Enhanced energy harvesting in rotational triboelectric nanogenerator via Gaussian process regression-based Bayesian optimization
Triboelectric nanogenerators (TENGs) technology is a mechanical energy-harvesting technology with several advantages. Among the various TENG designs, the TENG with a rotational grating structure enables continuous power generation and features a simple design, making it the subject of extensive rese...
Saved in:
| Published in | Nano energy Vol. 135; p. 110653 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2211-2855 |
| DOI | 10.1016/j.nanoen.2025.110653 |
Cover
| Abstract | Triboelectric nanogenerators (TENGs) technology is a mechanical energy-harvesting technology with several advantages. Among the various TENG designs, the TENG with a rotational grating structure enables continuous power generation and features a simple design, making it the subject of extensive research. Until now, TENGs with fan-shaped gratings have mainly been investigated. In this study, we propose a methodology to first analyze the output performance of TENGs with various grating shapes through simulations and then apply a Gaussian process regression-based Bayesian optimization technique to derive the optimal grating shape that maximizes the output performance. Various grating shapes, derived using the proposed optimization methodology, were fabricated and specifically tested to validate this methodology. It was confirmed that the output performance trends, based on the grating shapes, were consistent between the optimization predictions and the experimental results. To investigate the optimal grating shapes for different target load resistances, the optimal grating shapes were also derived and examined at 10M, 100M, and 1,000MΩ. This work provides a new design approach for rotational grating-structure TENG, presenting innovative concept for designing high-output TENG with broad application potential in the field of energy harvesting.
[Display omitted]
•Bayesian optimization boosts energy by optimizing rotational TENG grating shapes.•Output of TENG with various grating shapes was evaluated via V-Q-α relation and FEM.•Gaussian regression-based Bayesian optimization derived the optimal grating shape.•Our optimization tailored grating shape depending on the target load resistance. |
|---|---|
| AbstractList | Triboelectric nanogenerators (TENGs) technology is a mechanical energy-harvesting technology with several advantages. Among the various TENG designs, the TENG with a rotational grating structure enables continuous power generation and features a simple design, making it the subject of extensive research. Until now, TENGs with fan-shaped gratings have mainly been investigated. In this study, we propose a methodology to first analyze the output performance of TENGs with various grating shapes through simulations and then apply a Gaussian process regression-based Bayesian optimization technique to derive the optimal grating shape that maximizes the output performance. Various grating shapes, derived using the proposed optimization methodology, were fabricated and specifically tested to validate this methodology. It was confirmed that the output performance trends, based on the grating shapes, were consistent between the optimization predictions and the experimental results. To investigate the optimal grating shapes for different target load resistances, the optimal grating shapes were also derived and examined at 10M, 100M, and 1,000MΩ. This work provides a new design approach for rotational grating-structure TENG, presenting innovative concept for designing high-output TENG with broad application potential in the field of energy harvesting.
[Display omitted]
•Bayesian optimization boosts energy by optimizing rotational TENG grating shapes.•Output of TENG with various grating shapes was evaluated via V-Q-α relation and FEM.•Gaussian regression-based Bayesian optimization derived the optimal grating shape.•Our optimization tailored grating shape depending on the target load resistance. |
| ArticleNumber | 110653 |
| Author | Lee, Junhyeong Yoon, Jiyoung Ryu, Seunghwa Park, Jinhyoung |
| Author_xml | – sequence: 1 givenname: Jiyoung surname: Yoon fullname: Yoon, Jiyoung organization: Advanced Mobility System Group, Korea Institute of Industrial Technology, Daegu, Republic of Korea – sequence: 2 givenname: Junhyeong surname: Lee fullname: Lee, Junhyeong organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea – sequence: 3 givenname: Seunghwa orcidid: 0000-0001-9516-5809 surname: Ryu fullname: Ryu, Seunghwa email: ryush@kaist.ac.kr organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea – sequence: 4 givenname: Jinhyoung orcidid: 0000-0002-5535-3693 surname: Park fullname: Park, Jinhyoung email: jhpark98@koreatech.ac.kr organization: School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Republic of Korea |
| BookMark | eNp9kLFOwzAQhj0UiVL6Bgx-gQTbiZNMSFCVglSJpbt1di6pq9au7FCpTDw6DmHmlv-G-_-7--7IzHmHhDxwlnPGq8dD7sB5dLlgQuacs0oWMzIXgvNMNFLekmWMB5aqkrzmYk6-124PzmBL0WHor3QP4YJxsK6n1tHgBxisd3CkQ7Da4xFNagwd9_SjBQYf6MUC3cBnjBYcPQdvMEYasA9JkzvTENOGF7ji74Q_D_Zkv36T78lNB8eIyz9dkN3rerd6y7Yfm_fV8zYzQsohk4hN-qIybakrBg1v667T0JRFUQAToNsSjW4l6lpWnBWVrqEq6loIFIZjsSDlFGuCjzFgp87BniBcFWdqZKcOamKnRnZqYpdsT5MN02kXi0FFY3HkZUMioVpv_w_4ARw1geo |
| Cites_doi | 10.1016/j.nanoen.2020.104968 10.1002/admt.202300327 10.1016/S0304-3886(97)00016-8 10.1016/j.compscitech.2021.109254 10.1002/aenm.202102106 10.1039/D3MH00039G 10.1016/j.elstat.2019.103370 10.1039/D3EE03520D 10.1016/j.nanoen.2023.108735 10.1006/gmip.1999.0490 10.1016/j.nanoen.2022.107048 10.1039/D3MH00614J 10.1002/aesr.202000113 10.1103/PhysRevResearch.4.023131 10.1002/adfm.202108580 10.1021/acsnano.2c12458 10.1016/j.nanoen.2020.104993 10.1002/adfm.202004714 10.1007/s12274-016-0997-x 10.1063/1.5017103 10.1039/C5EE01532D 10.1002/aenm.202301832 10.1002/adma.201302808 10.1023/A:1008306431147 10.1088/1742-6596/208/1/012136 10.1039/D3SE00714F |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.nanoen.2025.110653 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_nanoen_2025_110653 S2211285525000126 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHIDL AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC BNPGV EBS EFJIC EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSH SSM SSR SSZ T5K ~G- AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c255t-5ee82116cd4b60a81d7ffba84333a02abd4ecbd5eb7561036b7a637722e2c1e3 |
| IEDL.DBID | .~1 |
| ISSN | 2211-2855 |
| IngestDate | Wed Oct 01 06:33:34 EDT 2025 Sat May 24 17:05:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy harvesting Grating shape optimization Rotational triboelectric nanogenerator |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c255t-5ee82116cd4b60a81d7ffba84333a02abd4ecbd5eb7561036b7a637722e2c1e3 |
| ORCID | 0000-0001-9516-5809 0000-0002-5535-3693 |
| ParticipantIDs | crossref_primary_10_1016_j_nanoen_2025_110653 elsevier_sciencedirect_doi_10_1016_j_nanoen_2025_110653 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Nano energy |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Chen, Lin (b1) 2015; 8 Pelikan, Pelikan (b22) 2005 Machado, Zhao, Amjadi, Ouyang, Basset, Yurchenko (b20) 2023; 115 J.R. Gardner, M.J. Kusner, Z.E. Xu, K.Q. Weinberger, J.P. Cunningham, Bayesian optimization with inequality constraints, in: Proceedings of the International Conference on Machine Learning, ICML, 2014, pp. 937–945. Lv, Li, Xie, Zhang, Liu, Yang, Guo, Yang, Lin (b8) 2023; 13 Cho, Kim, Park, Kim (b4) 2022; 95 Snoek, Larochelle, Adams (b28) 2012; 25 Han, Feng, Chen, Liang, Pang, Jiang, Wang (b5) 2022; 32 Cao, Li, Shen, Zhang, Gong, Guo, Peng, Wang (b13) 2024 Williams, Rasmussen (b26) 1995; 8 Li, Bai, Shao, Meng, Li (b9) 2024 Chen, Wei, Wang, Li, Sun, Peng, Wu, Wang, Wang (b7) 2021; 11 Bi, Wu, Wang, Cao, Cheng, Ma, Ye (b10) 2020; 75 Yadav, Sahay, Verma, Maurya, Yadav (b14) 2023; 7 Zhang (b21) 1999; 61 Liu, Mo, Fu, Lu, Zhang, Wang, Nie (b11) 2020; 30 Cao, Zhou, Zhou, Hu, Wang, Wang, Sun (b6) 2023; 8 Shin, Ko, Lyeo, Kim (b18) 2022; 4 Jones, Schonlau, Welch (b25) 1998; 13 Wu, Xue, Fang, Gao, Yan, Jiang, Liu, Wang, Liu, Cheng (b15) 2024 Denzel, Kästner (b27) 2018; 148 Jiang, Chen, Yang, Han, Tang, Wang (b19) 2016; 9 Das, Shyam (b31) 2010; 208 Zhou, Liu, Gao, Wang, Qin, Wang, Lin, Xie, Chen, Zhang (b3) 2021; 2 Lee, Park, Lee, Lee, Park, Lee, Ryu (b24) 2023 Ma, Jones, Miller, Kozaczek (b30) 2019; 101 Niu, Liu, Wang, Lin, Zhou, Hu, Wang (b16) 2013; 25 Watson, Yu (b17) 1997; 40 Park, Kim, Kim, Song, Park, Ryu (b29) 2022; 220 Khorsand, Tavakoli, Guan, Tang (b2) 2020; 75 Choi, Lee, Lin, Cho, Kim, Ao, Soh, Sohn, Jeong, Lee (b12) 2023; 17 Cao (10.1016/j.nanoen.2025.110653_b13) 2024 Choi (10.1016/j.nanoen.2025.110653_b12) 2023; 17 Pelikan (10.1016/j.nanoen.2025.110653_b22) 2005 Denzel (10.1016/j.nanoen.2025.110653_b27) 2018; 148 Wang (10.1016/j.nanoen.2025.110653_b1) 2015; 8 Zhang (10.1016/j.nanoen.2025.110653_b21) 1999; 61 Shin (10.1016/j.nanoen.2025.110653_b18) 2022; 4 Li (10.1016/j.nanoen.2025.110653_b9) 2024 Watson (10.1016/j.nanoen.2025.110653_b17) 1997; 40 Park (10.1016/j.nanoen.2025.110653_b29) 2022; 220 10.1016/j.nanoen.2025.110653_b23 Liu (10.1016/j.nanoen.2025.110653_b11) 2020; 30 Jiang (10.1016/j.nanoen.2025.110653_b19) 2016; 9 Williams (10.1016/j.nanoen.2025.110653_b26) 1995; 8 Lee (10.1016/j.nanoen.2025.110653_b24) 2023 Cho (10.1016/j.nanoen.2025.110653_b4) 2022; 95 Khorsand (10.1016/j.nanoen.2025.110653_b2) 2020; 75 Jones (10.1016/j.nanoen.2025.110653_b25) 1998; 13 Zhou (10.1016/j.nanoen.2025.110653_b3) 2021; 2 Niu (10.1016/j.nanoen.2025.110653_b16) 2013; 25 Han (10.1016/j.nanoen.2025.110653_b5) 2022; 32 Cao (10.1016/j.nanoen.2025.110653_b6) 2023; 8 Chen (10.1016/j.nanoen.2025.110653_b7) 2021; 11 Das (10.1016/j.nanoen.2025.110653_b31) 2010; 208 Snoek (10.1016/j.nanoen.2025.110653_b28) 2012; 25 Bi (10.1016/j.nanoen.2025.110653_b10) 2020; 75 Wu (10.1016/j.nanoen.2025.110653_b15) 2024 Machado (10.1016/j.nanoen.2025.110653_b20) 2023; 115 Ma (10.1016/j.nanoen.2025.110653_b30) 2019; 101 Yadav (10.1016/j.nanoen.2025.110653_b14) 2023; 7 Lv (10.1016/j.nanoen.2025.110653_b8) 2023; 13 |
| References_xml | – volume: 9 start-page: 1057 year: 2016 end-page: 1070 ident: b19 article-title: Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes publication-title: Nano Res. – volume: 8 year: 1995 ident: b26 article-title: Gaussian processes for regression publication-title: Adv. Neural Inf. Process. Syst. – volume: 17 start-page: 11087 year: 2023 end-page: 11219 ident: b12 article-title: Recent advances in triboelectric nanogenerators: from technological progress to commercial applications publication-title: ACS Nano – reference: J.R. Gardner, M.J. Kusner, Z.E. Xu, K.Q. Weinberger, J.P. Cunningham, Bayesian optimization with inequality constraints, in: Proceedings of the International Conference on Machine Learning, ICML, 2014, pp. 937–945. – volume: 30 year: 2020 ident: b11 article-title: Enhancement of triboelectric charge density by chemical functionalization publication-title: Adv. Funct. Mater. – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: b25 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. – volume: 2 year: 2021 ident: b3 article-title: Dual mode rotary triboelectric nanogenerator for collecting kinetic energy from bicycle brake publication-title: Adv. Energy Sustain. Res. – year: 2024 ident: b9 article-title: Strategies to improve the output performance of triboelectric nanogenerators publication-title: Small Methods – volume: 61 start-page: 2 year: 1999 end-page: 15 ident: b21 article-title: C-Bézier curves and surfaces publication-title: Graph. Models Image Process. – volume: 208 year: 2010 ident: b31 article-title: Designing of electrode for high energy charged particle acceleration publication-title: J. Phys. Conf. Ser. – volume: 40 start-page: 67 year: 1997 end-page: 72 ident: b17 article-title: The contact electrification of polymers and the depth of charge penetration publication-title: J. Electrostat. – volume: 148 year: 2018 ident: b27 article-title: Gaussian process regression for geometry optimization publication-title: J. Chem. Phys. – volume: 4 year: 2022 ident: b18 article-title: Derivation of a governing rule in triboelectric charging and series from thermoelectricity publication-title: Phys. Rev. Res. – volume: 8 year: 2023 ident: b6 article-title: High performance rotary-structured triboelectric-electromagnetic hybrid nanogenerator for ocean wind energy harvesting publication-title: Adv. Mater. Technol. – volume: 220 year: 2022 ident: b29 article-title: Designing staggered platelet composite structure with Gaussian process regression based Bayesian optimization publication-title: Compos. Sci. Technol. – year: 2024 ident: b15 article-title: Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing publication-title: Mater. Horiz. – volume: 11 year: 2021 ident: b7 article-title: Design optimization of soft-contact freestanding rotary triboelectric nanogenerator for high-output performance publication-title: Adv. Energy Mater. – volume: 75 year: 2020 ident: b2 article-title: Artificial intelligence enhanced mathematical modeling on rotary triboelectric nanogenerators under various kinematic and geometric conditions publication-title: Nano Energy – year: 2023 ident: b24 article-title: Machine learning-based inverse design methods considering data characteristics and design space size in materials design and manufacturing: a review publication-title: Mater. Horiz. – volume: 25 year: 2012 ident: b28 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – year: 2024 ident: b13 article-title: Progress on techniques for improving output performance of triboelectric nanogenerators publication-title: Energy Environ. Sci. – volume: 95 year: 2022 ident: b4 article-title: A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system publication-title: Nano Energy – volume: 25 start-page: 6184 year: 2013 end-page: 6193 ident: b16 article-title: Theory of sliding-mode triboelectric nanogenerators publication-title: Adv. Mater. – volume: 7 start-page: 3796 year: 2023 end-page: 3831 ident: b14 article-title: Applications of multifunctional triboelectric nanogenerator (TENG) devices: materials and prospects publication-title: Sustain. Energy Fuels – volume: 115 year: 2023 ident: b20 article-title: Optimisation-driven design of sliding mode triboelectric energy harvesters publication-title: Nano Energy – start-page: 31 year: 2005 end-page: 48 ident: b22 article-title: Bayesian optimization algorithm publication-title: Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms – volume: 75 year: 2020 ident: b10 article-title: Optimization of structural parameters for rotary freestanding-electret generators and wind energy harvesting publication-title: Nano Energy – volume: 13 year: 2023 ident: b8 article-title: High-performance and durable rotational triboelectric nanogenerator leveraging soft-contact coplanar charge pumping strategy publication-title: Adv. Energy Mater. – volume: 101 year: 2019 ident: b30 article-title: An electrostatic study of curvature effects on electric field stress in high voltage differentials publication-title: J. Electrost. – volume: 32 year: 2022 ident: b5 article-title: Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2250 year: 2015 end-page: 2282 ident: b1 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. – volume: 75 year: 2020 ident: 10.1016/j.nanoen.2025.110653_b10 article-title: Optimization of structural parameters for rotary freestanding-electret generators and wind energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104968 – volume: 8 issue: 15 year: 2023 ident: 10.1016/j.nanoen.2025.110653_b6 article-title: High performance rotary-structured triboelectric-electromagnetic hybrid nanogenerator for ocean wind energy harvesting publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202300327 – volume: 40 start-page: 67 year: 1997 ident: 10.1016/j.nanoen.2025.110653_b17 article-title: The contact electrification of polymers and the depth of charge penetration publication-title: J. Electrostat. doi: 10.1016/S0304-3886(97)00016-8 – volume: 220 year: 2022 ident: 10.1016/j.nanoen.2025.110653_b29 article-title: Designing staggered platelet composite structure with Gaussian process regression based Bayesian optimization publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.109254 – volume: 25 year: 2012 ident: 10.1016/j.nanoen.2025.110653_b28 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 issue: 44 year: 2021 ident: 10.1016/j.nanoen.2025.110653_b7 article-title: Design optimization of soft-contact freestanding rotary triboelectric nanogenerator for high-output performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102106 – year: 2023 ident: 10.1016/j.nanoen.2025.110653_b24 article-title: Machine learning-based inverse design methods considering data characteristics and design space size in materials design and manufacturing: a review publication-title: Mater. Horiz. doi: 10.1039/D3MH00039G – volume: 101 year: 2019 ident: 10.1016/j.nanoen.2025.110653_b30 article-title: An electrostatic study of curvature effects on electric field stress in high voltage differentials publication-title: J. Electrost. doi: 10.1016/j.elstat.2019.103370 – year: 2024 ident: 10.1016/j.nanoen.2025.110653_b13 article-title: Progress on techniques for improving output performance of triboelectric nanogenerators publication-title: Energy Environ. Sci. doi: 10.1039/D3EE03520D – volume: 115 year: 2023 ident: 10.1016/j.nanoen.2025.110653_b20 article-title: Optimisation-driven design of sliding mode triboelectric energy harvesters publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108735 – volume: 61 start-page: 2 issue: 1 year: 1999 ident: 10.1016/j.nanoen.2025.110653_b21 article-title: C-Bézier curves and surfaces publication-title: Graph. Models Image Process. doi: 10.1006/gmip.1999.0490 – volume: 95 year: 2022 ident: 10.1016/j.nanoen.2025.110653_b4 article-title: A waterwheel hybrid generator with disk triboelectric nanogenerator and electromagnetic generator as a power source for an electrocoagulation system publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107048 – year: 2024 ident: 10.1016/j.nanoen.2025.110653_b15 article-title: Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing publication-title: Mater. Horiz. doi: 10.1039/D3MH00614J – volume: 2 issue: 6 year: 2021 ident: 10.1016/j.nanoen.2025.110653_b3 article-title: Dual mode rotary triboelectric nanogenerator for collecting kinetic energy from bicycle brake publication-title: Adv. Energy Sustain. Res. doi: 10.1002/aesr.202000113 – year: 2024 ident: 10.1016/j.nanoen.2025.110653_b9 article-title: Strategies to improve the output performance of triboelectric nanogenerators publication-title: Small Methods – volume: 4 issue: 2 year: 2022 ident: 10.1016/j.nanoen.2025.110653_b18 article-title: Derivation of a governing rule in triboelectric charging and series from thermoelectricity publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.023131 – volume: 32 issue: 2 year: 2022 ident: 10.1016/j.nanoen.2025.110653_b5 article-title: Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108580 – volume: 17 start-page: 11087 issue: 12 year: 2023 ident: 10.1016/j.nanoen.2025.110653_b12 article-title: Recent advances in triboelectric nanogenerators: from technological progress to commercial applications publication-title: ACS Nano doi: 10.1021/acsnano.2c12458 – volume: 75 year: 2020 ident: 10.1016/j.nanoen.2025.110653_b2 article-title: Artificial intelligence enhanced mathematical modeling on rotary triboelectric nanogenerators under various kinematic and geometric conditions publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104993 – volume: 30 issue: 50 year: 2020 ident: 10.1016/j.nanoen.2025.110653_b11 article-title: Enhancement of triboelectric charge density by chemical functionalization publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004714 – volume: 9 start-page: 1057 year: 2016 ident: 10.1016/j.nanoen.2025.110653_b19 article-title: Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes publication-title: Nano Res. doi: 10.1007/s12274-016-0997-x – ident: 10.1016/j.nanoen.2025.110653_b23 – volume: 148 issue: 9 year: 2018 ident: 10.1016/j.nanoen.2025.110653_b27 article-title: Gaussian process regression for geometry optimization publication-title: J. Chem. Phys. doi: 10.1063/1.5017103 – volume: 8 start-page: 2250 issue: 8 year: 2015 ident: 10.1016/j.nanoen.2025.110653_b1 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – volume: 13 year: 2023 ident: 10.1016/j.nanoen.2025.110653_b8 article-title: High-performance and durable rotational triboelectric nanogenerator leveraging soft-contact coplanar charge pumping strategy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202301832 – volume: 25 start-page: 6184 issue: 43 year: 2013 ident: 10.1016/j.nanoen.2025.110653_b16 article-title: Theory of sliding-mode triboelectric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201302808 – volume: 13 start-page: 455 year: 1998 ident: 10.1016/j.nanoen.2025.110653_b25 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – volume: 208 year: 2010 ident: 10.1016/j.nanoen.2025.110653_b31 article-title: Designing of electrode for high energy charged particle acceleration publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/208/1/012136 – start-page: 31 year: 2005 ident: 10.1016/j.nanoen.2025.110653_b22 article-title: Bayesian optimization algorithm – volume: 7 start-page: 3796 issue: 16 year: 2023 ident: 10.1016/j.nanoen.2025.110653_b14 article-title: Applications of multifunctional triboelectric nanogenerator (TENG) devices: materials and prospects publication-title: Sustain. Energy Fuels doi: 10.1039/D3SE00714F – volume: 8 year: 1995 ident: 10.1016/j.nanoen.2025.110653_b26 article-title: Gaussian processes for regression publication-title: Adv. Neural Inf. Process. Syst. |
| SSID | ssj0000651712 |
| Score | 2.4128642 |
| Snippet | Triboelectric nanogenerators (TENGs) technology is a mechanical energy-harvesting technology with several advantages. Among the various TENG designs, the TENG... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110653 |
| SubjectTerms | Energy harvesting Grating shape optimization Rotational triboelectric nanogenerator |
| Title | Enhanced energy harvesting in rotational triboelectric nanogenerator via Gaussian process regression-based Bayesian optimization |
| URI | https://dx.doi.org/10.1016/j.nanoen.2025.110653 |
| Volume | 135 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 2211-2855 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000651712 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 2211-2855 databaseCode: ACRLP dateStart: 20120101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000651712 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 2211-2855 databaseCode: AIKHN dateStart: 20120101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000651712 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 2211-2855 databaseCode: .~1 dateStart: 20120101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000651712 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2211-2855 databaseCode: AKRWK dateStart: 20120101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000651712 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6DXvQgrjhu5OA1zjRb26OKOip6cYS5lSRNZyqYDrUKXsSfbpZWRhAPHlvyIHyEt7_vAXBsLeyQa4pRoaICUZYKJKMiQmmeciypFCF1cXfPR4_0ZsImPXDezcK4tspW9wed7rV1-2fQojmYl-XgAdvYBSfM1eWc0Xa025TGbovByUf0nWexJjaKfdHTnUdOoJug821eRphKOyJUzFxLPGfkdwu1YHUu18Fa6y7C03CjDdDTZhOsLpAIboHPCzPzZXyo_RwfnInac2eYKSwNrKumzfdBt9yqCntvSgXdlaaedNqG3fCtFPBKvL64mUo4D9MDsNbT0CZrkLN2OTwT79qfqKymeW5HOLfB-PJifD5C7V4FpGwA0SCmdWKx4Cqnkg-F9VjjopAioYQQMcRC5lQrmTMtY-ddES5jwYl1w7HGKtJkByyZyuhdAAlRNt7iCdasoDlJRaqs1pI4VRGzDyDuA9RBmc0De0bWtZU9ZQH6zEGfBej7IO7wzn68gswq-D8l9_4tuQ9W3FfoKzsAS039qg-to9HII_-SjsDy6fXt6P4L6hLVog |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGYABcYobD6ymja80I1QtBQoLRWKLbMdpg4RTlYLEgvjp-EgQSIiBNc6TrE_W-979ADixDNvmmmKUqyhHlCUCySiPUJIlHEsqRQhd3NzywT29emAPDdCte2FcWWWl-4NO99q6-tKq0GxNi6J1h63vgjvM5eUcafMFsEgZjp0HdvoefQVaLMdGsc96OgHkJOoWOl_nZYQptZuEipmrieeM_E5R32invwZWK3sRnoUrrYOGNhtg5dsUwU3w0TMTn8eH2jfywYmY-eEZZgwLA2flvAr4QbfdqgyLbwoF3ZXGfuq09bvhayHghXh5dk2VcBraB-BMj0OdrEGO7jJ4Lt60_6O0quap6uHcAqN-b9QdoGqxAlLWg5gjpnXHYsFVRiVvC2uyxnkuRYcSQkQbC5lRrWTGtIydeUW4jAUn1g7HGqtIk23QNKXROwASoqzDxTtYs5xmJBGJsmpL4kRFzL6AeBegGsp0GsZnpHVd2WMaoE8d9GmAfhfENd7pj2eQWg3_p-TevyWPwdJgdDNMh5e31_tg2Z2EIrMD0JzPXvShtTrm8si_qk8A2Nc3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+energy+harvesting+in+rotational+triboelectric+nanogenerator+via+Gaussian+process+regression-based+Bayesian+optimization&rft.jtitle=Nano+energy&rft.au=Yoon%2C+Jiyoung&rft.au=Lee%2C+Junhyeong&rft.au=Ryu%2C+Seunghwa&rft.au=Park%2C+Jinhyoung&rft.date=2025-03-01&rft.issn=2211-2855&rft.volume=135&rft.spage=110653&rft_id=info:doi/10.1016%2Fj.nanoen.2025.110653&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2025_110653 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |