s10898-022-01244-x 10.3390/computers10110153 10.1109/70.650160 10.1080/16168658.2021.2019432 10.1109/100.580977  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2025 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.robot.2025.105185 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| ExternalDocumentID | 10_1016_j_robot_2025_105185 S0921889025002829  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABIVO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHPGS AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ RXW SBC SCC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE UNMZH WUQ XPP ~G- ~HD AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c255t-69a919ccb7c80b2354607824c99b6f2907b144df7695cd791608711f9c93f9643 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0921-8890 | 
    
| IngestDate | Thu Oct 02 04:24:23 EDT 2025 Sun Oct 19 01:43:56 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Robot path planning Blind alley region Rapidly-exploring random tree Shortest path Bundle of line segments Polygonal obstacle Astar algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c255t-69a919ccb7c80b2354607824c99b6f2907b144df7695cd791608711f9c93f9643 | 
    
| ORCID | 0000-0002-0602-4287 0000-0002-1903-3510 0000-0002-5806-5910  | 
    
| ParticipantIDs | crossref_primary_10_1016_j_robot_2025_105185 elsevier_sciencedirect_doi_10_1016_j_robot_2025_105185  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2026 2026-01-00  | 
    
| PublicationDateYYYYMMDD | 2026-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2026 text: January 2026  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Robotics and autonomous systems | 
    
| PublicationYear | 2026 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Seda (b17) 2007; vol. 6 An (b28) 2010; 59 Ladd, Kavraki (b14) 2004; 20 Tashtoush, Haj-Mahmoud, Darwish, Maabreh, Alsinglawi, Elkhodr, Alsaedi (b4) 2021; 10 Fox, Burgard, Thrun (b20) 1997; 4 Kamil, Moghrabiah (b6) 2021; 14 Manikandan, Kaliyaperumal (b15) 2022; 160 A.H. Qureshi, A. Simeonov, M.J. Bency, M.C. Yip, Motion planning networks, in: 2019, International Conference on Robotics and Automation, ICRA, Montreal, QC, Canada, 2019, pp. 2118–2124. Kovács, Szayer, Tajti, Burdelis, Korondi (b12) 2016; 82 Kuffner, LaValle (b18) 2000; vol. 2 Ng, Braunl (b21) 2007; 50 An, Phu (b30) 2023; 85 An (b29) 2018; 67 J. Rosell, P. Iniguez, Path planning using Harmonic functions and probabilistic cell decomposition, in: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 1803–1808. Kamon, Rivlin (b23) 1997; 13 Li, Klette (b11) 2011 Roy, Maitra, Bhattacharya (b3) 2022; 19 Karaman, Frazzoli (b26) 2011; 30 J. Alonso-Mora, E. Montijano, M. Schwager, D. Rus, Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus, in: IEEE International Conference on Robotics and Automation, ICRA, Stockholm, Sweden, 2016, pp. 5356–5363. An, Hai, Hoai (b27) 2013; 244 Hsu, Latombe, Kurniawati (b13) 2007 A.-I. Toma, et al., Waypoint planning networks, in: 18th Conference on Robots and Vision, CRV, Burnaby, BC, Canada, 2021, pp. 87–94. Kamon, Rimon, Rivlin (b22) 1998; 17 Kang, Yue, Li, Maple (b5) 2011; 41 Hai, An, Huyen (b10) 2019; 26 Otte, E. (b19) 2016; 35 An (b25) 2017 Feng, Xie, Sun, Wang, Jiang, Xiao (b7) 2023; 23 Lumelsky, Skewis (b24) 1990; 20 Kunchev, Jain, Ivancevic, Finn (b2) 2006 Ng (10.1016/j.robot.2025.105185_b21) 2007; 50 Tashtoush (10.1016/j.robot.2025.105185_b4) 2021; 10 Kamil (10.1016/j.robot.2025.105185_b6) 2021; 14 An (10.1016/j.robot.2025.105185_b30) 2023; 85 Seda (10.1016/j.robot.2025.105185_b17) 2007; vol. 6 Hai (10.1016/j.robot.2025.105185_b10) 2019; 26 Kuffner (10.1016/j.robot.2025.105185_b18) 2000; vol. 2 An (10.1016/j.robot.2025.105185_b27) 2013; 244 An (10.1016/j.robot.2025.105185_b25) 2017 10.1016/j.robot.2025.105185_b16 Karaman (10.1016/j.robot.2025.105185_b26) 2011; 30 Kang (10.1016/j.robot.2025.105185_b5) 2011; 41 Roy (10.1016/j.robot.2025.105185_b3) 2022; 19 Feng (10.1016/j.robot.2025.105185_b7) 2023; 23 Fox (10.1016/j.robot.2025.105185_b20) 1997; 4 Ladd (10.1016/j.robot.2025.105185_b14) 2004; 20 Hsu (10.1016/j.robot.2025.105185_b13) 2007 Lumelsky (10.1016/j.robot.2025.105185_b24) 1990; 20 An (10.1016/j.robot.2025.105185_b29) 2018; 67 An (10.1016/j.robot.2025.105185_b28) 2010; 59 10.1016/j.robot.2025.105185_b1 Kamon (10.1016/j.robot.2025.105185_b22) 1998; 17 Kunchev (10.1016/j.robot.2025.105185_b2) 2006 Kamon (10.1016/j.robot.2025.105185_b23) 1997; 13 Otte (10.1016/j.robot.2025.105185_b19) 2016; 35 10.1016/j.robot.2025.105185_b9 10.1016/j.robot.2025.105185_b8 Kovács (10.1016/j.robot.2025.105185_b12) 2016; 82 Manikandan (10.1016/j.robot.2025.105185_b15) 2022; 160 Li (10.1016/j.robot.2025.105185_b11) 2011  | 
    
| References_xml | – reference: J. Rosell, P. Iniguez, Path planning using Harmonic functions and probabilistic cell decomposition, in: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 1803–1808. – volume: vol. 6 start-page: 127 year: 2007 end-page: -132 ident: b17 article-title: Roadmap methods vs. Cell decomposition in robot motion planning publication-title: Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation – year: 2017 ident: b25 article-title: Optimization Approaches for Computational Geometry – volume: 41 start-page: 177 year: 2011 end-page: 184 ident: b5 article-title: Genetic algorithm based solution to dead-end problems in robot navigation publication-title: Int. J. Comput. Appl. Technol. – volume: 20 start-page: 1058 year: 1990 end-page: 1069 ident: b24 article-title: Incorporating range sensing in the robot navigation function publication-title: IEEE Trans. Syst. Man Cybern. – volume: 10 start-page: 153 year: 2021 ident: b4 article-title: Enhancing robots navigation in internet of things indoor systems publication-title: Computers – start-page: 83 year: 2007 end-page: 97 ident: b13 article-title: On the probabilistic foundations of probabilistic roadmap planning publication-title: Robotics Research – volume: 30 start-page: 846 year: 2011 end-page: 894 ident: b26 article-title: Sampling-based algorithms for optimalmotion planning publication-title: Int. J. Robot. Res. – volume: 26 start-page: 1089 year: 2019 end-page: 1112 ident: b10 article-title: Shortest paths along a sequence of line segments in Euclidean spaces publication-title: J. Convex Anal. – year: 2011 ident: b11 article-title: Euclidean Shortest Paths: Exact Or Approximate Algorithms – volume: 82 start-page: 24 year: 2016 end-page: 34 ident: b12 article-title: A novel potential field method for path planning of mobile robots by adapting animal motion attributes publication-title: Robot. Auton. Syst. – volume: 35 start-page: 797 year: 2016 end-page: 822 ident: b19 article-title: RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning publication-title: Int. J. Robot. Res. – volume: 17 start-page: 934 year: 1998 end-page: 953 ident: b22 article-title: TangentBug: A range-sensor-based navigation algorithm publication-title: Int. J. Robot. Res. – start-page: 537 year: 2006 end-page: 544 ident: b2 article-title: Path planning and obstacle avoidance for autonomous mobile robots: a review publication-title: Int. Conf. Knowl. Based Intell. Inf. Eng. Syst – reference: A.H. Qureshi, A. Simeonov, M.J. Bency, M.C. Yip, Motion planning networks, in: 2019, International Conference on Robotics and Automation, ICRA, Montreal, QC, Canada, 2019, pp. 2118–2124. – volume: 244 start-page: 67 year: 2013 end-page: 76 ident: b27 article-title: Direct multiple shooting method for solving approximate shortest path problems publication-title: J. Comput. Appl. Math. – volume: 67 start-page: 159 year: 2018 end-page: 177 ident: b29 article-title: Finding shortest paths in a sequence of triangles in 3D by the method of orienting curves publication-title: Optimization – volume: vol. 2 start-page: 995 year: 2000 end-page: 1001 ident: b18 article-title: RRT-connect: An efficient approach to single-query path planning publication-title: Proceedings 2000 ICRA Millennium Conference – volume: 14 start-page: 51 year: 2021 end-page: 73 ident: b6 article-title: Multilayer decision-based fuzzy logic model to navigate mobile robot in unknown dynamic environments publication-title: Fuzzy Inf. Eng. – volume: 19 start-page: 3459 year: 2022 end-page: 3470 ident: b3 article-title: Exploration of multiple unknown areas by swarm of robots utilizing virtual-region-based splitting and merging technique publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 13 start-page: 814 year: 1997 end-page: 822 ident: b23 article-title: Sensory-based motion planning with global proofs publication-title: IEEE Trans. Robot. Autom. – volume: 4 start-page: 23 year: 1997 end-page: 33 ident: b20 article-title: The dynamic window approach to collision avoidance publication-title: IEEE Robot. Autom. Mag. – volume: 85 year: 2023 ident: b30 article-title: Finding exactly shortest paths through a sequence of adjacent triangles by the method of orienting curves publication-title: J. Global Optim. – volume: 20 start-page: 229 year: 2004 end-page: 242 ident: b14 article-title: Measure theoretic analysis of probabilistic path planning publication-title: IEEE Trans. Robot. Autom. – volume: 50 start-page: 73 year: 2007 end-page: 84 ident: b21 article-title: Performance comparison of bug navigation algorithms publication-title: J. Intell. Robot. Syst. – reference: A.-I. Toma, et al., Waypoint planning networks, in: 18th Conference on Robots and Vision, CRV, Burnaby, BC, Canada, 2021, pp. 87–94. – volume: 23 start-page: 4766 year: 2023 ident: b7 article-title: Efficient autonomous exploration and mapping in unknown environments publication-title: Sensors – volume: 160 start-page: 112 year: 2022 end-page: 121 ident: b15 article-title: Collision avoidance approaches for autonomous mobile robots to tackle the problem of pedestrians roaming on campus road publication-title: Pattern Recognit. Lett. – volume: 59 start-page: 175 year: 2010 end-page: 179 ident: b28 article-title: Method of orienting curves for determining the convex hull of a finite set of points in the plane publication-title: Optimization – reference: J. Alonso-Mora, E. Montijano, M. Schwager, D. Rus, Distributed multi-robot formation control among obstacles: A geometric and optimization approach with consensus, in: IEEE International Conference on Robotics and Automation, ICRA, Stockholm, Sweden, 2016, pp. 5356–5363. – volume: 35 start-page: 797 year: 2016 ident: 10.1016/j.robot.2025.105185_b19 article-title: RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364915594679 – volume: 30 start-page: 846 year: 2011 ident: 10.1016/j.robot.2025.105185_b26 article-title: Sampling-based algorithms for optimalmotion planning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364911406761 – ident: 10.1016/j.robot.2025.105185_b1 doi: 10.1109/ICRA.2016.7487747 – volume: 20 start-page: 1058 year: 1990 ident: 10.1016/j.robot.2025.105185_b24 article-title: Incorporating range sensing in the robot navigation function publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.59969 – volume: 23 start-page: 4766 year: 2023 ident: 10.1016/j.robot.2025.105185_b7 article-title: Efficient autonomous exploration and mapping in unknown environments publication-title: Sensors doi: 10.3390/s23104766 – volume: 160 start-page: 112 year: 2022 ident: 10.1016/j.robot.2025.105185_b15 article-title: Collision avoidance approaches for autonomous mobile robots to tackle the problem of pedestrians roaming on campus road publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2022.06.005 – start-page: 83 year: 2007 ident: 10.1016/j.robot.2025.105185_b13 article-title: On the probabilistic foundations of probabilistic roadmap planning – ident: 10.1016/j.robot.2025.105185_b9 doi: 10.1109/ICRA.2019.8793889 – volume: 17 start-page: 934 year: 1998 ident: 10.1016/j.robot.2025.105185_b22 article-title: TangentBug: A range-sensor-based navigation algorithm publication-title: Int. J. Robot. Res. doi: 10.1177/027836499801700903 – volume: 67 start-page: 159 year: 2018 ident: 10.1016/j.robot.2025.105185_b29 article-title: Finding shortest paths in a sequence of triangles in 3D by the method of orienting curves publication-title: Optimization doi: 10.1080/02331934.2017.1387260 – ident: 10.1016/j.robot.2025.105185_b8 doi: 10.1109/CRV52889.2021.00020 – volume: 41 start-page: 177 year: 2011 ident: 10.1016/j.robot.2025.105185_b5 article-title: Genetic algorithm based solution to dead-end problems in robot navigation publication-title: Int. J. Comput. Appl. Technol. doi: 10.1504/IJCAT.2011.042693 – volume: 82 start-page: 24 year: 2016 ident: 10.1016/j.robot.2025.105185_b12 article-title: A novel potential field method for path planning of mobile robots by adapting animal motion attributes publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.04.007 – volume: vol. 2 start-page: 995 year: 2000 ident: 10.1016/j.robot.2025.105185_b18 article-title: RRT-connect: An efficient approach to single-query path planning – volume: 19 start-page: 3459 year: 2022 ident: 10.1016/j.robot.2025.105185_b3 article-title: Exploration of multiple unknown areas by swarm of robots utilizing virtual-region-based splitting and merging technique publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2021.3122111 – volume: 50 start-page: 73 year: 2007 ident: 10.1016/j.robot.2025.105185_b21 article-title: Performance comparison of bug navigation algorithms publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-007-9157-6 – volume: 20 start-page: 229 year: 2004 ident: 10.1016/j.robot.2025.105185_b14 article-title: Measure theoretic analysis of probabilistic path planning publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/TRA.2004.824649 – volume: 244 start-page: 67 year: 2013 ident: 10.1016/j.robot.2025.105185_b27 article-title: Direct multiple shooting method for solving approximate shortest path problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.11.001 – volume: 59 start-page: 175 year: 2010 ident: 10.1016/j.robot.2025.105185_b28 article-title: Method of orienting curves for determining the convex hull of a finite set of points in the plane publication-title: Optimization doi: 10.1080/02331930802434732 – ident: 10.1016/j.robot.2025.105185_b16 doi: 10.1109/ROBOT.2005.1570375 – year: 2011 ident: 10.1016/j.robot.2025.105185_b11 – volume: vol. 6 start-page: 127 year: 2007 ident: 10.1016/j.robot.2025.105185_b17 article-title: Roadmap methods vs. Cell decomposition in robot motion planning – year: 2017 ident: 10.1016/j.robot.2025.105185_b25 – volume: 85 year: 2023 ident: 10.1016/j.robot.2025.105185_b30 article-title: Finding exactly shortest paths through a sequence of adjacent triangles by the method of orienting curves publication-title: J. Global Optim. doi: 10.1007/s10898-022-01244-x – start-page: 537 year: 2006 ident: 10.1016/j.robot.2025.105185_b2 article-title: Path planning and obstacle avoidance for autonomous mobile robots: a review – volume: 10 start-page: 153 issue: 11 year: 2021 ident: 10.1016/j.robot.2025.105185_b4 article-title: Enhancing robots navigation in internet of things indoor systems publication-title: Computers doi: 10.3390/computers10110153 – volume: 13 start-page: 814 year: 1997 ident: 10.1016/j.robot.2025.105185_b23 article-title: Sensory-based motion planning with global proofs publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.650160 – volume: 14 start-page: 51 issue: 1 year: 2021 ident: 10.1016/j.robot.2025.105185_b6 article-title: Multilayer decision-based fuzzy logic model to navigate mobile robot in unknown dynamic environments publication-title: Fuzzy Inf. Eng. doi: 10.1080/16168658.2021.2019432 – volume: 26 start-page: 1089 year: 2019 ident: 10.1016/j.robot.2025.105185_b10 article-title: Shortest paths along a sequence of line segments in Euclidean spaces publication-title: J. Convex Anal. – volume: 4 start-page: 23 year: 1997 ident: 10.1016/j.robot.2025.105185_b20 article-title: The dynamic window approach to collision avoidance publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/100.580977  | 
    
| SSID | ssj0003573 | 
    
| Score | 2.4576604 | 
    
| Snippet | Consider the following problem: A robot operating in a 2D environment with a limited vision range finds a path to a goal in an unknown environment containing... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 105185 | 
    
| SubjectTerms | Astar algorithm Blind alley region Bundle of line segments Polygonal obstacle Rapidly-exploring random tree Robot path planning Shortest path  | 
    
| Title | The sequences of bundles of line segments for autonomous robots with limited vision range to escape from blind alley regions | 
    
| URI | https://dx.doi.org/10.1016/j.robot.2025.105185 | 
    
| Volume | 195 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0921-8890 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003573 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection issn: 0921-8890 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003573 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0921-8890 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003573 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals issn: 0921-8890 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003573 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0921-8890 databaseCode: AKRWK dateStart: 19880301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqG5gxDRpnh6riqpQ0QGo6BbZTozK0FRtOiAhfjt3TgJFQgxMiRM7cs7W-c7-vjvGLqUSOorSgLuxFNzXruQiNTGXbiwi45isa7E59-NwOPHvpsG0wfo1F4ZglZXuL3W61dbVk04lzc5iNus8OgKXJ3tMVp4HEoPdjyiLwfXHN8zDC8pTZqzMqXYdechivJa5yglQ2Q0o361LCZV_W502VpzBHtutTEXolb3ZZ41sfsB2NgIIHrJ3HGX4QkNDbkCtKWqCvSUDEl--WBIboHEKcl0QhwGdfbB9WgFtw2JFS3KCkmcOS-IbQJFDtiJ0FBADBRR-LQVKvPIGlMwBJ-sRmwxunvpDXuVT4Bodh4KHQgpXaK0iHTuq6wV-SAaCr4VQoemim6zQvUpNFIpApxEajg66U64RWniG4nYds-Y8n2cnDFBPxNJQ-DoZ-1JqIT0v8rAgiFaQ-i12VcsxWZRhM5IaT_aa2F9MSOxJKfYWC2tZJz9GP0HF_lfD0_82PGPbWKo2U85Zs1iusws0LwrVtvOnzbZ6t6PhmK6jh-fRJ_rL0bU | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTleQMjoXknHlFFVaDtQit1i2wnRmVoqjYdkBC_nTsngSIhBrYktiP7bJ3v7O-7Y-xaSK6iKA0sJxbc8pUjLJ7q2BJOzCNt68w12JzBMOyN_cdJMGmwTs2FIVhlpftLnW60dfWlXUmzPZ9O2882x-3JXJOV94EbbNMP3Ig8sNuPb5yHF5TXzFjboup16CED8lrkMidEpRtQwluHMir_tj2tbTndPbZb2YpwV3ZnnzWy2QHbWYsgeMjecZrhCw4NuQa5orAJ5pEsSCx8MSw2QOsUxKogEgN6-2D6tAQ6h8WKhuUEJdEcFkQ4gCKHbEnwKCAKCkj8WwqUeeUNKJsDrtYjNu7ejzo9q0qoYCn0HAor5II7XCkZqdiWrhf4IVkIvuJchtpFP1mif5XqKOSBSiO0HG30pxzNFfc0Be46Zs1ZPstOGKCiiIWm-HUi9oVQXHhe5OELJ15B6rfYTS3HZF7GzUhqQNlrYoaYkNiTUuwtFtayTn5Mf4Ka_a-Gp_9teMW2eqNBP-k_DJ_O2DaWVCcr56xZLFbZBdoahbw0a-kTc0nRpw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+sequences+of+bundles+of+line+segments+for+autonomous+robots+with+limited+vision+range+to+escape+from+blind+alley+regions&rft.jtitle=Robotics+and+autonomous+systems&rft.au=An%2C+Phan+Thanh&rft.au=Anh%2C+Pham+Hoang&rft.au=Binh%2C+Tran+Thanh&rft.au=Hoai%2C+Tran+Van&rft.date=2026-01-01&rft.pub=Elsevier+B.V&rft.issn=0921-8890&rft.volume=195&rft_id=info:doi/10.1016%2Fj.robot.2025.105185&rft.externalDocID=S0921889025002829 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon |