Enhanced energy harvesting in rotational triboelectric nanogenerator via Gaussian process regression-based Bayesian optimization

Triboelectric nanogenerators (TENGs) technology is a mechanical energy-harvesting technology with several advantages. Among the various TENG designs, the TENG with a rotational grating structure enables continuous power generation and features a simple design, making it the subject of extensive rese...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 135; p. 110653
Main Authors Yoon, Jiyoung, Lee, Junhyeong, Ryu, Seunghwa, Park, Jinhyoung
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN2211-2855
DOI10.1016/j.nanoen.2025.110653

Cover

Abstract Triboelectric nanogenerators (TENGs) technology is a mechanical energy-harvesting technology with several advantages. Among the various TENG designs, the TENG with a rotational grating structure enables continuous power generation and features a simple design, making it the subject of extensive research. Until now, TENGs with fan-shaped gratings have mainly been investigated. In this study, we propose a methodology to first analyze the output performance of TENGs with various grating shapes through simulations and then apply a Gaussian process regression-based Bayesian optimization technique to derive the optimal grating shape that maximizes the output performance. Various grating shapes, derived using the proposed optimization methodology, were fabricated and specifically tested to validate this methodology. It was confirmed that the output performance trends, based on the grating shapes, were consistent between the optimization predictions and the experimental results. To investigate the optimal grating shapes for different target load resistances, the optimal grating shapes were also derived and examined at 10M, 100M, and 1,000MΩ. This work provides a new design approach for rotational grating-structure TENG, presenting innovative concept for designing high-output TENG with broad application potential in the field of energy harvesting. [Display omitted] •Bayesian optimization boosts energy by optimizing rotational TENG grating shapes.•Output of TENG with various grating shapes was evaluated via V-Q-α relation and FEM.•Gaussian regression-based Bayesian optimization derived the optimal grating shape.•Our optimization tailored grating shape depending on the target load resistance.
AbstractList Triboelectric nanogenerators (TENGs) technology is a mechanical energy-harvesting technology with several advantages. Among the various TENG designs, the TENG with a rotational grating structure enables continuous power generation and features a simple design, making it the subject of extensive research. Until now, TENGs with fan-shaped gratings have mainly been investigated. In this study, we propose a methodology to first analyze the output performance of TENGs with various grating shapes through simulations and then apply a Gaussian process regression-based Bayesian optimization technique to derive the optimal grating shape that maximizes the output performance. Various grating shapes, derived using the proposed optimization methodology, were fabricated and specifically tested to validate this methodology. It was confirmed that the output performance trends, based on the grating shapes, were consistent between the optimization predictions and the experimental results. To investigate the optimal grating shapes for different target load resistances, the optimal grating shapes were also derived and examined at 10M, 100M, and 1,000MΩ. This work provides a new design approach for rotational grating-structure TENG, presenting innovative concept for designing high-output TENG with broad application potential in the field of energy harvesting. [Display omitted] •Bayesian optimization boosts energy by optimizing rotational TENG grating shapes.•Output of TENG with various grating shapes was evaluated via V-Q-α relation and FEM.•Gaussian regression-based Bayesian optimization derived the optimal grating shape.•Our optimization tailored grating shape depending on the target load resistance.
ArticleNumber 110653
Author Lee, Junhyeong
Yoon, Jiyoung
Ryu, Seunghwa
Park, Jinhyoung
Author_xml – sequence: 1
  givenname: Jiyoung
  surname: Yoon
  fullname: Yoon, Jiyoung
  organization: Advanced Mobility System Group, Korea Institute of Industrial Technology, Daegu, Republic of Korea
– sequence: 2
  givenname: Junhyeong
  surname: Lee
  fullname: Lee, Junhyeong
  organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
– sequence: 3
  givenname: Seunghwa
  orcidid: 0000-0001-9516-5809
  surname: Ryu
  fullname: Ryu, Seunghwa
  email: ryush@kaist.ac.kr
  organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
– sequence: 4
  givenname: Jinhyoung
  orcidid: 0000-0002-5535-3693
  surname: Park
  fullname: Park, Jinhyoung
  email: jhpark98@koreatech.ac.kr
  organization: School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea
BookMark eNp9kLFOwzAQhj0UiVL6Bgx-gQTbiZNMSFCVglSJpbt1di6pq9au7FCpTDw6DmHmlv-G-_-7--7IzHmHhDxwlnPGq8dD7sB5dLlgQuacs0oWMzIXgvNMNFLekmWMB5aqkrzmYk6-124PzmBL0WHor3QP4YJxsK6n1tHgBxisd3CkQ7Da4xFNagwd9_SjBQYf6MUC3cBnjBYcPQdvMEYasA9JkzvTENOGF7ji74Q_D_Zkv36T78lNB8eIyz9dkN3rerd6y7Yfm_fV8zYzQsohk4hN-qIybakrBg1v667T0JRFUQAToNsSjW4l6lpWnBWVrqEq6loIFIZjsSDlFGuCjzFgp87BniBcFWdqZKcOamKnRnZqYpdsT5MN02kXi0FFY3HkZUMioVpv_w_4ARw1geo
Cites_doi 10.1016/j.nanoen.2020.104968
10.1002/admt.202300327
10.1016/S0304-3886(97)00016-8
10.1016/j.compscitech.2021.109254
10.1002/aenm.202102106
10.1039/D3MH00039G
10.1016/j.elstat.2019.103370
10.1039/D3EE03520D
10.1016/j.nanoen.2023.108735
10.1006/gmip.1999.0490
10.1016/j.nanoen.2022.107048
10.1039/D3MH00614J
10.1002/aesr.202000113
10.1103/PhysRevResearch.4.023131
10.1002/adfm.202108580
10.1021/acsnano.2c12458
10.1016/j.nanoen.2020.104993
10.1002/adfm.202004714
10.1007/s12274-016-0997-x
10.1063/1.5017103
10.1039/C5EE01532D
10.1002/aenm.202301832
10.1002/adma.201302808
10.1023/A:1008306431147
10.1088/1742-6596/208/1/012136
10.1039/D3SE00714F
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2025.110653
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2025_110653
S2211285525000126
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AAEDT
AAEDW
AAEPC
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHIDL
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSH
SSM
SSR
SSZ
T5K
~G-
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c255t-5ee82116cd4b60a81d7ffba84333a02abd4ecbd5eb7561036b7a637722e2c1e3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Wed Oct 01 06:33:34 EDT 2025
Sat May 24 17:05:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Energy harvesting
Grating shape optimization
Rotational triboelectric nanogenerator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-5ee82116cd4b60a81d7ffba84333a02abd4ecbd5eb7561036b7a637722e2c1e3
ORCID 0000-0001-9516-5809
0000-0002-5535-3693
ParticipantIDs crossref_primary_10_1016_j_nanoen_2025_110653
elsevier_sciencedirect_doi_10_1016_j_nanoen_2025_110653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Chen, Lin (b1) 2015; 8
Pelikan, Pelikan (b22) 2005
Machado, Zhao, Amjadi, Ouyang, Basset, Yurchenko (b20) 2023; 115
J.R. Gardner, M.J. Kusner, Z.E. Xu, K.Q. Weinberger, J.P. Cunningham, Bayesian optimization with inequality constraints, in: Proceedings of the International Conference on Machine Learning, ICML, 2014, pp. 937–945.
Lv, Li, Xie, Zhang, Liu, Yang, Guo, Yang, Lin (b8) 2023; 13
Cho, Kim, Park, Kim (b4) 2022; 95
Snoek, Larochelle, Adams (b28) 2012; 25
Han, Feng, Chen, Liang, Pang, Jiang, Wang (b5) 2022; 32
Cao, Li, Shen, Zhang, Gong, Guo, Peng, Wang (b13) 2024
Williams, Rasmussen (b26) 1995; 8
Li, Bai, Shao, Meng, Li (b9) 2024
Chen, Wei, Wang, Li, Sun, Peng, Wu, Wang, Wang (b7) 2021; 11
Bi, Wu, Wang, Cao, Cheng, Ma, Ye (b10) 2020; 75
Yadav, Sahay, Verma, Maurya, Yadav (b14) 2023; 7
Zhang (b21) 1999; 61
Liu, Mo, Fu, Lu, Zhang, Wang, Nie (b11) 2020; 30
Cao, Zhou, Zhou, Hu, Wang, Wang, Sun (b6) 2023; 8
Shin, Ko, Lyeo, Kim (b18) 2022; 4
Jones, Schonlau, Welch (b25) 1998; 13
Wu, Xue, Fang, Gao, Yan, Jiang, Liu, Wang, Liu, Cheng (b15) 2024
Denzel, Kästner (b27) 2018; 148
Jiang, Chen, Yang, Han, Tang, Wang (b19) 2016; 9
Das, Shyam (b31) 2010; 208
Zhou, Liu, Gao, Wang, Qin, Wang, Lin, Xie, Chen, Zhang (b3) 2021; 2
Lee, Park, Lee, Lee, Park, Lee, Ryu (b24) 2023
Ma, Jones, Miller, Kozaczek (b30) 2019; 101
Niu, Liu, Wang, Lin, Zhou, Hu, Wang (b16) 2013; 25
Watson, Yu (b17) 1997; 40
Park, Kim, Kim, Song, Park, Ryu (b29) 2022; 220
Khorsand, Tavakoli, Guan, Tang (b2) 2020; 75
Choi, Lee, Lin, Cho, Kim, Ao, Soh, Sohn, Jeong, Lee (b12) 2023; 17
Cao (10.1016/j.nanoen.2025.110653_b13) 2024
Choi (10.1016/j.nanoen.2025.110653_b12) 2023; 17
Pelikan (10.1016/j.nanoen.2025.110653_b22) 2005
Denzel (10.1016/j.nanoen.2025.110653_b27) 2018; 148
Wang (10.1016/j.nanoen.2025.110653_b1) 2015; 8
Zhang (10.1016/j.nanoen.2025.110653_b21) 1999; 61
Shin (10.1016/j.nanoen.2025.110653_b18) 2022; 4
Li (10.1016/j.nanoen.2025.110653_b9) 2024
Watson (10.1016/j.nanoen.2025.110653_b17) 1997; 40
Park (10.1016/j.nanoen.2025.110653_b29) 2022; 220
10.1016/j.nanoen.2025.110653_b23
Liu (10.1016/j.nanoen.2025.110653_b11) 2020; 30
Jiang (10.1016/j.nanoen.2025.110653_b19) 2016; 9
Williams (10.1016/j.nanoen.2025.110653_b26) 1995; 8
Lee (10.1016/j.nanoen.2025.110653_b24) 2023
Cho (10.1016/j.nanoen.2025.110653_b4) 2022; 95
Khorsand (10.1016/j.nanoen.2025.110653_b2) 2020; 75
Jones (10.1016/j.nanoen.2025.110653_b25) 1998; 13
Zhou (10.1016/j.nanoen.2025.110653_b3) 2021; 2
Niu (10.1016/j.nanoen.2025.110653_b16) 2013; 25
Han (10.1016/j.nanoen.2025.110653_b5) 2022; 32
Cao (10.1016/j.nanoen.2025.110653_b6) 2023; 8
Chen (10.1016/j.nanoen.2025.110653_b7) 2021; 11
Das (10.1016/j.nanoen.2025.110653_b31) 2010; 208
Snoek (10.1016/j.nanoen.2025.110653_b28) 2012; 25
Bi (10.1016/j.nanoen.2025.110653_b10) 2020; 75
Wu (10.1016/j.nanoen.2025.110653_b15) 2024
Machado (10.1016/j.nanoen.2025.110653_b20) 2023; 115
Ma (10.1016/j.nanoen.2025.110653_b30) 2019; 101
Yadav (10.1016/j.nanoen.2025.110653_b14) 2023; 7
Lv (10.1016/j.nanoen.2025.110653_b8) 2023; 13
References_xml – volume: 9
  start-page: 1057
  year: 2016
  end-page: 1070
  ident: b19
  article-title: Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes
  publication-title: Nano Res.
– volume: 8
  year: 1995
  ident: b26
  article-title: Gaussian processes for regression
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 17
  start-page: 11087
  year: 2023
  end-page: 11219
  ident: b12
  article-title: Recent advances in triboelectric nanogenerators: from technological progress to commercial applications
  publication-title: ACS Nano
– reference: J.R. Gardner, M.J. Kusner, Z.E. Xu, K.Q. Weinberger, J.P. Cunningham, Bayesian optimization with inequality constraints, in: Proceedings of the International Conference on Machine Learning, ICML, 2014, pp. 937–945.
– volume: 30
  year: 2020
  ident: b11
  article-title: Enhancement of triboelectric charge density by chemical functionalization
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: b25
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
– volume: 2
  year: 2021
  ident: b3
  article-title: Dual mode rotary triboelectric nanogenerator for collecting kinetic energy from bicycle brake
  publication-title: Adv. Energy Sustain. Res.
– year: 2024
  ident: b9
  article-title: Strategies to improve the output performance of triboelectric nanogenerators
  publication-title: Small Methods
– volume: 61
  start-page: 2
  year: 1999
  end-page: 15
  ident: b21
  article-title: C-Bézier curves and surfaces
  publication-title: Graph. Models Image Process.
– volume: 208
  year: 2010
  ident: b31
  article-title: Designing of electrode for high energy charged particle acceleration
  publication-title: J. Phys. Conf. Ser.
– volume: 40
  start-page: 67
  year: 1997
  end-page: 72
  ident: b17
  article-title: The contact electrification of polymers and the depth of charge penetration
  publication-title: J. Electrostat.
– volume: 148
  year: 2018
  ident: b27
  article-title: Gaussian process regression for geometry optimization
  publication-title: J. Chem. Phys.
– volume: 4
  year: 2022
  ident: b18
  article-title: Derivation of a governing rule in triboelectric charging and series from thermoelectricity
  publication-title: Phys. Rev. Res.
– volume: 8
  year: 2023
  ident: b6
  article-title: High performance rotary-structured triboelectric-electromagnetic hybrid nanogenerator for ocean wind energy harvesting
  publication-title: Adv. Mater. Technol.
– volume: 220
  year: 2022
  ident: b29
  article-title: Designing staggered platelet composite structure with Gaussian process regression based Bayesian optimization
  publication-title: Compos. Sci. Technol.
– year: 2024
  ident: b15
  article-title: Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing
  publication-title: Mater. Horiz.
– volume: 11
  year: 2021
  ident: b7
  article-title: Design optimization of soft-contact freestanding rotary triboelectric nanogenerator for high-output performance
  publication-title: Adv. Energy Mater.
– volume: 75
  year: 2020
  ident: b2
  article-title: Artificial intelligence enhanced mathematical modeling on rotary triboelectric nanogenerators under various kinematic and geometric conditions
  publication-title: Nano Energy
– year: 2023
  ident: b24
  article-title: Machine learning-based inverse design methods considering data characteristics and design space size in materials design and manufacturing: a review
  publication-title: Mater. Horiz.
– volume: 25
  year: 2012
  ident: b28
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: b13
  article-title: Progress on techniques for improving output performance of triboelectric nanogenerators
  publication-title: Energy Environ. Sci.
– volume: 95
  year: 2022
  ident: b4
  article-title: A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system
  publication-title: Nano Energy
– volume: 25
  start-page: 6184
  year: 2013
  end-page: 6193
  ident: b16
  article-title: Theory of sliding-mode triboelectric nanogenerators
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3796
  year: 2023
  end-page: 3831
  ident: b14
  article-title: Applications of multifunctional triboelectric nanogenerator (TENG) devices: materials and prospects
  publication-title: Sustain. Energy Fuels
– volume: 115
  year: 2023
  ident: b20
  article-title: Optimisation-driven design of sliding mode triboelectric energy harvesters
  publication-title: Nano Energy
– start-page: 31
  year: 2005
  end-page: 48
  ident: b22
  article-title: Bayesian optimization algorithm
  publication-title: Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms
– volume: 75
  year: 2020
  ident: b10
  article-title: Optimization of structural parameters for rotary freestanding-electret generators and wind energy harvesting
  publication-title: Nano Energy
– volume: 13
  year: 2023
  ident: b8
  article-title: High-performance and durable rotational triboelectric nanogenerator leveraging soft-contact coplanar charge pumping strategy
  publication-title: Adv. Energy Mater.
– volume: 101
  year: 2019
  ident: b30
  article-title: An electrostatic study of curvature effects on electric field stress in high voltage differentials
  publication-title: J. Electrost.
– volume: 32
  year: 2022
  ident: b5
  article-title: Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2250
  year: 2015
  end-page: 2282
  ident: b1
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
– volume: 75
  year: 2020
  ident: 10.1016/j.nanoen.2025.110653_b10
  article-title: Optimization of structural parameters for rotary freestanding-electret generators and wind energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104968
– volume: 8
  issue: 15
  year: 2023
  ident: 10.1016/j.nanoen.2025.110653_b6
  article-title: High performance rotary-structured triboelectric-electromagnetic hybrid nanogenerator for ocean wind energy harvesting
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202300327
– volume: 40
  start-page: 67
  year: 1997
  ident: 10.1016/j.nanoen.2025.110653_b17
  article-title: The contact electrification of polymers and the depth of charge penetration
  publication-title: J. Electrostat.
  doi: 10.1016/S0304-3886(97)00016-8
– volume: 220
  year: 2022
  ident: 10.1016/j.nanoen.2025.110653_b29
  article-title: Designing staggered platelet composite structure with Gaussian process regression based Bayesian optimization
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.109254
– volume: 25
  year: 2012
  ident: 10.1016/j.nanoen.2025.110653_b28
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  issue: 44
  year: 2021
  ident: 10.1016/j.nanoen.2025.110653_b7
  article-title: Design optimization of soft-contact freestanding rotary triboelectric nanogenerator for high-output performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102106
– year: 2023
  ident: 10.1016/j.nanoen.2025.110653_b24
  article-title: Machine learning-based inverse design methods considering data characteristics and design space size in materials design and manufacturing: a review
  publication-title: Mater. Horiz.
  doi: 10.1039/D3MH00039G
– volume: 101
  year: 2019
  ident: 10.1016/j.nanoen.2025.110653_b30
  article-title: An electrostatic study of curvature effects on electric field stress in high voltage differentials
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2019.103370
– year: 2024
  ident: 10.1016/j.nanoen.2025.110653_b13
  article-title: Progress on techniques for improving output performance of triboelectric nanogenerators
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE03520D
– volume: 115
  year: 2023
  ident: 10.1016/j.nanoen.2025.110653_b20
  article-title: Optimisation-driven design of sliding mode triboelectric energy harvesters
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108735
– volume: 61
  start-page: 2
  issue: 1
  year: 1999
  ident: 10.1016/j.nanoen.2025.110653_b21
  article-title: C-Bézier curves and surfaces
  publication-title: Graph. Models Image Process.
  doi: 10.1006/gmip.1999.0490
– volume: 95
  year: 2022
  ident: 10.1016/j.nanoen.2025.110653_b4
  article-title: A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107048
– year: 2024
  ident: 10.1016/j.nanoen.2025.110653_b15
  article-title: Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing
  publication-title: Mater. Horiz.
  doi: 10.1039/D3MH00614J
– volume: 2
  issue: 6
  year: 2021
  ident: 10.1016/j.nanoen.2025.110653_b3
  article-title: Dual mode rotary triboelectric nanogenerator for collecting kinetic energy from bicycle brake
  publication-title: Adv. Energy Sustain. Res.
  doi: 10.1002/aesr.202000113
– year: 2024
  ident: 10.1016/j.nanoen.2025.110653_b9
  article-title: Strategies to improve the output performance of triboelectric nanogenerators
  publication-title: Small Methods
– volume: 4
  issue: 2
  year: 2022
  ident: 10.1016/j.nanoen.2025.110653_b18
  article-title: Derivation of a governing rule in triboelectric charging and series from thermoelectricity
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.023131
– volume: 32
  issue: 2
  year: 2022
  ident: 10.1016/j.nanoen.2025.110653_b5
  article-title: Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108580
– volume: 17
  start-page: 11087
  issue: 12
  year: 2023
  ident: 10.1016/j.nanoen.2025.110653_b12
  article-title: Recent advances in triboelectric nanogenerators: from technological progress to commercial applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c12458
– volume: 75
  year: 2020
  ident: 10.1016/j.nanoen.2025.110653_b2
  article-title: Artificial intelligence enhanced mathematical modeling on rotary triboelectric nanogenerators under various kinematic and geometric conditions
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104993
– volume: 30
  issue: 50
  year: 2020
  ident: 10.1016/j.nanoen.2025.110653_b11
  article-title: Enhancement of triboelectric charge density by chemical functionalization
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004714
– volume: 9
  start-page: 1057
  year: 2016
  ident: 10.1016/j.nanoen.2025.110653_b19
  article-title: Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-0997-x
– ident: 10.1016/j.nanoen.2025.110653_b23
– volume: 148
  issue: 9
  year: 2018
  ident: 10.1016/j.nanoen.2025.110653_b27
  article-title: Gaussian process regression for geometry optimization
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5017103
– volume: 8
  start-page: 2250
  issue: 8
  year: 2015
  ident: 10.1016/j.nanoen.2025.110653_b1
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– volume: 13
  year: 2023
  ident: 10.1016/j.nanoen.2025.110653_b8
  article-title: High-performance and durable rotational triboelectric nanogenerator leveraging soft-contact coplanar charge pumping strategy
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202301832
– volume: 25
  start-page: 6184
  issue: 43
  year: 2013
  ident: 10.1016/j.nanoen.2025.110653_b16
  article-title: Theory of sliding-mode triboelectric nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302808
– volume: 13
  start-page: 455
  year: 1998
  ident: 10.1016/j.nanoen.2025.110653_b25
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 208
  year: 2010
  ident: 10.1016/j.nanoen.2025.110653_b31
  article-title: Designing of electrode for high energy charged particle acceleration
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/208/1/012136
– start-page: 31
  year: 2005
  ident: 10.1016/j.nanoen.2025.110653_b22
  article-title: Bayesian optimization algorithm
– volume: 7
  start-page: 3796
  issue: 16
  year: 2023
  ident: 10.1016/j.nanoen.2025.110653_b14
  article-title: Applications of multifunctional triboelectric nanogenerator (TENG) devices: materials and prospects
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D3SE00714F
– volume: 8
  year: 1995
  ident: 10.1016/j.nanoen.2025.110653_b26
  article-title: Gaussian processes for regression
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0000651712
Score 2.4128642
Snippet Triboelectric nanogenerators (TENGs) technology is a mechanical energy-harvesting technology with several advantages. Among the various TENG designs, the TENG...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110653
SubjectTerms Energy harvesting
Grating shape optimization
Rotational triboelectric nanogenerator
Title Enhanced energy harvesting in rotational triboelectric nanogenerator via Gaussian process regression-based Bayesian optimization
URI https://dx.doi.org/10.1016/j.nanoen.2025.110653
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 2211-2855
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000651712
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 2211-2855
  databaseCode: ACRLP
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000651712
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 2211-2855
  databaseCode: AIKHN
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000651712
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 2211-2855
  databaseCode: .~1
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000651712
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2211-2855
  databaseCode: AKRWK
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651712
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6DXvQgrjhu5OA1zjRb26OKOip6cYS5lSRNZyqYDrUKXsSfbpZWRhAPHlvyIHyEt7_vAXBsLeyQa4pRoaICUZYKJKMiQmmeciypFCF1cXfPR4_0ZsImPXDezcK4tspW9wed7rV1-2fQojmYl-XgAdvYBSfM1eWc0Xa025TGbovByUf0nWexJjaKfdHTnUdOoJug821eRphKOyJUzFxLPGfkdwu1YHUu18Fa6y7C03CjDdDTZhOsLpAIboHPCzPzZXyo_RwfnInac2eYKSwNrKumzfdBt9yqCntvSgXdlaaedNqG3fCtFPBKvL64mUo4D9MDsNbT0CZrkLN2OTwT79qfqKymeW5HOLfB-PJifD5C7V4FpGwA0SCmdWKx4Cqnkg-F9VjjopAioYQQMcRC5lQrmTMtY-ddES5jwYl1w7HGKtJkByyZyuhdAAlRNt7iCdasoDlJRaqs1pI4VRGzDyDuA9RBmc0De0bWtZU9ZQH6zEGfBej7IO7wzn68gswq-D8l9_4tuQ9W3FfoKzsAS039qg-to9HII_-SjsDy6fXt6P4L6hLVog
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGYABcYobD6ymja80I1QtBQoLRWKLbMdpg4RTlYLEgvjp-EgQSIiBNc6TrE_W-979ADixDNvmmmKUqyhHlCUCySiPUJIlHEsqRQhd3NzywT29emAPDdCte2FcWWWl-4NO99q6-tKq0GxNi6J1h63vgjvM5eUcafMFsEgZjp0HdvoefQVaLMdGsc96OgHkJOoWOl_nZYQptZuEipmrieeM_E5R32invwZWK3sRnoUrrYOGNhtg5dsUwU3w0TMTn8eH2jfywYmY-eEZZgwLA2flvAr4QbfdqgyLbwoF3ZXGfuq09bvhayHghXh5dk2VcBraB-BMj0OdrEGO7jJ4Lt60_6O0quap6uHcAqN-b9QdoGqxAlLWg5gjpnXHYsFVRiVvC2uyxnkuRYcSQkQbC5lRrWTGtIydeUW4jAUn1g7HGqtIk23QNKXROwASoqzDxTtYs5xmJBGJsmpL4kRFzL6AeBegGsp0GsZnpHVd2WMaoE8d9GmAfhfENd7pj2eQWg3_p-TevyWPwdJgdDNMh5e31_tg2Z2EIrMD0JzPXvShtTrm8si_qk8A2Nc3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+energy+harvesting+in+rotational+triboelectric+nanogenerator+via+Gaussian+process+regression-based+Bayesian+optimization&rft.jtitle=Nano+energy&rft.au=Yoon%2C+Jiyoung&rft.au=Lee%2C+Junhyeong&rft.au=Ryu%2C+Seunghwa&rft.au=Park%2C+Jinhyoung&rft.date=2025-03-01&rft.issn=2211-2855&rft.volume=135&rft.spage=110653&rft_id=info:doi/10.1016%2Fj.nanoen.2025.110653&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2025_110653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon